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Abstract

Combining two-photon calcium imaging (2PCI) and electron microscopy (EM) provides arguably the
most powerful current approach for connecting function to structure in neural circuits. Recent years have
seen dramatic advances in obtaining and processing CI and EM data separately. In addition, several joint
CI-EM datasets (with CI performed in vivo, followed by EM reconstruction of the same volume) have
been collected. However, no automated analysis tools yet exist that can match each signal extracted from
the CI data to a cell segment extracted from EM; previous efforts have been largely manual and focused
on analyzing calcium activity in cell bodies, neglecting potentially rich functional information from axons
and dendrites. There are two major roadblocks to solving this matching problem: first, dense EM
reconstruction extracts orders of magnitude more segments than are visible in the corresponding CI field
of view, and second, due to optical constraints and non-uniform brightness of the calcium indicator in
each cell, direct matching of EM and CI spatial components is nontrivial.

In this work we develop a pipeline for fusing CI and densely-reconstructed EM data. We model the
observed CI data using a constrained nonnegative matrix factorization (CNMF) framework, in which
segments extracted from the EM reconstruction serve to initialize and constrain the spatial components
of the matrix factorization. We develop an efficient iterative procedure for solving the resulting combined
matching and matrix factorization problem and apply this procedure to joint CI-EM data from mouse
visual cortex. The method recovers hundreds of dendritic components from the CI data, visible across
multiple functional scans at different depths, matched with densely-reconstructed three-dimensional
neural segments recovered from the EM volume. We publicly release the output of this analysis as a new
gold standard dataset that can be used to score algorithms for demixing signals from 2PCI data. Finally,
we show that this database can be exploited to (1) learn a mapping from 3d EM segmentations to predict
the corresponding 2d spatial components estimated from CI data, and (2) train a neural network to
denoise these estimated spatial components. This neural network denoiser is a stand-alone module that
can be dropped in to enhance any existing 2PCI analysis pipeline.

1 Introduction 1

A fundamental goal of neuroscience is to understand the relationship between structure and function in 2

neural circuits. Currently, arguably the most comprehensive available approach to link function with 3

synaptic-resolution microanatomy is to perform two-photon calcium imaging (CI) followed by dense electron 4

microscopy (EM) reconstruction of the same volume (Briggman et al., 2011; Bock et al., 2011; Lee et al., 5

2016; Vishwanathan et al., 2017; Hildebrand et al., 2017; Bae et al., 2018). This approach is highly labor 6

intensive and expensive, and when successful provides highly scientifically valuable datasets. 7
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Figure 1: Schematic diagram of the experimental setup and overall analysis goal. In vivo calcium imaging
and serial EM imaging were performed sequentially on the same brain volume in a single mouse. Segmenting
the EM data provides the three-dimensional spatial structure of individual neurons at synaptic resolution.
EASE combines these segments with the calcium imaging video to extract neural activity at single-neuron
resolution, with each neuron visible in the functional calcium imaging movie matched with a corresponding
neuron in the anatomical EM stack.

Given the high value of this combined CI-EM data, we would like to extract as much information from 8

these experiments as possible. Recent years have seen significant improvements in CI analysis (Mukamel 9

et al., 2009; Pnevmatikakis et al., 2016; Pachitariu et al., 2016; Friedrich et al., 2017a,b; Petersen et al., 2018; 10

Zhou et al., 2018; Buchanan et al., 2018; Soltanian-Zadeh et al., 2019; Giovannucci et al., 2019), and in 11

parallel, major improvements in EM data acquisition and analysis (Helmstaedter et al., 2013; Kim et al., 12

2014; Kasthuri et al., 2015; Hayworth et al., 2015; Morgan et al., 2016; Ding et al., 2016; Zheng et al., 2017; 13

Takemura et al., 2017; Januszewski et al., 2018; Motta et al., 2019). 14

However, automated analysis tools for joint CI-EM data are less mature; previous efforts have been 15

largely manual and focused on analyzing calcium activity in cell bodies, neglecting potentially rich functional 16

information from axons and dendrites. The goal of this paper is to develop analysis tools that provide a 17

dense fusion of this joint CI-EM data, by using the densely-reconstructed EM data to help extract a more 18

complete estimate of spatiotemporal functional signals from the CI data; see Figure 1 for a schematic 19

illustration. Specifically, following (Pnevmatikakis et al., 2016) (and many of the other CI analysis papers 20

referenced above), we want to decompose the observed calcium movie Y into the form 21

Y (x, t) =
∑
i

ai(x)ci(t) +B(x, t) + E(x, t),
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where Y (x, t) denotes the movie data at the t-th frame in the x-th pixel, B(x, t) is “background” signal 22

(capturing highly-correlated activity that can not be separated into individual neuronal contributions), 23

E(x, t) is temporally uncorrelated noise, i indexes neurons visible within the field of view (FOV), ci(t) is the 24

calcium trace estimated from the i-th neuron, and ai(x) is the shape of the i-th neuron. The novel step here 25

is that we add an additional constraint: each functional spatial component ai must be matched to a specific 26

neuronal segment extracted from the EM reconstruction. If we are able to perform this matching correctly, 27

then the EM segments serve as ground-truth, high spatial resolution, three-dimensional constraints on the 28

shapes ai; these constraints should lead to better estimates of each ai and in turn the corresponding activity 29

traces ci. 30

This matching problem is challenging for several reasons. First, the number of EM components in the 31

FOV is large: in the data set we examine here, there are > 40000 EM segments intersecting a single FOV, 32

but only a couple hundred good calcium components visible in the same FOV. Thus we have to solve a very 33

sparse model selection problem — how to choose a couple hundred EM components that match the bright 34

neurons in the calcium movie, then use these EM shapes to enforce constraints on the spatial components ai 35

we extract from the CI movie. This would be at least conceptually easy if the spatial calcium components 36

matched the EM components exactly; unfortunately, the second major problem is that the CI components ai 37

typically represent only spatial subsets of the EM components, since the calcium indicator does not have a 38

uniform brightness throughout the EM component. Finally, due to the large number of EM segments, 39

overfitting is a potential problem: there may be many combinations of subsets of the EM components that 40

can be added together to explain the observed data Y . 41

We note that there is a significant and growing literature on correlative light-electron microscopy (CLEM) 42

(Maco et al., 2013, 2014a,b; de Boer et al., 2015; Blazquez-Llorca et al., 2015; Begemann and Galic, 2016; 43

Lees et al., 2017; Drawitsch et al., 2018; Hoffman et al., 2020), but there are significant differences between 44

the (functional, dynamic) CI data we analyze here and the (anatomical, static) light microscopy images 45

handled in the CLEM literature. CI is used to simultaneously record population neurons’ activity at a fast 46

temporal resolution, while in the context of CLEM the goal is to image fine static spatial structure using 47

much longer imaging exposure times. Hence, CI data samples neurons’ spatial structures at lower spatial 48

resolution and SNR per frame; on the other hand, by integrating time varying information over many 49

imaging frames, CI offers the opportunity to demix overlapping neural shapes much more effectively than 50

would be possible with a single fluorescent image, even one with high spatial resolution and SNR. Thus, in 51

short, the CI-EM fusion problem we tackle here is distinct from the problems addressed so far in the CLEM 52

literature, with its own unique challenges and opportunities. 53

We address these challenges by solving the matching and matrix factorization problems simultaneously. 54

The basic approach is to start with the clearest matches (i.e., the EM segments that are most clearly visible 55

in the CI data Y ), then update the matrix factorization under the constraint that each CI component ai is 56

contained within its matching EM segment, and then iterate this procedure, adding more matching 57

components until no further good matches are available. We call the resulting algorithm EASE, for 58

EM-Assisted Source Extraction. 59

In practice, EASE is scalable and effective: in a CI-EM dataset from mouse visual cortex EASE extracts 60

the large majority of visible neuronal components from Y and automatically matches these components with 61

the corresponding EM segments. Compared to the results without EM constraints, EASE leads to improved 62

demixing of spatially-overlapping, correlated neurons and better recovery of small, low-SNR components. 63

Finally, because the EM components are reconstructed in three dimensions, we can link the activity of 64

extended dendritic segments that were functionally imaged across several different z depths at different times, 65

thus providing multiple distinct views of the functional correlations within the imaged volume (Soudry et al., 66

2015). 67

The output of EASE is the factorization (ai, ci, B, and E) along with the matchings of each ai with the 68

corresponding three-dimensional, high-resolution EM segment. We release these outputs publicly at this site. 69

We believe this new annotated public dataset represents a valuable new “gold standard” that can in turn be 70

used to score pipelines for demixing two-photon CI data. As an illustrative application, we show that this 71

database can be exploited to (1) learn a mapping from 3d EM segmentations to predict the corresponding 2d 72

spatial components estimated from CI data, and (2) train a neural network to denoise these estimated spatial 73
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components. This neural network denoiser is a stand-alone module that can be dropped in to enhance any 74

existing two-photon CI analysis pipeline. 75

2 Results 76

2.1 Visualization and quantification of the extracted EM footprints 77

The first step of the EASE pipeline (described in full detail in the Methods section) is to project the 78

three-dimensional high-resolution EM segments into the functional imaging planes. We begin in Figure 2 by 79

examining the resulting EM “footprints” {pi} from a single scan. These footprints correspond to blurred and 80

downsampled versions of the intersection of the full three-dimensional EM segments with the imaging plane: 81

i.e., pi is a model of what cell i would look like in a two-photon scan if the brightness of the calcium 82

indicator within the cell is uniform (see section 4.4 for details). 83

A few points are immediate. First, there are many viable EM components visible in this scan: without 84

any further information about cell type or calcium expression levels, there are tens of thousands of EM 85

components with footprints pi which could plausibly contribute signal to the CI movie Y . Second, there is a 86

wide range of footprint sizes in this dataset: when we sum over all pixels x,
∑
x pi(x) varies over more than 87

two orders magnitude from the biggest pi to the smallest shown in Figure 2B. Finally, it is clear that 88

non-somatic processes (e.g. dendrites) contribute many pixels to pi — in fact the large majority of pixels in 89

the cell segments shown in Figure 2B are non-somatic, and therefore we can expect much of the signal in the 90

CI data Y to be non-somatic as well. 91

2.2 Extraction of neural components from a single scan 92

Next we applied the EASE pipeline (described in algorithm (1) of the Methods section) to process data from 93

a single scan (video size 58× 129× 3 voxels× 8900 frames). The details of all iterations are summarized in 94

Table S1 (see Supplementary Information 5.1). The automated portion of the pipeline required ∼ 6 minutes 95

on a desktop computer. The pipeline yielded 173 components, among which an estimated 25 components 96

included cell bodies (identified by eye), while the remaining 148 components included only non-somatic 97

processes (likely dendrites). Figure 3AB shows 20 example components, evenly drawn from the top 100 98

components (ordered by brightness). The inferred spatial CI footprints ai resemble the corresponding EM 99

footprints pi∗ , as desired. No large remaining signals were apparent upon visual examination of the residual 100

video (S1 Video) or the peak-to-noise (PNR) image of the residual (Figure 3C). 101

In Figure 4 we examine all of the estimated spatial components ai together. The density of the recovered 102

neurons is quite high, so to improve the clarity of this visualization we broke the components into five groups, 103

sorted by the confidence scores defined in section 4.9. We conclude that somatic components tend to be 104

identified with the highest confidence; then processes that branch within the field of view (leading to 105

components ai with a large total number of pixels); then finally, processes (including many apical dendrites) 106

that cut through the imaging plane so that only a few pixels are visible lead to the lowest relative confidence 107

scores. For these components (“other,” bottom row, Figure 4) we choose not to assign a definite match, to 108

avoid corrupting downstream analyses with an overly confident but mistaken match. 109

The EM information exploited by EASE provides a strong prior on the shapes of the targeted neurons, 110

enabling the algorithm to demix neurons with strong spatial overlaps. This point is illustrated in Figure 5. 111

We performed a simple clustering to order neurons with strong spatial overlaps next to each other, leading to 112

a strong blockwise structure in the matrix formed by computing correlations between each spatial component 113

ai (Figure 5A). Importantly, the corresponding temporal correlations (Figure 5B) did not display the same 114

strong blockwise structure — i.e., components with high spatial overlap did not necessarily display 115

correspondingly strong temporal correlations (which might have indicated problems demixing spatially 116

overlapping signals in Y ). Figure 5CD examines a block of four components with high spatial overlap: again, 117

no problematic demixing issues are visible in either the spatial or temporal components recovered here. (See 118

S2 Video for a zoomed-in depiction.) 119
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Conversely, we noticed some extracted components with highly correlated temporal traces but completely 120

disconnected spatial components (Figure 6). By overlaying these extracted footprints onto the correlation 121

image between the raw video Y and the average of the temporal traces ci, we found that these components 122

actually correspond to different segments of the same neuron (Figure 6A), although they were not connected 123

within the EM volume. These cases were rare and typically occurred at the boundary of the EM volume, 124

where multiple dendrites from the neuron entered the EM volume at different (spatially disconnected) 125

locations. It would not be feasible to re-join these components with purely anatomical methods using the 126

EM data, but the functional information from the CI data makes it possible to rejoin these severed 127

connections with high confidence. 128

2.3 Joint processing of multiple functional scans 129

So far we have focused on extracting neural components from a single functional scan. One of the major 130

advantages of joint CI-EM data is that we can fuse information from multiple functional scans, by taking 131

advantage of the fact that a given three-dimensional EM segment may extend over multiple scans, allowing 132

us to match the functional signals extracted from each scan back to the same neuron. Figure 7 illustrates 133

this idea: panel A displays a single three-dimensional EM segment, with the corresponding footprints pi∗ 134

computed from this segment shown in panel B. Panel C displays the functional spatial components ai 135

extracted from four separate functional scans, matched to the EM footprints pi∗ shown in panel B. Panel D 136

displays the corresponding temporal components ci extracted from the four scans, and panel E shows that 137

the visual direction tuning curve extracted from each temporal component is consistent across these scans, 138

providing a useful secondary check on the quality of the matchings computed here. 139

2.4 Comparison against constrained nonnegative factorization without EM 140

constraints 141

How well can CNMF methods without additional EM structural constraints recover the components 142

extracted here? To address this question, we ran the pipeline from (Buchanan et al., 2018) on a single 143

functional scan, and compared the resulting spatial and temporal components to the components output by 144

the full multi-scan EASE pipeline described above. (Other demixing pipelines led to qualitatively similar 145

results; data not shown.) Figure 8 compiles the results: we see that the pipeline from (Buchanan et al., 2018) 146

recovers the brightest, highest-PNR components well, but misses many dimmer components; EASE recovers 147

about twice as many components (210 vs 107). Importantly, we observe minimal dependence between the 148

PNR and the degree of visual tuning of the recovered components, as measured by the visual direction 149

sensitivity score described in Section 4.11. 150

One possibility is that these new low-PNR components recovered by EASE might be redundant with the 151

higher-PNR components already recovered by standard pipelines. The results in Figure 8A+B argue against 152

this possibility, since the correlations in the low-PNR components do not seem to be systematically stronger 153

than those in the high-PNR components. To examine this possibility further, we performed an additional 154

decoding analysis, attempting to map the observed neural activity into an estimate of the visual stimulus 155

orientation θ on each trial. We find that decoding using the EASE output leads to consistent, statistically 156

significant improvements in decoding error compared to the localNMF outputs, with mean absolute error 157

decreasing from 21± 0.8 degrees (using the localNMF output) to 16± 0.7 degrees (using the EASE output). 158

Thus, in summary, EASE extracts a large number of low-PNR but visually-tuned components that are 159

currently difficult to extract without the side information provided by the EM constraints in EASE; 160

moreover, these low-PNR components carry a significant amount of visual information that is not completely 161

redundant with the high-PNR components extracted by standard CNMF-based pipelines. 162

2.5 Using the EASE output to simulate spatial components extracted from 2p 163

imaging and train a spatial component denoiser 164

We expect that one critical long-term application of the results presented here will be in scoring calcium 165

imaging analysis pipelines: i.e., if we input the raw 2p imaging data (without knowledge of the EM 166
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components) into an analysis pipeline and the output closely matches the EASE output, then the pipeline 167

would achieve a good score. The availability of this EM-constrained scoring mechanism will help guide 168

further improvements to analysis pipelines in the near future. 169

In the shorter term, however, we can already make use of the EASE output to improve analysis pipelines. 170

As a first illustration, in this section we demonstrate how to use the EASE output to generate realistic 171

simulated data and to train a neural network (NN) to denoise the spatial components ai. This denoiser in 172

turn can be dropped into any analysis pipeline to improve signal extraction. 173

The starting point of any NN estimation procedure is to gather a large set of training data. Gathering 174

labeled training data is often a slow and labor-intensive process. However, we have access here to a large 175

dataset of high-resolution three-dimensional EM component shapes; if we can take multiple slices to convert 176

these three-dimensional EM shapes into corresponding two-dimensional shapes at 2p resolution, then we 177

would have a strong dataset for training NNs, without requiring any additional hand-labeling. Following this 178

logic, we construct our NN training set in two steps. First, we fit a model that maps three-dimensional EM 179

shapes into corresponding estimates of the two-dimensional spatial components ai. Then we applied this 180

model to slice each EM component in multiple planes into simulated ai images, and used the resulting large 181

set of simulated ai images as our training set. 182

In the first step, we experimented with multiple versions of this EM-to-ai model. Our baseline model 183

simply outputs pi as the estimate for ai; recall that this model assumes the brightness is uniform across all 184

EM voxels, and just applies a convolutional point-spread function (psf) to map the EM component into the 185

imaging plane to generate pi, as illustrated in Figure 7B. In practice, the resulting pi tends to have brighter 186

dendritic processes than the corresponding estimated ai; this effect is clearly visible in Figures 3 and 7. 187

To improve our predictions beyond this baseline pi model, we included a term to modulate the brightness 188

of each voxel before applying the 3d-to-2d psf transformation. We experimented with three such models: the 189

brightness could be a function of the distance from the center of the soma, or it could be a function of the 190

distance from the surface of the cell, or the brightness could depend on both of these factors. We found that 191

incorporating a spatial modulation term led to significantly improved prediction accuracy; all three versions 192

of the model provided similar improvements. Specifically, the model learned that voxels near the surface of 193

the cell tend to be dimmer than voxels further into the interior of the cell; moreover, voxels near the nucleus 194

tend to be relatively dim (i.e., the models learn to predict the classic “doughnut” shape of 195

cytosolically-labeled somas). See Figure 9; full model details are provided in the Methods section. 196

One useful application of the resulting large pool of simulated ai images is to generate simulated 2p 197

calcium imaging videos, to test the accuracy of the EASE pipeline (and potentially other pipelines). (See 198

(Charles et al., 2019) for a detailed biophysical simulation, in which the neural shapes are generated by a 199

random process instead of deriving the shapes from three-dimensional EM segments, as we do here.) See 200

Appendix section 4.14 for details; we find that the EASE pipeline achieves high accuracy on realistic 201

simulated data. 202

Finally, we trained a NN denoiser using simulated ai images drawn from the EM-to-ai model. Specifically, 203

the NN was trained to take noise-corrupted ai images as input and to output the best estimate of the 204

original clean ai image. Figure 9E-G illustrate the denoiser at work on several test images, along with 205

comparisons against several simpler image-processing baselines. The NN learns to suppress speckle noise 206

across a wide range of signal-to-noise regimes, while avoiding oversmoothing small dendritic processes much 207

more effectively than do the generic image-processing baselines. 208
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Figure 2: Example EM footprints pi from a single functional scan (recall that three imaging planes are
obtained per functional scan in this dataset). (A) The relative size (measured as the `1 norm,

∑
x pi(x)) of

the EM footprints from this scan, in decreasing order. 5 example neurons were selected and their ranks were
labeled with the same color. (B) The spatial footprints of the 5 selected examples. Note the wide ranges of
sizes of these components; even the smallest component shown here (component 27622) could still plausibly
contribute visible signal to the CI data Y . (Scale bar: 20 um).
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Figure 3: EASE results on a single CI scan. (A) spatial footprints of example neurons (rank in brightness
order indicated in each subpanel). Scale bar: 20 um. Note that the EM footprints pi and the estimated CI
components ai match each other well. (B) temporal traces of the example neurons shown in A. Color traces
are denoised activity; gray traces are raw. All traces were normalized to have the same noise level. Scale bar:
10 seconds. (C) The peak-to-noise ratio (PNR) images before and after extracting neurons within the EM
volume. Black rectangle indicates the boundaries of the EM volume; note that no bright signals remain in
the residual within this region.
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Figure 4: Spatial components extracted from a single scan. Each component is indicated with a single color;
the estimated ai(x) scales the intensity of this color at each pixel x. Components were ordered according to
their confidence scores (defined in section 4.9); each row here shows a subset of the spatial components ai,
divided into groups according to their confidence rank (confidence ranks shown on the left; confidence score
range shown on the right). Note that confidence scores for somatic components (top rows) tend to be higher
than scores for small apical dendritic components, which dominate the bottom rows here. Scale bar: 20 um.

9/36

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 25, 2020. ; https://doi.org/10.1101/2020.03.25.007468doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.25.007468


0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4

1

2

3

4

A spatial correlation slice 1 slice 2 slice 3

E
M

2P

(i)

(ii)

(iii)

(iv)

C

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4

1

2

3

4

B temporal correlation

1

2

3

4

D

Figure 5: EASE can demix spatially overlapped neurons’ signals. (A) pairwise spatial correlation between
all extracted components (auto-correlations excluded to improve visibility). We used hierarchical clustering
of the spatial components to place spatially overlapping neurons together. Note the large degree of overlap
visible (c.f. Figure 4). (B) pairwise temporal correlation, using the same ordering of components as in A. (C)
spatial footprints of the selected 4 example neurons shown in the inset in panels A and B. Scale bar: 20 um.
White circles simply indicate the same location in each panel, to aid comparisons. (D) temporal traces of the
selected neurons; conventions as in Figure 3B. Scale bar: 10 seconds.
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Figure 6: EASE can enable joining of split EM segments. (A) spatial footprints of three temporally correlated
neurons (magenta, cyan, and red) and the correlation image (gray) between the raw video Y and the mean
of their estimated traces ci. Green rectangle indicates the boundaries of the EM volume; scale bar: 20 um.
(B) estimated temporal components of the three selected neurons (scale bar: 10 seconds); note the strong
correlation. (C) The EM meshes of the three neurons. (The green areas indicate the scanning planes.)
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Figure 7: Merging the activity from a single neuron over four separate functional imaging scans. (A)
High-resolution EM meshes of an example neuron in the whole 3D volume. Vertical colored bars group the
three planes imaged within the same scan. (B) EM footprints pi∗ on the imaging planes of the four scans.
(C) The extracted spatial footprints of the neuron on the same imaging planes. (D) The noise-normalized
temporal traces ci of this neuron imaged over the four scans (scale bar: 10 seconds). (E) The direction tuning
curves extracted from this neuron in each of the four scans.
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Figure 8: Comparison between the results of EASE and a demixing pipeline without access to EM structural
prior information. (A) spatial and temporal pairwise correlations between neurons extracted using EASE
and the CNMF-based pipeline from (Buchanan et al., 2018), respectively. Components have been ordered to
greedily maximize the diagonal of the left panel, to perform a simple matching. EASE extracts 210 components
from a single functional scan here, compared to 107 without EM structural prior information. (B-D) PNRs
(B), visual direction tuning scores (C; Section 4.11) and preferred directions (D) for all components, using
the same ordering as in (A). The right panels show the corresponding histograms. Note that visual direction
sensitivity does not depend strongly on PNR.
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Figure 9 (preceding page): The EASE output can be used to fit a model to predict a neuron’s two-dimensional
2P ai image from the corresponding three-dimensional EM segment, and these predictions in turn provide
clean training data for a neural network (NN) denoiser that can enhance 2P analysis pipeline estimates.
(A) The ai estimated by EASE from CI data next to the âi’s predicted from its EM segment (B). Model 1
assumes that voxel brightness is a function of the distance to the cell membrane surface; model 0 assumes
a uniform brightness per voxel, and leads to a worse prediction (with overly-bright dendrites). The green
plane in (B) indicates the 2P imaging plane. (C) The estimated relationship between the brightness of
each voxel and its distance to the cell surface; note that surface voxels are relatively dim, as are voxels that
are furthest from the surface (i.e., nearest to the nucleus). (D) Cumulative distribution function of the R2

for different model predictions on 135 test images. (Models 2 and 3 incorporate dependence of the voxel
brightness on the distance to the soma; see appendix for details.) Models 1-3 achieve similar accuracy; all of
these models significantly outperform the simpler model 0. (E) Example simulated ground truth image ai,
along with the simulated noisy observation and output of different baseline image denoisers. The trained
NN denoiser achieves the qualitatively best denoising results, as quantified further in (F), which tabulates
denoiser performance (measured as cosine similarity between ground truth vs recovered test image; N = 24
images) under multiple signal-to-noise levels. (G) Performance of the trained image denoiser on two example
test spatial components ai. The corresponding EM footprint is also shown for illustration purposes (but
is not provided to the NN denoiser); note that the residual (the noisy observed ai minus the NN denoiser
output) is relatively featureless, indicating that the denoiser error is dominated by noise, not model bias.
(Note that all colorbar units in this figure are arbitrary, since ai is only defined up to a scale factor.)
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3 Discussion 209

We have introduced EASE, a method to fuse calcium imaging (CI) and electron microscopy (EM) data. In 210

EASE, dense reconstruction of EM anatomy is exploited to enable dense, constrained extraction of functional 211

CI signals. The resulting spatial components display a large degree of overlap (c.f. Figs. 4 and 5A), 212

emphasizing the importance of demixing these functional signals (i.e., modeling the signal within each pixel 213

as arising from potentially multiple neurons), rather than simply segmenting these images (i.e., constraining 214

each pixel to be “owned” by at most a single neuron). Furthermore, in the dataset examined here, about 6× 215

as many dendritic components as somatic components were extracted by EASE. Thus, restricting attention 216

to somatic components may leave significant information behind in CI recordings. In addition, we find that 217

EASE recovers a significant number of dim but visually-tuned components that are not recovered by standard 218

constrained non-negative matrix factorization (CNMF) methods; thus there may be room to further improve 219

existing CI analysis pipelines, using these combined CI-EM data as a valuable ground truth benchmark. 220

EASE outputs estimates of the temporal activities and spatial shapes of the neurons visible in the field of 221

view, matched to their corresponding EM segments. We are releasing these components publicly at this site. 222

As emphasized in (Paninski and Cunningham, 2018; Soltanian-Zadeh et al., 2019), we have to date lacked 223

ground truth datasets for the CI demixing problem. Since good training sets are a critical ingredient in the 224

“secret sauce” for accelerating progress in data science (Donoho, 2017), we hope that this new EM-constrained 225

gold standard dataset will help spur further development of improved algorithms for CI analysis that can be 226

applied in the vast majority of cases where no EM side information is available to further constrain the 227

estimates. The neural network denoiser illustrated in Figure 9 is a first step in this direction. 228

Finally, it is worth noting that a version of the approach developed here should be applicable to other 229

dense micro-anatomical approaches that are currently in development (Alon et al., 2018; Gao et al., 2019): 230

given a three-dimensional segmentation of the anatomical channel, we can import the resulting segments, 231

compute the footprints pi∗ , and use these to constrain the spatial footprints ai. We hope that these tools 232

will enable the interrogation of dense structure-function relationships in a wide variety of neural circuits in 233

the coming years. 234
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4 Methods and Materials 247

4.1 Key Resources Table 248

SOFTWARE LINK NOTES
EASE https://github.com/zhoupc/ease the implementation of the proposed

pipeline
NID https://github.com/zhoupc/nid neural image denoiser trained using EASE

results
EASE project https://github.com/zhoupc/ease project the complete source code for reproducing

this research and the shared results.
funimag https://github.com/paninski-lab/funimag baseline pipeline for processing data

without EM information

249

4.2 Overview 250

We begin with the CI data Y , the three-dimensional EM segmentation, and a two-photon structural scan of 251

the same volume (which helps to spatially align the CI and EM data). We co-register the EM and CI data 252

and then compute the intersection of the three-dimensional EM data with the two-dimensional CI scan, then 253

spatially downsample and blur the EM data to match the two-photon resolution and obtain a set of 254

two-dimensional EM “footprints” {pi} (see details below). Next, we greedily initialize active neurons using 255

these footprints to index into the CI data Y . We compute iterative CNMF updates using these initialized 256

components, enforcing the constraint that each functional spatial component ai must lie within the support 257

of the corresponding EM footprint pi∗ (i∗ is the index of the EM segment that matches ai). Then we iterate, 258

adding more components and running CNMF updates until no further good components can be added. We 259

have also developed several diagnostics for component quality that can be used to discard bad components 260

within this loop. 261

Below (section 4.3 - 4.10) we provide full details on each of the above steps. 262

4.3 Data description 263

The analyses described here are based on three types of data acquired in sequence from the same volume: 264

• Structural volume image: imaging was performed in a triple-transgenic 265

CamK2a-Cre/Camk2a-tTA/Ai93 mouse (Madisen et al., 2015). In this mouse, GCaMP6f expression 266

was restricted to pyramidal cells, and the Tet enhancer system produced strong expression of the 267

fluorophore, resulting in higher SNRs at lower imaging powers. We obtained a 3D image of a 268

400× 400× 310 um3 volume using conventional two-photon (2P) laser scanning microscopy. After 269

pixelization this data set has dimensions 512× 512× 310. 270

• CI data Y : we took two-dimensional functional scans of the same FOV as the (3D) 2P structural 271

volume described above. The spatial resolution of each functional scan was half that of the 2P 272

structural volume per plane (256× 256). The measured point-spread function was approximately 273

0.5× 0.5× 3 um in x, y, and z; pixel pitch in x and y were approximately 1.6um. (Importantly, this 274

resolution was sufficiently fine to enable us to record functional activity from many distinct apical 275

dendrites traversing the imaging volume.) We took 9 scans in total; each scan contains three z planes 276

and all three planes were imaged nearly-simultaneously, with full acquisition over all three planes at 277

14.8313 frames per second. 278

• High-resolution EM segments: an electron microscopy data volume was acquired within the 2P 279

structural volume, then segmented computationally by Sebastian Seung’s group at Princeton University 280

(see (Dorkenwald et al., 2019) for full details). In this work, we used 109084 segments from the EM 281

reconstruction of a volume of 196× 129× 40 um3 (note that this is a significantly smaller volume than 282

was imaged in the 2P structural scan). These segments were saved in the format of triangular meshes 283

and the mesh coordinates were registered to the 2P structural volume image. 284
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4.4 Preprocessing 285

Co-registration of EM data and 2P stack data: We found 189 cell bodies in both the 2P stack and 286

EM data, computed their centroids, and then fit a regression model to obtain an affine transformation model 287

between the 2P and EM data (full details will be described in a manuscript in preparation). 288

Voxelization of EM segments: The segmented EM components are saved into meshes. For the analysis 289

below, we need voxelized representations to obtain the spatial support of each segment within each imaging 290

plane. We used polygon2Voxel1 for voxelizing the surfaces, then fill to obtain the entire 3D segments. The 291

voxelized EM components can be represented as a binary multidimensional array M ∈ {0, 1}512×512×310×Kem . 292

Note that M is a huge but very sparse array; thus we only need to save the indices of nonzero voxels. 293

Cropping the FOV: The CI FOV is larger than the EM volume. To crop the CI FOV to match the EM 294

volume, we projected the EM volume to the x-y plane and chose a slightly larger rectangle (5 more pixels 295

surrounding the borders) around this. 296

Motion correction of CI data: Raster artifacts from resonant scanning were corrected post-hoc, and 297

X/Y subpixel motion correction was performed as in (Reimer et al., 2014). 298

Co-registration of CI data Y and 2P stack data: We register the averaged motion-corrected 299

functional scan data onto the 2P anatomy stack via cross-correlation. 300

Projection of the EM segments intersecting with one scanning plane: Our model is based on 301

constraining each functional neural shape to match the shape of the corresponding EM segment. The EM 302

segments are three-dimensional but the functional imaging scans are two-dimensional, so we need to compute 303

the intersection of the EM components with the functional imaging planes. In addition, we need to account 304

for the fact that the spatial resolution of the two-photon functional imaging data is much lower (particularly 305

in the axial direction) than the EM resolution. In short, we would like to model what each individual EM 306

component would look like if imaged by two-photon scanning in a given plane (assuming that the calcium 307

indicator has a uniform brightness in each cell). To obtain these shapes, we selected all pixels in the EM 308

mask matrix M that were near the imaging plane, then applied a Gaussian blurring in z and spatial 309

downsampling in xy to emulate the point-spread function of the 2P scanning microscope, which is extended 310

in z. We used a Gaussian width of σ = 8 µm and included EM pixels within a symmetric 32 µm window 311

around the imaging plane. The resulting matrix of projected EM components is denoted 312

P = [p1,p2, · · · ,pKem
]. See Figure 2 for some examples. 313

Noise-normalization: We normalize each pixel in Y so that the noise level (estimated via the 314

power-spectrum density method described in (Pnevmatikakis et al., 2016)) is constant across pixels. 315

4.5 Model 316

See Table 1 for a summary of the variables used below. 317

We used the constrained nonnegative matrix factorization (CNMF) framework (Pnevmatikakis et al., 318

2016; Zhou et al., 2018) for modeling the calcium imaging data : 319

Y = AC +B + E, (1)

where Y represents the video data as a matrix (Pnevmatikakis et al., 2016), A = [a1,a2, . . . ,aK ] contains 320

the inferred neuron shapes, and C = [c1, c2, . . . , cK ]T contains the inferred calcium traces of all neurons. 321

Following (Zhou et al., 2018), we decompose the background term B into a constant baseline term and a 322

fluctuating term, B = b01
T +Bf . We find that the fluctuating term Bf in the small FOV examined here is 323

well-modeled as a low-rank matrix: 324

Bf = D · F, (2)

1https://www.mathworks.com/matlabcentral/fileexchange/24086-polygon2voxel
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Name Description Domain

M spatial mask of all EM segments {0, 1}d2p×Kem

Y motion corrected video data Rd×T
A spatial components of neurons Rd×K+

P spatial footprints of EM segments Rd×Kem
+

C temporal components of neurons RK×T
B background Rd×T
E noise Rd×T
D spatial components of the background Rd×N
F temporal components of the background RN×T
b0 temporally-constant baseline per pixel Rd
Bf temporally-fluctuating part of the background Rd×T

Table 1: List of variables. For the dataset analyzed here, d2p = 512× 512× 310 is the number of voxels for
the full 2P stack data. Kem = 109084 is the number of EM components. d = 58× 129× 3 is the number of
pixels for one scan of the cropped 2P video data; T = 27100 is the number of frames; K is the number of
extracted neural components, which is around 150; N = 3 is the rank of the background Bf .

where D and F have rank N = 3 here. Following (Vogelstein et al., 2010; Pnevmatikakis et al., 2016; 325

Friedrich et al., 2017b; Zhou et al., 2018), we model the calcium dynamics of each neuron ci with a stable 326

autoregressive (AR) process of order p = 1, 327

Gi · ci = si, with Gi =


1 0 0 · · · 0

−γ(i)1 1 0 · · · 0

0 −γ(i)1 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 −γ(i)1 1

 . (3)

where si(t) ≥ 0 is the number of spikes that neuron fired at the t-th frame. The AR coefficients {γ(i)1 } are 328

different for each neuron and they are estimated from the data. 329

The novel part of the model here is that in (1), each ai has its EM counterpart pi∗ . Recall that pi∗ 330

models the two-photon appearance of cell i assuming uniform calcium indicator brightness throughout the 331

cell; thus the support set of ai (i.e., the nonzero pixels in ai) should be contained within the support of pi∗ , 332

but due to non-uniformities in indicator brightness ai and pi∗ will not match exactly. 333

4.6 Model fitting 334

After initialization of the components ci, ai, along with the corresponding EM support sets pi∗ (see the next
section for initialization details), we minimize the residual sum of squares (RSS) given multiple constraints
for estimating all model variables as a single optimization meta-problem

minimize
A,C,S,D,F,b0

‖Y −A · C −D · F − b0 · 1T ‖2F (P-All)

subject to A ≥ 0, supp(ai) ⊆ supp(pi∗)
ci ≥ 0, si ≥ 0, G(i)ci = si, si is sparse ∀i = 1 . . .K

F · 1 = 0,

where ‖X‖F =
∑
i

∑
j x

2
ij denotes the Frobenius norm of the matrix X and K is the number of extracted 335

neural components. Similar to (Zhou et al., 2018), we divided the nonconvex problem (P-All) into three 336

simpler sub-problems: 337
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Algorithm 1 EASE Pipeline

Require: Y ∈ Rd×T , P ∈ Rd×Kem ,Knew . add Knew neurons in each iteration
1: A = [], C = [], D = 0, F = 0, b0 = 0, ID = []
2: while there are more neurons to extract do
3: . add neurons
4: Yres ← Y −AC −DF − b01T
5: [Anew, Cnew, IDnew]← initialize neurons(Yres, P\ID,Knew)
6: A← [A,Anew], C ← [C;Cnew], ID ← [ID, IDnew]
7: . update model variables
8: for iter=1:2 do
9: [D,F, b0]← update background(Y,A,C)

10: [C, S, b0]← update temporal(Y,A,C,D, F, b0, PID)
11: [A, b0]← update spatial(Y,A,C,D, F, b0, PID)

12: . post-processing
13: [A,C, ID]← post process(A,C, ID, PID)

14: return A,C, S, ID

Estimating A, b0 given Ĉ, D̂, F̂

∀i = 1, . . . ,K

minimize
ai,b0

‖Ỹi − aiĉTi − b0 · 1T ‖2F (P-S)

subject to ai ≥ 0, supp(ai) ⊆ supp(pi∗)

Estimating C, b0 given Â, D̂, F̂

∀i = 1, . . . ,K

minimize
ci,si,b0

‖diag(
√
pi∗)

(
Ỹi − âicTi − b0 · 1T

)
‖2F (P-T)

subject to ci ≥ 0, si ≥ 0

G(i)ci = si, si is sparse

Estimating D,F, b0 given Â, Ĉ

minimize
D,F,b0

‖Y − Â · Ĉ −D · F − b0 · 1T ‖2F (P-B)

subject to F · 1 = 0

In both problems (P-S) and (P-T), Ỹi = Y − D̂ · F̂ − Â\i · Ĉ\i denotes the residual after subtracting the 338

fluctuating background and the spatiotemporal signal of all neurons except the i-th neuron. The objective 339

function in the problem (P-T) includes an additional upweighting term diag(
√
pi∗); this upweights the 340

squared residuals at each pixel by a factor proportional to pi∗ . We found that this upweighting led to 341

improved signal recovery, particularly in early iterations when a number of visible neural components remain 342

in the residual; we will discuss this issue in more depth in the next section. 343

We perform updates to solve each of these three sub-problems in alternating fashion. Details are 344

summarized in Appendix (5.4) and Algorithm (3). After convergence (typically in just a couple iterations) 345

we perform a manual or automatic post-processing step (to potentially remove any false positives and correct 346

any clearly mistaken matches) and then initialize more components, and iterate. See Algorithm 1 for an 347

overview, and further details in the following sections. 348
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4.7 Initializing neural components constrained by EM segments 349

As emphasized in previous work (Pnevmatikakis et al., 2016; Zhou et al., 2018), due to the nonconvexity of 350

the constrained NMF problem, good initializations are critical — especially so here, since poor initializations 351

of the spatial components ai may lead to poor matches with the EM components pi∗ , leading to poor local 352

optima. 353

Our approach is to start by finding EM components that are likely to correspond to “good neurons” in Y , 354

and use these to initialize the components ai and ci. Then we subtract the estimated spatiotemporal activity 355

of these initialized neurons from Y and iterate. This greedy algorithm provides a scalable approach that 356

simultaneously extracts neurons from Y and finds matches with the corresponding EM components. 357

How do we find a good set of EM components that contribute significantly to Y ? The simplest way to 358

proceed would be to simply project the data Y onto the EM components pi∗ , and initialize components with 359

the biggest projections. Unfortunately we find that this does not work in practice, because a pi that happens 360

to spatially overlap with a bright component in Y can “steal power” from this component, leading to a 361

mistaken initialization that may be difficult to correct downstream. (Recall that pi is a blurred, 362

downsampled projection from the original high-resolution three-dimensional EM volume — where no 363

components overlap spatially, by construction — into the lower-resolution functional imaging plane, where 364

multiple components overlap spatially.) 365

Therefore we need an improved approach for initializing functional components ai from the EM 366

components pi. The approach described below is a critical technical contribution of this paper. See 367

Algorithm 2 for a summary. 368

4.7.1 Sorting the EM components 369

Since we have roughly 100× more EM components than functional components in Y (compare Figure 2 to S1 370

Video), we need a quick rough method to order the EM components pi which are likely to be most active in 371

the functional calcium video data. Given a method for rapidly converting pi∗ into a corresponding crude 372

initial estimate of (ai, ci) (to be defined below), we found the following rough score to be useful for this task: 373

hi =
∑
x

a3i (x) ·
∑
t

(
ci(t)− c̄i

)3
=
∑
t

z3i (t), (4)

where zi = ‖ai‖3 ·
(
ci − c̄i

)
and ‖ai‖3 = 3

√∑
x ai(x)3 is the 3-norm of the vector ai. (We used the 3-norm 374

here because we found that it was more effective than e.g. the 2-norm in capturing non-negative, 375

positively-skewed signal in the components ai and ci.) Components with larger values of hi are more likely 376

to contain useful activity. 377

To rapidly extract a coarse initial estimate from pi∗ , we set ai = pi∗ and then estimate ci by minimizing 378

the objective function in problem (P-T) while ignoring all constraints: 379

ĉi =
(pi∗ � pi∗)T

(pi∗ � pi∗)Tpi∗
(Ỹi − b0 · 1T ), (5)

where Ỹi = Y − D̂ · F̂ − Â\i · Ĉ\i. Then we can further simplify the form of zi as 380

zi = ‖ai‖3 ·
(
ci − c̄i

)
=

(pi∗ � pi∗)T

‖pi∗‖23
Y̌i, (6)

where Y̌i is centered to have a temporal mean of 0. 381

Thus we can utilize simple matrix computations to quickly estimate all zi at once and then calculate the 382

corresponding hi. Every time we initialize a neuron (âk, ĉk), we can easily update the remaining zi values: 383

znewi = zoldi − (pi∗ � pi∗)T âk
‖pi∗‖23

(ĉk − ¯̂ck). (7)
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Algorithm 2 Initialize neurons using EM masks

Require: Yres ∈ Rd×T , P ∈ Rd×Kem , Knew

1: Y ← center(Yres) . subtract off the mean
2: Ainit ← []; Cinit ← []; IDinit ← [], kinit ← 0
3: Oignore ← [] . indices of neurons to be ignored
4: Q← diag

(
1

‖pi‖23

)
(P � P ) . � is Hadamard product

5: Z ← QTY
6: while kinit < Knew do
7: i← argmax

i/∈Oignored

h(zi) . h(z) evaluates the quality of a trace

8: Oignore ← [Oignore, i] . no longer consider this neuron
9: . line 9-19, initialize (ai, ci)

10: [Ωin,Ωout]← determine in out(pi)
11: Yin ← Y (Ωin, :) . video data within the selected ROI
12: Yout ← Y (Ωout, :) . video data surrounding the selected ROI
13: V ← SV D(Yout, k) . V is the top-k right singular unit vector of Yout
14: V⊥ ← null(V ) . orthogonal basis for the null space of V T

15: Y⊥ ← YinV
T
⊥

16: α̂← ziV
T
⊥ . zi is the i-th row of Z

17: for i=1:10 do . optimize âi and α̂ using coordinate ascent
18: ai ← max(0, Y⊥α̂

α̂T α̂
)

19: α̂ = (pi�âi)
TY⊥

(pi�âi)T âi

20: β̂ = argmin
β
‖D(2)V⊥α̂+D(2)V β‖1 . estimate β̂

21: ĉi = denoise(V⊥α̂+ V β̂)
22: . line 21-24, keep this initialization or not
23: if pass quality check(ai,pi, ci) then
24: Ainit ← [Ainit,ai]; Cinit ← [Cinit; c

T
i ]; IDinit ← [IDinit, i]; kinit ← kinit + 1

25: Z ← Z − (QTai)(ci − c̄i) . re-estimate temporal activity
26: else
27: return Ainit, Cinit, IDinit

4.7.2 Initializing a single neuron given the EM footprint 384

The raw data Y contains the summed spatiotemporal activity of many neuronal components; thus initializing 385

the spatial and temporal components of one neuron using a given EM footprint pi∗ requires the successful 386

removal of contaminations from other neurons and background signals that spatially overlap pi∗ . 387

The simplest approach to initializing ai and ci from pi∗ would be to initialize ai = pi∗ and then compute 388

a semi-NMF factorization: Yin ≈ aicTi , where Yin denotes the mean-subtracted video data Y restricted to 389

the support of pi∗ , and we restrict ai ≥ 0. However, we found that this approach was not sufficiently robust 390

to contamination in Yin from other spatially overlapping cells; Figure S1 below provides an example. 391

To develop a more robust approach we utilize the spatial support of pi∗ more explicitly. Denote the pixels 392

within pi∗ as Ωin = supp(pi∗), and the surrounding set of pixels (within a distance of 8 pixels) as Ωout. We 393

observe that large contaminations often span across both Ωin and Ωout, while the spatial range of the 394

targeted neuron is by construction constrained within Ωin. Thus we model the (mean-subtracted) 395

fluorescence signal in Ωin as 396

Yin = aic
T
i +WV T (8)

where ai ≥ 0, V is the matrix of the top-k right singular unit vectors of the fluorescence data of pixels in 397

Ωout (in practice we find k = 10 works well to summarize the activity in Ωout), and W is a matrix of weights 398

applied to V , with a different weight vector for each pixel in Ωin. Thus the role of WV is to help explain 399

away contaminations in Ωin from background fluctuations and overlapping neurons (see Section 5.5 for a 400
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detailed derivation of Eq. 8). 401

Fitting this model requires estimating ai, ci, and W . We first compute an orthogonal basis for the null 402

space of V T as V⊥, and decompose ci as ci = V⊥α+ V β. Then Eq. (8) becomes 403

Yin = aiα
TV T⊥ + (aiβ

T +W )V T . (9)

One natural approach for fitting ai, α, β, and W is to minimize the weighted residual sum of squares
(wRSS), ∑

x

pi∗(x)
∑
t

[Yin(x, t)− Ŷin(x, t)]2

= ‖diag(
√
pi∗) · [Yin(x, t)− Ŷin(x, t)]‖2F

= ‖diag(
√
pi∗) · (YinV⊥ − aiαT )V T⊥ + diag(

√
pi∗) · (YinV − aiβT −W )V T ‖2F (10)

= ‖diag(
√
pi∗) · (YinV⊥ − aiαT )‖2F + ‖diag(

√
pi∗) · (YinV − aiβT −W )‖2F , (11)

where diag(
√
pi∗) weights the residual of different pixels according to the selected neuron’s EM footprint2; in 404

practice, we found that this weighting can further reduce the neighboring neurons’ contamination, as 405

discussed below. Since W is unconstrained, the second term in the right hand side of Eq. (11) can always 406

achieve its minimum of 0 by letting Ŵ = YinV − âiβ̂T . Thus minimizing the wRSS is equivalent to 407

minimizing ‖diag(
√
pi∗) · (YinV⊥ − aiαT )‖2F . However, solving this new optimization problem 408

(âi ≥ 0, α̂) = argmin
ai,α

‖diag(
√
pi∗) · (YinV⊥ − aiαT )‖2F (12)

only yields estimates of ai and α, providing no information about β. 409

We resolve this issue by exploiting the temporal smoothness of ci, i.e., we estimate β by minimizing 410

‖D(2)ci‖1 to enforce its smoothness, where D(2) is the second order discrete difference operator of order 2. 411

So given âi and α̂, the estimated β̂ is 412

β̂ = argmin
β
‖D(2)V⊥α̂+D(2)V β‖1. (13)

In summary, we first estimate âi and α̂ by solving problem (12), and then estimate β̂ by solving problem 413

(13), to obtain ĉi = α̂V⊥ + β̂V . We use block coordinate descent (Cichocki et al., 2007) to optimize ai and α 414

in (12); we find 10 iterations suffice. We optimize β in (13) with subgradient descent; we use backtracking 415

line search to determine step sizes (Boyd and Vandenberghe, 2004). Empirically we found that our method 416

significantly outperforms the naive semi-NMF method in initializing ai and ci; see Figure S1 for an 417

illustration. 418

Finally, before adding the âi and ĉi computed above to our set of components A and C, we run a simple 419

quality check on the component. Occasionally the selected pi∗ does not contain a prominent fluorescence 420

signal. This typically leads to an estimated âi that matches pi∗ poorly. To detect these cases we compute 421

the cosine similarity between the initialized âi and pi∗ , discarding initializations with similarities smaller 422

than 0.55. 423

2 To derive Eq. (11) from Eq. (10), we use the following:

‖HV T
⊥ + JV T ‖2F =Trace

(
(HV T

⊥ + JV T )(HV T
⊥ + JV T )T

)
=Trace

(
HV T

⊥ V⊥HT + JV TV JT
)

=Trace
(
HHT

)
+ Trace

(
JJT

)
=‖H‖2F + ‖J‖2F
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4.8 Evaluating the quality of cell matching 424

EASE assigns an EM match to each neuron extracted from CI data during the initialization step, but not all
of these preliminary assignments are correct. For each extracted component, we would like to know how well
this neuron matches to each EM component and how confident we should be about the current match. Hence
we define two metrics:

score(i, j) =
ãTi · 1pj≥0

ãTi · 1
· corr(ãi,pj), (14)

confidence(i) =
score(âi,pi∗)

max
j 6=i∗

score(âi,pj)
, (15)

where ãi is the unconstrained estimation of ai in problem (P-S); recall that i∗ denotes the current match to 425

the i-th neuron. The score above combines a correlation between ãi and pj with a term that measures the 426

fraction of âi contained in the support of pj : we found that combining these two terms led to a score that 427

better matched the visual overlap between âi and pj (compared to using either the correlation or support 428

overlap alone). The “confidence” in the second line above simply computes the score ratio of the assigned 429

match and the best alternative match. 430

4.9 Jointly extracting neurons from multiple functional imaging scans 431

In this dataset multiple functional scans were acquired at different z depths at different times. When run on 432

a single functional scan, EASE outputs the inferred two-dimensional spatial components ai from this scan, 433

along with their matched three-dimensional high-resolution EM segments. By tracing the EM reconstruction 434

from one scan to another, we can match the activity of EM-reconstructed cells across multiple scans. This 435

multi-scan matching has three benefits: (1) it increases the effective sample size of each cell observed in 436

multiple scans (since we can now pool data for these cells across scans); (2) it can help detect low-SNR 437

components (since if we find a cell in one scan we can then look for the cell in other scans — and the EM 438

reconstruction tells us where to look); (3) we can potentially use the observed correlation structure to “fill in” 439

estimates of the activity of neurons that are not observed on a given scan, using methods like those described 440

in (Soudry et al., 2015). 441

To incorporate information across multiple scans, we first run EASE on each scan independently and 442

compute the corresponding matching confidences (Eq. 15). Next, we select all components with high 443

confidence levels (e.g., > 2) and create a “whitelist” of their matched EM footprints. We have high 444

confidence that each neuron in this whitelist is well-identified and has strong signal in at least one scan; thus 445

these neurons are likely to contribute significant signal to other scans, at the specific locations where their 446

EM footprint intersects with the other functional imaging planes. Therefore in the next step, we run EASE 447

again on each scan, this time only initializing EM footprints pi with IDs that appear in the whitelist. As 448

before, these steps can be iterated. 449

4.10 Visualization of results; manual intervention 450

After convergence we check the results visually, using a similar strategy as in (Pnevmatikakis et al., 2016; 451

Zhou et al., 2018). We sort the extracted components in order of their matching confidence score, defined in 452

Eq. (15). This sorting tends to put neurons with reliable matches at the top of the list, and ambiguous 453

neurons at the bottom of the list, allowing for a detailed checking of questionable matches. We plotted the 454

EM footprint pi∗ and the functional CI footprint ai next to each other to ensure a reasonable visual match, 455

and visualized the inferred calcium trace ci along with the projection of ai onto Y to look for any temporal 456

artifacts or overly low SNR. We also found it useful to compare ai to the image generated by computing the 457

correlation of Y against ci; large differences between these two images often indicate contamination by 458

signals from a different neuron. 459

For any clear mismatches, we examined the top alternative matches according to the match scores. 460

Empirically, we found that we could typically find a good match among the top-5 matches. In clear cases 461
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(e.g., when ai and the matching pj have large, complex spatial structures) we replaced the old mismatched 462

pi∗ with the new better match. We developed a graphical user interface to facilitate this process. However, 463

many cases remain ambiguous, particularly apical dendrites that cut through the imaging plane and only 464

have a few pixels in ai. In these cases we might be very sure that there is an apical dendrite present at this 465

location (i.e., the corresponding ai and ci may have large SNR), but there may be several EM components 466

pj that provide plausible alternative matches, and so we simply have to declare the resulting match 467

uncertain and pass this uncertainty on to any downstream processing stages (by keeping track of the low 468

confidence score). Finally, in some cases no good match was found, or an oversplit was detected; in these 469

cases we discard the non-matching or redundant component. 470

Next we ran a CNMF update (applying the same EM spatial constraints as before), restricted to the cells 471

that survived the above quality checks, and then examined the residual video Y −AC −DF − b01T next to 472

the raw data Y and the “denoised” output AC (S1 Video). We also computed several summary images, 473

including the correlation image (computed following (Smith and Häusser, 2010) as the mean correlation of 474

each pixel with its neighbors) and peak-to-noise (PNR) image (i.e., the maximum minus the median signal 475

within each pixel, divided by the noise level), of both the raw data Y and the residual (see Figure 3). If any 476

clear “missing” cells were visible in the residual (either in the video or in the summary images) we ran an 477

additional initialization step to add EM footprints pi in these spatial regions. We iterated these steps until 478

no further discard or add steps were required. 479

4.11 Visual direction tuning 480

To obtain a basic characterization of the visual tuning of each recovered component, we estimated the tuning 481

curves as the average response to moving grating stimuli (using 16 different direction angles θ). As in 482

(Reimer et al., 2014) we then fit these tuning curves with a two-peak von Mises model 483

f(θ) = a0 + a1e
−w(1+cos(θ−θ0)) + a2e

−w(1−cos(θ−θ0)). (16)

We summarize the quality of the fit with the standard R-squared value; see Figure 8 for an analysis of these 484

“tuning curve scores.” 485

4.12 Decoding visual stimulation from the neural responses 486

For the decoding analysis described in section 2.4, we used a “naive Bayes” decoder (i.e., to compute the 487

posterior distribution of the orientation θ we assume that each neural response is conditionally independent 488

given θ) , with the zero-inflated gamma (ZIG) model from Wei et al. (2019) as the encoding model (i.e., the 489

probability model of the response of each neuron as a function of θ). The ZIG model is specified by three 490

parameters: a scale parameter a and a shape parameter k for the gamma component, and the probability of 491

non-zero responses q. We parameterized a and q as a function of orientation θ using neural networks (2 492

hidden layers, each with tanh non-linearity and 20 units). We fix the shape parameter k to be a constant for 493

individual neurons (i.e., k is neuron-dependent but not θ -dependent). As in Wei et al. (2019), we optimize 494

all the parameters by maximizing the log-likelihood using a variant of stochastic gradient descent 495

citeadam-paper. We use a 75-20-5 train-validate-test split, and then average the test error over the 20 496

non-overlapping 5% splits. 497

4.13 Predicting the spatial footprint ai from the corresponding EM segment 498

In Figure 9 we fit a model of the form 499

âi(x) = αi
∑
z

h(x, z)f [g(Ei, z)], (17)

where x indexes 2P-resolution, two-dimensional pixels; z indexes EM-resolution, three-dimensional voxels; Ei 500

is the i-th EM component; ci is a gain factor estimated for each component i; h(x, z) is the (known) 501

point-spread function (psf) operator, convolutional in lateral shifts in x and z; g(Ei, z) is a featurization of 502
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the EM segment (discussed below); and f(u) is in general a nonlinear (non-negative) function of its argument 503

u. We will learn αi and f from the data; g is fixed a priori for each model class we investigate. 504

We explored several featurizations. The simplest (referred to as “model 0” in Figure 9) is to simply let 505

f [g(Ei, z)] = 1 if the voxel z is inside the EM segment Ei, and zero otherwise. In this case the predicted ai is 506

simply the “EM footprint” pi; note that we do not estimate any parameters in f in this case. 507

In model 1, we let the brightness depend only on the distance from the surface of the cell, so the feature 508

g(Ei, z) is the distance of voxel z from the surface of EM component Ei; f(u) in turn is constrained to be a 509

unimodal function (monotonically increasing and then monotonically decreasing as a function of the scalar 510

u = g(Ei, z)). 511

In model 2, we let the brightness depend only on the distance from the center of the soma, so, as above, 512

the feature g(Ei, z) is the distance of voxel z to the soma of EM component Ei. Again, f(u) is constrained 513

to be a unimodal function. 514

Finally, in model 3 we let f [g(Ei, z)] be a product of models 1 and 2; i.e., the brightness of voxel z could 515

be modulated by either the distance to the soma or the distance to the cell surface. 516

Each of models 1-3 were estimated by alternating constrained least-squares between the observed ai and 517

the predicted âi. The psf is held fixed across all models. The neuron-dependent gain αi is updated directly 518

via simple regression in each iteration; updating f under the monotonicity constraints requires that we solve 519

a quadratic program. 520

4.14 Validating EASE using simulated 2p video data 521

We tested the performance of EASE by simulating a video using the model (1). To make the simulation 522

realistic, we took advantage of the EASE results on the real data. Specifically, the AC term was constructed 523

based on the extracted neuronal signals in scan 3 and the B were the same as the extracted background in 524

scan 1. The strategy of choosing results in different scans is to remove confounding correlations between AC 525

and B in the same scan. We included 105 neurons whose temporal traces have reasonable signal quality (e.g. 526

skewness ≥ 0.7). Since the extracted âi is noisy and there are some potentially some mismatches for apical 527

dendrites, we generated each ai from its corresponding EM segment using the above prediction model. The 528

resulting ai components were further normalized to match the peak values of the extracted âi. To build an 529

empirical relationship between signal and noise, we evenly divided the ordered fluorescence values of ÂĈ + B̂ 530

into 100 groups and stored the corresponding residuals in each group. Then we generate signal-dependent 531

noise E at all pixels and frames by randomly drawing residuals in the corresponding groups according to the 532

simulated AC +B (Figure 10A); see Buchanan et al. (2018) for a similar approach. We then applied the 533

same pipeline as the one described in Section (2.2) to the simulated data and identified 104 components 534

without any false positives. Given the EM segment of the missing component (this step resembles the 535

white-list idea in the joint analysis of multiple functional imaging scans, as described in section 4.9), EASE 536

can reliably recover its spatial footprint and temporal trace. Several quantitative and qualitative evaluations 537

(Figure 10B-F) showed that EASE recovered the ground truth with high accuracy. 538

4.15 Neural network denoising of the estimated spatial components ai 539

For the analysis illustrated in Figure 9, we built our spatial component denoiser using a well-established 540

feed-forward denoising convolutional neural network (DnCNN) architecture that was developed for general 541

natural image denoising (Zhang et al., 2017). This DnCNN takes the noisy image as an input and then 542

outputs the noise after implicitly removing the latent clean image in the hidden layers. We first predicted the 543

spatial components ai derived from all 453 EM segments that appeared in our EASE results using the model 544

described in section 4.13, and then removed any images with too few nonzero pixels (here, <20 pixels), 545

resulting in 3036 clean two-dimensional footprints among all 12 imaging planes (4 scans × 3 planes/scan). 546

Then we randomly selected 2725 (∼ 90% of the total) footprints out of the 3036 predicted footprints as 547

training images; the other 311 were used for testing. Given these 2725 training images, we further normalized 548

them by their maximum pixel values and augmented them by flipping, rotating and resizing (resizing factors: 549

2, 1.5, 1, 0.8, 0.5) the original image. Instead of using the augmented images directly, we cropped them into 550

patches of the same size 29× 29 and removed all-zero patches, resulting in 194581 clean image patches. The 551
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Figure 10: EASE correctly extracts all neurons and their temporal traces in a simulated dataset. (A) The
process of simulating noisy videos resembling the real data; see text for full details. (B-D ) The Pearson
correlation coefficients between ground truth vs estimated spatial (B, D) and temporal (C, D) components.
The red dots in (C) were computed using the thresholded traces, as a crude denoiser. The circles in (D)
indicate example neurons in E and F. (E-F) The spatial (E) and the temporal (F) components of the selected
examples. The true temporal traces were right-shifted by 100 ms and ordered by peak-to-noise ratio (PNR)
for better visualization; conventions otherwise as in Figure 3B. Scale bar: 10 seconds.
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network architecture is simply a stack of D (D = 17 in this paper) convolution layers containing 64 filters of 552

size 3× 3× 1. Each layer but the last utilizes rectified linear units (ReLU, max(0, ·)) for the non-linearity. 553

Batch normalization (Ioffe and Szegedy, 2015) is also added between the convolution and ReLu to speed up 554

training (see details of the network architecture in the paper (Zhang et al., 2017)). The input to the network 555

is the sum of a clean image patch and Gaussian white noise (σ = 0.1), and the output is expected to match 556

the added noise, which is achieved by minimizing the mean squared error (MSE) loss function. We initialized 557

the weights by the method in (He et al., 2015) and optimize the network with Adam (Kingma and Ba, 2014) 558

using a mini-batch size of 256. The network can be quickly trained within 3 epochs; the learning rate is 10−4 559

after the first epoch (10−3). 560

We used PyTorch to train the network and then saved the trained network in ONNX format to be loaded 561

by multiple deep learning platforms. We developed a unified interface to call the denoiser from either Python 562

or Matlab. Given a noisy image, it first scales the image to match the noise level in the network training 563

(σ = 0.1) and then calls the denoiser to output the noise. The difference between the input and the output is 564

the denoised image and is scaled back to match the original noisy image. 565
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Iteration add-neurons update-variables post-processing # of neurons

1 (100, 2000) N = 1 - 100

2 (50, 4000) N = 2 - 150

3 (50, 40000) N = 3 correct bad matches;
delete false positives

173

4 - N = 3 - 173

Table S1: Details of processing pipeline steps for the example scan discussed in section 2.2. (k1, k2) in the
column add-neurons indicates adding k1 neurons from the k2 EM components with the largest 1-norm ‖pi‖;
N is the rank of the background model in Eq. (2).

5 Supplementary Information 566

5.1 Tables 567

See Table S1 for full details of the processing pipeline steps for the example scan discussed in section 2.2. 568

5.2 Videos 569

S1 Video: the demixing movie of the example data in section 2.2. All pixel values were normalized 570

by the standard deviation of the residual. Three columns correspond to the three planes in the selected scan. 571

S2 Video: the demixing movie of the 4 example neurons in Figure 5: The spatiotemporal signal of 572

the extracted background and all other neuronal components except the 4 selected examples were subtracted 573

from the raw data to construct the raw signal in this video. The video was normalized in the same way as S1 574

Video. All panels use the same scaling ([-4, 4]). The yellow circle in each panel is provided as a landmark to 575

facilitate visual comparison across panels. In the bottom panel, conventions are as in Figure 3B. 576

5.3 Experimental details 577

All procedures were carried out in accordance with the ethical guidelines of the National Institutes of Health 578

and were approved by the Institutional Animal Care and Use Committee (IACUC) of Baylor College of 579

Medicine. 580

Cranial Window 581

Anesthesia was induced with 3% isoflurane and maintained with 1.5% to 2% isoflurane during the surgical 582

procedure. Mice were injected with 5-10 mg/kg ketoprofen subcutaneously at the start of the surgery. 583

Anesthetized mice were placed in a stereotaxic head holder (Kopf Instruments) and their body temperature 584

was maintained at 37C throughout the surgery using a homeothermic blanket system (Harvard Instruments). 585

After shaving the scalp, bupivicane (0.05 cc, 0.5%, Marcaine) was applied subcutaneously, and after 10-20 586

minutes an approximately 1 cm2 area of skin was removed above the skull and the underlying fascia was 587

scraped and removed. The wound margins were sealed with a thin layer of surgical glue (VetBond, 3M), and 588

a 13mm stainless-steel washer clamped in the headbar was attached with dental cement (Dentsply Grip 589

Cement). At this point, the mouse was removed from the stereotax and the skull was held stationary on a 590

small platform by means of the newly attached headbar. Using a surgical drill and HP 1/2 burr, a 3 mm 591

craniotomy was made centered primary visual cortex (V1; 2.7mm lateral of the midline, contacting the 592

lambda suture), and the exposed cortex was washed with ACSF (125mM NaCl, 5mM KCl, 10mM Glucose, 593

10mM HEPES, 2mM CaCl2, 2mM MgSO4). The cortical window was then sealed with a 3 mm coverslip 594

(Warner Instruments), using cyanoacrylate glue (VetBond). The mouse was allowed to recover for 1-2 hours 595

prior to the imaging session. After imaging, the washer was released from the headbar and the mouse was 596

returned to the home cage. 597

Widefield Imaging 598
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Prior to two-photon imaging, we acquired a low-magnification image of the 3mm craniotomy under 599

standard illumination. The location of the subsequent two-photon field of view could then be identified in 600

this image based on surface vasculature. The location of the target two-photon imaging site in V1 was 601

determined by retinotopic mapping using intrinsic signal imaging or GCaMP6 imaging at low magnification. 602

Two-photon Imaging 603

Two-photon imaging was performed in V1, in a 400 x 400 x 200 um volume with the superficial surface of 604

the volume at the border of L1 and L2/3, approximately 100 um below the pia. Imaging data was collected 605

with a resonant scanning microscope (ThorLabs) and software (Scanimage 5.1, Vidrio). Nine scans were 606

collected in total, starting superficially and moving deeper into the cortex with each subsequent scan. During 607

each 30-minute scan, a piezo controlled manipulator (PI-726, Physik Instruments) moved the microscope 608

objective between three different z-planes (“slices”). These three slices were separated by an average of 8 um 609

by the piezo, and each slice was imaged at 14.8313 frames per second. (We refer to each trio of sequential 610

slices as a one imaging “scan”.) Since we collected 9 scans with 3 slices/scan, we had 27 slices in total to 611

span the 200um depth of the overall 400 x 400 x 200 um imaging volume. Two color channels were recorded: 612

Channel one was GCaMP6 calcium imaging and channel two was blood vessels labeled with red dye 613

(Sulfarhodamine 101). Thus each functional scan is a 256 x 256 x 2 channels x 3 slices x 27300 volume 16-bit 614

TIFF stack. 615

The mouse was head-restrained but could walk on a treadmill during imaging. While we were imaging, 616

we collected treadmill speed at 200Hz (recorded in an HDF5 file) and we recorded a movie of the mouse’s eye 617

at 640 x 480 @20 Hz (recorded as uncompressed .AVI). Visual stimuli were presented at 60 fps, and 618

synchronized to imaging and behavioral data via a photodiode which recorded the timing of each stimulus 619

frame. For each 30 minute and 40 second scan (27300 volumes at 14.8313 volumes per second) we presented 620

30 one-minute trials of a colored-noise stimulus (Niell and Stryker, 2008) interspersed with periods of 621

coherent motion of oriented noise. Each one minute trial contained 16 stationary-moving-stationary blocks, 622

with a different direction presented in each block, pseudorandomly-ordered. 623

To facilitate alignment with EM, at the beginning of the experiment we collected a high-resolution 624

structural stack of the imaging volume with the same field of view and xy location as the functional scans. 625

This stack began 310 um deep and ended at the cortical surface, in one micron steps. This stack is saved as a 626

512 x 512 x 2 channels x 310 slices 16-bit TIFF stack. 627

5.4 Algorithm for solving (P-S)(P-T)(P-B) 628

There are already existing algorithms for solving the optimization problems that are the same as or similar to 629

the subproblems (P-S)(P-T)(P-B). We summarize the algorithms used in this work in Algorithm (3) and 630

briefly describe them below. 631

The same problem of (P-S) has been discussed in (Friedrich et al., 2017b) and (Zhou et al., 2018). These 632

two papers generated the spatial support of each ai based on its previous estimation, while here we use 633

supp(pi∗) directly. The algorithm used there is modified from fastHALS (Cichocki and Phan, 2009). Note 634

that the estimation of A is independent of b0 because A only accounts for the fluctuating signals. We 635

estimate Â first and then update b0 using the closed-form expression b̂0 = 1
T (Y − Â · Ĉ) · 1. 636

(Zhou et al., 2018) has a similar (P-T) problem as here except the weighting term diag(
√
pi∗), thus we 637

can reuse the algorithm by trivially including the weighting term. We iteratively update all neurons, and for 638

each neuron we first compute its unconstrained estimate 639

ŷi = argmin
ci∈RT

‖diag(
√
pi∗)

(
Ỹi − âicTi − b̂0 · 1T

)
‖2F = ĉi +

(âi � pi∗)T · Yres
(âi � pi∗)T · âi

, (18)

followed by deconvolving and denoising ŷi to infer the denoised trace ĉi and the deconvolved signal ŝi 640

(Friedrich et al., 2017b) . Once Ĉ is estimated, we also update b0 as b̂0 = 1
T (Y − Â · Ĉ) · 1. 641

The constraint F · 1 = 0 in (P-B) automatically yields a closed-form estimate of b0 as 642

b̂0 = 1
T (Ỹ − Â · Ĉ) · 1. Then (P-B) becomes a standard singular value decomposition (SVD) problem and the 643

solution corresponds to the top-N singular components of
(
Y − ÂĈ − b̂01T

)
. 644
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Algorithm 3 Functions for updating EASE variables

1: function update temporal(Y,A,C,D, F, b0, P )
2: U ← (A� P )T (Y −D · F − b0 · 1T ) . � is Hadamard multiplication
3: V ← (A� P )TA
4: for i = 1, . . . , I do . I is the number of required iterations
5: for k = 1, . . . ,K do . K is the number of neurons in C
6: [ck, sk]← denoise and deconvolve(ck + uk−vk·C

vkk
) . xk indicates the k-th row of X

7: b0 ← mean(Y −A · C) . average over all frames
8: return C, S, b0
9:

10: function update spatial(Y,A,C,D, F, b0, P)
11: U ← (Y −D · F − b0 · 1T ) · CT
12: V ← C · CT
13: for i = 1, . . . , I do . I is the number of required iterations
14: for k = 1, . . . ,K do . K is the number of neurons in C
15: ak ← max

(
0,ak + uk−A·vk

vkk

)
. xk indicates the k-th column of X

16: ak(x)← 0 ∀x /∈ supp(pk∗) . k∗ is the index of the matched EM component

17: b0 ← mean(Y −A · C) . average over all frames
18: return A, b0
19:

20: function update background(Y,A,C)
21: b0 ← mean(Y −A · C) . average over all frames
22: [U,Σ, V ]← SV D(Y −A · C − b01T )
23: D = U · Σ, F = V T

24: return D,F, b0

5.5 Derivation of Eq. (8) 645

Each EM segment pi∗ divides the FOV into two areas: pixels within and pixels outside of supp(pi∗). By
ignoring the noise term E and centering all temporal signals in our matrix factorization model (Eq. 1), we
can rewrite the model in these two areas separately:

Yin =Din · F +A\i,in · C\i + aic
T
i (19)

Yout =Dout · F +A\i,out · C\i, (20)

where ai and ci are the spatial and the temporal components for the neuron corresponding to pi∗ . Yout in 646

Eq. (20) has no signals from ci because supp(ai) ⊆ supp(pi∗). 647

If we apply SVD to decompose Yout as U · S · V T , then F and C\i can largely be represented in the V T 648

basis. Then the contamination term Din ·F +A\i,in ·C\i can be simplified as W · V T for some weight matrix 649

W , yielding Eq. (8) by substituing it into Eq. (19). In practice, we only choose pixels surrounding supp(pi∗) 650

to construct Yout and use a truncated version of V because they are enough to approximate the 651

contaminating signals in Yin. 652

5.6 Initialization of single neural components 653

In section 4.7.2 we defined an approach for initializing functional components from the EM footprints pi, 654

along with a simpler baseline semi-NMF method. The main difference between these two approaches is that 655

the EASE initialization regresses out the contribution of cells that overlap with pi but display significant 656

signal outside the support of pi. We also minimize a pi-weighted RSS (wRSS, Eq. (11)), instead of the 657

standard RSS, to further reduce nearby contaminations. We validated the necessity of these two novel 658

contributions by simulation, where we added one neuron’s spatiotemporal signal to the calcium imaging data 659
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Figure S1: Comparison of different initialization algorithms. (A) The ground truth and the initialized spatial
footprints of the selected neuron. For simplicity, only one of the three imaging planes shown here (scale
bar: 20 um). (B) The initialized temporal traces and their correlations with the ground-truth. (Scale bar:
20 seconds). Red arrows in (A) and (B) highlight the locations or bins with large discrepancies between
the estimate and ground truth. (C and D) The correlation between the ground-truth and the inferred
components under different SNR levels. EASE using weighted RSS (instead of unweighted RSS) and applying
denoising to the temporal trace consistently achieves the best performance in this simulation; similar results
are seen when adding other ground truth components (data not shown).

of one scan and tried to recover this neuron’s spatial and temporal components with different initialization 660

algorithms. To make the simulation realistic and avoid confounding correlations, we generated the added 661

neural signal from a neuron extracted from a different scan taken at a different time. Figure S1AB shows the 662

comparison of different algorithms; the proposed algorithm for EASE performs the best visually. Next we 663

varied the SNR level of the added neural signal by multiplying its temporal component by a scale factor, and 664

quantified performance by computing the correlations between the ground-truth and the initialized results 665

(Figure S1CD). Again, the proposed EASE initialization outperformed the alternative approaches 666

consistently. 667
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