4 Mayuri Rege ${ }^{1,2}$, Jessica L. Feldman ${ }^{1}$, Nicholas L. Adkins ${ }^{1}$, and Craig L. Peterson ${ }^{1,3}$
SWI/SNF antagonizes SIR heterochromatin to promote transcription of genes expressed during mitotic exit in Saccharomyces cerevisiae
${ }^{3}$ Corresponding author

19 Running Title: SWI/SNF antagonizes SIR heterochromatin

20

27

Abstract

: Heterochromatin is a repressive, specialized chromatin structure that is central to eukaryotic transcriptional regulation and genome stability. In the budding yeast, Saccharomyces cerevisiae, heterochromatin formation requires $\operatorname{Sir} 2$ p, $\operatorname{Sir} 3 p$, and $\operatorname{Sir} 4$ p, and these Sir proteins create specialized chromatin structures at telomeres and silent mating type loci. Previously, we reported that the SWI/SNF chromatin remodeling enzyme can evict Sir3 from chromatin fibers in vitro, though whether this activity contributes to the role of SWI/SNF as a transcriptional activator at euchromatic loci is unknown. Here, we characterize genetic interactions between the SIR genes (SIR2, SIR3, and SIR4) and genes encoding subunits of the chromatin remodelers SWI/SNF and INO80C, as well genes encoding the histone deacetylases Hst3 and Hst4. We find that loss of SIR genes partially rescues the growth defects of swi2, ino 80 , and $h s t 3 / h s t 4$ mutants during replication stress conditions. Interestingly, partial suppression of swi2, ino80, and hst 3 hst 4 mutant phenotypes is due to the pseudo-diploid state of sir mutants, but a significant portion is due to more direct functional interactions. Consistent with this view, transcriptional profiling of strains lacking Swi2 or Sir3 identifies a set of genes whose expression in the M/G1 phase of the cell cycle requires SWI/SNF to antagonize the repressive impact of Sir3.

INTRODUCTION

Eukaryotic genomes are packaged with positively charged histone proteins to form chromatin. Chromatin can be divided into two functional categories: transcriptionally active euchromatin and transcriptionally silent heterochromatin. In budding yeast, heterochromatic structures are formed at each telomere and the two silent mating type loci (HMR and $H M L$). The assembly of heterochromatin domains requires the binding of non-histone proteins to the chromatin fiber, and in yeast these are Sir2, Sir3 and Sir4 (Rusche et al. 2003; Rusché et al. 2002). Sir3 is believed to be the structural component of yeast heterochromatin, whereas Sir2 is a histone deacetylase that functions with Sir4 to target Sir proteins to the proper genomic locations. Deletion of SIR genes leads to expression of both a - and α-specific genes in haploids, producing a pseudo-diploid state (Haber 1998). Previous studies have found that this pseudo-diploid state alters the DNA damage response, alleviating the genotoxic stress phenotypes of several rad mutants (Schild 1995; Valencia-Burton et al. 2006).

In addition to heterochromatic regions, Sir3 has also been detected by chromatin immunoprecipitation studies at euchromatic locations, although the functional implications are not understood (Radman-Livaja et al. 2011). Immunofluorescence studies of Sir3 have also revealed that Sir3 forms discrete nuclear puncta for most of the cell cycle, except for a diffuse nuclear staining pattern during mitotic stages (Laroche et al. 2000). Overexpression of Sir3 can lead to the expansion of heterochromatin domains and gene-silencing defects within euchromatin (Taddei et al. 2009; Holmes et al. 1997), indicating that aberrant binding of Sir3 to euchromatic sites can be detrimental.

ATP-dependent chromatin remodeling enzymes are a major contributor to the dynamic nature of chromatin. They modify chromatin structure by mobilizing or disrupting nucleosomes in
an ATP-dependent reaction (Clapier and Cairns 2009). The SWI/SNF chromatin remodeling enzyme is a founding member of this group of enzymes (Smith and Peterson 2005), and subunits of SWI/SNF were first identified in yeast genetic studies as global activators of transcription (Peterson et al. 1992; Laurent et al. 1991). For instance, inactivation of the Swi2 ATPase subunit leads to defects in the transcription of many inducible yeast genes, as well the function of many transcriptional activators. Strains harboring mutations in genes encoding SWI/SNF subunits have severe growth defects, are sensitive to DNA damaging or replication stress agents, and show a defect in mitotic exit (Krebs et al. 2000). Similar to other remodeling enzymes, SWI/SNF can use the energy of ATP hydrolysis to mobilize nucleosomes in cis, or evict nucleosomal H2A/H2B dimers as well as entire histone octamers from DNA. Recently, we also found that SWI/SNF has the novel ability to catalyze the displacement of the Sir3 protein from nucleosomal substrates in vitro. This activity is not shared with other remodeling enzymes, and it requires a direct interaction between the Swi2 subunit and Sir3. This activity appears to be important for cells to contend with replication stress (Manning and Peterson 2014).

In this work, we report genetic interactions between the gene encoding the Swi2 subunit of SWI/SNF and genes encoding the Sir2, Sir3, and Sir4 heterochromatin components. Inactivation of Sir3 alleviated the slow growth phenotype of a swi2 Δ strain, and partially restored resistance to the replication stress agent, hydroxyurea (HU). Deletion of SIR2 or SIR3 also partially suppressed the replication stress phenotypes caused by loss of the INO80C chromatin remodeling complex as well as the loss of the H 3 lysine 56 -specific histone deacetylases Hst3 and Hst4. Interestingly, in some cases partial suppression of genotoxic stress phenotypes were observed in pseudo-diploid cells, suggesting indirect as well as direct impacts of Sir3 loss. To identify potential transcriptional targets for the SWI/SNF-Sir3 antagonism, we characterized the transcriptional profile of swi2A,
$\operatorname{sir} 3 \Delta$, and swi2 $\Delta \operatorname{sir} 3 \Delta$ strains. A parallel analysis was also performed in SIR 3 and $\operatorname{sir} 3 \Delta$ strains where Swi 2 was conditionally depleted from the nucleus by the anchor away method (Haruki et al. 2008). This latter method circumvented transcriptional defects due to the severe growth phenotype of the swi 2Δ strain, and together identified a common set of genes where SWI/SNF promotes transcription by antagonizing Sir3.

MATERIALS AND METHODS:

Yeast growth media and genetic methods

Yeast were cultured using standard procedures (Rege et al. 2015). For tetrad analysis, at least 30 tetrads were dissected for segregation analysis and growth rates noted.

List of strains

Name	Genotype
CY1653	BY4743; MATa/a ;his3 $31 / h i s 3 \Delta 1$; leu2Д0/leu2ム0; lys2Д0/LYS2; MET15/me ura340/ura3 0 0; swi2::KanMX4/SWI2 sir3A:: HPH $^{R} /$ SIR3
CY1618	MAT (a) segregant from CY1653, clone 15A, sir3A: $: \mathrm{HPH}$
CY1619	MAT (a) segregant from CY1653, clone 15B, swi2A $:$ (KANMX and sir $3 \Delta: \because H P$
CY1620	MAT a segregant from CY1653, clone 15C (wild type)
CY1621	MAT a segregant from CY1653, clone 15D, swi2::KANMX
CY1809	Y40345 MATa tor1-1 fpr1::loxP-LEU2-loxP RPL13A-2x FKBP12:loxP (HH
CY1810	Y40362 MATa tor1-1 fpr1::NAT RPL 13A-2x FKB12::TRP1 SNF2-FRB:kan
CY1853	MAT a sir3D::HYGRO ${ }^{\text {R }}$ in CY1809, clone 1
CY1854	MAT α, sir $3 \Delta:: H Y G R O^{R}$ in CY1810, clone 16
CY1953	MATa sir2د::HIS in CY1885, clone 12

CY1954	MATa sir2د: $:$ HIS in CY1810, clone 10
CY1907	ura3A0/ura3 0 0; swi2::KanMX4/SWI2 sir2 $2:: H P H^{R} /$ SIR2
CY1908	ura3ム0/ura3 0 0; swi2::KanMX4/SWI2 sir4 $4:: H P H^{R} /$ SIR 4
CY1752	MATa/a CY927 X CY971; sir3D $:$:HYGRO ${ }^{\text {R }}$, diploid 2
CY2041	swi24 in W303, spore 21A dissected from CY1752
CY2042	sir34 in W303, spore 21B dissected from CY1752
CY2043	WT in W303, spore 21C dissected from CY1752
CY2044	swi2d sir34 in W303, spore 21D dissected from CY1752
CY2394	Y40345 MATa tor1-1 fpr1: :loxP-LEU2-loxP RPL13A-2×FKBP12: 1 loxP (H
CY2395	Y40345 MATa tor1-1 fpr1::loxP-LEU2-loxP RPL13A-2×FKBP12::loxP (H bar1A::HISG HST3-FRB:kanMX6 hst4A::HPH RPB3-FLAG:NAT
CY1838	Y40345 MATa tor1-1 fpr1::loxP-LEU2-loxP RPL13A-2×FKBP12::loxP (H bar14::HISG INO80-FRB:His3MX6
CY2478	MATa sir3D \because PHL in CY2395
CY2479	MATa sir2వ: $:$ PHL in CY2395
CY2186	MATa sir24: $:$ KanMX in CY1838
CY2162	MATa sir34: $:$ KanMX in CY1838
CY2190	MATa sir4D: $:$ KanMX in CY1838
CY2254	ino80::KanMX sir3::Hygro ${ }^{R}$ clone 1D, segregant from CY 2249
CY2252	ino80::KanMX clone 1B, segregant from CY2249
CY2487	MATa nej1泬PHL in CY1810
CY2488	MATa rme1D: $:$ PHL in CY1810
CY2491	MATa pst20 $:$ PHLL in CY1810
CY2485	
CY2486	MATa rme1 $\triangle: \because$ PHL in CY2395

CY2492	MATa pst $2 \Delta \because:$ PHL in CY2395
CY2495	MATa nej1 $\because:$ PHL in CY1838
CY2496	MATa rme1 $\triangle:$ PHL in CY1838
CY2490	MATa pst2 $\because:$ PHL in CY1838
CY2495	MATa nej1 $\because:$ PHL in CY1809
CY2496	MATa rme1 $\because:$ PHL in CY1809
CY2489	MATa pst $2 \Delta \because$ PHL in CY2394

Plasmid	
CP1212	pAG25; CEN/ARS w/ NAT cassette. Plasmid \#35121 (Addgene)
CP1234	CEN/ARS SIR3 w/ NAT cassette
CP1	YCp50; CEN/ARS w/ URA3 cassette
CP1241	pJR156 CEN/ARS MATa in YCp50 w/ URA3 cassette (Jasper Rine)
CP1242	pJR157s CEN/ARS MAT in YCp50 w/ URA3 cassette (Jasper Rine)

115 Microarray sample preparation and analysis:

Chromatin Immunoprecipitation (ChIP)

Yeast strains were grown in rich media with 2% glucose at $30^{\circ} \mathrm{C}$ and either DMSO or Rapamycin $(8 \mu \mathrm{~g} / \mathrm{ml}$ final concentration) was added for 60 minutes before fixation with 1.2% formaldehyde. Cells were quenched with 2.5 M glycine, centrifuged, rinsed with cold water and stored at $-80^{\circ} \mathrm{C}$ until chromatin preparation. Chromatin preparation, immunoprecipitation and DNA extraction were performed as described in (Bennett et al. 2013). The anti-Sir3 antibody ($1 \mu \mathrm{~L}$ for $100 \mu \mathrm{~L}$ chromatin) was used to immunoprecipitate native Sir3. The anti-H3 antibody, ab1791 from Abcam ($1 \mu \mathrm{~L}$ for $100 \mu \mathrm{~L}$ chromatin) was used to immunoprecipitate histone H3. The SIR3 gene was Cterminally tagged with a FLAG tag and an anti-FLAG antibody used for immunoprecipitation.

117 Yeast strains were grown in rich media with 2% glucose at $30^{\circ} \mathrm{C}$ in 50 ml cultures, collected at OD $118=0.8$ for RNA preparation and RNA was extracted using the hot phenol method as described previously (Rege et al. 2015). Samples prepared as described in Welch et al. 2007 were hybridized to Affymetrix Yeast 2.0 arrays from four replicates of swi2 2 and swi2 $\operatorname{sir} 3 \Delta$ strains and analyzed by limma analysis in R (Bioconductor package). Yeast strains were grown in rich media with 2% glucose at $30^{\circ} \mathrm{C}$ to $\mathrm{OD}=0.6$. and either DMSO or Rapamycin ($8 \mu \mathrm{~g} / \mathrm{ml}$ final concentration) was added for 60 minutes and pelleted for RNA preparation (Rege et al. 2015). One replicate each of the SWI2-FRB, SWI2-FRB sir3A and sir3A arrays and corresponding WT arrays was used. Total RNA was hybridized on Affymetrix Yeast 2.0 arrays and analyzed using a $\log 2$ fold change cutoff. The raw data files have been deposited on the GEO database (\# in process).

qRT-PCR

Samples for total RNA were prepared and qRT-PCR was performed as described previously in Manning and Peterson 2014.

Data Availability Statement

All strains made in this study are available upon request from the Peterson lab. The lists of Group 1_KO genes and Group 1_AA genes are given in Table S1 and Table S2, respectively. The list of Group 1 genes common in the KO and AA datasets are given in Table S3. The lists of Group 2_KO genes and Group 2_AA genes are given in Table S4 and Table S5, respectively. RMA normalized data obtained using GeneSpring Affymetrix Software for all the conditions and replicates are
provided in Tables S5 and S6. Raw microarray .CEL files have been deposited in NCBI's GEO database with the accession number (in process).

RESULTS:

The slow growth phenotype of swi2 Δ is partially rescued by $\operatorname{sir} 3 \Delta$

An isogenic set of wildtype, sir 3Δ, swi2 Δ, and swi $2 \Delta \operatorname{sir} 3 \Delta$ strains was created by tetrad dissection from a swi $2 \Delta / S W I 2 \operatorname{sir} 3 \Delta / S I R 3$ heterozygous diploid. Deletion of SIR3 partially suppresses the growth defect of swi 2Δ on rich media (Figure 1A), suggesting that these loci genetically interact. Importantly, this suppression segregates with markers for the double mutant after tetrad analysis, eliminating the possibility that a nonspecific, background suppressor causes the growth suppression in swi2 $\operatorname{sir} 3 \Delta$ strains (Figure 1A). We also find that the growth defects of swi2 Δ are suppressed by $\operatorname{sir} 3 \Delta$ in a different strain background (w303; Figure 1B). In addition to slow growth on glucose media, swi 2Δ mutants are unable to metabolize alternative carbon sources like raffinose, galactose, glycerol, or ethanol (Abrams et al. 1986; Carlson et al. 1981). Inactivation of Sir3 did not facilitate growth of a swi2 Δ on raffinose, but limited suppression was observed for growth on media containing galactose, ethanol, or glycerol (Figure 1C). SWI2 is also required for resistance to replication stress, induced by hydroxyurea (HU), and a swi 2Δ shows a delayed growth rate in this condition (Sharma et al. 2003). Interestingly, deletion of SIR3 partially relieves the HU sensitive phenotype of a swi 2Δ (Figure 1C). Thus, a subset of swi2 ${ }^{\text {(phenotypes are }}$ alleviated by deletion of SIR3.

To completely eliminate the possibility that a background mutation other than the $\operatorname{sir} 3 \Delta$ segregated with, and caused the growth suppression seen in the double mutant, we transformed the swi2 $\Delta \operatorname{sir} 3 \Delta$ with a plasmid containing $\operatorname{SIR} 3$ expressed from its endogenous promoter. As
expected, complementation with a vector plasmid had no impact on growth, while the SIR3 plasmid slowed the growth of the $\operatorname{swi} 2 \Delta \operatorname{sir} 3 \Delta$ strain (Figure 1D). Given that $\operatorname{sir} 3 \Delta$ suppresses the severe growth defects of swi2 Δ in multiple strain backgrounds, and that this suppression can be reversed when swi $2 \Delta \operatorname{sir} 3 \Delta$ is complemented by a SIR3 plasmid, these data suggest that SWI/SNF antagonizes Sir3 in vivo.

Absence of SIR2 does not suppress swi2 Δ growth defects

Given that SIR3 shows negative genetic interactions with SWI2, we asked whether genes that encode other Sir proteins, Sir2 and Sir4, also showed similar genetic interactions. Sir2 is a histone deacetylase (HDAC) that promotes Sir3 binding to nucleosomes by removing the acetyl group on histone H 4 lysine 16. Sir4 forms a complex with Sir2, and it is believed to play a key role in targeting Sir proteins to telomeres and HM loci (Rusché et al. 2002; Thurtle and Rine 2014). Unlike deletion of SIR3, inactivation of Sir2 did not alleviate the slow growth of the swi2A (Figure S1A, B). In contrast, inactivation of Sir4 suppresses the growth defect of a swi2A mutant (Figure S1C, D). Thus, the studies support genetic interactions between SWI2, SIR3, and SIR4, but not SIR2.

Comparison of swi2 Δ alleles with conditional depletion of Swi2

As swi2d null mutants are extremely slow growing, we wanted to establish an alternative approach to interrogate the genetic interactions between SIR genes and SWI2. To this end, the anchor away system was used to conditionally deplete Swi2 from the nucleus (Haruki et al. 2008). The parent strain harbors a FK506 binding protein (FKBP12) tag fused to the C-terminus of an anchor protein, RPL13A. RPL13A is a ribosomal protein that is present in high copy numbers in the cell and
transits from the nucleus to the cytoplasm during ribosome assembly, as shown in Figure 2A. In this parent strain, we tagged the endogenous SWI2 locus at the C-terminus with the FKBP12-rapamycin-binding (FRB) domain. Rapamycin induces formation of a ternary complex between the FKBP12 and FRB domains, and thus, rapidly depletes SWI2-FRB from the nucleus (Figure 2A).

We first compared growth rates of SWI2-FRB strains with or without the SIR3 gene using spot assays. In the presence of DMSO solvent, growth rates of all strains are identical on rich media (Figure 2B), indicating that the SWI2-FRB fusion itself does not impair Swi2 function. In the presence of rapamycin, $S W I 2-F R B$ strains show a decrease in growth rate compared to the WT, consistent with nuclear depletion of Swi2 (Figure 2B). However, the SWI2-FRB strains have a milder growth defect compared to the swi2 Δ (null) mutant (Figure 1), perhaps due to residual Swi2 present in the nucleus. Similar to the swi2A, depletion of SWI2 also causes HU sensitivity, and this phenotype is partially suppressed by deletion of SIR3, suggesting an important link between Swi 2 and Sir3 during replication stress (Figure 2B). Unlike the case with a deletion allele of SWI2, deletion of SIR2 also partially suppressed the sensitivity of the SWI2-FRB strain (+Rap) to HU, but to a lesser extent than deletion of SIR3 (Figure 2B).

Previous work has shown that SWI2 is required for transcriptional activation of the ribonucleotide reductase (RNR) genes in the presence of HU (Sharma et al. 2003). Consistent with this, we see a large reduction of these transcripts in the swi2 (Figure S1E, F). However, unlike the rescue of growth, the lower levels of RNR transcripts was not restored by the sir 3Δ following depletion of Swi2. This observation suggests that in HU stress, SWI/SNF may antagonize Sir3 independent of transcription, possibly by assisting replication within SIR heterochromatin.

Deletion of SIR2 or SIR3 suppresses growth defects of ino80 and hst3/hst 4 mutants

To investigate whether the suppression of growth defects by loss of Sir proteins is unique to SWI/SNF or a more common feature among chromatin modifying enzymes, we determined if deletion of SIR2 and SIR3 suppresses the growth defects caused by nuclear depletion of the histone H3 deacetylases, Hst3 and Hst4 (Hst4 $4 / H S T 3-F R B)$, or the chromatin remodeler, INO80C (INO80-FRB). In the presence of rapamycin, both the Hst4 $/ H S T 3-F R B$ and INO80-FRB strains grow similarly to WT, but they are sensitive to stress conditions, such as when media contains camptothecin (CPT) or HU (Figure 2C, D). Strikingly, deletion of either SIR2 or SIR3 suppresses the growth defects caused by rapamycin-dependent depletion of either Ino80 or Hst3/Hst4 in the presence of HU or CPT (Figure 2C, D). Similarly, deletion of SIR3 also partially suppresses an ino804 strain (Figure S2), confirming the results observed with INO80 anchor away. Thus, in addition to SWI2, the SIR genes also show genetic interactions with HST3/HST4, and INO80.

Genotoxic stress is partially suppressed by MAT heterozygosity

Our genetic studies suggest that SWI/SNF, INO80C, and Hst3/Hst4 antagonize Sir proteins during replication stress. SIR heterochromatin prevents expression of the silent mating type loci, and consequently, loss of Sir proteins leads to expression of diploid-specific genes and suppression of haploid-specific genes (Rine and Herskowitz 1987; Goutte and Johnson 1988; Herskowitz 1989; Dranginis 1990). This pseudo-diploid state, in which both the MATa and MAT α genes are expressed, is termed the MAT heterozygotic state. MAT heterozygosity has been shown to suppress the DNA repair defects of rad mutants (Valencia-Burton et al. 2006). Indeed, both MAT heterozygosity and sir mutants downregulate NHEJ and preferentially use HR for DNA repair (Valencia-Burton et al. 2006). To determine whether loss of Sir proteins suppresses replication
stress phenotypes in a direct manner or an indirect manner due to pseudo-diploid effects, we investigated the impact of $M A T$ heterozygosity. We introduced an episomal copy of MAT α into the $M A T \mathbf{a}$ anchor away strains to generate $M A T a / M A T \alpha$ haploids. Interestingly, MAT heterozygosity partially suppressed the sensitivity of SWI2-FRB (+ Rap) during HU stress (Figure 3A), though the suppression was less than what was observed by deletion of SIR3 (Figure 2B). In contrast, MAT heterozygosity did not suppress sensitivity of SWI2-FRB (+Rap) to CPT (Figure 3A). The sensitivity of the $h s t 4 \Delta / H S T 3-F R B$ and $I N O 80-F R B$ mutants to CPT, and to a lesser extent HU, was also partially suppressed by MAT heterozygosity (Figure 3B, C). Taken together, the results indicate that the replication stress sensitivity of strains depleted for Swi2, Ino80, or Hst3/Hst4 can be partially suppressed by MAT heterozygosity, either by deletion of SIR genes or by expressing the opposite mating type in haploid strains. However, the extent of suppression by the pseudodiploid state is generally less than what is observed for loss of Sir proteins.

Expression of both MATa and MAT α alters the transcriptional profile by down regulating haploid-specific genes and upregulating diploid-specific genes (Herskowitz 1989). Thus, we sought to investigate which of these pathways are important for suppressing replication stress phenotypes. Previous work has shown that deletion of the haploid-specific gene NEJ1, required for non-homologous end joining (NHEJ), suppressed the growth defect of rad55 DNA damage (Valencia-Burton et al. 2006). To determine whether loss of NHEJ also suppresses the phenotypes due to loss of chromatin modifiers, we deleted NEJ1 in the anchor away strains. Deletion of NEJI did not suppress the growth defects of SNF2-FRB, hst4D/HST3-FRB, or INO80$F R B$ mutants when grown on rapamycin in the presence of HU or CPT (Figure S3A). We next tested the impact of two additional haploid-specific genes, RME1 or PST2, which show genetic interactions with RAD55 and RAD51 during growth on CPT stress (Valencia-Burton et al. 2006).

However, deletion of either RME1 or PST2 did not suppress the HU or CPT stress phenotypes of the SWI2-FRB, hst4D/HST3-FRB, or INO80-FRB (+Rap; Figure S3B, C). Thus, the underlying genetic basis for the MAT-dependent, partial suppression of stress phenotypes due to depletion of SWI/SNF, INO80, and Hst3/Hst4 remains unknown, though it does not appear to be due to loss of NHEJ or activation of meiotic transcriptional programs.

Loss of Sir3 partially suppresses the transcriptional defects due to loss of SWI/SNF

Since loss of Sir3 has a large impact on phenotypes due to loss of Swi2 than MAT heterozygosity, we entertained the possibility that SWI/SNF may directly antagonize transcriptional repression by Sir3 at a subset of genes. To identify such transcriptional targets, we analyzed RNA profiles of isogenic wild type, swi 2Δ, sir 3Δ, and swi 2Δ sir 3Δ strains for 5716 ORFs using DNA microarrays. Consistent with published data, we observed that deletion of SIR 3 mis-regulates genes in the mating type cascade, with almost no other changes (Figure 4A middle) (Lenstra et al. 2011). In contrast, SWI2 regulates 203 genes positively ($\mathrm{FDR}<0.1$ and LFC <-0.58) and 488 genes negatively (FDR <0.1 and LFC >0.58) (Figure 4A top). Many genes whose expression is known to be dependent on SWI/SNF, such as SER3, YOR222W, and the acid phosphatase genes, were altered as predicted (Figure 4B) (Sudarsanam et al. 2000). However, these SWI/SNF-dependent genes were unaffected by a deletion of SIR 3 (Figure 4B, third column).

To identify genes that are regulated by both SWI2 and SIR3, we first selected genes that changed significantly in the swi2 Δ compared to wild type (Figure 4B), and we then performed hierarchical clustering and classified various sub-groups of interest. Genes that decrease significantly (LFC <-0.58 and FDR <0.1) in swi2 2 and are restored to nearly wild type levels in the swi2 $\Delta \operatorname{sir} 3 \Delta$ are defined as Group 1_KO (Table S1). The top gene ontology (GO) term
category enriched in Group 1_KO is ribosome biogenesis/ ribosomal protein coding genes. This suggests that these genes require SWI/SNF to antagonize Sir3 to promote transcription. Indeed, prior studies have reported Sir3 binding to many ribosomal protein genes, using a GAL-SIR3 inducible strain (Radman-Livaja et al. 2011). However, mRNA abundance of genes involved in ribosome biogenesis/ ribosomal proteins strongly anti-correlates with cellular growth rate and may confound our results (Airoldi et al. 2009).

To circumvent potential issues due to growth defects, we also analyzed RNA profiles from the anchor away strains. Transcriptional profiling following Swi2 depletion also identified many previously known SWI/SNF-dependent genes, including YOR222W, SER3, and the acid phosphatase genes (Figure 4C). Notably, genes involved in ribosome biogenesis were not identified in the anchor away datasets, consistent with the possibility that expression of these genes are linked to growth rates. To identify genes that might be co-regulated by Swi2 and Sir3, we again selected genes that changed by 1.5 fold or more after depletion of SWI2-FRB, and performed hierarchical clustering to identify subsets that are co-regulated by sir3 3 . Genes that decrease (LFC <-0.58) in SWI2-FRB and were restored to nearly wild type levels in the SWI2-FRB sir3 3 were defined as Group 1_AA (Figure 4C; Table S2). The top GO term category enriched in Group 1_AA is ion/ carbohydrate transport and primarily reflects the metabolic defects of SWI2 mutants in carbon source utilization. The overlap between the Group1_AA and Group1_KO sets revealed a very select set of 28 genes that decrease following loss of SWI/SNF but are restored to nearly wildtype levels by inactivation of Sir3 (p-value of 8.7×10^{-9}; Figure 5C; Hypergeometric test). This common subset of genes, consolidated as Group 1, corresponds to GO term categories of 'cell cycle', 'cytokinesis', and 'lipid metabolism' (Table S3). Notably, this set is enriched for genes
expressed at the end of mitosis, which we previously showed to be SWI/SNF-dependent (Krebs, et al. 2000).

Consistent with previous analyses, we also identified genes whose expression was increased by either the deletion of SWI2 or by Swi2 nuclear depletion (Figure S4). Expression of a subset of these genes was restored to nearly wildtype levels by inactivation of Sir3, and these gene sets were designated Group 2_KO ($\mathrm{n}=488$; LFC <-0.58 and $\mathrm{FDR}<0.1$) and Group 2_AA (n= 192; LFC <-0.58 and FDR <0.1). (Figure 4B,C and S4A,B; Table S4 and S5). However, overlap of Group 2_KO and Group 2_AA datasets revealed only 11 common genes (Figure S4C), suggesting that the upregulation of genes by loss of SWI/SNF is primarily due to an indirect effect of slow growth (Holstege et al. 1998b; Sudarsanam et al. 2000).

Analysis of Sir3 binding at Group 1 target genes

The genetic and transcriptome analyses suggest that SWI/SNF antagonizes Sir3 to promote expression of specific genes. One prediction of this model is that Sir3 may accumulate at such target genes in the absence of SWI/SNF. To test the model, we analyzed Sir3 recruitment by chromatin immunoprecipitation (ChIP) in WT and swi 2Δ mutants arrested in nocodazole. Nocodazole is a microtubule depolymerizing agent that blocks entry into mitosis and thus, cells accumulate at the G2/M border (Jacobs et al. 1988). Sir3 binding was measured using a native antibody to Sir3, as well as an anti-FLAG antibody in a strain expressing a SIR3-FLAG fusion from its endogenous locus. In both cases, ChIP analyses in the wild type strain demonstrated enrichment for Sir3 at the heterochromatic loci, HMR and TELVI-R. In the absence of Swi2, the occupancy of Sir3 is reduced at telomeres, consistent with a redistribution of Sir3 to ectopic loci
(Figure S5). However, we did not observe significant changes in Sir3 enrichment at selected euchromatic target genes (Figure S5B).

DISCUSSION:

Establishing a separation between euchromatin and heterochromatin domains is crucial for cell function. The mechanisms that might actively exclude heterochromatin proteins from euchromatin domains remain poorly understood. Previously, we found that the SWI/SNF complex can remove the Sir3 heterochromatin protein from chromatin fibers in vitro, and here, we report genetic evidence that supports a role for SWI/SNF in disrupting the ability of Sir heterochromatin proteins to repress euchromatic gene expression. In particular, this activity of SWI/SNF appears crucial for proper expression of genes expressed at the end of mitosis.

Genetic interactions between chromatin modifiers and SIR genes

Our in vitro studies indicated that the SWI/SNF chromatin remodeling enzyme was uniquely able to evict the Sir3 heterochromatin protein from chromatin fibers (Manning and Peterson 2014; Sinha et al. 2009). Here, we found that deletion of either SIR3 or SIR 4 alleviated the growth defects of swi2d on media containing glucose, ethanol, or HU, but $\operatorname{sir} 3 \Delta$ and $\operatorname{sir} 4 \Delta \operatorname{did}$ not significantly rescue the severe growth defects of $\operatorname{swi} 2 \Delta$ on alternative carbon sources, such as raffinose or galactose. Likewise, inactivation of Sir proteins also alleviated the growth phenotypes of cells that were depleted of Swi2. Interestingly, the genetic interactions between genes encoding Sir proteins and SWI/SNF were not unique to this particular chromatin remodeler. Deletion of SIR2 and SIR3 also suppressed the growth defects of ino 80 and $h s t 3 / h s t 4$ mutants under genotoxic stress (Figure 2C, D), indicating a potential common mechanism for suppressing replication stress.

How does loss of Sir proteins alleviate the phenotypes of mutants that lack chromatin modifying enzymes? One possibility is that suppression is due to indirect effects caused by the pseudo-diploid state of sir mutant cells. Deletion of SIR genes induces the expression the a1- $\alpha 2$ repressor, generating pseudo-diploid cells. Such haploid cells expressing both MAT genes show greater resistance to radiation and are more recombination proficient than cells expressing only MATa or MATa (Heude and Fabre 1993). We found that pseudo-diploid cells partially suppressed the phenotypes of the $I N O 80-F R B$ and $h s t 4 \Delta / H S T 3-F R B$ strains to a similar level as deletion of SIR genes, especially for growth on CPT (Figure 3B,C), indicating the some genetic interactions between INO80C and Hst3/Hst4 with Sir proteins may be largely indirect. In contrast, although the pseudodiploid state partially suppressed the HU stress phenotype of the $S N F 2-F R B$ strain (Figure 3A), the suppression was much less than that observed after deletion of SIR3 (Figure 2B). This suggests there exists both a direct genetic interaction between SWI/SNF and Sir3, consistent with the ability of SWI/SNF to evict Sir3 in vitro (Manning and Peterson 2014), as well as an indirect interaction caused by MAT heterozygosity.

Transcriptional profiling of swi2 2Δ and $s w i 2 \Delta \operatorname{sir} 3 \Delta$ strains

Our transcriptional profiling data suggest that there may be at least two classes of SWI/SNF-dependent genes - those where SWI/SNF antagonizes Sir proteins, and a second group of genes that may require more "canonical" nucleosome remodeling activities. Our transcriptional profiling results are consistent with this view, as we identified many SWI/SNF-dependent genes whose transcriptional defect was not restored by loss of Sir3 and a separate set of genes where SWI/SNF appears to antagonize Sir3. Furthermore, we recently identified and characterized a separation of function allele of SWI2 (swi2A- $\Delta 10 R$) that generates a SWI/SNF complex that has
normal levels of nucleosome remodeling activity but lacks the ability to evict Sir3 from chromatin fibers. (Manning and Peterson 2014).

For genes where SWI/SNF appears to antagonize Sir3, our microarray analyses revealed two categories of genes - the first group includes ribosomal biogenesis and ribosomal protein coding genes and the second include genes involved in cytokinesis and cell division. Notably, the first category of genes are likely to be sensitive to growth rate and thus changes in their expression are most likely due to indirect effects (Airoldi et al. 2009) (Figure 5C). In contrast, genes involved in mitotic exit were identified in RNA profiles from both gene deletion strains and from the anchor away system. This suggest that defects in expression of these genes are likely to be independent of the growth defects of the swi2 deletion strain and may be direct targets where SWI/SNF antagonizes Sir3. These data lend mechanistic insight to previous findings that SWI/SNF promotes expression of genes involved in mitotic exit and that $S W I / S N F$ mutants are defective in exiting mitosis (Krebs et al. 2000).

Genes expressed during mitosis are dependent on SWI/SNF to antagonize Sir3

Why might Sir3 only impact genes that are expressed during mitosis? Cytological studies have shown that Sir3 localizes to discrete foci during the majority of the cell cycle, reflecting its heterochromatic localization (Laroche et al. 2000). In contrast, Sir3 shows a diffuse, nuclear staining pattern during mitosis, consistent with more promiscuous binding to both euchromatic and heterochromatic sites. However, we do not observe increased Sir3 occupancy at selected gene promoter regions by ChIP qPCR analyses in G2/M arrested cells, compared to asynchronous cell populations (Figure S5B), though a diffuse localization of Sir3 may not be detectable by ChIPqPCR. Likewise, we did not detect changes in euchromatic Sir3 occupancy in the absence of

SWI/SNF, though Sir3 levels were decreased from telomeric regions, consistent with previous reports (Dror and Winston 2004; Manning and Peterson 2014) (Figure S5). Currently, we favor a model in which Sir3 delocalizes from heterochromatic sites during mitosis, leading to the binding of Sir3 to euchromatic regions, perhaps facilitated by the deacetylated state of transcribed gene coding regions. Sir3 may bind in a diffuse manner across euchromatic genes, limiting the detection of Sir3 by ChIP analyses. We envision that SWI/SNF action may be required to remove Sir3, facilitating expression of these cell cycle regulated genes. Notably, this role for SWI/SNF would be distinct from the typical nucleosome remodeling activities of SWI/SNF.

ACKNOWLEDGEMENTS

We thank Phyllis Spatrick and the Genomics Core Facility at UMass Medical School for assistance with sample processing. The pJR156 and pJR157 MAT plasmids were a gift from Prof. Jasper Rine at the University of California, Berkeley. This work was supported by grants from the NIH to C.L.P. (R35 GM122519) and to J.L.F. (F32 GM119229).

REFERENCES:

Abrams, E., Neigeborn, L., and Carlson, M. (1986). Molecular analysis of SNF2 and SNF5, genes required for expression of glucose-repressible genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 6, 3643-3651.

Airoldi, E.M., Huttenhower, C., Gresham, D., Lu, C., Caudy, A.A., Dunham, M.J., Broach, J.R., Botstein, D., and Troyanskaya, O.G. (2009). Predicting cellular growth from gene expression signatures. PLoS Comput. Biol. 5, e1000257.

Bennett, G., Papamichos-Chronakis, M., and Peterson, C.L. (2013). DNA repair choice defines a common pathway for recruitment of chromatin regulators. Nat. Commun. 4, 2084.

Carlson, M., Osmond, B. C., \& Botstein, D. (1981). Mutants of yeast defective in sucrose utilization. Genetics, 98, 25-40.

Carmen, A.A., Milne, L., and Grunstein, M. (2002). Acetylation of the yeast histone H4 N terminus regulates its binding to heterochromatin protein SIR3. J Biol Chem 277, 4778-4781.

Carrozza, M.J., Li, B., Florens, L., Suganuma, T., Swanson, S.K., Lee, K.K., Shia, W.-J., Anderson, S., Yates, J., Washburn, M.P., et al. (2005). Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123, 581-592.

Clapier, C.R., and Cairns, B.R. (2009). The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78, 273-304.

Dranginis, A. M. (1990). Binding of yeast al and alpha 2 as a heterodimer to the operator DNA of a haploid-specific gene. Nature 347, 682-685.

Dror, V., and Winston, F. (2004). The Swi / Snf Chromatin Remodeling Complex Is Required for Ribosomal DNA and Telomeric Silencing in Saccharomyces cerevisiae. 24, 8227-8235.

Goutte, C., and A. D. Johnson. (1988). al protein alters the DNA binding specificity of alpha 2 repressor. Cell 52, 875-882.

Haber J.E. (1998). Mating-type gene switching in Saccharomyces cerevisiae. Annu Rev Genet. 1998;32:561-99.

Haruki, H., Nishikawa, J., and Laemmli, U.K. (2008). The anchor-away technique: rapid, conditional establishment of yeast mutant phenotypes. Mol. Cell 31, 925-932.

Herskowitz, I. (1989). A regulatory hierarchy for cell specialization in yeast. Nature 342, 749-757.

Heude, M., \& Fabre, F. (1993). a/alpha-control of DNA repair in the yeast Saccharomyces cerevisiae: genetic and physiological aspects. Genetics 133, 489-498.

Holmes, S.G., Rose, A.B., Steuerle, K., Saez, E., Sayegh, S., Lee, Y.M., and Broach, J.R. (1997). Hyperactivation of the silencing proteins, Sir2 and Sir3, causes chromosome loss. Genetics 145, 605-614.

Holstege, F.C., Jennings, E.G., Wyrick, J.J., Lee, T.I., Hengartner, C.J., Green, M.R., Golub, T.R., Lander, E.S., and Young, R.A. (1998a). Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717-728.

Holstege, F.C.., Jennings, E.G., Wyrick, J.J., Lee, T.I., Hengartner, C.J., Green, M.R., Golub, T.R., Lander, E.S., and Young, R.A. (1998b). Dissecting the Regulatory Circuitry of a Eukaryotic Genome. Cell 95, 717-728.

Jacobs, C.W., Adams, A.E., Szaniszlo, P.J., and Pringle, J.R. (1988). Functions of microtubules in
the Saccharomyces cerevisiae cell cycle. J. Cell Biol. 107, 1409-1426.

Keogh, M.-C., Kurdistani, S.K., Morris, S. a, Ahn, S.H., Podolny, V., Collins, S.R., Schuldiner, M., Chin, K., Punna, T., Thompson, N.J., et al. (2005). Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 123, 593-605.

Krebs, J.E., Fry, C.J., Samuels, M.L., and Peterson, C.L. (2000). Global role for chromatin remodeling enzymes in mitotic gene expression. Cell 102, 587-598.

Laroche, T., Martin, S.G., Tsai-Pflugfelder, M., and Gasser, S.M. (2000). The dynamics of yeast telomeres and silencing proteins through the cell cycle. J. Struct. Biol. 129, 159-174.

Laurent, B. C., Treitel, M. A., \& Carlson, M. (1991). Functional interdependence of the yeast SNF2, SNF5, and SNF6 proteins in transcriptional activation. Proc Natl Acad Sci U S A. 88, 2687-2691.

Lenstra, T.L., Benschop, J.J., Kim, T., Schulze, J.M., Brabers, N. a C.H., Margaritis, T., van de Pasch, L. a L., van Heesch, S. a a C., Brok, M.O., Groot Koerkamp, M.J. a, et al. (2011). The Specificity and Topology of Chromatin Interaction Pathways in Yeast. Mol. Cell 42, 536-549.

Manning, B.J., and Peterson, C.L. (2014). Direct interactions promote eviction of the Sir3 heterochromatin protein by the SWI/SNF chromatin remodeling enzyme. Proc. Natl. Acad. Sci. U. S. A. 111, 17827-17832.

Peterson, C.L. and Herskowitz, I. (1992). Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription. Cell 68, 573-83.

Radman-Livaja, M., Ruben, G., Weiner, A., Friedman, N., Kamakaka, R., and Rando, O.J. (2011). Dynamics of Sir3 spreading in budding yeast: secondary recruitment sites and euchromatic
localization. EMBO J. 30, 1012-1026.

Rege, M., Subramanian, V., Zhu, C., Hsieh, T. H., Weiner, A., Friedman, N., Clauder-Münster, S., Steinmetz, L. M., Rando, O. J., Boyer, L. A., \& Peterson, C. L. (2015). Chromatin Dynamics and the RNA Exosome Function in Concert to Regulate Transcriptional Homeostasis. Cell Rep. 13, 1610-1622.

Richmond, E., and Peterson, C.L. (1996). Functional analysis of the DNA-stimulated ATPase domain of yeast SWI2/SNF2. Nucleic Acids Res 24, 3685-3692.

Rine, J., \& Herskowitz, I. (1987). Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics 116, 9-22.

Rusche, L.N., Kirchmaier, A.L., and Rine, J. (2003). The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu Rev Biochem 72, 481-516.

Rusché, L.N., Kirchmaier, A.L., and Rine, J. (2002). Ordered nucleation and spreading of silenced chromatin in Saccharomyces cerevisiae. Mol Biol Cell 13, 2207-2222.

Schild, D. (1995). Suppression of a new allele of the yeast RAD52 gene by overexpression of RAD51, mutations in srs2 and ccr4, or mating-type heterozygosity. Genetics 140, 115-127.

Schwabish, M.A., and Struhl, K. (2007). The Swi/Snf complex is important for histone eviction during transcriptional activation and RNA polymerase II elongation in vivo. Mol Cell Biol 27, 6987-6995.

Sharma, V.M., Li, B., and Reese, J.C. (2003). SWI/SNF-dependent chromatin remodeling of RNR3 requires TAF(II)s and the general transcription machinery. Genes Dev. 17, 502-515.

Sinha, M., Watanabe, S., Johnson, A., Moazed, D., and Peterson, C.L. (2009). Recombinational
repair within heterochromatin requires ATP-dependent chromatin remodeling. Cell 138, 11091121.

Smith, C.L., and Peterson, C.L. (2005). ATP-dependent chromatin remodeling. Curr Top Dev Biol 65, 115-148.

Sudarsanam, P., Iyer, V.R., Brown, P.O., and Winston, F. (2000). Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 97, 33643369.

Taddei, A., Van Houwe, G., Nagai, S., Erb, I., van Nimwegen, E., and Gasser, S.M. (2009). The functional importance of telomere clustering: global changes in gene expression result from SIR factor dispersion. Genome Res 19, 611-625.

Thurtle, D.M., and Rine, J. (2014). The molecular topography of silenced chromatin in Saccharomyces cerevisiae. Genes Dev. 28, 245-258.

Valencia-Burton, M., Oki, M., Johnson, J., Seier, T. A., Kamakaka, R., \& Haber, J. E. (2006). Different mating-type-regulated genes affect the DNA repair defects of Saccharomyces RAD51, RAD52 and RAD55 mutants. Genetics 174, 41-55.

Welch, E., Barton ER, Zhuo J, Tomizawa Y, Friesen WJ, Trifillis P, Paushkin S, Patel M, Trotta CR, Hwang S, et al. (2007). PTC124 targets genetic disorders caused by nonsense mutations. Nature 447, 87-91.

Wilson, C.J., Chao, D.M., Imbalzano, A.N., Schnitzler, G.R., Kingston, R.E., and Young, R.A. (1996). RNA polymerase II holoenzyme contains SWI/SNF regulators involved in chromatin remodeling. Cell 84, 235-244.

FIGURE LEGENDS:

Figure 1: swi2 growth defects are partially rescued by deletion of SIR3

A) Tetrad dissection plates of the swi $2 \Delta /$ SWI2 $\operatorname{sir} 3 \Delta / S I R 3$ heterozygous diploid on YEPD plates with the corresponding genotypes marked with symbols listed on the left. A single dissected spore yields an isogenic colony, imaged after 10 days. Relative size of each colony is representative of the growth rate.
B) Spot assay on null mutants dissected from the W303 background. Equal cell numbers were spotted in consecutive ten-fold dilutions on agar plates with 2% glucose as the carbon source and imaged after 3 days.
C) Spot assay was performed as described in B) with different carbon sources. Raffinose and galactose plates also contain 2% antimycin to prevent respiratory growth.
D) swi2 $\Delta \operatorname{sir} 3 \Delta$ mutants transformed with a plasmid containing either the vector backbone (left) or with a construct expressing Sir3 from its endogenous promoter (right). Spot assays were performed on individual isolates as described in B).

Figure 2: Absence of Sir2 or Sir3 partially suppresses phenotypes due to depletion of SWI/SNF, Hst3/Hst4, or INO80C
A) Schematic of the Anchor-away system to induce conditional depletion of nuclear proteins. Strains contain C-terminally tagged versions of the nucleo-cytoplasmic shuttling protein (RPL13AFKBP12; green hook) and the SWI2 gene locus (SWI2-FRB; yellow star) (left panel). Addition of Rapamycin (red dot) facilitates formation of a ternary complex between FKBP12 and FRB, rapidly depleting SWI2-FRB from the nucleus (right panel).
B) Wild type, $\operatorname{sir} 2 \Delta$, and $\operatorname{sir} 3 \Delta$ strains with or without the SWI2-FRB tag were spotted on 2% glucose media containing either DMSO solvent, $8 \mu \mathrm{~g} / \mathrm{ml}$ rapamycin (RAP) in the presence or absence of 0.1 M hydroxyurea (HU) and then grown for 3 days at $30^{\circ} \mathrm{C}$.
C) Spot assays as in B) for $h s t 4 \Delta / H S T 3-F R B$ in the presence of or absence 0.1 M HU and $5 \mu \mathrm{~g} / \mathrm{mL}$ Camptothecin (CPT).
D) Spot assays as in B) for $I N O 80-F R B$ in the presence or absence of 0.1 M HU and $5 \mu \mathrm{~g} / \mathrm{mL}$ CPT.

Figure 3: MAT heterozygosity partially suppresses replication stress phenotypes due to depletion of chromatin regulators
A) $S N F 2$-FRB tag strains containing either empty vector or a vector expressing MATa were spotted on 2% glucose media containing either DMSO solvent, $8 \mu \mathrm{~g} / \mathrm{ml}$ rapamycin (RAP) in the presence or absence of $5 \mu \mathrm{~g} / \mathrm{mL}$ Camptothecin (CPT) and 0.1 M HU , and then grown for 3 days at $30^{\circ} \mathrm{C}$. Two transformants were tested.
B) Spot assays as in A) for $h s t 4 \Delta / H S T 3-F R B$ expressing MAT α grown in the presence or absence of $5 \mu \mathrm{~g} / \mathrm{mL}$ CPT and 0.1 M HU .
C) Spot assays as in A) for INO80-FRB expressing MATa grown in the presence or absence of 5 $\mu \mathrm{g} / \mathrm{mL} \mathrm{CPT}$ and 0.1 M HU .

Figure 4: Whole-genome microarray analysis of swi2A and SWI2-AA strains.
A) Volcano plots show transcripts that change significantly in the mutant compared to the wild type (WT) highlighted in blue (p.adj $=\mathrm{FDR}<0.1$ and $\log _{2}$ Fold Change >0.59).
B) Heatmap of normalized RNA abundance for ORFs that are significantly down-regulated ($\mathrm{n}=167$) and up-regulated $(\mathrm{n}=488)$ in the swi2 Δ arrays compared to WT. Corresponding values for these genes from swi24 sir34 and sir34 arrays compared to WT are also shown. Group 1_KO are defined as significantly down-regulated in the swi2 Δ and comparatively de-repressed in swi2 $\operatorname{sir} 3 \Delta$, while Group 2_KO are defined as significantly up-regulated in the swi2s and comparatively reduced in swi2 $\operatorname{sir} 3 \Delta$. Examples of ORFs identified in previous studies that do not change in swi2 $\operatorname{sir} 3 \Delta$ compared to swi2 $\Delta(> \pm 1.5$ fold) are listed along the right.
C) Heatmap of normalized RNA abundance for genes that are down-regulated ($\mathrm{n}=264$) and upregulated ($\mathrm{n}=193$) in the SWI2-FRB compared to WT in the presence of $8 \mu \mathrm{~g} / \mathrm{ml}$ of rapamycin (RAP). Corresponding values for these genes from SWI2-FRB sir34 and sir34 arrays compared to WT are also shown. 'Group $1 _$AA' and 'Group 2_AA' are defined essentially as described in B). Examples of ORFs identified in previous studies that do not change in swi $2 \Delta \operatorname{sir} 3 \Delta$ compared to swi2 $\Delta(> \pm 1.5$ fold $)$ are listed along the right.

Figure 5: M/G1 expressed genes are regulated by SWI/SNF in a Sir3 dependent manner in both the SWI2 anchor-away and swi2 Δ strains
A) Heatmap of normalized RNA abundance for Group1_AA ORFs $(\mathrm{n}=263)$ in the SWI2-FRB, SWI2-FRB $\operatorname{sir} 3 \Delta$ and $\operatorname{sir} 3 \Delta$ arrays compared to WT in the presence of $8 \mu \mathrm{~g} / \mathrm{ml}$ of rapamycin (RAP) after hierarchical clustering.
B) Heatmap of normalized RNA abundance for Group1_KO ORFs $(\mathrm{n}=176)$ in the swi24, swi24 $\operatorname{sir} 34$ and $\operatorname{sir} 34$ arrays compared to WT after hierarchical clustering.
C) Venn diagram depicting the overlap of genes from Group 1_AA and Group 1_KO. GO terms specific and common to the knockout (KO) and anchor-away (AA) datasets are shown.
D) RT-qPCR analysis of select Group 1 genes identified from both the knockout and anchor-away datasets sets.

Figure S1: Gene expression and genetic interactions of SIR3, SIR2, and SIR4 with SWI2.
A, B) Absence of SIR2 does not suppress growth defects of swi2A.
C, D) Absence of SIR4 suppresses the growth defects of swi2A.
E) Absence of SIR3 does not impact $R N R$ gene expression and genetic interactions.

Figure S2: ino80 growth defects are partially rescued by deletion of SIR3
A) Tetrad dissection plates of the $i n o 80 \Delta / I N O 80 \operatorname{sir} 3 \Delta / S I R 3$ heterozygous diploid on YEPD plates with the corresponding genotypes marked with symbols listed on the right. A single dissected spore yields an isogenic colony, imaged after 10 days. Relative size of each colony is representative of the growth rate.
B) Spot assay on null mutants dissected from the W303 background. Equal cell numbers were spotted in consecutive ten-fold dilutions on agar plates with 2% glucose as the carbon source in the presence or absence of $0.05 \mathrm{M} \mathrm{HU}, 0.1 \mathrm{M} \mathrm{HU}, 0.01 \%$ Methyl methanesulfonate (MMS), 0.03% MMS, $30 \mu \mathrm{~g} / \mathrm{mL}$ CPT, $90 \mu \mathrm{~g} / \mathrm{mL}$ CPT, $2.5 \mu \mathrm{~g} / \mathrm{mL}$ phleomycin, or $5 \mu \mathrm{~g} / \mathrm{mL}$ phleomycin and imaged after 3 days.

Figure S3: Growth defects due to depletion of chromatin regulators are not suppressed by deletion of haploid-specific genes $N E J 1$, RME1, or PST2
A) Wild type and $n e j 1 \Delta$ strains with or without the $S N F 2-F R B$, hst $4 \Delta / H S T 3-F R B$, or $I N O 80-F R B$ were spotted ($1 / 10$ dilutions) on 2% glucose media containing either DMSO solvent, $8 \mu \mathrm{~g} / \mathrm{ml}$ rapamycin (RAP) in the presence or absence of 0.1 M HU and $5 \mu \mathrm{~g} / \mathrm{mL}$ Camptothecin (CPT). Cells were then grown for 3 days at $30^{\circ} \mathrm{C}$.
B) Spot assays as in A) for rmeld.
C) Spot assay as in A) for pst 2Δ.

Figure S4: Overlap of Group 2 genes (those repressed by SWI2) between swi24 and SWI2 anchor-away strains
A) Group 2_KO (n=192) heatmap with strains compared to WT anchor away strain. B) Group 2_AA $(\mathrm{n}=488)$ heatmap with null mutants compared to WT.
C) Overlap of the number of genes from Group 2_AA and Group 2_KO and the corresponding GO term categories.

Figure S5: ChIP analysis of Sir3 occupancy
A) Chromatin immunoprecipitation (ChIP) for native Sir3 in nocodazole-arrested (G2/M boundary) cells at two heterochromatic loci in WT, sir 3Δ and swi2 2Δ cells.
B) ChIP for SIR3-FLAG in nocodazole-arrested (G2/M boundary) cells at promoters of SWI2 dependent genes in WT and swi2 Δ cells.

SUPPLEMENTARY TABLES

Table S1: List of Group 1_KO genes
Table S2: List of Group 1_AA genes
Table S3: List of Group 1 genes common in the KO and AA datasets
Table S4: List of Group 2_KO genes
Table S5: List of Group 2_AA genes
Table S6: Complete table of RMA values from the KO datasets for all genes
Table S7: Complete table of RMA values from the AA datasets for all genes

C

Figure 2
A

B

D

Figure 3
A

	0．001\％DMSO	$8 \mu \mathrm{~g} / \mathrm{mL}$ Rap	$\begin{gathered} \text { DMSO + } \\ 5 \mu \mathrm{~g} / \mathrm{mL} \text { CPT } \end{gathered}$	$\begin{gathered} \text { Rap + } \\ 5 \mu \mathrm{~g} / \mathrm{mL} \text { CPT } \end{gathered}$	$\begin{aligned} & \text { DMSO + } \\ & \text { 0.1 M HU } \end{aligned}$	$\begin{gathered} \text { Rap + } \\ 0.1 \mathrm{M} \mathrm{HU} \end{gathered}$
SWI2－FRB＋MATa－A	10 ＊	－鏳絞	－00 \therefore	\％	夆	18
$S W I 2-F R B+$ MATa－B	0 筌安	○速	人00		10需	－

B

	0．001\％DMSO	$8 \mu \mathrm{~g} / \mathrm{mL}$ Rap
$W T+$ vector -A	－\％\％	－贸 \because
$W T+$ vector -B	－ 0 ،	$\bigcirc \bigcirc$ 祘 ：
$W T+M A T \alpha-A$	－ 0 蹸	－ 0 䇣
$W T+M A T \alpha-B$	－\％	気：
hst4D／HST3－FRB＋vector－A		（1）政
hst4D／HST3－FRB＋vector－ B	－ 0 \％	－等㘼
hst4 $/$／HST3－FRB＋MAT $\alpha-\mathrm{A}$	－	00 洊 ！
hst4 $/$ HST3－FRB＋MAT $\alpha-\mathrm{B}$	－	考

Rap＋
0．1 M HU

Figure 4

Figure 5
Rege et al
A

B

D

A
$\frac{\text { swi2 } \Delta}{\text { SWI2 }} \frac{\operatorname{sir} 2 \Delta}{\text { SIR2 }}$

C
$\frac{\operatorname{swi} 2 \Delta}{\text { SWI2 }} \frac{\operatorname{sir} 4 \Delta}{\text { SIR } 4}$

E

RNR3

RNR2

A

Tetrad Dissection: ino80 $\operatorname{sir} 3 \Delta$

B

Figure S3
Rege et al

A

	DMSO	Rap	DMSO＋ $5 \mu \mathrm{~g} / \mathrm{mL}$ CPT	Rap＋ $5 \mu \mathrm{~g} / \mathrm{mL}$ CPT	$\begin{aligned} & \text { DMSO + } \\ & 0.1 \mathrm{M} \mathrm{HU} \end{aligned}$	$\begin{gathered} \text { Rap + } \\ 0.1 \mathrm{M} \mathrm{HU} \end{gathered}$
wT	O－䜌 \because	000 和	O00 \％	OOO笅 4	O00 者	\bigcirc
WT nej14	000蝺苭	000家 ${ }^{\text {c }}$	000涨	－	00 \％	0
SWI2－FRB	－000积示		－00 等		1000	
SWI2－FRB nejid	－00䀦：	00	－00 事，	－${ }^{3}$	000	
hst4D HST3－FRB	000 \％	003	OOO \％		000 多	0
hst4D HST3－FRB nej14	O00 縭京	000	000．繁\％		00\％	
INO80－FRB	000 稱		－00 \％	O0	000 到	
IN080－FRB nej14	OOO \％	$00{ }^{\text {笭 }}$	000等	\bigcirc	000 \％	－

B

Rap＋
$5 \mu \mathrm{~g} / \mathrm{mL}$ CPT

DMSO＋
0．1 M HU

Rap＋ 0．1 M HU

C

 mind swi2D = swi2 null mutant; sir3D = sir3 null mutant, WT = Wildtype

YORF	NAME	swi2d-WT	2D	sir3D-WT
YOR107W	YOR107W	-1.736286	-1.249234	0.802684
YORO49C	YORO49C	-1.799513	-1.528723	1.077021
YORO32C	YORO32C	-1.190089	-1.02068	1.545266
YJL116C	YJL116C	-2.189504	-0.596606	2.268662
YIL169C	YIL169C	-0.686039	-0.35075	2.457973
YIL169C	YIL169C	-0.866575	-0.786447	2.38699
YOL155C	YOL155C	-0.771853	-0.763125	2.132386
YLL012W	YLLO12W	-1.095636	-0.664814	0.251892
YMR182W-A	YMR182W	-1.19808	-0.661026	0.069504
YER072W	YeR072W	-1.036205	-0.931685	-0.004959
YBR238C	YBR238C	-1.113228	-1.032084	0.050758
YGR079W	YGR079W	-1.056979	-0.935159	0.135865
YNL141W	YNL141W	-1.263049	-0.889395	0.046825
YKL185W	YKL185W	-0.871451	-0.845494	-0.158825
YHR049W	YHR049W	-0.982429	-0.822014	-0.31239
YER062C	YER062C	-0.938457	-0.793679	-0.232057
YOL002C	YOL002C	-0.883949	-0.611531	-0.186142
YOR101W	YOR101W	-0.89683	-0.624431	-0.017271
YLR008C	YLR008C	-0.812653	-0.574562	-0.044313
YFL004W	YFL004W	-0.986432	-0.698759	0.025827
YBR085W	YBR085W	-1.020654	-0.603666	-0.067401
YDR384C	YDR384C	-0.95195	-0.607941	0.163866
YJR060W	YJR060W	-0.792775	-0.641355	0.115003
YPR054W	YPR054W	-0.786343	-0.572491	0.119735
YLR300W	YLR300W	-0.593589	-0.854639	0.03546
YERO44C	YER044C	-0.76323	-0.995545	0.009447
YPL092W	YPL092W	-0.784119	-0.84839	0.077845
YMLO75C	YML075C	-0.66478	-0.742785	0.31812
YPL066W	YPL066W	-0.538909	-0.641721	0.178508
YMR030W-A	YMR030W	-0.616896	-0.454838	0.084452
YJL117W	YJL117W	-0.600328	-0.511951	0.060395
YMR032W	YMR032W	-0.641548	-0.584348	0.017399
YER056C	YER056C	-0.658738	-0.60332	-0.057556
YHRO22C	YHRO22C	-0.730672	-0.465317	0.488107
YNR009W	YnRoo9w	-0.639524	-0.539942	0.276325
YPL068C	YPL068C	-0.639863	-0.390321	0.311581
YDR044W	YDR044W	-0.787838	-0.718158	0.576189
YPL057C	YPL057C	-1.304416	-0.453506	-0.09573
YNL327W	YNL327W	-1.419537	-0.456658	-0.035435
YGR272C	YGR272C	-1.318424	-0.351872	-0.051133
YJR048W	YJR048W	-1.257396	-0.326339	0.014971
YoL019W	YoL019W	-1.288769	-0.387384	0.11906
YKL099C	YKL099C	-1.150759	-0.220279	0.07291
YHR066W	YHR066W	-1.304707	-0.185313	0.03815
YORO95C	YOR095C	-0.997563	-0.35532	0.050813
Yalo59w	Yalo59w	-0.994499	-0.398791	0.0139

YIL158W	YIL158W	-1.038477	$\begin{aligned} & \text { the authotitun } \\ & -0.298129 \end{aligned}$	0.012811
YMR239C	YMR239C	-1.079968	-0.323804	0.015705
YDR184C	YDR184C	-1.117233	-0.405462	0.066926
YPL146C	YPL146C	-1.097313	-0.341373	0.089128
YLR073C	YLR073C	-1.124565	-0.367879	-0.154846
YHR052W	YHR052W	-1.096203	-0.388025	-0.038756
YMR015C	YMRO15C	-1.192328	-0.529732	-0.121981
Yelo40w	YEL040W	-1.140605	-0.537784	-0.084598
YNLO24C	YNLO24C	-1.124738	-0.668689	-0.176781
YOR072W-B	YOR072W.	-1.179767	-0.501843	-0.313012
YMR011W	YmR011w	-1.047188	-0.494915	-0.209743
YDL179W	YDL179W	-1.4164	-0.376551	-0.21954
YGR271C-A	YGR271C-	-1.367881	-0.301543	-0.243718
YER124C	YER124C	-1.394713	-0.365854	-0.539364
YPL061W	YPL061W	-1.293322	-0.005912	-0.610692
YBLO28C	YBLO28C	-1.025202	-0.206871	-0.053283
YGL028C	YGL028C	-0.98148	-0.264637	-0.118008
YCR020W-B	YCRO20W-	-1.018662	-0.087625	-0.049605
YJL011C	YJL011C	-0.792154	-0.010188	-0.011872
YPL158C	YPL158C	-0.814284	0.01076	-0.092527
YHR196W	YHR196W	-0.863989	-0.165838	-0.124069
YLR287C	YLR287C	-0.782722	-0.099197	-0.197116
Yol020w	YoL020w	-0.739805	-0.203711	-0.071481
YOR159C	YOR159C	-0.673594	-0.138845	-0.077676
YPL227C	YPL227C	-0.680673	-0.181158	-0.113845
YLR264W	YLR264W	-0.649254	-0.204616	-0.20628
YPL163C	YPL163C	-0.819237	-0.39144	-0.165403
YCR043C	YCR043C	-0.828681	-0.340857	-0.196241
YBL055C	YBL055C	-0.690262	-0.333605	-0.148308
YKL164C	YKL164C	-0.886037	-0.389714	-0.091537
YLR285C-A	YLR285C-A	-0.812289	-0.440132	-0.07874
YKR061W	YKR061W	-0.855789	-0.461683	0.016426
YNLO75W	YNLO75W	-0.873769	-0.303583	0.06103
YOR119C	YOR119C	-0.88207	-0.345121	0.01433
YOR004W	YOR004W	-0.878897	-0.356542	0.055945
YGR081C	YGR081C	-0.886528	-0.245544	-0.064313
YDL063C	YDL063C	-0.8893	-0.297907	-0.073846
YML043C	YML043C	-0.904041	-0.215257	-0.006759
YNL300W	YNL300W	-0.767885	-0.357339	0.057677
YPL165C	YPL165C	-0.804397	-0.320086	0.053357
YOL144W	YOL144W	-0.742002	-0.28505	0.092757
YML080W	YML080W	-0.808155	-0.343047	-0.05663
YNLO34W	YNLO34W	-0.798485	-0.305995	-0.046402
YNL119W	YNL119W	-0.738471	-0.290834	-0.06127
YDR399W	YDR399W	-0.730769	-0.433201	-0.034015
YDLO42C	YDLO42C	-0.852518	-0.28447	0.312551
YJL122W	YJL122W	-0.801952	-0.352235	0.287684
YGR041W	YGR041W	-0.81707	-0.416311	0.221974
YLRO	YiR063W	-0.785169	-0.351531	0.189522

YHR094C	YHR wa94C	-1.207275	0.243913	0.274392
YNR067C	YNR067C	-1.430648	0.257047	0.118234
YDR222W	YDR222W	-1.421418	0.408224	0.079002
YJR070C	YJR070C	-0.569932	-0.180888	0.142184
YLR409C	YLR409C	-0.618153	-0.238689	0.185317
YLR221C	YLR221C	-0.612013	-0.171469	0.213431
YOR340C	YOR340C	-0.615029	-0.141354	0.225569
YKL166C	YKL166C	-0.69773	-0.1267	0.148319
YJL069C	YJL069C	-0.678246	-0.180436	0.173403
YNL175C	YNL175C	-0.665957	-0.110683	0.207458
YLR099C	YLR099C	-0.403286	-0.129096	0.199719
YDR398W	YDR398W	-0.530144	-0.079465	0.183036
YPL069C	YPL069C	-0.607505	0.072517	0.178488
YOL007C	YOL007C	-0.626065	-0.02273	0.183157
YOR091W	YOR091W	-0.6291	-0.014712	0.163624
YPR143W	YPR143W	-0.62508	0.010663	0.175941
YDR087C	YDR087C	-0.654831	-0.003588	0.136556
YIL127C	YIL127C	-0.779948	-0.014545	0.186459
YDR021W	YDR021W	-0.740934	0.048523	0.200147
YER082C	YER082C	-0.706368	-0.012994	0.202725
YOL010W	YOL010W	-0.638388	0.015929	0.237123
YDR365C	YDR365C	-0.709428	0.021993	0.278121
YAL025C	YALO25C	-0.635748	-0.014059	0.325016
YIL104C	YIL104C	-0.628021	-0.131091	0.288274
YBR247C	YBR247C	-0.694492	-0.127991	0.286097
YPL043W	YPL043W	-0.696074	-0.090589	0.270935
YBR267W	YBR267W	-0.668156	-0.086142	0.323763
YBR271W	YBR271W	-0.561659	-0.021174	0.463252
YER028C	YER028C	-0.63341	0.196135	0.762258

 (he author/funder. All rights reserved. No reuse allowed without permission 1810 = SWI2 Anchor away; 1854= SWI2 Anchor away sir3 null mutant; 1853 = sir3 null in Anchor away background; 1809 = Wildtype Anchor away background. _R = with Rapamycin

YORF	NAME	1810_R1-	1854_R1-1809	33_R-1809_R
YLR154W-E	null	-1.555192	-0.351773	-1.73793
YHR137W	ARO9	-1.964415	-0.29048	-1.25603
YDL037C	BSC1	-2.301298	0.054224	-1.61956
YFRO32C	RRT5	-2.357541	-1.169374	-1.62064
YDR380W	ARO10	-2.408232	-1.078401	-1.12321
YDR384C	ATO3	-2.591182	-1.606145	-1.25726
YJL012C	VTC4	-1.730655	-1.150325	-0.70305
YPL279C	FEX2	-1.909143	-0.916844	-0.62966
YOR390W	FEX1	-1.718305	-0.730397	-0.87149
YMR189W	GCV2	-1.884147	-0.76806	-0.89462
YJL047C-A	null	-1.877745	-0.735646	-1.1494
YNR044W	AGA1	-1.889627	-0.851457	-1.22788
YNL197C	WHI3	-2.013228	-0.787274	-1.16914
YLR342W-A	null	-2.13461	-1.120897	-0.62122
YGR041W	BUD9	-2.429062	-1.035065	-0.73259
YKL043W	PHD1	-2.449638	-1.059257	-0.481
YJR147W	HMS2	-2.521508	-0.68129	-0.66571
YKR050W	TRK2	-1.564904	-0.905273	-0.28193
YOR034C	AKR2	-1.47363	-0.878702	-0.31952
YLL066W-B	null	-1.63241	-0.823486	-0.21775
YGR233C	PHO81	-1.485611	-0.980128	-0.03703
YDLO42C	SIR2	-1.420121	-0.998536	-0.09364
YKR104W	null	-1.229861	-0.567416	0.079281
YOR066W	MSA1	-1.373663	-0.658872	-0.06609
YFL021W	GAT1	-1.39381	-0.739817	0.070213
YOL020W	TAT2	-1.611607	-0.635395	-0.02211
YLR285C-A	null	-1.578821	-0.490248	0.013808
YBR296C	PHO89	-1.466358	-0.626254	0.239036
YGR143W	SKN1	-1.472033	-0.868274	0.301284
YBR196C-A	null	-1.686044	-1.024496	0.365435
YGR068C	ART5	-1.308685	-1.367768	-0.25619
YPR009W	SUT2	-1.199259	-1.578666	-0.1354
YPL066W	RGL1	-1.00754	-1.297962	-0.02652
YLR278C	null	-1.039162	-1.355646	0.097341
YBR291C	CTP1	-1.350511	-1.317544	0.568544
YBLO42C	FUI1	-1.223819	-0.91923	0.308592
YOR342C	null	-1.000736	-1.138968	0.459689
YPR106W	ISR1	-1.79978	-0.483187	-0.2268
YOR084W	LPX1	-1.799683	-0.689908	-0.43065
YOR137C	SIA1	-1.75522	-0.752846	-0.40568
YIR019C	FLO11	-1.986636	-0.540304	-0.32771
YMR266W	RSN1	-2.049499	-0.570817	-0.53056
YDR072C	IPT1	-1.593271	0.019658	-0.28354
YNR067C	DSE4	-1.660394	-0.136176	-0.36397
YGLO28C	SCW11	-1.830712	-0.060328	-0.32761

			it ${ }_{-0.862954}^{-0.3361}$	
YJL193W	null	-1.368008		
YDR143C	SAN1	-1.293169	-0.8678	-0.39477
YPR054W	SMK1	-1.248613	-1.072935	-0.34598
YNL291C	MID1	-1.077109	-0.769886	-0.70305
YDR538W	PAD1	-1.040836	-0.710045	-0.72063
YLR459W	GAB1	-1.0176	-0.644804	-0.73487
YDR404C	RPB7	-1.108425	-0.793386	-0.61565
YHR163W	SOL3	-1.082184	-0.831005	-0.57453
YOL052C	SPE2	-1.04761	-0.873968	-0.6079
YPR121W	THI22	-1.021577	-0.693926	-0.36949
YHR086W-A	null	-1.059386	-0.784566	-0.40747
YNR055C	HOL1	-1.113354	-0.745037	-0.50927
YOR321W	PMT3	-1.080195	-0.7333	-0.57796
YKL078W	DHR2	-1.047444	-0.702301	-0.58379
YPL162C	null	-1.091111	-0.657734	-0.54618
YBR086C	IST2	-1.022796	-0.622193	-0.57988
YMR274C	RCE1	-1.413554	-0.919902	-0.55519
YCR065W	HCM1	-1.285848	-0.962969	-0.67737
YEL065W	SIT1	-1.326927	-0.783409	-0.60061
YHR086W	NAM8	-1.318066	-0.818393	-0.61668
YGR281W	YOR1	-1.281143	-0.81167	-0.52579
YDL179W	PCL9	-1.268798	-0.745332	-0.50394
YLR141W	RRN5	-1.303257	-0.781836	-0.77922
YGR038W	ORM1	-1.246203	-0.704735	-0.74587
YLL031C	GPI13	-1.30253	-0.643208	-0.68088
YBR175W	SWD3	-1.260419	-1.254828	-0.86015
YER110C	KAP123	-1.067729	-1.093829	-0.8948
YGR131W	FHN1	-1.038851	-1.171217	-0.9338
YBR074W	PFF1	-1.063322	-1.206995	-0.77965
YMR277W	FCP1	-1.041506	-0.97864	-0.84932
YPR052C	NHP6A	-1.022073	-0.965162	-0.68902
YLR380W	CSR1	-1.085019	-0.869708	-0.74981
YNL238W	KEX2	-1.107759	-0.93974	-0.74767
YPR128C	ANT1	-1.14267	-0.956547	-0.6306
YPL018W	CTF19	-1.096172	-0.982328	-0.61275
YCL002C	null	-1.095239	-1.116041	-0.62248
YOR129C	AFI1	-1.366272	-1.293772	-0.5899
YNLO80C	EOS1	-1.293655	-1.163043	-0.53001
YOR378W	AMF1	-1.008824	-0.401119	-1.10451
YGR146C-A	null	-1.037179	-0.253796	-1.17931
YBL112C	null	-1.087553	-0.294808	-0.86761
Yelootw	MIT1	-1.450384	-0.175074	-1.11328
YBL032W	HEK2	-1.428298	-0.549564	-1.20662
YMR055C	BUB2	-1.32715	-0.832963	-0.8408
YDL093W	PMT5	-1.285507	-0.896378	-0.84831
YLR381W	CTF3	-1.309061	-0.870505	-0.88433
YNR060W	FRE4	-1.404624	-0.994241	-0.99664
YJR124C	null	-1.421199	-0.870187	-0.82313
YPL128C	TBF1	-1.46835	-0.971687	-0.79808

YDL160C	DHH1	-1.46054	-0.712223	49
YDR044W	HEM13	-1.482312	-0.685862	-0.96316
YDR414C	ERD1	-1.115155	-0.567869	-1.01918
YOR307C	SLY41	-1.176199	-0.6677	-0.94427
YELO42W	GDA1	-1.208786	-0.640769	-1.01143
YNL283C	WSC2	-1.176128	-0.87668	-0.95097
YOR067C	ALG8	-1.246612	-0.771258	-1.00481
YHR115C	DMA1	-1.122361	-0.725427	-0.90375
YDL048C	STP4	-1.213949	1.304484	1.386136
YCL068C	null	-1.523301	1.657408	1.603099
YFR022W	ROG3	-1.101124	1.820295	2.165995
YCR108C	null	-1.06561	1.33408	2.05838
YPL165C	SET6	-2.289622	1.097893	2.20319
YMR182C	RGM1	-1.899901	1.352962	1.640581
YDR247W	VHS1	-1.800171	1.391117	1.98415
YPL014W	null	-1.910601	1.698177	2.742215
Yero28C	MIG3	-1.415682	1.989151	0.358269
Yol011W	PLB3	-1.942625	0.632071	1.215531
YER188C-A	null	-2.006381	0.225677	0.750596
YER088C	DOT6	-1.230253	0.578579	0.870996
YLR120C	YPS1	-1.208372	0.519998	0.838073
YBR298C	MAL31	-1.420194	0.582458	0.997994
YKL220C	FRE2	-1.163377	0.038322	0.585177
YOL136C	PFK27	-1.330024	0.122457	0.50754
YBL111C	null	-1.481711	0.309395	0.461409
YHLO40C	ARN1	-1.378605	0.368258	0.793778
YEL063C	CAN1	-1.266327	0.260261	0.646736
YOR273C	TPO4	-1.594325	0.143492	0.763655
YDR534C	FIT1	-1.637009	0.208779	0.328522
YOR381W	FRE3	-1.59899	0.290977	0.265652
YCR089W	FIG2	-1.756856	0.166196	0.177603
YPL057C	SUR1	-1.782771	0.123331	0.541527
YALO40C	CLN3	-1.861156	0.015472	0.404578
YLR152C	null	-1.285577	-0.35867	0.317725
YALO60W	BDH1	-1.328006	-0.452297	0.269904
YBR021W	FUR4	-1.114172	-0.330952	0.547602
YKL029C	MAE1	-1.253982	-0.332381	0.555527
YMR272C	SCS7	-1.212712	-0.223203	0.405308
YOL059W	GPD2	-1.007211	-0.056624	0.831813
YGL256W	ADH4	-1.093417	-0.305503	0.710373
YLL066W-B	null	-1.952956	-0.33443	0.509491
YaRO10C	null	-1.799371	-0.406109	0.645434
YHLO16C	DUR3	-1.741483	-0.492125	0.35648
YBR196C-B	null	-1.369806	-0.58939	0.657573
YCL025C	AGP1	-1.682185	-0.331049	0.823672
YDR205W	MSC2	-1.001279	0.140402	-0.1044
YIL006W	YIA6	-1.039886	0.124122	-0.01684
YLR337C	VRP1	-1.096899	0.188038	-0.00914
YNL321W	VNX1	-1.180766	0.100233	-0.12292

YPL190C	$\begin{aligned} & \text { chat in } \\ & \text { NAB } \end{aligned}$	$\begin{gathered} \text { oy peerrevew) } \\ -1.246992 \end{gathered}$	$\begin{aligned} 1040 \\ 1.338699 \end{aligned}$	
YOR140W	SFL1	-1.290206	0.326112	-0.15347
YMR069W	NAT4	-1.221564	0.089779	0.273154
YKR102W	FLO10	-1.275704	0.194769	0.316539
YDR232W	HEM1	-1.332911	0.045818	0.348183
YDR246W-A	null	-1.440417	0.158604	0.091489
YDL140C	RPO21	-1.31474	0.154825	0.066087
YBR020W	GAL1	-1.311369	0.086624	0.107964
YOR349W	CIN1	-1.048967	-0.045259	0.035903
YALO20C	ATS1	-1.068134	-0.002847	0.125437
YGR079W	null	-1.15463	-0.053631	0.260586
YER152C	null	-1.022108	-0.125026	0.246497
YAL063C	FLO9	-1.067861	-0.071818	0.206601
YKL187C	FAT3	-1.036015	0.178003	0.196359
YLR116W	MSL5	-1.06763	0.179945	0.243781
YKL198C	PTK1	-1.096863	0.259249	0.20616
YDR160W	SSY1	-1.019812	0.148067	0.308233
YER060W	FCY21	-1.029224	0.203936	0.351275
YGL178W	MPT5	-1.179571	0.479767	0.359187
YDR438W	THI74	-1.258853	0.579677	0.370009
YLR099C	ICT1	-1.13923	0.600478	0.329931
YLR403W	SFP1	-1.212804	0.429344	0.237323
YJL094C	KHA1	-1.017959	0.514731	0.080093
YMRO08C	PLB1	-1.103382	0.676622	0.553909
YGR289C	MAL11	-1.084481	0.696059	0.692787
YPL015C	HST2	-1.078514	1.148372	0.591381
YHR094C	HXT1	-1.578098	0.964523	0.494114
YGR023W	MTL1	-1.551499	0.762923	0.690967
YMR291W	TDA1	-1.2614	0.269249	1.804324
YGR032W	GSC2	-1.242827	0.236364	1.776908
YJL079C	PRY1	-1.443107	0.230725	1.836415
YBR067C	TIP1	-1.191979	0.6789	2.078076
YHLO26C	null	-1.244398	0.708651	1.464342
YGR121C	MEP1	-1.02356	0.688905	1.588961
YER053C	PIC2	-1.617607	0.204335	1.427363
YJL212C	OPT1	-1.53264	0.103232	1.427167
YER158C	null	-1.423766	0.170882	1.213202
YPL036W	PMA2	-1.151877	-0.145902	1.544101
YLR142W	PUT1	-1.002157	0.184707	1.238826
YOR071C	NRT1	-1.17284	-0.074057	1.26817
YGR260W	TNA1	-1.147552	0.084828	1.242491
YFL014W	HSP12	-1.292276	0.237658	2.488439
YPL092W	SSU1	-1.065039	-0.681846	0.960938
YBL005W-A	null	-1.17081	-0.719291	0.961157
YNLO24C	null	-1.26106	-0.90903	1.338866
YNR014W	null	-1.922514	-0.605679	1.777716
YPR160W	GPH1	-1.099576	-0.583531	2.009052
YOL104C	NDJ1	-1.647413	-1.534572	1.433746
YDR222W	null	-2.011217	-1.458479	0.856427

swi2D = swi2 null mutant; swi2Dsir3D = swi2 and sir3 null mutant, sir3D = sir3 null mutant, WT = Wildtype, 1810 = SWI2 Anchor away; 1854= SWI2 Anchor away sir3 null mutant; 1853 = sir3 null in Anchor away background; 1809 = Wildtype Anchor away background. _R = with Rapamycin

			swi2Dsir3D-		1810_R1-		
YORF	NAME	swi2D-WT	WT	sir3D-WT	1809_R	1854_R1-1809_R	1853_R-1809_R
YBR238C	YBR2381	-1.113228	-1.032084	0.050758	-2.643991	-0.768649	-0.051082
YER028C	MIG3	-0.63341	0.196135	0.762258	-1.415682	1.989151	0.358269
YHR094C	HXT1	-1.207275	0.243913	0.274392	-1.578098	0.964523	0.494114
YKL078W	DHR2	-1.078741	-0.409123	0.246475	-1.047444	-0.702301	-0.583786
YDL042C	SIR2	-0.852518	-0.28447	0.312551	-1.420121	-0.998536	-0.093641
YDL179W	PCL9	-1.4164	-0.376551	-0.21954	-1.268798	-0.745332	-0.503944
YDR044W	HEM13	-0.787838	-0.718158	0.576189	-1.482312	-0.685862	-0.96316
YDR222W	YDR222	-1.421418	0.408224	0.079002	-2.011217	-1.458479	0.856427
YDR384C	ATO3	-0.95195	-0.607941	0.163866	-2.591182	-1.606145	-1.25726
YGL028C	SCW11	-0.98148	-0.264637	-0.118008	-1.830712	-0.060328	-0.327612
YGR041W	BUD9	-0.81707	-0.416311	0.221974	-2.429062	-1.035065	-0.732587
YGR079W	YGR079	-1.05697	-0.93515	0.135865	-1.15463	-0.053631	0.260586
YLR099C	ICT1	-0.403286	-0.129096	0.199719	-1.13923	0.600478	0.329931
YLR121C	YPS3	-1.101156	-0.093144	0.564482	-2.161079	-0.657103	0.534248
YMR011W	HXT2	-1.047188	-0.494915	-0.209743	-1.933943	-0.067735	0.024425
YNLO24C	EFM6	-1.124738	-0.668689	-0.176781	-1.26106	-0.90903	1.338866
YNL034W	YNL034	-0.798485	-0.305995	-0.046402	-1.018354	-0.190546	-0.123394
YNL327W	EGT2	-1.419537	-0.456658	-0.035435	-1.412944	-0.034828	-0.171923
YNR067C	DSE4	-1.430648	0.257047	0.118234	-1.660394	-0.136176	-0.363971
YOLO20W	TAT2	-0.739805	-0.203711	-0.071481	-1.611607	-0.635395	-0.022112
YOR342C	YOR342	-0.809384	-0.059979	0.125933	-1.000736	-1.138968	0.459689
YPL057C	SUR1	-1.304416	-0.453506	-0.09573	-1.782771	0.123331	0.541527
YPL066W	RGL1	-0.538909	-0.641721	0.178508	-1.00754	-1.297962	-0.026519
YPL092W	SSU1	-0.784119	-0.84839	0.077845	-1.065039	-0.681846	0.960938
YPL165C	SET6	-0.804397	-0.320086	0.053357	-2.289622	1.097893	2.20319
YPR054W	SMK1	-0.786343	-0.572491	0.119735	-1.248613	-1.072935	-0.345981
YPR106W	ISR1	-0.62125	-0.625154	-0.222107	-1.79978	-0.483187	-0.226804
YLR285C-A	YLR285(-0.812289	-0.440132	-0.07874	-1.578821	-0.490248	0.013808

 wich was not certifted by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. swi2D = swi2 null mutant; sir3D = sir3 null mutant, WT = Wildtype

YORF	NAME	swi	i2Dsi	sir3D-WT
YHLO12W	YHLO12W	1.39651	0.363307	-0.024821
YDL170W	YDL170W	1.434712	0.331249	0.178301
YLL060C	YLL060C	1.345331	0.409135	0.188886
YOL119C	YoL119C	1.472612	0.061144	-0.026633
YJR130C	YJR130C	1.328341	0.18232	0.025941
YALO28W	YALO28W	1.252044	0.133739	-0.110437
YER175C	YER175C	1.426577	-0.142406	0.086255
YNL270C	YNL270C	1.526947	-0.30727	-0.022384
YBR145W	YBR145W	1.176709	-0.413801	0.091954
YOR289W	YOR289W	1.303741	0.188904	-0.363791
YJL089W	YJL089W	1.392584	0.290784	-0.29782
YIL037C	YIL037C	1.46089	0.263056	-0.534638
YNL194C	YNL194C	1.510503	0.334908	-0.37898
YCL040W	YCLO40W	1.474825	0.407789	-0.438249
YKR076W	YKR076W	1.346451	0.424563	-0.370127
YDR516C	YDR516C	1.157875	0.424397	-0.411819
YHL044W	YHLO44W	1.284105	0.442617	-0.568168
YDR309C	YDR309C	1.169489	0.019513	-0.596586
YGL032C	YGL032C	1.138942	-0.080326	-0.509035
YDL085W	YDL085W	1.278246	-0.204536	-0.537333
YJL103C	YJL103C	1.095172	0.228025	-0.301721
YMR306W	YMR306W	1.062371	0.272699	-0.358249
Yol083W	YoL083W	1.006853	0.361934	-0.320293
YLR270W	YLR270W	0.941675	0.318399	-0.313685
YAR023C	Yar023C	0.861997	0.295574	-0.298766
YKL142W	YKL142W	0.833649	0.292383	-0.429116
YGL104C	YGL104C	0.867143	0.316828	-0.374073
YAR068W	YAR068W	0.80976	-0.118429	-0.470585
YDLO90C	YDLo90C	0.790183	-0.041284	-0.312308
YHLO22C	YHLO22C	0.888585	0.242201	-0.507559
YKL217W	YKL217W	0.882017	0.095171	-0.621602
YGL185C	YGL185C	0.946109	0.881844	-0.050654
YKR066C	YKR066C	1.025034	0.91132	-0.026599
YJR103W	YJR103W	1.067124	0.916631	-0.012947
YPL134C	YPL134C	1.014002	0.862032	0.00447
YLR142W	YLR142W	1.010006	0.816799	0.045308
YCRO37C	YCRO37C	1.023084	0.81118	0.038704
YEL044W	Yelo44W	0.991116	0.832672	0.08014
YGL183C	YGL183C	0.952034	0.767311	-0.026404
YBR230C	YBR230C	0.892935	0.76316	-0.091499
YLR412C-	YLR412C-A	0.890019	0.81298	-0.054856
YGL081W	YGL081W	1.136778	0.526974	0.151449
YJL155C	YJL155C	1.155024	0.552499	0.052828
YLR356W	YLR356W	1.129004	0.560602	0.108706
YJL071W	YJLO71W	1.092489	0.56018	0.082162
YMR094W	YMR094W	1.160889	0.638316	0.075412

YJQioRxivpreprintotorntup YKL086W YKL086W	//doiqrity $9.7101 / 2020$ tritited by peer review)		5; ©his2 2qugipg posted March 25, 2020. The copyright holder for this preprint funder. All rights reserved. No reuse allowed without permission.
	1.142035	0.673786	0.124597
YOL084W YOL084W	1.132696	0.61427	0.148361
YDL149W YDL149W	1.185467	0.659495	0.306894
YILO24C YIL024C	1.11742	0.627506	0.220307
YPR036W- YPR036W-	1.066355	0.731882	0.263468
YML120C YML120C	1.088666	0.762926	0.128583
YDL138W YDL138W	1.110095	0.72298	0.164833
YJR036C YJR036C	1.178944	0.7529	0.138457
YPL113C YPL113C	1.171352	0.720667	0.114903
YIL074C YIL074C	1.244388	0.77317	0.168305
YML087C YML087C	1.237079	0.686985	0.169487
YDR452W YDR452W	0.886152	0.55767	0.04458
YIL046W YIL046W	0.837093	0.584252	0.002653
YLR417W YLR417W	0.825852	0.557197	0.027376
YLR350W YLR350W	0.907203	0.641615	0.020785
YNR058W YNR058W	0.886758	0.633461	0.005521
YBR150C YBR150C	0.91409	0.524	0.02349
YGL036W YGL036W	0.890575	0.485573	0.015498
YOR177C YOR177C	0.893837	0.500689	-0.037962
YPR026W YPR026W	0.87614	0.456565	-0.018907
YKL171W YKL171W	0.837674	0.501156	0.094123
YKL026C YKL026C	0.822128	0.459803	0.057352
YDL024C YDLO24C	0.793465	0.483795	-0.02712
YLR189C YLR189C	0.775608	0.501842	-0.030236
YBR001C YBR001C	0.819745	0.525976	-0.060255
YIL162W YIL162W	0.813445	0.503346	0.017028
YDR022C YDR022C	0.835347	0.516279	-0.019088
YKL107W YKL107W	0.776387	0.59272	-0.069764
YMR020W YMR020W	0.7955	0.546233	0.005497
YMR147W YMR147W	0.761638	0.569792	-0.019936
YMR139W YMR139W	0.708373	0.514123	0.018162
YGR207C YGR207C	0.709674	0.545402	0.024355
YGR080W YGR080W	0.6698	0.580932	0.029934
YOLO32W YOL032W	0.740201	0.607051	0.018664
YGL045W YGL045W	0.74862	0.520836	0.126003
YMR114C YMR114C	0.715137	0.581373	0.100723
YAL061W YAL061W	1.080048	0.63144	0.015344
YFL042C YFL042C	1.070022	0.600394	-0.016275
YHLO24W YHL024W	1.045911	0.667195	-0.027581
YKR097W YKR097W	0.943387	0.652423	-0.043934
YDL027C YDL027C	0.97885	0.647415	-0.060379
YJL045W YJL045W	0.959893	0.616837	0.002423
YML100W YML100W	1.017937	0.622644	0.003245
YGR250C YGR250C	0.936389	0.749598	0.111166
YFL064C YFL064C	0.931082	0.740061	0.099967
YPR155C YPR155C	0.965036	0.741548	0.192373
YDR132C YDR132C	0.969367	0.754427	0.131802
YMR030W YMR030W	0.944327	0.78541	0.146986
YDR358W YDR358W	1.018333	0.653511	0.189238

YMiRB30inerepriptplsionteres(which was not YDL238C YDL238C	:/dog $96898101 / 20200$ ertified by peer review)		5; dhis 2 Gisinn posted March 25, 2020. The copyright holder for this rfunder. All rights reserved. No reuse allowed without permission. 0.148495
		0.649432	
YKL129C YKL129C	1.025219	0.573397	0.178255
YIR014W YIR014W	1.018121	0.564928	0.195361
YNL077W YNL077W	0.979824	0.611458	0.135164
YCR107W YCR107W	0.94217	0.59097	0.159194
YLR260W YLR260W	0.900669	0.607359	0.200363
YNR007C YNR007C	0.953163	0.570762	0.235159
YBR285W YBR285W	0.94172	0.618527	0.232708
YJL070C YJL070C	0.960937	0.508825	0.348488
YOR113W YOR113W	0.963024	0.536857	0.371851
YCR107W YCR107W	1.011328	0.560049	0.300429
YIL107C YIL107C	0.893802	0.522698	0.217952
YDL174C YDL174C	0.913486	0.478663	0.255499
YFR047C YFR047C	0.872582	0.528302	0.138168
YGR097W YGR097W	0.88382	0.501875	0.141175
YIR031C YIR031C	0.803063	0.515764	0.190921
YOR208W YOR208W	0.86384	0.540229	0.311201
YKL124W YKL124W	0.784504	0.516351	0.303699
YDR350C YDR350C	0.799453	0.528983	0.306911
YIR007W YIR007W	0.822092	0.502518	0.274489
YNLO74C YNL074C	0.917302	0.425195	0.170422
YMR160W YMR160W	0.867979	0.440628	0.187692
YPR081C YPR081C	0.879047	0.386579	0.248651
YEL072W YEL072W	0.900306	0.35021	0.233605
YFL016C YFL016C	0.913885	0.355887	0.209021
YIL154C YIL154C	0.879745	0.374802	0.194374
YNL092W YNL092W	0.800537	0.395907	0.117566
YGR239C YGR239C	0.806245	0.398141	0.114831
YDL054C YDL054C	0.844388	0.377671	0.146408
YNL223W YNL223W	0.871289	0.349675	0.122003
YGL141W YGL141W	0.782891	0.383586	0.187871
YEL059C-A YEL059C-A	0.764673	0.385062	0.215634
YAR050W YAR050W	0.78565	0.338906	0.218081
YCR063W YCR063W	0.764622	0.39164	0.250625
YMR108W YMR108W	0.831192	0.399722	0.26184
YJR091C YJR091C	0.821343	0.399253	0.272638
YLR128W YLR128W	0.819945	0.363568	0.275342
YOLO36W YOLO36W	0.779427	0.430364	0.324494
YGR112W YGR112W	0.779069	0.360068	0.323016
YBR241C YBR241C	1.286382	0.394891	-0.056671
YBR169C YBR169C	1.204758	0.444963	-0.070752
YIL072W YIL072W	1.174991	0.353256	-0.188291
YOR100C YOR100C	1.223167	0.34738	-0.226438
YJR025C YJR025C	1.203687	0.27778	-0.095241
YKL151C YKL151C	1.120125	0.47562	-0.130729
YOR386W YOR386W	1.068739	0.405265	-0.187585
YGL227W YGL227W	1.017435	0.512009	-0.119218
YKLO23W YKL023W	1.015047	0.484131	-0.127903
YJL037W YJL037W	1.139261	0.529247	-0.300059

YKR102W YKR102W	0.595357	0.284468	0.591786
YOR018W YOR018W	0.764406	0.480334	0.561306
YJL100W YJL100W	0.742634	0.433836	0.584511
YNL144C YNL144C	0.705902	0.423877	0.493434
YFRO22W YFR022W	0.740657	0.402394	0.410533
YOR077W YOR077W	0.690867	0.390151	0.388449
YNR065C YNR065C	0.72087	0.386812	0.325778
YER162C YER162C	0.733909	0.434537	0.323612
YOL051W YOL051W	0.724742	0.441366	0.335819
YML076C YML076C	0.670445	0.41375	0.322985
YGR258C YGR258C	0.691146	0.408519	0.334469
YPR002W YPR002W	0.67846	0.467907	0.362775
YCR024C YCR024C	0.612769	0.360917	0.316836
YDR528W YDR528W	0.580712	0.358707	0.381767
YMR253C YMR253C	0.707862	0.277376	0.436816
YGR288W YGR288W	0.680275	0.315446	0.372509
YGL219C YGL219C	0.72029	0.280519	0.332057
YLL063C YLL063C	0.737355	0.305061	0.310217
YMR182C YMR182C	0.56691	-0.092589	0.650821
YJL161W YJL161W	1.112427	-0.098702	-0.090355
YHR018C YHR018C	1.097463	-0.010042	-0.282741
YBR214W YBR214W	1.048822	0.08978	-0.19885
YLL055W YLL055W	1.084256	0.034793	-0.084343
YGR019W YGR019W	0.756911	0.03545	-0.17009
YJL163C YJL163C	0.742659	-0.065623	-0.098911
YBR298C YBR298C	0.965357	0.020371	-0.242704
YER096W YER096W	0.903116	0.096143	-0.207056
YAR066W YAR066W	0.867582	0.02989	-0.215754
YIL116W YIL116W	0.845978	-0.160288	-0.082352
YMR018W YMR018W	0.907539	-0.153467	0.050713
YBR183W YBR183W	0.926466	-0.15967	-0.026584
YBR132C YBR132C	0.956762	-0.269158	0.184922
YBR047W YBR047W	0.916639	-0.148777	0.278189
YNL104C YNL104C	0.777248	-0.15216	0.191172
YGR053C YGR053C	0.752639	-0.138203	0.106464
YLR177W YLR177W	0.904206	-0.048365	0.145183
YML116W YML116W	0.857739	-0.136079	0.139293
YIR019C YIR019C	0.647143	-0.018034	0.106158
YOR316C YOR316C	0.663918	-0.065329	0.16934
YHL006C YHLO06C	0.724924	-0.028565	0.128995
YOR032W YOR032W.	0.585149	-0.072346	0.074312
YAL002W YAL002W	0.593642	-0.046103	0.105006
YDR127W YDR127W	0.676811	-0.068427	0.026518
YIL164C YIL164C	0.686601	-0.036841	-0.011433
YER066W YER066W	0.701785	0.018448	-0.028866
YML117W YML117W	0.727407	-0.018494	-0.034254
YMR251W YMR251W	0.684227	-0.14025	-0.001341
YGR070W YGR070W	0.628337	-0.222661	0.002256
YGR045C YGR045C	0.605165	-0.19431	-0.00647

YIL088C YIL088C	$\begin{aligned} & \text { entitif by pee } \\ & 0.576831 \end{aligned}$	$\begin{aligned} & \text { w) in autho } \\ & -0.052844 \end{aligned}$	$\begin{aligned} \text { rffunder. An rig } \\ -0.022622 \end{aligned}$
YBR233W YBR233W	0.628194	-0.054141	-0.004612
YOR173W YOR173W	0.635113	-0.081923	-0.048003
YDR270W YDR270W	0.535447	-0.175195	-0.006447
YOR081C YOR081C	0.621488	-0.1019	-0.15413
YLR034C YLR034C	0.557415	-0.117486	-0.134807
Yalo17W Yaloitw	0.644572	-0.083116	-0.284143
YKRO49C YKRO49C	0.659206	-0.169805	-0.259712
YPL257W YPL257W	0.575563	-0.290897	-0.237339
YNROO1C YNROO1C	0.835871	0.09965	0.025909
YDR479C YDR479C	0.758988	0.148139	0.093184
YOL140W YOL140W	0.769097	0.161215	0.067367
YCR069W YCRO69W	0.648985	0.061656	0.026119
YAL031C YALO31C	0.671957	0.06073	0.013513
YHR198C YHR198C	0.679071	0.140465	0.051539
YBR128C YBR128C	0.649162	0.136315	0.071388
YMR053C YMR053C	0.828506	0.206417	-0.09831
YDL216C YDL216C	0.785739	0.188184	-0.049739
YMRO19W YMR019W	0.705654	0.105397	-0.030237
YLL041C YLLO41C	0.704188	0.090088	-0.102415
YHR006W YHR006W	0.694044	0.384871	0.078626
YbRO35C Ybro35C	0.681442	0.411983	0.066884
YDR436W YDR436W	0.701215	0.499668	0.089
YPL230W YPL230W	0.694019	0.486134	0.086743
YOR350C YOR350C	0.697096	0.460254	0.072359
YMR278W YMR278W	0.706045	0.401434	0.02805
YORO59C YORO59C	0.727356	0.41682	0.015696
YDL035C YDLO35C	0.689415	0.387173	-0.040217
YJL141C YJL141C	0.717176	0.374218	-0.028346
YIL097W YIL097W	0.761334	0.428919	-0.055043
YPL109C YPL109C	0.745653	0.426795	-0.017391
YKL065C YKL065C	0.728626	0.478298	-0.019887
YAR028W Yaro28W	0.729349	0.465076	-0.023449
YDR191W YDR191W	0.711605	0.465276	-0.022777
YFL041W-1 YFL041W-ı	0.733267	0.457053	0.019081
YELO12W YELO12W	0.766935	0.357536	0.046376
YJL048C YJL048C	0.791764	0.395257	0.030323
YLR312C-B YLR312C-B	0.771005	0.377709	0.00474
YGL181W YGL181W	0.632044	0.475256	0.060042
YkL094W YKL094W	0.573746	0.498888	0.024055
YNLO14W YNLO14W	0.601777	0.477578	0.027808
YOR152C YOR152C	0.611727	0.499225	0.013987
YKL104C YKL104C	0.573801	0.358568	0.101818
YPL174C YPL174C	0.603308	0.361553	0.106251
YCRO26C YCRO26C	0.590847	0.387899	0.081455
YLR257W YLR257W	0.582456	0.375314	0.091129
YDR383C YDR383C	0.591796	0.444481	0.14362
YNL242W YNL242W	0.624529	0.410285	0.114073
YDR058C YDRO58C	0.699754	0.509971	-0.07543

	entified by pee 0.481823) is the auth	Chisgqusiby
YGL206C YGL206C	0.542943	0.371285	0.053108
YFL041W YFL041W	0.472184	0.363991	0.036445
YKR034W YKR034W	0.439557	0.262326	0.023869
YCR032W YCR032W	0.390897	0.374289	0.021102
YGL053W YGL053W	0.70292	0.15773	-0.309933
YMR196W YMR196W	0.729957	0.139779	-0.299056
YMR315W YMR315W	0.581139	0.005065	-0.297006
YER039C YER039C	0.658019	0.03216	-0.272236
YLR156W YLR156W	0.687946	-0.006232	-0.209862
YBR006W YBR006W	0.635928	0.056828	-0.193555
YAL001C YALO01C	0.550178	0.105731	-0.194594
YPR007C YPR007C	0.548947	0.082577	-0.257611
YBR076W YBR076W	0.451802	0.151175	-0.313629
YBL091C-A YBL091C-A	0.623323	0.231421	-0.24542
YJR008W YJR008W	0.673995	0.28283	-0.275076
YNL006W YNL006W	0.658405	0.28475	-0.250896
YHR161C YHR161C	0.707763	0.227858	-0.135645
YCR091W YCR091W	0.719086	0.25168	-0.164835
YLR211C YLR211C	0.716051	0.299954	-0.144395
YIL050W YIL050W	0.75505	0.244964	-0.217685
YAL062W YAL062W	0.730282	0.246295	-0.229944
YJL185C YJL185C	0.639832	0.228435	-0.077771
YPR196W YPR196W	0.610963	0.242417	-0.143186
YPR079W YPR079W	0.635556	0.217538	-0.132211
YKR089C YKR089C	0.680805	0.183049	-0.10222
YPR201W YPR201W	0.696521	0.190369	-0.160795
YGL250W YGL250W	0.58896	0.167738	-0.17094
YOR136W YOR136W	0.59268	0.370343	-0.162238
YDL059C YDL059C	0.650068	0.330581	-0.139622
YKL193C YKL193C	0.668065	0.359615	-0.161929
YFR024C-f YFR024C-A	0.659291	0.333679	-0.219687
YDL223C YDL223C	0.641747	0.300869	-0.170029
YOR347C YOR347C	0.681784	0.389476	-0.259869
YKL208W YKL208W	0.565007	0.422599	-0.257768
YKR013W YKR013W	0.454937	0.515898	-0.181775
YAR035W YAR035W	0.613453	0.393402	-0.373743
YBR149W YBR149W	0.623446	0.281616	-0.367106
YGR244C YGR244C	0.719554	0.330664	-0.392958
YHR138C YHR138C	0.633966	0.45974	-0.533666
YOR020W• YOR020W.	0.651711	0.525487	-0.414666

 ned peer review) is the authorftunder. All rights reserved. No reuse allowed without permission. 1810 = SWI2 Anchor away; 1854= SWI2 Anchor away sir3 null mutant; 1853 = sir3 null in Anchor away background; 1809 = Wildtype Anchor away background. _R = with Rapamycin

YORF	NAME	1810_R1-1809_R	1854_R1	853_R-1809_R
YFR027W	ECO1	1.066789	-0.045791	-0.669208
YML108W	null	1.029809	-0.137468	-0.538262
YPR148C	null	1.267408	-0.077573	-0.522108
YOL108C	INO4	1.16215	-0.019617	-0.617004
YDL101C	DUN1	1.180908	0.008541	-0.527505
YLR420W	URA4	1.285333	5.47E-04	-0.319895
YOR357C	SNX3	1.25215	0.03339	-0.412955
YDL135C	RDI1	1.203921	-0.001992	-0.216348
YMR263W	SAP30	1.102979	-0.021424	-0.273703
YLR312C	null	1.01248	-0.193766	-0.110078
YDR308C	SRB7	1.040916	-0.11343	-0.102671
YNR029C	null	1.050316	-0.128786	-0.059821
YMR029C	FAR8	1.002667	-0.058155	-0.084481
YBR014C	GRX7	1.082561	-0.200944	-0.265018
YCR082W	AHC2	1.088685	-0.130606	-0.218864
YDR130C	FIN1	1.06606	-0.17393	-0.215208
YKL089W	MIF2	1.140109	-0.213645	-0.15261
YFL034C-A	RPL22B	1.033232	-0.217076	-0.193786
YKR035W-	DID2	1.016133	-0.253712	-0.24015
Yerozow	CHZ1	1.607177	0.09653	-0.370041
YJR022W	LSM8	1.538216	0.107655	-0.395975
YPR188C	MLC2	1.639887	-0.114558	-0.278256
YOR195W	SLK19	1.516348	-0.219008	-0.286149
YOR194C	TOA1	1.286919	-0.006988	0.012911
YGR135W	PRE9	1.238083	0.063397	-0.014367
YPR100W	MRPL51	1.361305	0.102015	0.122359
YDR315C	IPK1	1.432264	0.036723	0.137238
YPRO73C	LTP1	1.425334	0.088795	0.090258
YDR079C-	TFB5	1.311372	-0.059416	0.088674
YBL090W	MRP21	1.31457	0.003371	0.235119
YIL063C	YRB2	1.424641	0.128045	-0.006819
YDL216C	RRI1	1.484604	0.244172	-0.107044
YKRO29C	SET3	1.084159	0.502969	-0.199273
YNLO50C	null	1.113443	0.55606	-0.237633
YLR262C	YPT6	1.201175	0.424257	-0.27768
YGL244W	RTF1	1.064341	0.308883	-0.407579
YER170W	ADK2	1.086861	0.311351	-0.253826
YOR094W	ARF3	1.03361	0.259975	-0.280725
YDR162C	NBP2	1.090693	0.510215	-0.584332
YPL045W	VPS16	1.015906	0.632306	-0.45783
YIL138C	TPM2	1.682786	0.306056	-0.690793
YDL161W	ENT1	1.34342	0.389242	-0.723547
YLR148W	PEP3	1.353599	0.187139	-0.569213
YER159C	BUR6	1.670063	0.437402	-0.210862
YELO21W	URA3	1.632845	0.262002	-0.268966

 (which was not certified by peer review) is the authortunder. All rights reserved. No reuse allowed without permission.

YNL122C null	1.014566	-0.117233	0.197204
YGLO29W CGR1	1.054287	-0.134631	0.052386
YMR039C SUB1	1.12259	-0.285114	0.368477
YKR060W UTP30	1.097246	-0.373862	0.244983
YOR305W RRG7	1.281278	-0.420408	0.031223
YJL140W RPB4	1.223792	-0.318465	0.080238
YJR057W CDC8	1.020569	-0.374342	-0.112441
YBR098W MMS4	1.162837	0.177413	0.094098
YMR188C MRPS17	1.092885	0.22016	0.045758
YJL155C FBP26	1.093268	0.238717	0.093247
YMR158W MRPS8	1.031525	0.153426	0.08375
YDR004W RAD57	1.060236	0.106427	0.072368
YKL082C RRP14	1.108827	0.094592	0.006446
YDR494W RSM28	1.004573	0.313237	0.0797
YPR131C NAT3	1.011685	0.308937	-0.040734
YJL162C JJJ2	1.080659	0.360894	0.010818
YNL084C END3	1.090977	0.101192	-0.099086
YML015C TAF11	1.04558	0.105481	-0.175426
YGR029W ERV1	1.092301	0.227575	-0.105768
YER048C CAJ1	1.047871	0.271252	-0.17278
YOR266W PNT1	1.049498	0.285775	-0.183032
YGL230C null	1.258502	0.156629	-0.213166
YLR051C FCF2	1.280758	0.207603	-0.12482
YNR032C-ヶ HUB1	1.214463	0.103032	-0.10574
YCL055W KAR4	1.211781	0.277987	-0.020767
YDL235C YPD1	1.260954	0.268571	-0.070049
YJL085W EX070	1.179199	0.305385	-0.089646
YDL099W BUG1	1.234792	0.341265	-0.154571
YMR200W ROT1	1.204718	0.45217	0.002839
YJL072C PSF2	1.166446	0.463231	-0.036795
YGL058W RAD6	1.061177	0.473075	0.046744
YPL108W null	1.126847	0.43002	0.041395
YGR287C IMA1	1.13376	0.542336	0.029656
YGL158W RCK1	1.048703	0.481122	-0.036415
YDL002C NHP10	1.079376	0.467327	-0.040343
YDR140W MTQ2	1.088689	0.467984	-0.007828
YGR240C-/ null	1.112271	0.503602	-0.062786
YOL023W IFM1	1.026897	0.570025	-0.089091
YDR393W SHE9	1.033013	0.402441	-0.174446
YPR051W MAK3	1.290515	0.328365	0.088339
YGR196C FYV8	1.312014	0.364993	0.065092
YBR111W-SUS1	1.372997	0.313199	0.013141
YPL052W OAZ1	1.1649	0.287288	0.032563
YKR014C YPT52	1.199055	0.350467	0.081193
YNL306W MRPS18	1.20091	0.284713	0.108797
YPL051W ARL3	1.289894	0.507288	0.138563
YDR056C null	1.182859	0.504021	0.170293
YGR215W RSM27	1.131787	0.178328	0.231714
YKL138C MRPL31	1.079247	0.208727	0.219332

 (which was not certified by peer revew) is the authoitunder. All rights reservead. No reuse allowed without permission.

YCR071C IMG2	1.111693	0.307811	0.281549
YLR312W-, MRPL15	1.190386	0.342826	0.324444
YDR337W MRPS28	1.09922	0.421759	0.167552
YPRO20W ATP20	1.0745	0.346415	0.162848
YDL119C null	1.019403	0.384499	0.20403
YLR257W null	1.103853	0.045546	0.384654
YLR353W BUD8	1.16627	0.068854	0.30876
YBRO35C PDX3	1.124083	0.174003	0.417988
YLLOO9C COX17	1.018919	0.197931	0.401414
YPRO72W NOT5	1.064522	0.078616	0.260964
YKL053C-A MDM35	1.025934	0.14345	0.201852
YBLO38W MRPL16	1.09796	0.216539	0.324062
YOL133W HRT1	1.066203	0.142261	0.354629
YGR168C null	1.028826	0.142986	0.296027
YHR207C SET5	1.064848	0.256471	0.286648
YOR166C SWT1	1.018944	0.250358	0.263306
YMR299C DYN3	1.445678	0.274948	0.279285
YHLO22C SPO11	1.539086	0.169963	0.328393
YDL200C MGT1	1.517248	0.123993	0.284844
YJL127C-B null	1.303283	0.155014	0.26686
YDR468C TLG1	1.333146	0.169745	0.239176
YDR243C PRP28	1.291768	0.201127	0.195965
YOR148C SPP2	1.309947	0.185429	0.370267
YMR132C JLP2	1.343667	0.267558	0.316044
YDR318W MCM21	1.408467	0.206356	0.359363
YKL137W CMC1	1.396391	0.152925	0.454729
YDR272W GLO2	1.406336	0.264159	0.508817
YOL017W ESC8	1.290712	0.085347	0.530284
YJR082C EAF6	1.289898	0.193897	0.578618
YKL002W DID4	1.165457	0.127193	0.593513
YGR153W null	2.636502	0.65501	-0.717081
YNLO56W OCA2	2.209609	0.202457	0.243769
YCR020W- HTL1	2.43541	0.626473	0.604439
YLR025W SNF7	1.549937	0.602071	-0.037162
YmL062C MFT1	1.467596	0.50822	-0.069654
YOR078W BUD21	1.433841	0.437274	-0.129684
YMR284W YKU70	1.38401	0.491141	-0.018359
YKL160W ELF1	1.4777	0.386218	0.03296
YJL013C MAD3	1.470005	0.373521	0.130819
YDR289C RTT103	1.539179	0.401045	0.156093
YJR011C null	1.612044	0.511631	0.185125
YMR197C VTI1	1.531006	0.565154	0.129688
YDR068W DOS2	1.553337	0.561149	0.133572
YDR168W CDC37	1.535247	0.585925	0.192948
YLR170C APS1	1.752593	0.476661	0.012479
YJL179W PFD1	1.907616	0.404717	0.135655
YOL086W-MHF1	2.026676	0.363643	0.046947
YKL138C-A HSK3	1.988677	0.5422	-0.05758
YDR371W CTS2	1.884904	0.719605	0.198772

YDR357C CNLIC1
YBLO01C ECM
YOR193W PEX2
YHR018C ARG4
YBR253W SRB6
YGLO05C COG
YOR189W IES4
YNLO32W SIW1

by	
1.963634	0.278897
1.897314	

YLR168C UPS2
YDR248C nul
YBR258C SHG1
YDR363W- SEM1
YBLO31W SHE1
YLR298C YHC1
YFR011C MIC19
YJR088C EMC2
YDR163W CWC15
YOR279C RFM1
YBR230W- null
YGL185C null
YIL161W null
Yeloosw Gim4
YOR319W HSH49
YFLO59W SNZ3
YLRO40C AFB1
YHR152W SPO12
YNL166C BNI5
YLR200W YKE2
YIL117C PRM5
YKR095W- PCC1
YPRO46W MCM16
YBR138C null
YFL065C null
YBR233W- DAD3
YDR501W PLM2
YALO34W- MTW1
YKL216W URA1
YOL113W SKM1
YILO08W URM1
YNLO79C TPM1
YNL129W NRK1
YDR378C LSM6
YFL060C SNO3
YLR154C RNH203
YOR216C RUD3
YNL188W KAR1

1.897314	0.4213	0.630408
1.664403	0.370363	0.792536
1.744191	0.212447	0.764307
1.66342	0.413677	0.451705

$\begin{array}{lll}1.550437 & 0.465454 & 0.355049\end{array}$
$1.532081 \quad 0.3796 \quad 0.363025$
$1.494743 \quad 0.417652 \quad 0.358942$
$1.598847 \quad 0.20454 \quad 0.302982$
$1.683574 \quad 0.18974 \quad 0.364874$
$1.804436 \quad 0.157961 \quad 0.368224$
$\begin{array}{lll}1.711634 & 0.394 & 0.251605\end{array}$
$1.756326 \quad 0.242941 \quad 0.215874$
$1.797467 \quad 0.789333 \quad 0.641127$
$\begin{array}{lll}1.778927 & 0.810115 & 0.444434\end{array}$
$\begin{array}{llr}1.827402 & 0.689866 & 0.51358\end{array}$
$\begin{array}{rrr}1.651898 & 0.668288 & 0.458456 \\ 1.514079 & 0.64749 & 0.516194\end{array}$
$\begin{array}{lll}1.661016 & 0.709246 & 0.584007\end{array}$
$\begin{array}{lll}1.6241 & 0.77675 & 0.646675\end{array}$
$\begin{array}{lll}1.572165 & 0.753236 & 0.577457 \\ 1.548492 & 0.730687 & 0.626362\end{array}$
$1.712134 \quad 0.544794 \quad 0.677793$
$\begin{array}{lll}1.798037 & 0.512656 & 0.610341\end{array}$
$\begin{array}{rrr}1.996371 & -2.293769 & -1.185353 \\ 1.14144 & -0.283468 & -0.833568\end{array}$
$1.037201 \quad-0.219385 \quad-0.741169$
$1.154765-0.007324-0.892606$
$1.086923-0.035356 \quad-0.952209$
$1.031575-0.123828 \quad-1.05424$
$1.311028 \quad-0.342763 \quad-1.06318$
$1.670686 \quad 0.301455 \quad-1.132607$
$1.158689 \quad 0.484584 \quad-1.018472$
$1.797092-0.67985 \quad-0.451534$
$\begin{array}{lll}1.07483 & -0.321768 & -0.580323 \\ 1.072017 & -0.468353 & -0.545572\end{array}$
$1.072017-0.468353 \quad-0.543572$
$1.345975-0.577883-0.551034$
$1.033519-0.587046 \quad-0.721315$
$1.138537 \quad-0.63178 \quad-0.890334$
$1.001356-0.43739 \quad-0.914134$
$1.184104-0.836755-0.805896$
$1.096922-0.892641 \quad-0.563517$
$1.033389-0.973829 \quad-0.694433$
$1.121341 \quad-0.376784 \quad-1.473617$
$1.013053 \quad-0.203636 \quad-1.384204$
$1.113291-0.931413-1.394805$

