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Abstract

Rapid and accurate clinical diagnosis of pathological conditions remains highly challenging. A very
important component of diagnosis tool development is the design of effective classification models with
Mass spectrometry (MS) data. Some popular Machine Learning (ML) approaches have been investigated
for this purpose but these ML models require time-consuming preprocessing steps such as baseline
correction, denoising, and spectrum alignment to remove non-sample-related data artifacts. They also
depend on the tedious extraction of handcrafted features, making them unsuitable for rapid analysis.
Convolutional Neural Networks (CNNs) have been found to perform well under such circumstances since
they can learn efficient representations from raw data without the need for costly preprocessing. However,
their effectiveness drastically decreases when the number of available training samples is small, which is a
common situation in medical applications. Transfer learning strategies extend an accurate representation
model learnt usually on a large dataset containing many categories, to a smaller dataset with far fewer
categories. In this study, we first investigate transfer learning on a 1D-CNN we have designed to classify
MS data, then we develop a new representation learning method when transfer learning is not powerful
enough, as in cases of low-resolution or data heterogeneity. What we propose is to train the same
model through several classification tasks over various small datasets in order to accumulate generic
knowledge of what MS data are, in the resulting representation. By using rat brain data as the initial
training dataset, a representation learning approach can have a classification accuracy exceeding 98% for
canine sarcoma cancer cells, human ovarian cancer serums, and pathogenic microorganism biotypes in 1D
clinical datasets. We show for the first time the use of cumulative representation learning using datasets
generated in different biological contexts, on different organisms, in different mass ranges, with different
MS ionization sources, and acquired by different instruments at different resolutions. Our approach thus
proposes a promising strategy for improving MS data classification accuracy when only small numbers of
samples are available as a prospective cohort. The principles demonstrated in this work could even be
beneficial to other domains (astronomy, archaeology...) where training samples are scarce.

Keywords CNNs, Transfer Learning, Cumulative Learning, Classification, Small Datasets.

1 Introduction

Accurate and rapid identification of cancer tissues has a crucial impact on medical decisions. Conventional
histopathological examinations are resource intensive and time-consuming, requiring 30–45 minutes per
sample processed and the presence of a skilled pathologist [1]. A similar need exists in the treatment of
infections, where accurate identification of microorganisms responsible for human infection is important to
ensure the most appropriate and effective treatment for a patient, in the shortest possible time [2]. In this
context, it is essential to use methods which provide accurate identification and correct interpretation of
the analyzed samples. Mass spectrometry (MS) is particularly useful for such purposes since it provides
non-targeted molecular information on the millisecond time scales. Its sensitivity, reproducibility, and
suitability for analyzing complex mixtures are well established. New analysis methods of crude samples are
making diagnosis even faster and easier. Simultaneously, the development of MS-based bacterial biotyping
clearly illustrates the value of MS in rapid clinical applications [3].

For cancer-related diagnosis and microbial pathogen identifications, many popular classification Machine
Learning (ML) models, such as Support Vector Machine (SVM) [4], Random Forest (RF) [5], and Linear
Discriminant Analysis (LDA) [6] have been already used and compared [7–10]. These ML methods are
applied to preprocessed MS data, and differences in preprocessing pose a major challenge to any comparison
of MS data analysis. Classification model design for rapid applications thus becomes a highly complex task,
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since it must follow a workflow involving several interdependent preprocessing steps. Data preprocessing is
used to improve the robustness of subsequent multivariate analysis and to increase data interpretability
by correcting issues associated with MS signal acquisition [11]. Preprocessing quality is important, and if
inadequate, can lead to biased or biologically irrelevant conclusions [12]. Several factors, often related to the
experimental conditions including sample heterogeneity, sample processing and MS analysis (e.g. electronic
noise, instrument calibration stability, temperature stability,. . . ) and other experimental conditions can
contribute to spectral variations including shifts in peak location, fluctuating intensities and signal distortion
[13]. In other words, peaks corresponding to the same molecule in different samples can be shifted and
their signal intensity can vary from one spectrum to another [14–16]. Signals of lower intensity are in
general more affected by such variations because they can become buried in baseline noise in certain cases.
Since these include many markers of interest, this may lead to loss of important biological information [17].
Corrections on peak position variations are required in order to align different spectra properly and thus
ensure consistency in downstream analysis. This alignment constitutes a significant hindrance to achieving
reproducibility especially in today’s complex datasets, and remains a challenging problem since it is neither
linear nor uniform across the whole collection of MS spectra [17]. In addition to peak shifts, other spectral
fluctuations must be corrected in order to minimize background and serious intensity distortion due to noise
and baseline drift caused by instrument electronics, ion saturation or contaminants within the samples [13].
To overcome batch effects, peak intensities must be equalized to reduce overall signal variation between
acquisitions using intensity calibration or normalization [18, 19]. Log-intensity transformation is one of
the methods most commonly used to attenuate large differences in variability differences between peaks
across the spectrum [19]. Another preprocessing step that is crucial to subsequent analysis is the peak
detection, also known as peak picking. This consists of identifying informative peaks that correspond to a
true biological signal by finding all local extremes in the spectrum, which corresponds to the conversion of
spectra from profile to centroid mode [20]. Finally, the curse of dimensionality, must be avoided. This is
a well-known problem that arises when processing MS data having a large number of dimensions, and is
lessened using data dimensionality reduction techniques [21]. Various MS classification workflows have been
developed so far, but there is no golden standards for the optimal choice of parameters at each individual
step, for their quality evaluation or for their best combination [22]. It has been shown that the choice of
preprocessing parameters for a specific dataset can decrease the performance of the classification model
and that preprocessing may be effective only for that dataset and not any others generated from different
instruments or with different settings [23]. A standard pipeline for MS classification using SVM, RF or
LDA must include these preprocessing steps and must consider aforementioned constraints, which makes
such algorithms unsuitable for rapid analysis.

Convolutional Neural Networks (CNNs) are one of the most successful deep learning architectures
designed to learn representation from an input signal with different levels of abstraction [24]. A typical
CNN includes convolutional layers, which learn spatially invariant features from input (i.e. invariance
to translation, invariance to scale, etc) stored in feature maps, pooling operators that extract the most
prominent structures, and fully connected layers for classification [25]. To address rapid clinical MS data
classification tasks, CNNs represent an attractive approach offering various advantages over conventional
ML algorithms. These include significantly higher accuracy, effectiveness on raw spectrum classification
even in presence of signal artifacts (noise, baseline distortion, etc.) and hence discards the need for data
preprocessing before classification [26], integration of features extraction with classification and without a
feature-engineering step since all layers are trained together, and finally exploitation of spatially stable local
correlations by enforcing the local connectivity patterns, where the output of each layer of these networks is
directly related to small regions of the input spectrum [27]. However, CNNs classification efficiency trained
using a small number of spectra drops rapidly [26]. Unfortunately, many real-world applications do not have
access to big training sets because of data scarcity, or because of the difficulty and expense in labeling data
[28]. In medicine, it is often the case that some samples are only accessible in limited amounts, especially
for rarer diseases and pathologies (e.g. patient biopsies, at advanced stage of infection, etc). Therefore the
size of clinical datasets is constrained by data availability and by the experiments complexity and high cost
[29]. For such applications, transfer learning has emerged as an interesting approach [30]. This technique
is applicable to small datasets and therefore requires fewer computational resources while increasing the
classification accuracy as compared to CNNs models built from scratch. Transfer learning is a two-step
process. An accurate data representation is first learned, by training a model on a dataset containing a large
amount of annotated data covering many categories. This representation (i.e. its model weights) is then
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reused to build a new model based on a smaller annotated dataset containing fewer categories, by training
only the final decision layer(s) or by also fine-tuning the whole model with the reduced set of categories.
Transfer learning has proven useful in many engineering areas including computer vision, robotics, image
classification and natural language processing (NLP) applications [31]. With MS data, it would use basic
similarities in spectral shape gathered from different datasets and adapted to address new classification
problems. This has yet to be explored for 1D spectral data, since no 1D spectral dataset as large as the
ImageNet database in the 2D image analysis domain is available [32]. Most of MS classification by CNNs
focused on MS 2D imaging analysis [33–35]. Only few studies of input signal classification or regression
using 1D-CNNs with vibrational spectroscopy data [36], Near-Infrared (NIR) spectroscopy data [37–39]
or Raman spectroscopy data [26] have been published. We have found no description of their use or of
transfer learning or representation learning in conjunction with 1D-MS data. The aim of this study is to
build CNNs-based classification models for 1D mass spectra by transfer learning or representation learning.
Pattern recognition models are built using small clinical datasets generated for the diagnosis of cancers
or microbial infections. Our work bridges the gap between developing a novel CNNs framework and its
application on small datasets classification. The approach is fully applicable to other domains where the
lack of data is still a hindrance.

2 Methods

2.1 Datasets

These independent MS datasets are used to evaluate the proposed approaches :
1. The canine sarcoma dataset contained 1 healthy and 11 sarcoma histology types obtained from

the 33 annotated ex vivo biopsies as described previously [40]. Spectra are acquired in sensitivity positive
ion mode using a Synapt G2-S Q-TOF MS instrument (Waters, Wilmslow, United Kingdom). The multi-
classification model presented is focused on sarcoma type only. Tumor type grading is beyond the scope of
this study.

2. The microorganism dataset contained a five human pathogen collection of 2 Gram-negative
(Gram-) bacteria, 2 Gram-positive (Gram+) bacteria, and 1 Yeast cultivated as described previously [41].
Spectra are acquired in positive high-resolution mode using a Synapt G2-S Q-TOF MS instrument (Waters,
Wilmslow, United Kingdom).

SpiderMass is a new system designed for mobile in vivo and real-time surface analysis. The instrumen-
tation setup is described in detail elsewhere [42]. SpiderMass does not involve a chromatographic step,
making it compatible with rapid analysis but increasing output spectrum heterogeneity. These two small
SpiderMass datasets are characteristic of the clinical field, where samples availability coming from patients
can be limited thus making the task of classification models more difficult.

3. The MALDI-MSI rat brain dataset contained spectra of rat gray and white brain matter, acquired
using a Rapiflex MALDI-TOF instrument (Bruker, Bremen). MALDI-MSI mass spectrometry (MALDI-IMS)
are imported into the user-friendly Scils software (Bruker Daltonik GmbH) and ROI non-processed spectra
are exported into a csv file format.

4. The beef liver dataset contained two types of spectra of liver samples from healthy animals, one
acquired in positive ion mode and the other in negative ion mode, both in sensitivity mode using a Synapt
G2-S Q-TOF instrument (Waters, Wilmslow, United Kingdom).

These large and medium datasets are used to investigate the transfer learning and representation learning
approaches. SpiderMass is based on WALDI process which corresponds to MALDI with water as matrix
[42]. We trained the CNNs with the MALDI dataset (rat brain dataset) and then perform classification
(canine sarcoma and microorganism datasets) based on this training.

5. The human ovary dataset 1 represented two classes of serum, healthy and cancerous. High-
resolution spectra are acquired via ProteinChip weak-cation-exchange interaction chips (WCX2, Ciphergen
Biosystems, Inc., Fremont, CA, USA) and surface-enhanced laser-desorption/ionization (SELDI) TOF
technology (QSTAR Pulsar I, Applied Biosystems, Inc., Framingham, MA, USA). This dataset has been
used previously [43].

6. The human ovary dataset 2 (as above) contained spectra acquired in low-resolution using a WCX2
protein chip via a Protein Biological System II (PBSII) SELDI-TOF instrument. This dataset has been
used previously [44].
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We validated our transfer and representation learning approach using these two small well-controlled,
independent, and publicly available clinical MS datasets. These two datasets are based on SELDI process,
we trained the CNNs with the MALDI dataset (rat brain dataset) and then perform ovarian classification
based on this training. SELDI is an old ionization method which has small utility nowadays since it yields
only a subset of the most abundant peptides and protein fragments. Some SELDI platforms may not be
suitable for routine clinical diagnosis and struggle to prove their worth as reliable tools [45]. Low-resolution
can make close species in m/z difficult to distinguish and give rise to coalesced features. Nevertheless,due
to its easy-to-use quantitative screening procedures, SELDI low-resolution still can be used for general
description of proteins [46]. Rather than assessing the utility of these technologies or instruments, our goal
in this paper is to see the problem from the user standpoint. We illustrated the strength of our methodology
as a solution to multiple real-life constraints such as the fact that the user is confronted with several types
of data generated by different devices, and often in a limited size.

All classes considered in this study are non-overlapping. Datasets availability and complete descriptions
are provided in the supplementary section. Table 1 lists the sample material classes used in this study.

MS instruments Datasets Classes # spectra
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Synapt G2-S Q-TOF
(Waters, SpiderMass)

Canine sarcoma

Healthy
Myxosarcoma
Fibrosarcoma

Hemangiopericytoma
Malignant peripheral nerve tumor

Osteosarcoma
Undifferentiated pleomorphicsarcoma

Rhabdomyosarcoma
Splenic fibrohistiocytic nodules

Histiocytic sarcoma
Soft tissue sarcoma

Gastrointestinal stromal sarcoma
Total

482
60
404
134
60
339
376
66
63
105
69
70

2228

Synapt G2-S Q-TOF
(Waters, SpiderMass)

Microorganisms

Staphylococcus aureus
E.coli D31

Pseudomonas aeruginosa
Enterococcus faecalis

Candida albicans
Total

26
26
24
19
23

119

Hybrid quadrupole
(QSTAR pulsar I)

Human ovary 1
Healthy
Cancer
Total

95
121
216
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Rapiflex MALDI-TOF
(Bruker)

Rat brain
Gray matter
White matter

Total

4635
5465

10100

Synapt G2-S Q-TOF
(Waters, SpiderMass)

Beef liver
Positive mode
Negative mode

Total

1372
1265
2637

PBSII SELDI-TOF Human ovary 2
Healthy
Cancer
Total

91
162
253

Table 1: Description of datasets

2.2 Hyper-parameter search

We evaluate the effects of hyper-parameter value alterations on the classification accuracy of the clinical
datasets by CNNs. Contrary to some 1D data where CNN architecture and fine-tuning played a marginal
role in classification performance [47]. MS data hyper-parameters selection have a huge impact on the
performance, as strong as images. We begin with an investigation of the optimal convolutional filter size for
the extraction of spectral features, followed by a search of various learning rate, including 0.1, 0.01, and
0.001. We reduce the learning rate when the validation set accuracy stopped improving during 10 epochs.
We also investigate the use of two optimizer algorithms, including Adam and Stochastic gradient descent
(SGD). We search the use of various batch sizes, including 64, 128, and 256. This evaluation is also done in
terms of regularizer technique by adding either batch normalization, dropout of 0.5 or L1/L2 regularization
after each convolutional layer.

2.3 Evaluation protocol

We import all MS datasets without undergoing any preprocessing step. We binne each dataset (see
matrix construction section in the supplementary material) and scale it linearly between 0 and 1. Datasets
are divided randomly into three subsets, one for training, one for validation, and one for testing with ratios
of 60%, 20%, and 20%, respectively. Performance of classifiers is measured by four metrics: global accuracy
(over all classes), sensitivity, specificity, and confusion matrix as an indicator on how is simple or hard
for the classifier to distinguish between different classes. CNNs weights are initialized with He normal
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distribution since Relu/Leaky Relu is used as the activation function [48], except for the output layer,
where a sigmoid function is used for binary classification or a softmax function for multi-class classification.
Classification accuracy is averaged over 10 independent iterations. These subsets are computed for each
iteration using a stratified sampling to maintain the original proportion of minority classes. A loss function
is weighted during the training process for samples from under-represented classes in the datasets. Only the
best hyper-parameters are used for the evaluation process. We use the early stopping to evaluate the model
periodically. The model is saved only if there is an accuracy improvement of the validation set over 10
epochs and thereby use those weights for testing. The training process ends usually after about 50 epochs.

Protocol for evaluating prominent 2D-CNN architectures adapted to 1D input

The aim of the first experiment is to evaluate and compare the application of three prominent CNN
architectures for classifying spectra in clinical datasets. The first of these is variant Lecun adapted from [49],
the second is variant LeNet [26], and the third is variant VGG9 adapted from [31]. Variant Lecun (model
1) contains two convolutional layers and two fully connected layers. Variant LeNet (model 2) includes
three convolutional layers and two fully connected layers. Variant VGG9 (model 3) is the deepest, with six
convolutional layers and three fully connected layers. CNN architectures share the same characteristics and
follow the same principles whether they are 1D or 2D. The basic difference is the dimension of the input
signal and consequently how filters slide across the data. Models 1 and 3 were described in the literature
and are modified slightly to fit our 1D data classification problem. Convolutional modules and pooling
size are adapted to 1D input. The same number of filters is used but they are expanded to account for
spectral features larger than those extracted from images (kernel size adjusted to 3x3). No zero padding
is needed because all of the spectra start and end with a zero value and have the same length through
binning. For model 1, two fully connected layers out of three from the original LeNet architecture are kept.
The adaptation of 2D-CNN architecture to 1D input was described previously, for example in Inception
modules [37] according to data specificities. Using this approach, we expect to determine what model depth
and hyper-parameters are optimal for MS spectra classification. This evaluation allow assessment of layers
number required for spectral feature extraction, especially in the case of highly heterogeneous biological
classes such as canine sarcoma types. That is where CNNs robustness or invariance to spatial transformation
proprieties handle the inter-class variability. This variability results mainly in pics translation (shift) and
intensities variability from one spectra to another. Figure 1 illustrates the typical within-class variance of
three spectra in the myxosarcoma tissue.
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Figure 1: An example of three spectra from canine myxosarcoma type indicating the within-class variation

Protocol for evaluating transfer learning

The aim of the second experiment is to evaluate model improvement by CNNs spectral transfer learning.
The three CNN architectures are trained on the large MALDI-MSI rat brain dataset with all weights
initialized according to He normal distribution. Rat brain dataset is chosen as the source domain as
it is the largest dataset in our study. The decision layers (fully connected layers and sigmoid layer) of
the CNN networks are not useful, since the MALDI-MSI and datasets are from different domains. The
representation model weights (i.e. the convolutional portion) are then frozen so that they would not be
updated during back-propagation, the decision layers are removed, and the new specific decision layers
dedicated to smaller clinical datasets are trained. The evaluation of transfer learning using the canine
sarcoma and microorganism datasets are illustrated in the black portion of Figure 2.
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Protocol for evaluating representation learning

Transfer learning in some cases may not be enough as an aid in classifying biologically similar materials
using CNN models. This proximity is reflected in a high degree of confusion between classes. This is typically
the case when the biggest dataset which is supposed to be used to learn the pivotal data representation is
not big enough. In addition, low-resolution or data heterogeneity can complicate more the classification
task. We therefore propose two approaches to developing 1D-CNN representation (cumulative) learning:

Scenario A The first step is to train CNN architectures on the MALDI-MSI rat brain dataset as
described before for transfer learning. The representation model weights are then fine-tuned, the decision
layers (i.e. fully connected and last sigmoid) are removed, and new decision layers are trained with the beef
liver dataset. Beef liver CNN weights (i.e. data representation) are thus initialized from the rat-brain-trained
CNN representations. Finally, the beef liver CNN representation weights are frozen and new specific decision
layers (fully connected and softmax) are added and trained using the canine sarcoma dataset, as illustrated
in the blue portion of Figure 2.

Scenario B CNN architectures are trained on MALDI-MSI rat brain and fine-tuned with the beef liver
dataset as described in Scenario A, but instead of testing this representation on the canine sarcoma dataset,
an additional representation learning is added. Beef liver CNN representation weights are fine-tuned,
decision layers (fully connected and sigmoid) are removed and new specific decision layers are added and
trained using the microorganism dataset, before freezing convolutional layer weighting barring the last one
and training new specific last convolutional and decision layers on the canine sarcoma dataset, as illustrated
in the red portion of Figure 2.

The green portion of Figure 2 illustrates the application of transfer and cumulative learning (Scenario
A) approaches to the two public ovarian datasets following the same strategy as described before.

The final representation (pink links on Figure 2) obtained from Scenario B is tested, after adapting the
output space dimensionality (number of classes) and the activation function of the last fully connected layer,
on rat brain, on beef liver and on microorganism spectra separately. The objective is to assess how much
learning skill the final CNN representation gained or lost of MS knowledge through successive training on
MS datasets.

Microorganism Canine sarcoma

Transfer learning

Canine sarcoma Microorganism Canine sarcoma

Human ovary 1

Human ovary 2

Rat brainBeef liver Beef liver

Representation learning - Scenario A                                                                                   Representation learning - Scenario B

Human ovary 1

Representation learning - 
Scenario A

Transfer learning

Final representation

Figure 2: Workflow diagram of 1D-CNN classification by transfer learning and cumulative learning on
clinical datasets

Such an approach differs from standard transfer learning by different aspects:

• the number of output classes: because of its abundant categories and large number of images, ImageNet
is used widely as the source dataset in transfer learning cases. The typical transfer learning operation
consists of using a pre-trained model, for instance on 1,000 different ImageNet dataset classes and
applying it to a new classification problem (possibly after fine-tuning to adapt to the new problem),
which usually involves a much smaller number of classes to be predicted. In this study, the transfer
learning approach comprised training a dataset with only two output categories (rat brain gray and
white matter) and efficient transfer of the model to classification problems with 2, 3, 5 and even 12
output categories.

• the diversity of the target tasks: in standard transfer learning, the target tasks are similar and thus
rely on similar input data features (i.e. image classification task). In this study, transfer learning
and cumulative representation learning are applied to different biological contexts (i.e. diseases) that
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are unlikely to share features. Our results show that CNNs are powerful tools for learning generic
and ”potentially general” representations from spectra having no intuitive relationship to the medical
target (from MALDI-MSI to intensity data) or sensitivity to acquisition instrument diversity.

• The accumulation of learning representations through several phases of representation model training
up to the final decision level (fully connected layers and softmax/sigmoid layer): standard transfer
approaches to learning generic representations require that the initial model be trained with as much
data as possible to integrate all input data essential features. This leads to poor results with small
datasets. In this study, instead of considering only transfer learning (which would be a one-shot
representation model learning), the same representation model is trained for several tasks in sequence
to converge on an optimal model. It thus learns cross-classification tasks and cross-instruments
representation and thereby becomes capable of smoothing fluctuations in MS instruments performance,
which leads to significantly improved classification accuracy.

Protocol for comparing our approach with other ML approaches

Some 1D-CNNs have been found superior to conventional and popular algorithms for classifying
raw data [26, 36, 37]. The aim of our third experiment is to compare our 1D-CNNs to conventional ML
algorithms, namely SVM, RF, and LDA. To make such a comparison valid, all spectra are binned similarly,
and the same ratio of training, validation and test subsets is conserved. These conventional algorithms
are not designed to classify MS spectra that have not been preprocessed. In order to compare their
performance to that of CNNs on raw data, the spectra are corrected using sequential preprocessing means
provided in MALDIquant package (version 1.19.3) [50]. The preprocessing comprises five steps, each of
these feasible using any of several methods. For the present purpose, the most standard methods are chosen:
(1) Log-intensity transformation. (2) Baseline subtraction using the statistics-sensitive non-linear iterative
peak-clipping or SNIP algorithm [51]. (3) Normalization with the total ion count (TIC). (4) Alignment
using a cubic warping function as described previously in [17]. We align spectra by class, namely spectra
of each class are aligned separately. A non-linear cubic warping function is computed for each spectrum
by fitting a local regression to the matched reference peaks. (5) Peaks are detected using the median
absolute deviation. Spectra are aligned prior to peak detection in order to preserve all peak information
(height, width, and spatial distribution) and thereby ensure the best alignment. For SpiderMass, the
irradiation time is set at 10 sec at 10 Hz, giving an average of 10 individual spectra (1 per laser pulse)
over the 10 sec period. Each microbial class was based on spectra obtained from a single acquisition. This
was not the case for canine sarcoma where we merge spectra from different biopsies. Thus, the canine
sarcoma and microorganism datasets have different artifacts and therefore required different preprocessing.
Ovarian datasets are preprocessed following the same preprocessing strategy. The hyper-parameters for
each algorithm are tuned with a grid search and are described in the supplementary section. Only the
optimal hyper-parameters are used for the evaluation. Chi-square (χ2) statistic is used to reduce data
dimensionality before feeding to the classification algorithms. Only features exceeding a threshold of 0.1 are
selected. In addition, colinear variables are removed for LDA classification to allow the matrix inversion.

3 Results

3.1 Hyper-parameter search

The regularizer technique, the optimizer algorithm and the learning rate reveal significant effects on
classification accuracy. Batch normalization, used after each convolutional layer to avoid over-fitting, is
found superior to the dropout technique and L1/L2 regularization. The Adam optimizer with default
hyper-parameters β1 = 0.9, β2 = 0.999 and a constant learning rate of η = 0.001 is found superior to the
SGD algorithm. Adam is carried out using a cross-entropy loss function. We also find that Max-Pooling is
very important in order to account for peak shift invariance along the m/z dimension. Since batch size do
not affect the results, it is set at 256. ReLu (models 1 and 3) and Leaky Relu (model 2) are chosen as the
activation function for each convolutional layer. No big discrepancies are noticed in the learning curves
except for canine binary classification task because of the large class imbalance. We therefore reduce the
patience epochs number from 10 to 5 for this task to avoid over-fitting. We notice that large filter size is
more effective than image-optimized filtering (pixel features). This indicates that features extracted from
spectral data differ from those seen in images. Kernel sizes are large enough to cover the largest peaks in
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the samples so that the model do not need many layers to avoid over-fitting, but not so large that detailed
information is lost due to smoothing effects. CNNs architectures and their best hyper-parameters are shown
in Figure 3.

  

Conv(6,21)                      Conv(16,5)                        Dense(120)          Dense(#classes)
BN, Relu                         BN, Relu                            Relu                    Sigmoid/Softmax
Pooling(2,2)                    Pooling(2,2)

Input              Conv1              Conv2        Flatten      FC1              FC2

Conv(16,21)                 Conv(32,21)              Conv(64,5)                    Dense(2050)          Dense(#classes)
BN, LeakyRelu            BN, LeakyRelu         BN, LeakyRelu              Relu                       Sigmoid/Softmax
Pooling(2,2)                 Pooling(2,2)              Pooling(2,2)                   Dropout(0.5)

Input             Conv1             Conv2              Conv3      Flatten     FC1                FC2

Conv(64,21)                   Conv(64,21)                  Conv(128,11)                    Conv(128,11)                Conv(256,5)                           Conv(256,5)               Dense(4096)         Dense(4096)        Dense(#classes)
BN, Relu                        BN, Relu                       BN, Relu                          BN, Relu                        BN, Relu                               BN, Relu                    Dropout(0.5)         Dropout(0.5)        Sigmoid/Softmax
                                       Pooling(2,2)                                                           Pooling(2,2)                                                                 Pooling(2,2)                Relu                      Relu
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Figure 3: Architectures of the three CNN models. Convolutional layers are labeled as Conv, flatten layer as
Flatten, and fully connected layers as FC

3.2 Comparison of the classification performance of three CNN architectures

The CNN architectures are compared using the cancer and microorganism datasets. In order to
evaluate the effect of varying the number of CNN layers on classification performance, CNNs containing
four (variant Lecun, model 1), five (variant LeNet, model 2) or nine layers (variant VGG9, model 3) are
evaluated and compared. The statistical significance in classification accuracy between the first and the
second best result is computed with a t-test over 10 independent iterations (p.values < 0.001). For the
microorganism dataset, two multi-class classifications based on standard classification for clinical purposes
are considered. The first is a 3-class model intended to identify the sample as yeast (c. albicans), Gram-
positive bacteria or Gram-negative bacteria. The second model is intended to allow identification of each
of the five microorganisms. For canine sarcoma classification, binary (2 classes) classification of tissues
as healthy or cancerous is sought first, followed by differentiation of sarcoma type (12 classes). Table 2
lists the classification accuracy for each dataset. All sensitivity, specificity and confusion matrix metrics
associated with each dataset are described in the supplementary section (Tables 1 to 8).

Datasets # classes variant Lecun variant LeNet variant VGG9

Canine sarcoma
2 0.98 ± 0.00 0.96 ± 0.01 0.96 ± 0.01

12 0.88 ± 0.03 0.88 ± 0.02 0.90 ± 0.01

Microorganisms
3 0.91 ± 0.03 0.52 ± 0.11 0.67 ± 0.09

5 0.89 ± 0.02 0.68 ± 0.03 0.61 ± 0.13

Table 2: Overall accuracy of SpiderMass spectra classification using three CNN architectures. The best
result for each task over 10 independent iterations is indicated in boldface

All three CNNs architectures perform poorly on 3 of the 4 tasks, which is not surprising because of the
low number of spectra used for the training. Variant Lecun is the best at binary classification of canine
sarcoma, but when the number of classes is expanded to 12, variant VGG9 is slightly better. This suggests
that deep CNNs might be better at sorting out heterogeneous samples. Errors in the confusion matrix
are distributed uniformly across classes (supplementary section Table 4). Deeper 1D-CNN architectures
(16-layer and 19-layer versions of VGG) are also tested on the canine sarcoma dataset, but do not produce
a better classification result (data not shown). Variant Lecun is the best at classifying microorganisms,
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using the 3-class or the 5-class model. Accuracy suffers quickly from over-fitting when a deep architecture
such as variant LeNet and variant VGG9 are used on data of this size. The only classification that could be
described as accurate is for canine sarcoma versus healthy tissue (binary classification) by variant Lecun
with an average accuracy of 0.98. Based on this result, we focus our subsequent efforts on the canine
sarcoma and microorganism multi-class classifications.

3.3 Transfer Learning

In order to improve the classification performance, we use CNN architectures trained on the large
MALDI-MSI rat brain dataset and test them on small clinical datasets. We obtain nearly (0.99 ± 0.00)
for MALDI-MSI dataset binary classification with the three CNN architectures. Transfer learning allow
the model to learn and detect generic representations of MS peaks. By freezing the lower CNN levels,
we assume that the model extracts the right patterns from the MALDI-MSI spectra, and that only the
high level is needed to take into account specific SpiderMass peak features. As shown in Table 3, transfer
learning clearly improve the accuracy of classification of both small SpiderMass datasets compared to the
models trained from scratch (without transfer learning).

Datasets # classes variant Lecun variant LeNet variant VGG9

Canine sarcoma 12 0.90 ± 0.01 (2%) 0.92 ± 0.01 (3%) 0.93 ± 0.02 (3%)

Microorganisms
3 0.99 ± 0.00 (8%) 0.96 ± 0.01 (46%) 0.95 ± 0.02 (29%)

5 0.99 ± 0.00 (10%) 0.99 ± 0.00 (31%) 0.96 ± 0.02 (36%)

Table 3: Overall accuracy of SpiderMass spectra classification using three CNN architectures after transfer
learning. The improvement in performance from scratch is expressed as a percentage

Gains in the accuracy of canine sarcoma differentiation are obtained for all three architectures, although
improvements are still needed. Variant LeNet and variant VGG9 predict the correct classes with almost
equal success, but both fail to separate some classes, as shown in the confusion matrix in supplementary
Table 10. The 3-class microorganisms classification is improved somewhat for all three architectures.
Improvements is considerable also for the 5-class task, and huge in the case of variant VGG9. Transfer
learning by variant Lecun lead to the best performances in the experiment. These results suggest that
training a CNN model with extracted spectral features transferred even from an unrelated field is better
than training it with spectral features learned from scratch with a small dataset. The aim of the following
experiments is to improve the canine sarcoma multi-class classification performance.

3.4 Cumulative Representation Learning

To improve further the accuracy of the canine sarcoma multi-classification, CNNs are trained using the
large MALDI-MSI rat brain dataset and then fine-tuned using the SpiderMass datasets. Two scenarios are
tested: (A) training on intermediate beef liver and then canine sarcoma dataset. We obtain nearly (0.99
± 0.00) for rat brain and beef datasets binary classification with the three CNN architectures. Although
not biologically related to the sarcoma context, beef liver recognition allows the model to appropriate the
clinical data and their specific characteristics to improve its generalization capability in the second step; (B)
training on beef liver, then on microorganisms and lastly on canine sarcoma dataset.

Protocol variant Lecun variant LeNet variant VGG9

Scenario A 0.92 ± 0.01 (4%∗ 2%∗∗) 0.95 ± 0.01 (7%∗ 4%∗∗) 0.94 ± 0.01 (4%∗ 1%∗∗)

Scenario B 0.95 ± 0.02 (7%∗ 5%∗∗ 3%∗∗∗) 0.99 ± 0.00 (10%∗ 7%∗∗ 3%∗∗∗) 0.96 ± 0.00 (6%∗ 3%∗∗ 2%∗∗∗)

Table 4: Overall accuracy of canine sarcoma classification by the three CNN architectures. The improvement
in performance is expressed as a percentage relative to learning from scratch∗, to transfer learning∗∗, and to
Scenario A∗∗∗

As shown in Table 4, Scenario A improves the classification accuracy considerably relative to learning
from scratch and slightly relative to transfer learning, the best improvements is obtained for variant LeNet.
Scenario B provides a slight additional improvement over Scenario A, and the greatest accuracy is achieved
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also with variant LeNet architecture. The effectiveness of the cumulative knowledge method is thus apparent,
enabling the CNNs to distinguish not only cancerous versus healthy tissues (binary classification), but also
the different cancer types (see confusion matrices in Table 16 for Scenario A and in Table 18 for Scenario
B, supplementary section) despite the large number of classes, the small size and the heterogeneity of the
dataset. We test CNNs configured with different numbers of frozen layers using transfer and cumulative
representation learning in order to evaluate the trade-off between freezing and fine-tuning. Freezing all
convolutional layers (i.e. the representation portion) and re-training all fully connected layers (i.e. the
decisional portion) gives a configuration that outperform the others. Except for Scenario B where the
best architecture is obtained by freezing all convolutional layers barring the last one. We test the same
protocols on datasets with a smallest bin (binned at 1 instead of 0.1), similar improvements in accuracy
are observed, except that the variant VGG9 architecture outperforms other networks. This may suggest
that an architecture with 3 convolutional network may be sufficient with data binned at 0.1, while a deep
architecture such as variant VGG9 may be needed in case of too compressed data.

Cumulative learning strategy brings new questions: how generalizable is the final representation after
several steps of cumulative learning? Is the final representation more specifically adapted to the last
dataset used to accumulate MS knowledge? Let us first remind that the classification accuracy obtained
by CNNs from scratch on data used for training (rat brain and beef liver) and after transfer learning for
microorganisms (Table 3) is equal to 0.99. Testing the final cumulative representation of variant LeNet
(pink links from Scenario B) on rat brain, beef liver and microorganism datasets separately preserved a
classification accuracy of 0.99. This indicates that the CNN model accumulates MS knowledge through the
successive training phases without any loss of generalization. It suggests that a ”generic” representation of
MS data for classification tasks might exist and that the resulting cumulative representation is robust to
the organism, to the tissue phenotype, and to the instrument variability.

Public MS datasets

The classification accuracy on the two ovarian datasets were compared previously to explain how the
choice of the MS instrument, its resolution or preprocessing steps become an obstacle to the reproducibility
and reliability of patterns. The aim of this experiment is not to compare our results to the reported results
in the original paper analyzing these datasets, first because the commercial Proteome Quest software is
used for classification, and then the preprocessing strategy is different in the original paper (refer to [52]
for more details). Our purpose is to demonstrate the efficiency of our learning methodology capable of
handling multiple MS features : ionization sources (from WALDI to SELDI), resolutions (from high to
low), and mass ranges (from lipids to proteins). We assess CNNs performance using the same training
and evaluation approach. Only with variant LeNet architecture, because of its superior performance with
SpiderMass datasets and its low computational resources needed. Variant LeNet is thus trained on the rat
brain dataset as the source domain, followed by the transfer learning protocol using the high-resolution
dataset and representation learning (Scenario A) using the low-resolution dataset.

Dataset # classes variant LeNet Transfer learning

Human ovary 1 2 0.78 ± 0.02 0.98 ± 0.00 (24%∗)

Dataset # classes variant LeNet Transfer learning Cumulative representation learning

Human ovary 2 2 0.80 ± 0.00 0.83 ± 0.02 (3%∗) 0.99 ± 0.00 (24%∗ 19%∗∗)

Table 5: Overall accuracy of a variant LeNet architecture at classifying ovarian cancer serums; percent
improvement relative to learning from scratch∗ and to transfer learning∗∗

Transfer learning improve classification accuracy from 0.78 for training from scratch to 0.98 for the
high-resolution dataset (Table 5). With the low-resolution dataset, accuracy is improved from 0.80 to 0.83
by transfer learning and up to 0.99 by cumulative learning. These results show that in contrast with the
previously reported lack of sensitivity and specificity of low-resolution MS datasets for diagnosis and the fact
that the identified fragments usually belong to nonspecific proteins unlikely to be directly associated with
the disease [45]. Our CNN representation model allow very high classification accuracy, without the need
for spectral preprocessing steps, and while the model is trained on a dataset with different MS features.
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3.5 Comparison of our 1D-CNN against other ML approaches

Spectra are corrected using sequential preprocessing of five steps: Log-intensity transformation, baseline
subtraction using SNIP algorithm, TIC normalization, alignment using a cubic warping function, and peaks
detection using the median absolute deviation. Alignment step consists in identifying landmark peaks also
called reference or anchor peaks. Reference peaks are found in each of the microbial classes. However,
some canine sarcoma classes are obtained from different biopsies (dogs of different breed and age) with
signal acquisition spread over days. These resulted in a high spectral variability, which made reference peak
identification difficult. The ideal alignment would be based on reference peaks occurring in all spectra of
each class. When common peaks are absent or fewer than our threshold of four peaks (e.g. for some canine
sarcoma classes in binary and multi-class classifications), peaks occurring in half of the spectra are used.
These might not be biologically relevant and might had a negative impact on classification performance.
Such choices are constraining and depend on the specialist’s expertise, as mentioned in the introduction
section. The performance of the best 1D-CNN, that is, of all models and approaches combined, from scratch
for binary canine sarcoma classification, after transfer learning for microorganisms and human ovary 1, after
cumulative learning (Scenario A) for human ovary 2 classification, and Scenario B for multi-class canine
sarcoma are compared to SVM, RF, and LDA (Table 6).

Datasets # classes SVM RF LDA

Canine sarcoma
2 0.76 ± 0.16 (22%∗) 0.96 ± 0.01 (2%∗) 0.88 ± 0.17 (10%∗)

12 0.52 ± 0.19 (47%∗∗∗) 0.65± 0.01 (34%∗∗∗) 0.61 ± 0.02 (38%∗∗∗)

Microorganisms
3 0.87 ± 0.02 (12%∗∗) 0.95 ± 0.02 (9%∗∗) 0.87 ± 0.01 (12%∗∗)

5 0.54 ± 0.35 (45%∗∗) 0.86 ± 0.01 (13%∗∗) 0.51 ± 0.26 (48%∗∗)

Human ovary 1 2 0.66 ± 0.24 (49%∗∗∗) 0.91 ± 0.02 (8%∗∗∗) 0.85 ± 0.06 (15%∗∗∗)

Human ovary 2 2 0.60 ± 0.05 (65%∗∗) 0.88 ± 0.03 (12%∗∗) 0.97 ± 0.00 (2%∗∗)

Table 6: Overall accuracies of clinical spectra classifications by SVM, RF, and LDA; percent difference to
1D-CNN trained from scratch∗, after transfer learning∗∗, and after representation learning∗∗∗

RF gives the best result and outperforms the two other methods in SpiderMass and human ovary
1 datasets classification, especially in canine binary task, where the classification is the more accurate.
LDA outperforms the two other methods for the human ovary 2 dataset classification. The computing
time of conventional algorithm is much higher than CNNs, first because the Scikit-learn library does not
support GPU-based computing, and also because a few more minutes are needed to carry out the necessary
preprocessing steps. In addition, some inter-spectra steps such as normalization and alignment are applied
only when the acquisition process is completed. While our pre-trained CNN models can be applied even
during spectra acquisition since each test spectra could be analyzed separately.

4 Discussion

CNNs have become common tools in several research areas. They are designed to extract spatial
features from input signals with different levels of abstraction. Many challenges remain fully exploiting
CNNs on biomedical data, owing to data high-dimensionality, heterogeneity, and irregularity. Following
their success in computer vision, the first results of deep learning methods to clinical data are obtained on
clinical imaging (e.g. classification, segmentation, etc.). Medical images are different from ImageNet object
scenes, persons, and plants, among others. Nevertheless [53–56] demonstrated that we could classify and
predict outcomes from medical images using a CNN model trained on ImageNet. Authors show that the
features extracted from the ImageNet database are generalizable and can be applied to alternative tasks
and datasets. Our paper was inspired by these efforts on transfer learning, transferring the representation
learnt on one dataset to another that intuitively do not seem to share common features, but goes beyond by
accumulating the knowledge of MS data space through learning a representation on several datasets, more
than two and more diverse too. We have investigated here the performance of CNNs in the classification of
1D mass spectra generated for a variety of classification purposes. This study shows for the first time the
use of representation learning for spectrum classification using MALDI-MSI and other types of datasets
generated in vastly different biological contexts, on different organisms, acquired by a variety of instruments,
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with a variety of MS ionization technologies, in different mass ranges at different resolutions, and with or
without chromatographic phase. Our extracted MS representation was designed by accumulating mass
spectral knowledge through multiple training steps on small datasets. It was effective even on low-resolution
data despite its limited potential in precision proteomics. One would believe that the effectiveness of
transfer learning depends on the relationship between source and target domains. However, our results
showed the opposite even with poorly related domains, the performance of the final model increased. In
addition, our strategy provided a viable alternative when transfer learning was inadequate, as was the case
for low-resolution, heterogeneous data, or when the source domain dataset was not large enough. The
particularly interesting novelty here was that the model can be pre-trained on a dataset containing only
two output categories and yet predict 2, 3, 5 and even 12 outputs, unlike what has been described in the
literature. The choice of our learning order in this paper was based first on the data size, then on the
classification accuracy, and finally on the data resolution. Researchers can subsequently adapt the learning
order according to the specificity and availability of their data.

It is well known that the success of CNNs is strongly dependent on the amount of data available
for its training. To overcome the limitations inherent in small numbers of training samples, we tested
dataset augmentation. To the best of our knowledge, biological 1D data augmentation has not been
described elsewhere, and this may be because it is not sufficient to reproduce technical variability by adding
noise plus baseline and peak misalignment. Biological variability (difference between individuals) must
also be introduced, in the form of biologically relevant peak presence/absence and intensity changes. All
classification accuracies on augmented SpiderMass data were below 0.60 (results not shown). This indicates
that better understanding of biological variability is still required in order to deal with data augmentation
and increase the number of samples without compromising biological information.

The CNN model was able to classify raw MS data without preprocessing steps, not even removal of peaks
corresponding to molecule isotopes in SpiderMass datasets, thus bypassing the expert parameter setting
step. This performance capability was due to convolutional filters that allow CNN architecture to learn peak
patterns rather than only considering each m/z intensity value separately as do conventional ML algorithms.
More importantly, significant variations of the overall signal intensity due to biological heterogeneity (not all
peaks showing up in each sample) and non-reproducible technical factors (noise and baseline distortion) can
be filtered by CNNs to increase the robustness of molecular pattern recognition. Combined Max-Pooling
and convolution filters allowed the model to ignore peak misalignment, thus reducing the need for data
preprocessing before classification. Such end-to-end trainable systems that work with raw data offer a
superior alternative to pipelines in which each step is trained independently or handcrafted to find the best
combination of parameters. Interrogation of pre-built models will be fast and can be implemented in the
SpiderMass system to provide real-time feedback to the end user.

5 Conclusions and Future Works

In this work, we have investigated the potential of using a pre-trained 1D-CNN for analyzing clinical
datasets drawn from vastly different clinical situations: cancers diagnosis and microorganism identifications.
Our results provide evidence that cumulative learning offers practical means of analyzing mass spectra
obtained in real-world settings where the size of the dataset available for training a classification algorithm is
limited. Our cumulative optimization of CNN models appeared to be better adapted than conventional ML
models for mass spectra classification, even when the tasks required analysis of heterogeneous, low-resolution
datasets containing several classes. In addition, cumulative CNNs appear to offer a unified solution for
classification regardless of day-to-day, sample-to-sample and machine-to-machine variance. Furthermore,
cumulative CNNs reduce the need to preprocess data before classification or to be concerned with noise,
variability and high data dimensionality. Using raw MS data directly has the potential to contribute
significantly to the development of a diagnosis workflow for rapid, efficient and reliable detection of cancers
or infections. It thus opens the door to real-time decision-aid tools in clinical settings independently of the
MS instrument in use. Although we have focused our study on mass spectra, we believe that the method
should be applicable to other types of analyses such as Raman Spectroscopy or Nuclear Magnetic Resonance
classification tasks.

In the present study, we have investigated the performance of our learning approach for MS data
classification. It would be interesting to extend the investigation to analyze which data characteristics were
transferred between datasets. The focus of our future research will be the interpretation of classification
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results in order to identify regions of interest in spectra. Successful transfer learning between lipids and
proteins species suggests that CNNs have a more complex functioning than the simple identification of
specific-phenotype peaks. Discriminating regions during the CNN classification may be explained by a
complex spatial pattern recognition and by the ability of the model to generalize from one classification
task to others even slightly related. It would be interesting to understand how such markers influence the
results and to study their global dynamics of expression.
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Supplementary material

Data availability and Tissue Preparation

1. Canine sarcoma dataset: Freshly removed tissue is snap-frozen in liquid nitrogen and stored at
-80°C. Tissue samples are warmed to -20°C, sliced and then analyzed using the SpiderMass system as
described previously [40].

2. Microorganism dataset: Gram negative (E. coli D31, Pseudomonas aeruginosa); Gram positive
(Staphylococcus aureus, Enterococcus faecalis) and Yeast (Candida Albicans) are cultivated in poor
broth medium as described previously [41].

3. Rat brain dataset: The Wistar rat (Ratus norvegicus) are sacrificed after behavioral practical in the
University of Lille, their brains are collected and snap frozen in liquid nitrogen and stored at -80°C.
There are then sectioned at 12µm using a cryostat (Leica microsystems) and thaw-mounted on Indium
Thin Oxide slides (LaserBio Labs). The 2,5-Dihydroxybenzoic acid (DHB) matrix (Sigma-Aldrich) is
sublimed onto the tissue section at 150°C for 12 min using a “home-built’ sublimation device. The
image is acquired at 50µm x 50µm spatial resolution in positive ion reflectron mode.

4. Beef liver dataset: Raw commercial product is sliced to suitable thickness, snap-frozen in liquid
nitrogen and stored at -80°C. Tissue is warmed to RT prior to SpiderMass spectral acquisition. The
dataset is generated while running a time-course reproducibility experiment in both positive and
negative ionization modes.

5. Human ovarian datasets: Data sources and complete descriptions can be accessed through FDA-NCI
Clinical Proteomics at https://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp.

The datasets generated during and/or analyzed during the current study are available from the
corresponding author upon request.

Matrix construction

In this study, we focused on lipids and metabolites as the main species observed in the 100-1.600
mass/charge (m/z) range with the SpiderMass. Multiple studies have shed light on the role of lipid
metabolism deregulation in cancer development [57–59]. Some tumors exhibit a lipogenic phenotype, since
membrane lipids are synthesized rapidly and with high turnover in malignant cells [60, 61], suggesting the
relevance of a lipid-based classification model. Recent microbial taxonomy studies have also demonstrated
the possibility of biotyping pathogens using their lipid composition [62]. The classification models obtained
using SpiderMass datasets are therefore based on lipid profiles. To allow fair comparison with the original
paper, mass spectra acquired from public ovarian datasets (high and low-resolution) are restricted to the
m/z range from 700 to 12.000 [52]. The classification models obtained using public ovarian datasets are
therefore based on lipids and proteins patterns.

Raw SpiderMass spectra are converted into mzXML format using the 64-bit MSConvert tool version
3.0, part of the ProteoWizard suite [63]. Spectra with a total ion current (TIC) exceeding 1.e4 count
for irradiation detection are selected using the MSnbase package (version 1.20.7, R version 3.4.4) [64].
Raw ovarian datasets are imported into a csv file format. A simple and popular method of creating an
intensity matrix from multiple spectra prior to classification is spectral bucketing or binning [65]. Easy to
use on MS data, binning consists of projecting spectra into “buckets” having a fixed size. All SpiderMass
spectra therefore are binned to 0.1 Da for the subsequent analyses. This binning condenses canine sarcoma,
microorganism, and beef liver data points respectively from approximately 119.200, 67.200, and 83.700 to
15.000 features. Rat brain MALDI spectra (m/z between 300-1.300 range) are binned to have the same
dimensions as SpiderMass datasets (15.000 features) in order to allow transfer learning, which requires data
of equal dimensions. To allow valid comparison with the original paper, both public ovarian datasets (high
and low-resolution) are binned to m/z 7.084 as described previously [52]. Rat brain MALDI spectra are
binned in this case at the same dimension (7.084) to allow transfer learning and representation learning.
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1D-MS Data augmentation

To increase the robustness of the training and compensate for the limited number of SpiderMass spectra,
the training set size is increased using the following data augmentation procedure: (1) Random noise
proportional to spectrum acquisition order is added. (2) For misalignment, the shift scale is first assessed
using a cubic warping function; spectra are then augmented by shifting each one along the m/z dimension
using a third-order polynomial randomly between -1 and 1 Da. (3) Peak intensity values are increased by a
random value ranging from 0 to 2 to produce intensity variation and peak absence/presence.

Computing environment

The proposed 1D-CNNs are computed with Keras library ([66] version 2.2.4) on two NVIDIA P100
Pascal GPUs of 12 GB HBM2 memory (Graham supercomputer from Compute Canada at Waterloo
university). Classification models with conventional ML algorithms are implemented using the Scikit-Learn
library [67] (version 0.19.1) are computed on a local CPU server. All classification models are executed
in a Linux environment using the Python language (Python version 3.6.8). The computational load and
memory requirements for transfer and cumulative learning are low. Indeed, training time on the rat brain
dataset is about 25 minutes for variant Lecun, 50 minutes for variant LeNet, and 3 hours for variant VGG.
Fine-tuning on clinical datasets is completed in about 20 minute since the weighting coefficients are already
determined, and all three architectures processed each test spectrum in less than one millisecond.

Comparison of the classification performance of three CNN architectures

Model 1 Model 2 Model 3

Accuracy = 0.98 ± 0.00 Accuracy = 0.96 ± 0.01 Accuracy = 0.96 ± 0.01

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

0.979 0.997 0.958 0.996 0.936 0.991

Table 1: Overall accuracy, sensitivity, and specificity values for 2-class canine sarcoma classification

Model 1 Predicted
0 1

A
ct

u
al 0 96 1

1 2 343

Model 2 Predicted
0 1

A
ct

u
al 0 92 1

1 4 326

Model 3 Predicted
0 1

A
ct

u
al 0 88 3

1 6 344

Table 2: Confusion matrix for 2-class canine sarcoma classification

Model 1 Model 2 Model 3

Accuracy = 0.88 ± 0.03 Accuracy = 0.88 ± 0.02 Accuracy = 0.90 ± 0.01

Index Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

0 1.000 0.985 0.961 0.994 0.978 0.990

1 0.714 1.000 0.916 1.000 0.900 1.000

2 0.843 0.977 0.873 0.961 0.855 0.985

3 0.838 0.992 0.913 0.986 0.777 0.997

4 0.666 0.995 0.937 1.000 1.000 0.994

5 0.883 0.976 0.791 0.968 0.886 0.965

6 0.925 0.966 0.913 0.955 0.916 0.965

7 0.888 0.997 0.900 0.997 0.923 0.992

8 0.777 0.995 0.866 1.000 0.833 1.000

9 0.956 0.990 0.833 1.000 0.941 1.000

10 0.800 1.000 0.812 1.000 0.833 1.000

11 0.785 1.000 0.727 1.000 0.769 0.994

Table 3: Overall accuracy, sensitivity, and specificity for 12-class canine sarcoma classification

Model 1 Predicted
0 1 2 3 4 5 6 7 8 9 10 11

A
ct

u
al

0 91 2 1 0 0 0 2 0 0 0 0 0
1 0 5 0 0 0 0 0 0 0 0 0 0
2 0 0 70 3 1 3 0 0 0 0 0 1
3 0 0 2 26 0 1 0 0 0 0 0 0
4 0 0 2 0 4 0 0 0 0 0 0 0
5 0 0 4 2 1 53 1 0 0 0 0 1
6 0 0 3 0 0 3 74 2 1 1 1 1
7 0 0 1 0 0 0 0 16 0 0 0 0
8 0 0 0 0 0 0 2 0 7 0 0 0
9 0 0 0 0 0 0 1 0 1 22 2 0
10 0 0 0 0 0 0 0 0 0 0 12 0
11 0 0 0 0 0 0 0 0 0 0 0 11

Model 2 Predicted
0 1 2 3 4 5 6 7 8 9 10 11

A
ct

u
al

0 99 0 0 0 0 1 0 1 0 0 0 0
1 0 11 0 0 0 0 0 0 0 0 0 0
2 0 0 76 1 0 7 1 0 2 2 1 0
3 0 0 2 21 1 1 1 0 0 0 0 1
4 0 0 0 0 15 0 0 0 0 0 0 0
5 0 0 5 1 0 53 4 0 0 0 0 2
6 3 1 4 0 0 5 63 0 0 2 2 0
7 1 0 0 0 0 0 0 9 0 0 0 0
8 0 0 0 0 0 0 0 0 13 0 0 0
9 0 0 0 0 0 0 0 0 0 20 0 0
10 0 0 0 0 0 0 0 0 0 0 13 0
11 0 0 0 0 0 0 0 0 0 0 0 8

Model 3 Predicted
0 1 2 3 4 5 6 7 8 9 10 11

0 90 0 0 0 0 0 3 0 0 0 0 0
1 0 9 0 0 0 0 0 0 0 0 0 0
2 0 1 59 1 0 1 0 0 0 0 2 0
3 0 0 1 14 0 0 0 0 0 0 0 0
4 0 0 1 0 9 1 0 0 0 0 0 0
5 0 0 5 2 0 47 2 0 0 0 0 3
6 2 0 3 1 0 2 77 1 1 1 0 0
7 0 0 0 0 0 1 2 12 0 0 0 0
8 0 0 0 0 0 0 0 0 10 0 0 0
9 0 0 0 0 0 0 0 0 0 16 0 0
10 0 0 0 0 0 0 0 0 0 0 10 0
11 0 0 0 0 0 1 0 0 1 0 0 10

Table 4: Confusion matrix for 12-class canine sarcoma classification
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Model 1 Model 2 Model 3

Accuracy = 0.91 ± 0.03 Accuracy = 0.52 ± 0.11 Accuracy = 0.67 ± 0.09

Index Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

0 1.000 0.913 1.000 0.200 1.000 0.750

1 0.866 1.000 0.000 1.000 0.000 1.000

2 1.000 1.000 1.000 1.000 1.000 0.761

Table 5: Overall accuracy, sensitivity, and specificity values for 3-class microorganisms classification

Model 1 Predicted
0 1 2

A
ct

u
al 0 5 2 0

1 0 11 0
2 0 11 0

Model 2 Predicted
0 1 2

A
ct

u
al 0 10 8 0

1 0 0 0
2 0 0 2

Model 3 Predicted
0 1 2

A
ct

u
al 0 12 4 0

1 0 0 0
2 0 5 7

Table 6: Confusion matrix for 3-class microorganisms classification

Model 1 Model 2 Model 3

Accuracy = 0.89 ± 0.02 Accuracy = 0.68 ± 0.03 Accuracy = 0.61 ± 0.13

Index Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

0 1.000 1.000 1.000 1.000 0.000 1.000

1 0.000 1.000 0.000 1.000 0.428 1.000

2 1.000 0.678 1.000 0.673 1.000 1.000

3 0.000 1.000 0.000 1.000 1.000 1.000

4 1.000 0.954 1.000 0.959 1.000 0.555

Table 7: Overall accuracy, sensitivity, and specificity values for 5-class microorganisms classification

Model 1 Predicted
0 1 2 3 4

A
ct

u
al

0 8 0 0 0 0
1 0 0 0 0 0
2 0 7 4 2 0
3 0 0 0 0 0
4 0 1 0 0 10

Model 2 Predicted
0 1 2 3 4

A
ct

u
al

0 8 0 0 0 0
1 0 0 0 0 0
2 0 7 4 2 0
3 0 0 0 0 0
4 0 1 0 0 10

Model 3 Predicted
0 1 2 3 4

A
ct

u
al

0 0 0 0 0 0
1 0 3 0 0 0
2 0 0 3 0 0
3 0 0 0 4 0
4 4 4 0 0 3

Table 8: Confusion matrix for 5-class microorganisms classification
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Transfer Learning

Model 1 Model 2 Model 3

Accuracy = 0.90 ± 0.01 Accuracy = 0.92 ± 0.01 Accuracy = 0.93 ± 0.02

Index Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

0 0.889 1.000 0.730 1.000 0.946 1.000

1 1.000 1.000 1.000 1.000 1.000 1.000

2 0.942 0.983 0.988 1.000 0.952 0.989

3 0.813 0.996 1.000 0.997 0.956 0.996

4 0.882 1.000 1.000 1.000 0.875 1.000

5 0.950 0.977 0.985 0.997 0.925 0.986

6 0.947 0.944 1.000 0.919 0.879 0.982

7 1.000 0.998 1.000 1.000 1.000 1.000

8 0.823 1.000 0.818 1.000 0.900 0.997

9 0.757 0.992 0.958 0.997 1.000 0.972

10 1.000 1.000 1.000 1.000 0.818 1.000

11 1.000 1.000 1.000 1.000 0.909 0.997

Table 9: Overall accuracy, sensitivity, and specificity for 12-class canine sarcoma classification

Model 1 Predicted
0 1 2 3 4 5 6 7 8 9 10 11

A
ct

u
al

0 82 0 0 0 0 0 0 0 0 0 0 0
1 0 19 0 0 0 0 0 0 0 0 0 0
2 0 0 65 4 0 4 0 0 0 0 1 0
3 0 0 1 35 1 0 0 0 0 0 0 0
4 0 0 0 0 15 0 0 0 0 0 0 0
5 0 0 4 3 1 95 5 0 0 0 0 0
6 15 0 2 1 0 1 80 0 1 8 2 1
7 0 0 0 0 0 0 1 18 0 0 0 0
8 0 0 0 0 0 0 0 0 14 0 0 0
9 1 0 0 0 0 0 0 0 2 25 2 0
10 0 0 0 0 0 0 0 0 0 0 16 0
11 0 0 0 0 0 0 0 0 0 0 0 20

Model 2 Predicted
0 1 2 3 4 5 6 7 8 9 10 11

A
ct

u
al

0 86 0 0 0 0 0 0 0 0 0 0 0
1 0 13 0 0 0 0 0 0 0 0 0 0
2 0 0 88 0 0 0 0 0 0 0 0 0
3 0 0 1 32 0 0 0 0 0 0 0 0
4 0 0 0 0 13 0 0 0 0 0 0 0
5 0 0 0 0 0 68 0 0 0 0 0 1
6 28 0 0 0 0 1 80 0 1 1 1 0
7 0 0 0 0 0 0 0 13 0 0 0 0
8 0 0 0 0 0 0 0 0 9 0 0 0
9 0 0 0 0 0 0 0 0 1 23 0 0
10 0 0 0 0 0 0 0 0 0 0 14 0
11 0 0 0 0 0 0 0 0 0 0 0 14

Model 3 Predicted
0 1 2 3 4 5 6 7 8 9 10 11

0 81 0 0 0 0 0 0 0 0 0 0 0
1 0 10 0 0 0 0 0 0 0 0 0 0
2 0 0 60 0 0 2 1 0 0 0 0 0
3 0 0 0 22 0 1 0 0 0 0 0 0
4 0 0 0 0 7 0 0 0 0 0 0 0
5 0 0 0 1 1 50 2 0 0 0 0 0
6 2 0 1 0 0 1 51 0 0 0 0 1
7 0 0 0 0 0 0 0 10 0 0 0 0
8 0 0 1 0 0 0 0 0 9 0 0 0
9 1 0 1 0 0 0 4 0 1 17 2 0
10 0 0 0 0 0 0 0 0 0 0 9 0
11 1 0 0 0 0 0 0 0 0 0 0 12

Table 10: Confusion matrix for 12-class canine sarcoma classification

Model 1 Model 2 Model 3

Accuracy = 0.99 ± 0.00 Accuracy = 0.96 ± 0.01 Accuracy = 0.95 ± 0.02

Index Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

0 1.000 1.000 0.900 1.000 1.000 0.923

1 1.000 1.000 1.000 0.937 0.888 1.000

2 1.000 1.000 1.000 1.000 1.000 1.000

Table 11: Overall accuracy, sensitivity, and specificity values for 3-class microorganisms classification

Model 1 Predicted
0 1 2

A
ct

u
al 0 12 0 0

1 0 10 0
2 0 0 5

Model 2 Predicted
0 1 2

A
ct

u
al 0 9 0 0

1 1 9 0
2 0 0 6

Model 3 Predicted
0 1 2

A
ct

u
al 0 8 1 0

1 0 8 0
2 0 0 4

Table 12: Confusion matrix for 3-class microorganisms classification

Model 1 Model 2 Model 3

Accuracy = 0.99 ± 0.00 Accuracy = 0.99 ± 0.00 Accuracy = 0.96 ± 0.02

Index Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

0 1.000 0.996 1.000 0.986 0.987 0.998

1 1.000 0.996 0.988 1.000 1.000 0.763

2 1.000 0.998 0.993 1.000 0.994 1.000

3 0.993 1.000 1.000 0.998 1.000 1.000

4 0.990 1.000 0.992 1.000 0.000 1.000

Table 13: Overall accuracy, sensitivity, and specificity for 5-class microorganisms classification

Model 1 Predicted
0 1 2 3 4

A
ct

u
al

0 6 0 0 0 0
1 0 6 0 0 0
2 0 0 7 0 0
3 0 0 0 5 0
4 0 0 0 0 6

Model 2 Predicted
0 1 2 3 4

A
ct

u
al

0 6 0 0 0 0
1 0 6 0 0 0
2 0 0 7 0 0
3 0 0 0 5 0
4 0 0 0 0 6

Model 3 Predicted
0 1 2 3 4

A
ct

u
al

0 7 0 0 0 0
1 0 5 0 0 0
2 0 0 6 1 0
3 0 0 0 4 0
4 0 0 0 0 3

Table 14: Confusion matrix for 5-class microorganisms classification
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Cumulative Representation Learning

Scenario A

Model 1 Model 2 Model 3

Accuracy = 0.92 ± 0.01 Accuracy = 0.95 ± 0.01 Accuracy = 0.94 ± 0.01

Index Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

0 0.938 0.938 0.989 0.996 0.846 0.994

1 1.000 1.000 0.916 1.000 1.000 1.000

2 0.975 0.978 0.944 0.991 1.000 1.000

3 0.964 1.000 0.916 0.992 1.000 0.997

4 0.909 1.000 1.000 0.997 1.000 1.000

5 0.968 0.994 0.968 0.988 0.972 1.000

6 0.776 0.989 0.942 0.985 0.987 0.939

7 0.833 1.000 0.916 1.000 0.933 1.000

8 1.000 1.000 0.833 1.000 0.928 1.000

9 0.958 0.976 0.952 0.992 0.739 0.997

10 0.928 1.000 0.846 1.000 0.933 1.000

11 0.857 1.000 1.000 1.000 1.000 1.000

Table 15: Overall accuracy, sensitivity, and specificity for 12-class canine sarcoma classification

Model 1 Predicted
0 1 2 3 4 5 6 7 8 9 10 11

A
ct

u
al

0 91 0 0 0 0 0 9 2 0 0 0 0
1 0 13 0 0 0 0 0 0 0 0 0 0
2 1 0 81 1 1 1 3 0 0 1 0 0
3 0 0 0 27 0 0 0 0 0 0 0 0
4 0 0 0 0 10 0 0 0 0 0 0 0
5 0 0 1 0 0 62 1 0 0 0 0 0
6 1 0 1 0 0 1 59 0 0 0 0 1
7 0 0 0 0 0 0 0 10 0 0 0 0
8 0 0 0 0 0 0 0 0 11 0 0 0
9 4 0 0 0 0 0 4 0 0 23 1 1
10 0 0 0 0 0 0 0 0 0 0 13 0
11 0 0 0 0 0 0 0 0 0 0 0 12

Model 2 Predicted
0 1 2 3 4 5 6 7 8 9 10 11

A
ct

u
al

0 90 0 0 0 0 0 0 1 0 0 0 0
1 0 11 0 0 0 0 0 0 0 0 0 0
2 0 0 68 1 0 1 1 0 0 0 0 0
3 0 0 1 22 0 1 1 0 0 0 0 0
4 0 0 0 1 12 0 0 0 0 0 0 0
5 1 0 2 0 0 62 1 0 0 0 0 0
6 0 1 1 0 0 0 65 0 1 1 1 0
7 0 0 0 0 0 0 0 11 0 0 0 0
8 0 0 0 0 0 0 0 0 10 0 0 0
9 0 0 0 0 0 0 1 0 1 20 1 0
10 0 0 0 0 0 0 0 0 0 0 11 0
11 0 0 0 0 0 0 0 0 0 0 0 13

Model 3 Predicted
0 1 2 3 4 5 6 7 8 9 10 11

0 88 0 0 0 0 0 1 1 0 0 0 0
1 0 13 0 0 0 0 0 0 0 0 0 0
2 0 0 85 0 0 0 0 0 0 0 0 0
3 0 0 0 27 0 1 0 0 0 0 0 0
4 0 0 0 0 14 0 0 0 0 0 0 0
5 0 0 0 0 0 70 0 0 0 0 0 0
6 16 0 0 0 0 1 80 0 1 6 0 0
7 0 0 0 0 0 0 0 14 0 0 0 0
8 0 0 0 0 0 0 0 0 13 0 0 0
9 0 0 0 0 0 0 0 0 0 17 1 0
10 0 0 0 0 0 0 0 0 0 0 14 0
11 0 0 0 0 0 0 0 0 0 0 0 15

Table 16: Confusion matrix for 12-class canine sarcoma classification

Scenario B

Model 1 Model 2 Model 3

Accuracy = 0.95 ± 0.02 Accuracy = 0.99 ± 0.00 0.96 ± 0.00 ± 0.01

Index Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

0 0.954 0.993 0.989 1.000 0.976 0.996

1 1.000 1.000 1.000 1.000 1.000 1.000

2 0.990 0.998 1.000 1.000 0.971 1.000

3 1.000 0.998 1.000 1.000 1.000 0.997

4 1.000 1.000 1.000 1.000 1.000 1.000

5 0.955 0.996 1.000 1.000 0.982 1.000

6 0.951 0.970 0.987 1.000 1.000 0.984

7 1.000 1.000 1.000 1.000 1.000 1.000

8 0.882 1.000 1.000 1.000 0.900 1.000

9 0.793 0.993 1.000 0.997 0.900 0.997

10 0.894 1.000 1.000 1.000 1.000 1.000

11 1.000 1.000 1.000 1.000 1.000 1.000

Table 17: Overall accuracy, sensitivity, and specificity for 12-class canine sarcoma classification

Model 1 Predicted
0 1 2 3 4 5 6 7 8 9 10 11

A
ct

u
al

0 87 0 0 0 0 0 2 0 0 1 0 0
1 0 17 0 0 0 0 0 0 0 0 0 0
2 0 0 92 0 0 1 0 0 0 0 0 0
3 0 0 0 37 0 1 0 0 0 0 0 0
4 0 0 0 0 17 0 0 0 0 0 0 0
5 0 0 0 0 0 86 2 0 0 0 0 0
6 6 0 1 0 0 2 98 0 0 5 1 0
7 0 0 0 0 0 0 0 19 0 0 0 0
8 0 0 0 0 0 0 0 0 15 0 0 0
9 0 0 0 0 0 0 1 0 2 23 1 0
10 0 0 0 0 0 0 0 0 0 0 17 0
11 0 0 0 0 0 0 0 0 0 0 0 19

Model 2 Predicted
0 1 2 3 4 5 6 7 8 9 10 11

A
ct

u
al

0 93 0 0 0 0 0 0 0 0 0 0 0
1 0 10 0 0 0 0 0 0 0 0 0 0
2 0 0 80 0 0 0 0 0 0 0 0 0
3 0 0 0 26 0 0 0 0 0 0 0 0
4 0 0 0 0 12 0 0 0 0 0 0 0
5 0 0 0 0 0 69 0 0 0 0 0 0
6 1 0 0 0 0 0 78 0 0 0 0 0
7 0 0 0 0 0 0 0 13 0 0 0 0
8 0 0 0 0 0 0 0 0 13 0 0 0
9 0 0 0 0 0 0 1 0 0 20 0 0
10 0 0 0 0 0 0 0 0 0 0 14 0
11 0 0 0 0 0 0 0 0 0 0 0 14

Model 3 Predicted
0 1 2 3 4 5 6 7 8 9 10 11

0 89 0 1 0 0 0 0 0 0 0 0 0
1 0 12 0 0 0 0 0 0 0 0 0 0
2 0 0 67 0 0 0 0 0 0 0 0 0
3 0 0 1 22 0 0 0 0 0 0 0 0
4 0 0 0 0 11 0 0 0 0 0 0 0
5 0 0 0 0 0 56 0 0 0 0 0 0
6 1 0 0 0 0 1 64 0 1 2 0 0
7 0 0 0 0 0 0 0 11 0 0 0 0
8 0 0 0 0 0 0 0 0 9 0 0 0
9 1 0 0 0 0 0 0 0 0 18 0 0
10 0 0 0 0 0 0 0 0 0 0 12 0
11 0 0 0 0 0 0 0 0 0 0 0 12

Table 18: Confusion matrix for 12-class canine sarcoma classification
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Public MS datasets

Model 2 Transfer learning

Accuracy = 0.78 ± 0.02 Accuracy = 0.98 ± 0.00

Sensitivity Specificity Sensitivity Specificity

0.809 0.769 1.000 0.967

Table 19: Overall global accuracy, sensitivity, and specificity values for 2-class human ovary 1 classification

Model 2 Predicted
0 1

A
ct

u
al 0 17 6

1 4 20

Transfer learning Predicted
0 1

A
ct

u
al 0 18 0

1 0 25

Table 20: Confusion matrix for 2-class human ovary 1 classification

Model 2 Transfer learning Cumulative representation learning

Accuracy = 0.803 ± 0.009 Accuracy = 0.833 ± 0.021 Accuracy = 0.996 ± 0.001

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

0.933 0.750 1.000 0.735 1.000 1.000

Table 21: Overall global accuracy, sensitivity, and specificity values for 2-class human ovary 2 classification

Model 2 Predicted
0 1

A
ct

u
al 0 14 9

1 1 27

Transfer learning Predicted
0 1

A
ct

u
al 0 20 9

1 0 25

Cumulative representation learning Predicted
0 1

A
ct

u
al 0 20 0

1 0 29

Table 22: Confusion matrix for 2-class human ovary 2 classification

Comparison of our 1D-CNN against other ML approaches

SVM RF LDA

C ∈ [0.1 - 0.8]
sigma ∈ [0.01 - 0.2]

Kernel : radial basis function

ntree ∈ [50 - 1000]
mtry ∈ [5 - 10]

node size ∈ [10 - 50]

nu ∈ [2 - 10]
tol ∈ [0 - 10]

Table 23: Optimized hyper-parameters for each ML algorithm

SVM RF LDA

Accuracy = 0.76 ± 0.16 Accuracy = 0.96 ± 0.01 Accuracy = 0.88 ± 0.17

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

0.465 1.000 0.850 0.994 0.639 0.947

Table 24: Overall accuracy, sensitivity, and specificity values for 2-class canine sarcoma classification

SVM Predicted
0 1

A
ct

u
a
l 0 54 0

1 62 343

RF Predicted
0 1

A
ct

u
a
l 0 74 2

1 13 341

LDA Predicted
0 1

A
ct

u
a
l 0 55 18

1 31 324

Table 25: Confusion matrix for 2-class canine sarcoma classification

SVM RF LDA

Accuracy = 0.52 ± 0.19 Accuracy = 0.65± 0.01 Accuracy = 0.61 ± 0.02

Index Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

0 1.000 0.766 0.963 0.966 0.795 1.000

1 0.800 0.988 0.375 1.000 0.950 0.988

2 0.378 0.942 0.725 1.000 0.000 0.988

3 0.423 0.958 0.086 1.000 0.777 0.960

4 0.000 1.000 0.000 1.000 0.909 0.982

5 0.507 0.913 0.645 1.000 0.789 0.882

6 0.454 0.949 0.675 1.000 0.695 0.864

7 0.000 1.000 0.615 1.000 0.687 1.000

8 0.083 1.000 0.583 0.835 0.714 1.000

9 0.565 0.933 0.363 1.000 0.892 0.954

10 0.000 1.000 0.600 1.000 0.000 1.000

11 0.384 0.993 0.461 0.920 1.000 0.951

Table 26: Overall accuracy, sensitivity, and specificity values for 12-class canine sarcoma classification
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SVM Predicted
0 1 2 3 4 5 6 7 8 9 10 11

A
ct

u
al

0 98 3 21 7 0 11 15 12 3 8 2 3
1 0 12 1 0 0 3 1 0 0 0 0 0
2 0 0 31 0 0 3 15 0 1 0 2 1
3 0 0 7 11 1 8 2 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 14 6 7 36 3 0 0 0 0 4
6 0 0 4 2 1 10 40 0 0 2 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 1 0 0 0
9 0 0 4 0 0 0 12 1 7 13 5 0
10 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 3 5

RF Predicted
0 1 2 3 4 5 6 7 8 9 10 11

A
ct

u
al

0 79 6 4 1 1 2 13 2 4 12 5 6
1 0 6 0 0 0 0 0 0 0 0 0 0
2 1 4 58 16 14 17 2 2 0 0 0 1
3 0 0 0 2 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 16 4 0 40 9 0 0 0 0 0
6 2 0 2 0 0 3 50 1 1 2 1 0
7 0 0 0 0 0 0 0 8 0 0 0 0
8 0 0 0 0 0 0 0 0 7 0 0 0
9 0 0 0 0 0 0 0 0 0 8 0 0
10 0 0 0 0 0 0 0 0 0 0 9 0
11 0 0 0 0 0 0 0 0 0 0 0 6

LDA Predicted
0 1 2 3 4 5 6 7 8 9 10 11

A
ct

u
al

0 70 0 0 0 0 0 0 0 0 0 0 0
1 4 19 1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 17 28 0 0 0 0 0 0 0 0
4 0 0 4 1 10 3 0 0 0 0 0 0
5 3 1 31 7 1 60 3 0 0 0 0 0
6 10 0 19 0 0 13 48 5 3 3 1 0
7 0 0 0 0 0 0 0 11 0 0 0 0
8 0 0 0 0 0 0 0 0 10 0 0 0
9 1 0 0 0 0 0 18 0 1 25 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 11 0 0 0 0 0 0 0 11 13

Table 27: Confusion matrix for 12-class canine sarcoma classification

SVM RF LDA

Accuracy = 0.87 ± 0.04 Accuracy = 0.95 ± 0.02 Accuracy = 0.87 ± 0.07

Index Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

0 0.964 0.807 0.922 0.914 0.777 1.000

1 0.720 0.975 0.853 0.955 1.000 0.916

2 0.930 1.000 1.000 0.993 1.000 0.928

Table 28: Overall accuracy, sensitivity, and specificity values for 3-class microorganisms classification

SVM Predicted
0 1 2

A
ct

u
al 0 9 2 0

1 0 5 0
2 0 0 4

RF Predicted
0 1 2

A
ct

u
al 0 11 1 0

1 0 6 0
2 0 0 4

LDA Predicted
0 1 2

A
ct

u
al 0 7 0 0

1 1 5 0
2 1 0 3

Table 29: Confusion matrix for 3-class microorganisms classification

SVM RF LDA

Accuracy = 0.54 ± 0.35 Accuracy = 0.86 ± 0.01 Accuracy = 0.51 ± 0.26

Index Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

0 1.000 0.588 1.000 0.933 0.625 1.000

1 0.000 1.000 1.000 1.000 0.000 1.000

2 0.667 1.000 0.666 0.937 0.750 0.615

3 0.000 1.000 0.666 1.000 1.000 1.000

4 1.000 0.842 1.000 1.000 0.400 0.800

Table 30: Overall accuracy, sensitivity, and specificity values for 5-class microorganisms classification

SVM Predicted
0 1 2 3 4

A
ct

u
al

0 5 3 2 4 0
1 0 0 0 0 0
2 0 0 4 0 0
3 0 0 0 0 0
4 0 3 0 0 4

RF Predicted
0 1 2 3 4

A
ct

u
al

0 4 0 1 0 0
1 0 5 0 0 0
2 0 0 3 1 0
3 0 0 0 3 0
4 0 0 0 0 4

LDA Predicted
0 1 2 3 4

A
ct

u
al

0 5 0 0 0 0
1 0 0 0 0 0
2 2 5 3 0 3
3 0 0 0 5 0
4 1 3 1 0 2

Table 31: Confusion matrix for 5-class microorganisms classification

SVM RF LDA

Accuracy = 0.66 ± 0.24 Accuracy = 0.91 ± 0.02 Accuracy = 0.85 ± 0.06

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

0.000 1.000 1.000 0.818 0.947 0.772

Table 32: Overall accuracy, sensitivity, and specificity values for 2-class human ovary 1 classification

SVM Predicted
0 1

A
ct

u
a
l 0 0 0

1 18 35

RF Predicted
0 1

A
ct

u
a
l 0 19 4

1 0 18

LDA Predicted
0 1

A
ct

u
a
l 0 18 5

1 1 17

Table 33: Confusion matrix for 2-class human ovary 1 classification

SVM RF LDA

Accuracy = 0.60 ± 0.05 Accuracy = 0.88 ± 0.03 Accuracy = 0.97 ± 0.00

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

0.000 1.000 0.761 0.968 1.000 0.963

Table 34: Overall accuracy, sensitivity, and specificity values for 2-class human ovary 2 classification

SVM Predicted
0 1

A
ct

u
al 0 0 0

1 21 32

RF Predicted
0 1

A
ct

u
al 0 16 1

1 5 31

LDA Predicted
0 1

A
ct

u
al 0 19 1

1 0 26

Table 35: Confusion matrix for 2-class human ovary 2 classification
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