Abstract
Outliers are often ignored or even removed from data analysis. In cancer, however, single outlier cells can be of major importance, since they have uncommon characteristics that may confer capacity to invade, metastasize, or resist to therapy. Here we present the Single-Cell OUTlier analysis (SCOUT), a resource for single-cell data analysis focusing on outlier cells, and the SCOUT Selector (SCOUTS), an application to systematically apply SCOUT on a dataset over a wide range of biological markers. Using publicly available datasets of cancer samples obtained from mass cytometry and single-cell RNA-seq platforms, outlier cells for the expression of proteins or RNAs were identified and compared to their non-outlier counterparts among different samples. Our results show that analyzing single-cell data using SCOUT can uncover key information not easily observed in the analysis of the whole population.