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Abstract 13 

Studying animal movement provides insights into how animals react to land-use changes, specifically 14 

how animals can change their behaviour in agricultural areas. Recent reviews show a tendency for 15 

species to reduce movements in response to increased human landscape modification, but the study of 16 

movement has not been extensively explored in reptiles. We examined movements of a large reptilian 17 

predator, the King Cobra (Ophiophagus hannah), in Northeast Thailand. We used a consistent regime 18 

of radio-telemetry tracking to document movements across protected forest and adjacent agricultural 19 

areas. We then adapted GPS-targeting analytic methods to examine the movement using metrics of site 20 

reuse and dynamic Brownian Bridge Movement Model derived motion variance. Examination of 21 

motion variance demonstrated that King Cobra movements increased in forested areas and tended to 22 

decrease in agricultural areas. Our Integrated Step-Selection Functions indicated that when moving in 23 

agricultural areas King Cobras restricted their movements, thereby remaining within vegetated semi-24 

natural areas, often located along the banks of irrigation canals. Site reuse metrics of residency time and 25 

number of revisits remained unaffected by distance to landscape features. Neither motion variance nor 26 

reuse metrics were consistently affected by the presence of threatening landscape features (e.g. roads, 27 

human settlements); suggesting that King Cobras will remain in close proximity to threats, provided 28 

habitat patches are available. Although King Cobras displayed heterogeneity in their response to 29 

agricultural landscapes, the overall trend suggested a reduction in movements when faced with 30 

fragmented habitat patches embedded in an otherwise inhospitable land-use matrix. Reductions in 31 

movements are consistent with findings for mammals and forest specialist species. 32 

Keywords 33 

snake, reptile, Ophiophagus hannah, elapid, space-use, step-selection, dBBMM, site fidelity, tropical 34 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 25, 2020. ; https://doi.org/10.1101/2020.03.24.006676doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.24.006676
http://creativecommons.org/licenses/by-nc/4.0/


2 
 

Introduction 35 

Examining animal movement can provide important information on conspecific interactions (Jellen et 36 

al. 2007), predator-prey dynamics (Courbin et al. 2016, Vogt et al. 2018), reproductive behaviours 37 

(Kamath and Losos 2018), and responses to anthropogenic threats (Valeix et al. 2012, Loveridge et al. 38 

2017). Additionally, and perhaps most important to conservation planning, is the connection between 39 

movement and resource acquisition (Prange et al. 2004, Mueller et al. 2011, Doherty et al. 2019). 40 

Understanding habitat requirements, via animal movement, can help prioritise areas to protect from 41 

land-use conversion, inform management, and build conservation plans (Fraser et al. 2018). 42 

Anthropogenic land-use can alter the ecology of a landscape, changing resources (Arrondo et al. 2018), 43 

modifying behaviour (Gaynor et al. 2018), and introducing novel threats (Robertson et al. 2013). Such 44 

changes can result in increased mortality of species, or even subtler sub-lethal costs (Cottontail et al. 45 

2009, Clark et al. 2011, Karraker et al. 2018). A global review of non-volant mammals revealed that 46 

movements are directly impacted by human landscapes: animals present in human landscapes reduce 47 

movement (Tucker et al. 2018). 48 

Despite indications of overall reductions in vagility, the impacts of anthropogenic landscapes on 49 

threatened species is likely to vary. Evolutionary history and key traits are likely to modify a species’ 50 

movements in relation to human-dominated landscapes (Fahrig 2007). For example, species that 51 

evolved in continuous habitat (i.e. forest specialists) historically experienced lower costs to large 52 

movements and crossing habitat barriers, potentially resulting in species leaving prime habitat and using 53 

riskier anthropogenic landscapes (Fahrig 2007). 54 

Vulnerability in anthropogenic landscapes can be augmented by species traits such as large body size, 55 

parental investment in offspring, habitat specialisation, and low population densities, which have been 56 

connected to increased extinction risk (Purvis et al. 2000, Cardillo 2005, Böhm et al. 2016, Slavenko et 57 

al. 2016, Todd et al. 2017). Species frequently involved in human-wildlife conflict are also more 58 

vulnerable to direct mortality in anthropogenic landscapes (Shankar et al. 2013, Marshall et al. 2018).  59 

We aimed to explore the movement patterns of a large-bodied, highly persecuted predator in a mixed-60 

use landscape. Reptiles’ role in ecosystems are underappreciated (Miranda 2017) and, in South East 61 

Asian agricultural systems, likely constitute an important aspect of the remaining wildlife. Few reptile 62 

species fulfil similar ecological functions comparable to large mammals, but King Cobras 63 

(Ophiophagus hannah [CANTOR, 1836]) share several traits that could indicate their importance in 64 

ecosystem functioning and vulnerability to habitat modification. Using radio-telemetry, we 1) assess 65 

non-random habitat selection and 2) identify changes in movement patterns within anthropogenic areas 66 

to reveal how King Cobras are potentially adapting to land-use change. 67 
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Methods and Materials 68 

Field Methods 69 

We studied King Cobras at the Sakaerat Biosphere Reserve located in Nakhon Ratchasima province, 70 

Northeast Thailand (14.44–14.55°N, 101.88–101.95°E). The reserve is comprised of three zones 71 

varying in levels of human-modification: the core zone, protected and fully forested; the buffer zone, 72 

protected and undergoing reforestation; and the transitional zone, an agricultural matrix dominated by 73 

rice, corn and sugar. The transitional zone also contains 159 villages and a four-lane highway that 74 

connects Nakhon Ratchasima to Bangkok. Further descriptions of the study site can be found in Silva 75 

et al. (2018) and Marshall et al. (2018, 2019). 76 

The capture and implantation methods, alongside King Cobra measurements, have been previously 77 

described in Marshall et al. (2018, 2019). We tracked individuals four times a day, with approximately 78 

four hours between tracks from 2014-03-22 to 2018-07-28 (06:30, 11:00, 16:00, 20:00; the distribution 79 

of time lags between tracking is available in Supplementary Figure 1). Full details of the tracking 80 

protocols can be found in Silva et al. (2018). We named every individual according to their age class, 81 

sex and capture number (e.g. AM006 = an adult male who was the sixth King Cobra captured). 82 

Environmental data 83 

We obtained daily rainfall and temperatures from five weather stations within the Sakaerat Biosphere 84 

Reserve core zone to identify seasons (Sakaerat Environmental Research Station 2018). We averaged 85 

daily readings by station, and ran cluster analysis to generate seasons using the segclust2D package 86 

(v.0.2.0 Patin et al. 2018). 87 

For the entire study site, we obtained high quality land-use shapefiles from a land survey by the Thai 88 

Land Development Department (Land Development Department, Thailand 2017). We converted 89 

categorical land-use classifications to continuous raster layers, describing Euclidean distances to key 90 

landscape features (i.e., forest, roads, semi-natural areas, settlements, and water bodies). We set the cell 91 

size of the newly created rasters to approximately 10m, which was sufficiently small to detect fine-scale 92 

changes. Semi-natural areas were areas of scrub and vegetation not actively being farmed, often along 93 

field margins, irrigation canals and in disused plots. 94 

Motion variance and area estimation 95 

Traditionally, research on reptile spatial ecology has relied on kernel density and minimum convex 96 

polygon approaches to estimate space-use, as a proxy for movements and activity. Kernel density 97 

estimators are problematic, because the technique assumes independence between locations, which can 98 

never be strictly met in radio tracking datasets (Fieberg 2007). Efforts to combat autocorrelation 99 
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(Worton 1989), lead to a loss of information decreasing the biological relevance of space-use estimates 100 

(De Solla et al. 1999). Dynamic Brownian Bridge Movement Models (dBBMM; Kranstauber et al. 101 

2012) present an alternative that accounts for non-independence of locations and provides a balance 102 

between over- and under-estimating space-use (Silva et al. 2018, 2020b). 103 

We used the move package (v.3.1.0 Kranstauber et al. 2016) to run dBBMMs estimating motion 104 

variance and the area used by King Cobras. We used the adehabitatHR package to extract utilisation 105 

distributions and contours (v.0.4.16 Calenge 2006), and the rgeos (v.0.4.2 Bivand and Rundel 2018) 106 

package to estimate the area of contours. We used dBBMMs instead of standard BBMMs, because the 107 

former allowed for estimates of changes in motion variance over time (Horne et al. 2007, Kranstauber 108 

et al. 2012). Following Kranstauber et al. (2012), we selected a window and margin size for dBBMMs 109 

based on a timeframe that was biologically relevant to suspected changes in behavioural states. Due to 110 

our reliance on Very High Frequency (VHF) radio tracking and associated coarse temporal resolution 111 

data, we targeted the identification of activity and sheltering. We were able to detect shifts from activity 112 

to sheltering with slightly greater than one day of radio tracking effort; therefore, we set margin size at 113 

5 data points. A relevant time for a behavioural state to last was approximately one week (i.e. long-term 114 

sheltering); therefore, we set window size to 25 data points. We used GPS error for dBBMM location 115 

error on a point-by-point basis, for points that did not have GPS error recorded we used the mean GPS 116 

error for that individual. 117 

We explored seasonal changes in motion variance and how it was impacted by an individual’s proximity 118 

to landscape features (i.e., forest, roads, semi-natural areas, settlements, and water bodies). Due to serial 119 

autocorrelation and over dispersal in motion variance and distance raster values, we used non-metric 120 

multidimensional scaling (NMDS) to explore interactions among these variables. Using the vegan 121 

package (v.2.5.5 Oksanen et al. 2019), we ran NMDS on a distance matrix created from the rasters that 122 

described distances from key landscape features (using 2000 iterations to produce two axes). We plotted 123 

the resulting two-dimensions and coloured points corresponding to the motion variance values. The 124 

resulting visualisation allowed us to identify areas of high or low motion variance and the manner in 125 

which they are associated with snakes’ distances to landscape features. 126 

Site fidelity and reuse  127 

Shelter sites are important for species requiring extended periods of low mobility to digest meals (Siers 128 

et al. 2018) or undergo ecdysis (Dodd and Barichivich 2007). Reptile studies often infer important areas 129 

using the 50% use (“core area”) contour from a kernel density home range estimation. Use of a more 130 

intensive radio tracking regime allowed us to identify individual shelter sites, time spent within shelters, 131 

and frequency of reuse. 132 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 25, 2020. ; https://doi.org/10.1101/2020.03.24.006676doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.24.006676
http://creativecommons.org/licenses/by-nc/4.0/


5 
 

We identified site reuse with the recurse package (v.1.1.0 Bracis et al. 2018). We defined each site as 133 

a circular area with a radius equal to the mean GPS error recorded for each individual (x̄ = 5.1 ±0.8 m, 134 

range = 3.5 – 10.0 m). When examining the frequency of revisits, we filtered out sites where the snake 135 

was present for less than the mean time between data points (9 hours). We determined whether a site 136 

was within the protected core area or the human-modified agricultural areas, then compared how 137 

frequency of site reuse and time spent at a shelter differed between these areas. We used Man-Whitney 138 

tests (we determined the data was non-normal with qq-plots) to compare differences at a population 139 

level. 140 

Time spent at sites (residency time) and the reuse rate (recurse) have direct connections to the extent of 141 

animal space use, making them useful metrics to detect restrictions in movement (Van Moorter et al. 142 

2016). To examine these two metrics we ran four Bayesian models in JAGS using the jagsUI package 143 

(v.1.5.0 Kellner 2018). Two models used a log normal distribution to explore the impacts of proximity 144 

to uncorrelated landscape features on log transformed residency time (Bracis et al. 2018). Two models 145 

used a Poisson distribution to explore the impacts of proximity to uncorrelated landscape features on 146 

revisit counts (Bracis et al. 2018). We determined spatial correlation in the landscape rasters and created 147 

two groups of uncorrelated variables (r<0.6) to use as predicators: 1) roads, forest, and settlements; 2) 148 

roads, forest, and semi-natural areas. 149 

Because of the variation between individuals, we used the individual ID as a random effect impacting 150 

both models’ intercepts and gradients. We excluded AM007 from models because he remained in the 151 

forest; therefore, had little opportunity to display preference beyond forests or interact with landscape 152 

features. 153 

We used Cauchy and half Cauchy distributions (Lemoine 2019) as hyperparameters for the centre and 154 

precision of normal distributions priors for individual random effects on distance to forest, semi-natural 155 

areas, roads, settlements and water. We selected weakly informative priors based on the assumption 156 

that King Cobras would follow similar movement patterns as those described in Tucker et al. (2018): 157 

reduced movement associated with anthropogenic features. We made the prior for the effect of distance 158 

to forest negative, reflecting the likely opposite effect from anthropogenic features proximity. We ran 159 

all models using three chains over 20,000 interactions, with the first 5,000 discarded as burn-in and a 160 

thinned factor of 50. Full JAGS models specifications can be found in at DOI: 161 

10.5281/zenodo.3666029. 162 

We identified convergence via �̂� values and traceplots. We evaluated model performance using DIC, 163 

Bayes P-values, followed by visual inspection of posterior predictive check plots. 164 

The recurse package also allowed us to quantify time spent in the protected core zone of the reserve. 165 

Comparing movements to a shapefile of the reserve’s protected zone allowed us to create a summary 166 
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of all boundary crossings (entrance and exit times). From the revisit data, we calculated overall time 167 

spent in the core zone and plotted the use of the zone over time. 168 

Integrated Step-selection Function 169 

We explored King Cobra movements through the landscape with Integrated Step-Selection Functions 170 

(ISSF) from the amt package (v.0.0.6 Signer et al. 2018), using the same distance from landscape 171 

features rasters used in the above analyses. For ISSF, we inverted raster layers to guard against zero-172 

inflation in distance values and make interpretation of resulting effects more intuitive. We used the 173 

landscape values at the endpoints in ISSF, because our sampling regime was temporally insufficient to 174 

assume straight-line movements between locations. We produced 200 random locations per step, with 175 

no resampling of data, because temporal resolution of our radio-tracking data was coarser than GPS 176 

data allowing high numbers of random steps without requiring prohibitively intense computation. 177 

Producing 200 random locations reduced the chance of missing rare landscape types, and made the best 178 

use of high-resolution raster data (Thurfjell et al. 2014). 179 

All nine models included step length and angle (Forester et al. 2009), with random step lengths and 180 

angles drawn from gamma and von Mises distributions, respectively. One model only included step 181 

length and angle as predictors, five models included step length, angle and distance from a landscape 182 

feature, and three models included step length, angle and a combination of distances from multiple 183 

uncorrelated landscape features. We selected models per individual using Aikike’s Information 184 

Criterion (AIC), discarding those with a ∆ AIC > 2 (Burnham and Anderson 2010). We did not model 185 

average to produce a population level model, because we observed high individual heterogeneity. We 186 

excluded AM007 from the ISSF analysis, because he never left forested areas. 187 

Software and data 188 

We completed all analysis in R (v.3.5.3 R Core Team 2019) and R Studio (v.1.2.1335 R Studio Team 189 

2019). The full dataset, with code scripts, can be found at DOI: 10.5281/zenodo.3666029. Movement 190 

data is also available on MoveBank (Movebank ID: 1093796277). 191 

For data manipulation, we used R packages broom (v.0.5.2 Robinson and Hayes 2019), data.table 192 

(v.1.12.2 Dowle and Srinivasan 2019), dplyr (v.0.8.3 Wickham et al. 2019), forcats (v.0.4.0 Wickham 193 

2019a), lubridate (v.1.7.4 Grolemund and Wickham 2011), openxlsx (v.4.1.0 Walker 2018), readr 194 

(v.1.3.1 Wickham et al. 2018), reshape2 (v.1.4.3 Wickham 2007), and stringr (v.1.4.0 Wickham 195 

2019b). We handled rasters and shapefiles with R packages raster (v.2.8.19 Hijmans 2019), rgdal 196 

(v.1.4.3 Bivand et al. 2019) and sp (v.1.3.1 Pebesma and Bivand 2005, Bivand et al. 2013). For 197 

visualisations we used R packages cowplot (v.0.9.4 Wilke 2019), ggplot2 (v.3.2.1 Wickham 2009), 198 

ggpubr (v.0.2 Kassambara 2018), ggspatial (v.1.0.3 Dunnington 2018), scales (v.1.1.0 Wickham and 199 
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Seidel 2019) and scico (v.1.1.0 Pedersen and Crameri 2018). To determine model convergence and 200 

evaluate model performance, we used the R packages ggmcmc (v.1.2 Fernández-i-Marín 2016), 201 

ggridges (v.0.5.1 Wilke 2018), and tidybayes (v.1.0.4 Kay 2019). 202 

Results 203 

We tracked seven King Cobras for an average of 649.7 ±112.3 days (Table 1; all ± indicated the standard 204 

error [SE] associated with the x̄, calculated using the pracma package (v.2.2.5 Borchers 2019)) enabling 205 

us to use dynamic Brownian Bridge Movement Model analysis and explore impacts of land-use on 206 

movement. We tracked and located each King Cobra an average of 1834 ±297.1 times, with an average 207 

of 8.5 ±0.1 hours between fixes (range = 0.1 – 793.9 hours; Supplementary Figure 1). King Cobras 208 

occupied an average of 524 ±104.5 unique locations, covering large areas in protected and unprotected 209 

areas (Table 1; Figure 1), with adult males tending to move more. The two juvenile males differed 210 

greatly from each other, likely the result of JM013’s northward travel. We only radio tracked a single 211 

adult female, which used the smallest area of any snake. 212 

Table 1. Summary of tracking and movements. Datapoints = number of datapoints collected on an individual irrespective 213 

of move or not. Relocations = number of unique locations visited by an individual. Days = number of days tracked. Revisits 214 

frequency = the number of days between revisits to a previously used location (days tracked / count of reused locations). Time 215 

stationary = mean sheltering time ±SE in days. dBBMM Range = range areas estimated using dBBMM 99%, 95%, and 90% 216 

contours. σ²m = mean motion variance ±SE. % Outside of PA = Percentage of total time tracked an individual was outside of 217 

the protected area.  218 

      dBBMM Range (ha)   

ID Datapoints Days Relocations 

Revisit 

frequency 

Time 

stationary 90 95 99 σ²m 

% outside 

PA 

AF017 2245 774.97 728 3.19 1.84 ±0.13 41.69 68.15 149.28 7.53 ±0.33 91.53 

AM006 2173 723.05 542 19.03 2.58 ±0.27 519.60 701.44 1063.42 42.61 ±1.74 15.49 

AM007 969 320.66 220 12.83 2.61 ±0.53 232.70 345.62 616.90 51.90 ±3.81 0.67 

AM015 1944 680.13 587 13.60 2.24 ±0.22 379.80 603.32 1081.54 27.3 ±1.22 67.57 

AM018 3122 1176.10 985 7.79 2.16 ±0.14 255.09 492.54 977.84 33.56 ±1.41 42.39 

JM013 1497 561.19 381 21.58 3.09 ±0.39 354.33 533.26 972.74 22.35 ±1.11 99.95 

JM019 890 311.79 228 11.99 2.56 ±0.37 61.01 119.04 390.39 7.90 ±0.63 – 

 219 
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 220 

Figure 1. Dynamic Brownian Bridge Movement Model estimates of utilisation distribution contours. Areas displayed 221 

with increasing levels of opacity are the 99%, 95% and 90% utilisation contours. Black dots show locations. The shaded 222 

background area shows the protected core area. Dark central line is the four-lane 304 highway. Bottom right map shows the 223 

land-use types in the area. 224 

Our examination of seasonality using segclust2D suggested that five clusters and 23 segments was the 225 

best way of dividing the 2012-2018 period into seasons. However, it resulted in seasons unique to single 226 

years. Therefore, we manually simplified the seasons into three groups that appear in nearly all years: 227 

hot (x̄ = 33.8 ±2.8 °C, x̄ = 2.5 ±7.9 mm rainfall), wet (x̄ = 29.9 ±2.2 °C, x̄ = 5.9 ±11.1 mm rainfall) and 228 

dry (x̄ = 29.0 ±3.5 °C, x̄ = 0.2 ±0.8 mm rainfall). 229 

Time spent in human disturbed areas varied dramatically between individuals and showed modest 230 

seasonal patterns (x̄ = 59.7 ±15.5%, range = 0.7 – 100%; Table 1, Figure 2). During the start of the hot 231 

season (Figure 2 red highlight, February-April), adult males ventured out of protected forested areas, a 232 

pattern particularly clear in AM006’s movements. During other times of the year, snakes exhibited more 233 

consistent use of the protected area, which coincided with more frequent long-term use of shelter sites 234 

(Figure 2). The female, AM017, showed a consistent yearly pattern of entering the protected area via a 235 

semi-natural area corridor that connected to a streambed. 236 
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 237 

Figure 2. Motion variance of each individual over their tracking period. Black lines show the motion variance values over 238 

time. Grey bars indicate long-term sheltering behaviour (i.e., when the time sheltering was greater than the individual’s mean 239 

sheltering time). Blue bars indicate times when the individual was within the protected forested area. Shading shows the three 240 

seasons: red = Hot, blue = Wet, yellow = Dry. 241 

Motion variance 242 

Mean motion variance differed among individuals (x̄ = 27.9 ±0.6 m, range = 5.6e-05 – 675.8 m, Table 243 

1). The largest motion variances belonged to adult males, characterized by larger movements 244 

concentrated at the beginning of the hot season (Figure 2, red highlight). Juvenile males did not move 245 

as far as adult males at any time of the year, but they did appear to be more active than the female, 246 

AF017. Motion variance of AF017 peaked during the hot season, when she entered the protected area 247 

in mid- to late-April and left in mid-May. All individuals displayed seasonal differences in motion 248 

variance, with the lowest values during the dry season (x̄ = 34.9 ±1.0 σ2m) compared to hot (x̄ = 22.1 249 

±0.8 σ2m) and wet seasons (x̄ = 14.0 ±0.7 σ2m; Figure 2). 250 

Motion variance was highest in evergreen and disturbed forests (x̄ = 38.9 ± 1.1, max = 665 m; x̄ = 48.3 251 

±4.8, max = 598 m), and lowest  in orchards (x̄ = 10.5 ±1.24 m, max = 449), semi-natural areas (x̄ = 252 

11.6 ±0.6, max = 347 m), and water bodies (x̄ = 10.3 ±1.4, max = 119 m). 253 

Using NMDS, we successfully reduced dimensionality of chosen landscape features, revealing several 254 

patterns. The clearest pattern was the grouping of higher motion variance values, the majority of which 255 

arose when snakes were < 100 m from forested areas (Figure 3; see Supplementary Figure 2 for bi-256 

plot). In contrast to movement variance values near or within forests, NMDS revealed consistently 257 

lower values within 100 m of semi-natural areas. All other covariates were more weakly associated with 258 

particular motion variance values. Roads contained a wide array of values, which overlapped with forest 259 

and semi-natural areas, suggesting a weaker impact on motion variance. Settlements and water bodies 260 
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revealed similarly weak associations to motion variance, but there was a tendency for motion variance 261 

near or within settlements to be lower than those near or within forests.  262 

263 

Figure 3. Non-metric multidimensional scaling plot. Motion variance values are reflected by the colour of the points, we 264 

have rooted these values so value differences are easier to distinguish. Ellipses indicate 95% of points within 100 m of a given 265 

landscape feature. A) Ellipses highlight points existing within 100 m of forest, semi-natural areas, and roads. B) Ellipses 266 

highlights points existing within 100 m of water, and settlements.  267 

Site fidelity and reuse 268 

The recurse analysis revealed that mean time spent at a shelter site (stationary for more than 9 hours) 269 

was 2.3 ±0.1 days (range = 0.4 – 43.5 days; Supplementary Figure 3), and all snakes demonstrated site 270 

fidelity, revisiting a previously used site on average every 13.0 ±2.4 days (range = 3.2 – 21.6 days; 271 

Table 1). 272 

Mann-Whitney U tests at a population level failed to detect significant differences in frequency of site 273 

reuse between sites in core forest (median = 190.4) and anthropogenic areas (median = 99.1; W = 13027, 274 

n1 = 99, n2 = 250, p-value = 0.4432 two-sided; Supplementary Figure 4). Similarly, time spent within 275 

sites was not significantly different between core forest (median = 24.7) and anthropogenic areas 276 

(median = 24.8; W = 210410, n1 = 398, n2 = 1095, p-value = 0.3087 two-sided; Supplementary Figure 277 

5). 278 

All models we ran to predict residency time and revisits converged and produced Bayes p-values close 279 

to 0.5. All the models revealed that the distance to landscape features has a negligible effect on residency 280 

time or revisit frequency, illustrated by all ß coefficient 95% credible intervals values overlapping with 281 

zero. Results of all Bayesian models can be found in Supplementary Table 1. 282 

Integrated Step-selection Function 283 

Individual movements of the King Cobras were best described by three models (Figure 4; Table 2; full 284 

ISSF results can be found in Supplementary Table 2). Model 7 performed best for four individuals, and 285 
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included proximity to forest, roads, and semi-natural areas. Universally, the locations of AF017, 286 

AM015, AM018 and JM019 were positively associated with forests. However, the association between 287 

movements, roads, and semi-natural areas varied; AF017, AM015 and JM019 prefered semi-natural 288 

areas, but were inconsistently associated with roads. The movements of AM006, AM015, and AF017 289 

while in agricultural land exemplifies King Cobras’ reliance on semi-natural areas (Figure 5). By 290 

contrast, AM018’s locations were associated with roads, while weakly avoiding semi-natural areas. But 291 

for AM018 model 8 was within 2 ∆ AIC. Model 8 replaced semi-natural areas with settlements as a 292 

predictor, indicating positive association (ß = 2.504, 95% CI -0.244 – 5.253). Models targeting JM013’s 293 

movements were similarly inconclusive, with four models achieving ∆ AIC < 2 (including the null 294 

model), indicating distance to landscape feature was a poor predictor of movement. Finally, AM006’s 295 

movements were best described by model 6, indicating a weak association with water bodies.  296 

Table 2. ISSF model formulation and AIC results. sl = step length; ta = turning angle; dist_* = distance from forest, 297 

settlement, semi-natural area, road, and water. * and bold indicate the models < 2 ∆ AIC from the top-performing model. 298 

Model  Model formula, all begin with Model1 formulation AF017 AM006 AM015 AM018 JM013 JM019 

Model1 log_sl*cos_ta+strata(step_id_) 7573.47 5794.50 6205.87 10567.77 4014.21* 2402.41 

Model2 Model1+dist_forest+dist_forest:log_sl+dist_forest:cos_ta 7555.47 5794.62 6187.03 10530.19 4013.58* 2399.25 

Model3 Model1+dist_settle+dist_settle:log_sl+dist_settle:cos_ta 7542.05 5794.64 6201.81 10552.30 4014.60* 2402.45 

Model4 Model1+dist_semiNat+dist_semiNat:log_sl+dist_semiNat:cos_ta 7492.52 5783.74 6186.73 10563.71 4017.76 2392.32 

Model5 Model1+dist_road+dist_road:log_sl+dist_road:cos_ta 7557.50 5791.24 6201.98 10498.78 4017.31 2406.31 

Model6 Model1+dist_water+dist_water:log_sl+dist_water:cos_ta 7566.34 5779.88* 6199.01 10559.55 4013.23* 2404.11 

Model7 Model1+dist_road+dist_forest+dist_semiNat 7471.48* 5789.37 6171.16* 10471.26* 4017.55 2388.28* 

Model8 Model1+dist_road+dist_forest+dist_settle 7539.43 5789.9 6195.03 10472.37* 4017.61 2400.04 

Model9 Model1+dist_road+dist_forest+dist_water 7530.33 5789.75 6187.41 10474.02 4015.71 2398.12 

 299 
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300 

Figure 4. The coefficients from the best performing integrated step-selection functions per individual. Error bars show 301 

the 95% confidence interval. JM013 and AM018’s had other models within 2 ∆ AIC. 302 

303 

Figure 5. A map of land-use illustrating how King Cobra movements are largely occurring within semi-natural areas. 304 

Displayed using semi-transparent points, are the locations of King Cobras across the entire study period. Circles = AF017, 305 

triangles = AM006, squares = AM015. 306 

Discussion 307 

We present some of the first evidence for how a large tropical reptile modifies its movements when in 308 

agricultural areas. Motion variance was characterized by seasonal peaks associated with breeding 309 
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activity, but generally showed decreased activity in agricultural areas. Reduced movement in 310 

anthropogenic systems reflects meta-analyses of mammalian movements in anthropogenic systems 311 

(Tucker et al. 2018). Research on reptile spatial ecology has documented either reduced space-use 312 

(Mitrovich et al. 2009, Hoss et al. 2010, Breininger et al. 2011, Lomas et al. 2019) or reduced movement 313 

(Parent and Weatherhead 2000, Corey and Doody 2010, Beale et al. 2016, Doherty et al. 2019) in 314 

fragmented agricultural landscapes. But the response to fragmentation is not universal, other research 315 

failed to detect significant shifts in movement patterns (Row et al. 2012, Wolf et al. 2013, Anguiano 316 

and Diffendorfer 2015), or even revealed increased space-use in fragmented areas (Kapfer et al. 2010, 317 

Ettling et al. 2013), potentially due to species-specific evolutionary history traits (Fahrig 2007). King 318 

Cobras appeared to be reacting in a way consistent with forest specialists, or taxa that have evolved in 319 

continuous habitat (Fahrig 2007) –limited boundary avoidance, large movements, and mortality in 320 

human-dominated areas (Marshall et al. 2018). Landscape-specialist species occupying fragmented 321 

areas likely face limited resources, resulting in restricted movements to more naturalistic corridors 322 

(Dondina et al. 2019). 323 

The clearest pattern we documented was preferential use of semi-natural vegetation patches when King 324 

Cobras moved within agricultural areas. These patches primarily consist of dense vegetation arrayed 325 

linearly along the banks of irrigation canals, and are used more frequently than the surrounding matrix 326 

of agricultural fields, acting as movement corridors through the fragmented landscape. Linear habitats 327 

potentially impact movements in other reptile species (Kay et al. 2016, Doherty et al. 2019). Doherty 328 

et al. (2019) suggested that reduced movement by Eastern Bearded Dragons (Pogona barbata) was 329 

partly driven by higher prey availability in linear vegetation patches. Although we lack direct evidence 330 

suggesting semi-natural areas within agricultural landscapes host relatively higher prey abundance, it is 331 

likely King Cobra prey can be found more frequently where vegetation and water are present (Murphy 332 

et al. 1999, Barnes et al. 2017, Strine et al. 2018). However, increased movements in forests, at least 333 

for some individuals, may indicate that resource availability alone fails to explain variation in 334 

movement patterns. Intact forests are extremely valuable and present a resource-rich environment, 335 

theoretically reducing the need for foraging movements (Wasko and Sasa 2012, Doherty and Driscoll 336 

2018).  337 

Ectotherms also have to consider the thermal qualities of habitats, shifting habitat usage to maximise 338 

efficiency (Blouin-Demers and Weatherhead 2001, 2002). Compared to temperate regions, evidence 339 

from the tropics that behavioural shifts are required to maximise thermoregulation is more ambiguous 340 

(Luiselli and Akani 2002), but not unknown in larger species (Shine and Madsen 1996). Open fields 341 

and vegetation corridors present two contrasting thermal environments. When temperatures are high 342 

tropical snakes may need to seek cooler, covered, and environments potentially richer in shelter sites. 343 
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Utilisation of covered areas may also be tied to threat avoidance, as threats are known to influence 344 

animal movement (Rio-Maior et al. 2019, Suraci et al. 2019). In our study area, roads pose a major 345 

threat to many animals (Silva et al. 2020a). King Cobras also fall victim to both direct (Marshall et al. 346 

2018) and indirect (Strine et al. 2014) human-caused mortality. However, we failed to detect clear 347 

avoidance of roads or human settlements; King Cobras made use of suitable habitat types regardless of 348 

their proximity to threatening landscape features. Similarly, patterns of site reuse remained consistent 349 

in respect to proximity to landscape features. This suggests that the overarching driver of site residency 350 

time and revisitation is largely independent of habitat, instead likely connected to cycles of ecdysis and 351 

prey capture and digestion (Dodd and Barichivich 2007, Siers et al. 2018). 352 

Building on our results, we suggest that future conservation research focus on landscape connectivity. 353 

Irrigation canals and forest fragments may allow King Cobras to persist across areas largely separated 354 

from protected forest. Research on landscape connectivity could be especially beneficial if paired with 355 

an assessment of how threats can be effectively mitigated. The apparent lack of threat avoidance 356 

illustrated by the studied King Cobras demands changes in human behaviour. For example, road 357 

crossing structures in combination with fencing would likely help to mitigate the threat posed by roads 358 

(Rytwinski et al. 2016). Whereas reducing persecution of King Cobras will require a change in current 359 

negative perceptions (Shankar et al. 2013, Marshall et al. 2018) and improvements in humane snake 360 

removal services, although the cost-effectiveness of snake removal services needs further quantification 361 

(Devan-Song et al. 2016). 362 

Conclusion 363 

Our results indicate that limited areas in agricultural landscapes are suitable for King Cobras, resulting 364 

in reduced movements that largely occur within vegetated patches along irrigation canals. Apparent 365 

reliance on vegetated patches, in an otherwise hostile human-dominated matrix, mirror findings that 366 

landscape heterogeneity and the presence of semi-natural vegetated features are required to maintain 367 

reptile diversity (Nopper et al. 2017, Pulsford et al. 2017, Boesing et al. 2018). The vulnerability of 368 

King Cobras in agricultural areas suggests that these areas may be acting as a population sink (Driscoll 369 

et al. 2013, Marshall et al. 2018), which emphasises the importance of maintaining vegetated areas 370 

within the landscape matrix to provide refuge from known mortality sources. Future research will assess 371 

spatial composition of resources available to King Cobras, and whether reduced movement leads to 372 

additional sub-lethal costs. More broadly, our findings suggest that wide-ranging reptiles can react to 373 

landscape fragmentation in similar ways to terrestrial mammals. This is especially important, because 374 

large snakes, such as King Cobras, fulfil underappreciated ecosystem roles (Miranda 2017). Their role 375 

in top-down trophic structuring is likely comparable to mammals that typically receive more 376 

conservation attention. 377 

  378 
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