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Abstract 8 

A major challenge with human gut microbiome studies is the lack of a publicly accessible human gut 9 

genome collection that is verifiably complete. We aimed to create Humgut, a comprehensive collection 10 

of healthy human gut prokaryotic genomes, to be used as a reference for worldwide human gut 11 

microbiome studies. We screened >2,300 healthy human gut metagenomes for the containment of 12 

>486,000 publicly available prokaryotic genomes. The contained genomes were then scored, ranked, 13 

and clustered based on their sequence identity, only to keep representative genomes per cluster, 14 

resulting thus in the creation of HumGut. Superior performance in the taxonomic assignment of 15 

metagenomic reads, classifying 97% of reads on average, is a benchmark advantage of HumGut. Re-16 

analyses of healthy gut samples using HumGut revealed that >90% contained a core set of 129 bacterial 17 

species and that, on average, the guts of healthy people contain around 1,000 bacterial species. The 18 

HumGut collection will continuously be updated as the list of publicly available genomes and 19 

metagenomes expand. Our approach can also be extended to disease-associated genomes and 20 

metagenomes, in addition to other species. The comprehensive, yet slim HumGut database streamlines 21 

analyses while significantly improving taxonomic assignments in a field in dire need of method 22 

standardization and effectivity. 23 
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Introduction 24 

Major efforts have been undertaken to characterize the human gut microbiome, both by microbial 25 

isolation and sequencing 1. Also, a significant contribution was made by de novo-assembled genomes 26 

(Metagenome-Assembled Genomes – MAGs), facilitated by recent advances in bioinformatics 2-6. No 27 

studies, however, have addressed the actual containment of the available genomes and MAGs within a 28 

comprehensive set of representative human gut metagenomes, neither has the redundancy across the 29 

genomes/MAGs been evaluated. This knowledge is essential for establishing a complete collection of 30 

human gut-associated bacteria. 31 

The comprehensive data set of microbial genetic information collected from the human gut is too large, 32 

rendering it inaccessible to most labs. The number of human gut metagenome BioProjects deposited in 33 

the Sequence Read Archive (SRA) database has grown enormously over the past few years. As of 2020, 34 

NCBI holds data from more than 1,400 individual such projects conducted worldwide, consisting of 35 

nearly 230,000 samples, comprised of more than 150 Tbases of sequence. Furthermore, the number of 36 

prokaryotic genomes deposited in GenBank has exceeded 550,000, marking an increase of more than 3-37 

fold in 2019 alone. Therefore, there is a clear need to systemize the gut microbiota data on a global 38 

scale. 39 

Regionally, gut microbiome studies have shown that gut microbiota can be linked to a range of diseases 40 

and disorders 7-10, and we are now at a stage where gut microbiota therapeutic interventions are being 41 

introduced 11,12. However, the lack of a global reference for the gut microbiota in healthy humans 42 

represents a bottleneck. This limits both the understanding of gut microbiota on a worldwide scale and 43 

the introduction of large-scale intervention strategies.  44 

We aimed to create a single, comprehensive genome collection of gut microbes associated with healthy 45 

humans, the HumGut, as a reference collection for all human gut microbiota studies globally. The 46 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2020. ; https://doi.org/10.1101/2020.03.25.007666doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.25.007666
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

HumGut strategy is outlined in Figure 1. We show that using HumGut as a reference database makes 47 

vast improvements to read assignment in human gut metagenomes by kraken2 13. Our results suggest 48 

that HumGut, despite its relatively small size, is an outstanding representation of microbial genomes 49 

present in the guts of healthy humans. The application of HumGut also reveals the list of species that we 50 

consider to be the most prevalent and abundant bacteria in healthy human intestines globally. 51 

 52 
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Figure 1. HumGut overview. HumGut represents a collection of genomes and MAGs contained in 2311 healthy human gut 53 

metagenomes. To be considered as contained, a genome shared at least 341 hashes with one of the metagenomes. The 54 

qualified genomes were scored based on the sum of shared hashes >340 across all the metagenomes. Next, they were ranked 55 

based on their scores: the higher the score, the higher the position on the list. Subsequently, the genomes were clustered based 56 

on MASH distance (D). The top-ranked genome formed a cluster centroid. Various clusters were formed applying different D 57 

thresholds (0.00 – 0.05). The use of HumGut as a reference set helps the process of taxonomic assignments by drastically 58 

reducing the number of unclassified human gut metagenomic reads. 59 

Results 60 

Reference metagenomes  61 

We downloaded >3,000 gut metagenome samples collected from healthy people worldwide. These 62 

belonged to 58 different BioProjects. We calculated MASH distances between samples within each 63 

BioProject to assess the diversity between them. The results showed that, on average, samples shared a 64 

91% sequence identity (D = 0.09), indicating a high degree of similarity between one another. The 65 

sequence identity for the two most distant samples was 65% (D = 0.35) (Figure 2a). 66 

We wanted to see if samples clustered based on their continent of origin (Figure 2b). To do so, we 67 

computed the average linkage hierarchical clustering of BioProjects. The distance between two 68 

BioProjects is the mean pairwise distance between all their samples. Here, we also included a BioProject 69 

containing primate gut metagenome samples (n = 95), as an outgroup against which all human 70 

BioProjects were compared. The lowest observed average MASH distance (D = 0.06) was between two 71 

projects stemming from separate continents, one from Europe and the other from North America, while 72 

two most distant projects were both of European origin (D = 0.14). These observations, together with 73 

the mixed distribution of BioProjects in the cluster dendrogram, suggested that the clustering of 74 

samples did not heavily depend on continent-of-origin. The primate samples were markedly separated 75 

from the rest of the tree, showing an average distance of 0.22 from all other BioProjects.    76 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2020. ; https://doi.org/10.1101/2020.03.25.007666doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.25.007666
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

After clustering at 0.05 MASH distance, a parameter value intended to keep only one sample in cases 77 

where more were highly similar, we ended up with 2,311 metagenome samples covering all 58 78 

BioProjects.   79 

 80 

Figure 2. Sample MASH distances within and between BioProjects. a. Boxplots illustrating the distribution of MASH distances 81 

between samples within each BioProject. The BioProject accession is used as a label, and the color gradient indicates the size, 82 

i.e., the number of samples in each. b. Average linkage hierarchical clustering of 58 BioProjects. Labels indicate the continent of 83 

origin: EU – Europe, AS – Asia, NA – North America, AS – Australia, AF – Africa, SA – South America, and P stands for Primates. 84 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2020. ; https://doi.org/10.1101/2020.03.25.007666doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.25.007666
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

Except for the single primate BioProject (BioSample), each BioProject is listed in colored font according to the continent from 85 

which it originates. No severe clustering of samples based on origin is detected. 86 

From genomes to HumGut collection 87 

From 489,710 genomes in total, 163,693 qualified for inclusion in HumGut. The qualified genomes were 88 

at least 95% contained within at least one reference metagenome (inferred by >340 shared hashes). The 89 

most prevalent genomes, i.e., the genomes contained in most metagenomes, belonged to genus 90 

Bacteroides, led by B. vulgatus. 91 

We checked the fraction of the recently published cultivated human gut bacteria genomes and MAGs 92 

that contributed to HumGut (Figure 3). Some genomes exhibited a high score (horizontal axis), but the 93 

vast majority of them achieved rather low scores. This was especially evident for the MAGs in the SGB 94 

and IGG collections. We also checked the genomes of non-human-gut-bacteria, which, as expected, 95 

resulted in low scores in the MASH screen. 96 

 97 
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Figure 3. Cumulative MASH screen score histogram for newly published human gut bacterial sequences (shown in blue and grey), 98 

in addition to genomes described to not reside in the gut environment (shown in gold). The percentages in the titles represent the 99 

fraction of genomes scoring a k-mer threshold of at least 341 in at least one metagenome. The X-axis, which was square-root-100 

transformed, shows the summed number of >340 shared k-mers. Y-axis indicates the number of genomes per each set. The red 101 

line on each panel represents the threshold that separates the genomes that did not get qualified for HumGut (on the left) from 102 

the ones qualified (on the right).  103 

The contribution of qualified genomes to HumGut is presented in the supplementary material (Figure 104 

S1). 105 

We performed clustering of genomes based on sequence similarity (MASH distance), using the top-106 

ranked genome as a cluster centroid. By applying various MASH distance (D) thresholds, we created 107 

different subsets of HumGut collections (Table 1). Only cluster centroids were used to build the 108 

collections. 109 

Table 1. The number of genome clusters at different levels of MASH distance thresholds 110 

MASH distance threshold (D) Number of genome 

clusters 

Number of unique 

Taxonomy IDs 

 0.00 163,693 16,016 

 0.01 35,485 4,299 

 0.02 18,085 2,562 

 0.03 9,662 1,790 

 0.04 6,382 1,404 

 0.05 4,779 1,201 

 111 

Classifying the metagenome reads 112 

We used our six HumGut collections, in addition to the standard kraken2 database, to classify the 113 

metagenomic reads from the 2,311 downloaded samples. On average, there were 50.1% unclassified 114 

reads when using the standard kraken2 database, while the average dropped substantially when any 115 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2020. ; https://doi.org/10.1101/2020.03.25.007666doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.25.007666
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

one of the HumGut collections was used (Figure 4a). On average, only 3.23 % of the reads remained 116 

unclassified when HumGut_00 was utilized, marking a significant increase in recognized reads, with an 117 

obvious potential for improved classification accuracy. In addition, HumGut k-mer database sizes were 118 

smaller than the standard kraken2 database of k-mers, reflecting a lower computer memory needed to 119 

perform the analysis (Standard = 39 GB, HumGut_05 = 19 GB).  120 

Analysis of additional 100 gut metagenome samples, not part of the reference set, showed similar 121 

results regarding the number of recognized reads: 39.5% unclassified reads on average when Standard 122 

database was used, 2.1% with HumGut_00 usage (Figure 4b).  123 

 124 

Figure 4. The performance of HumGut versions in comparison to the standard kraken2 database. a. Boxplot showing the 125 

distribution of unclassified reads for the 2,311 analyzed reference metagenome samples. The dashed line represents the k-mer 126 

database sizes. Every database version includes standard human, viral, and fungal sequences, in addition to database-specific 127 

(sub)sets of bacteria, and the difference in size is only due to differences in the latter. b.  Classification of an additional 100 human 128 

gut metagenomes, not part of the reference set. Each dot represents a sample. The results for the same sample analyzed with 129 

different database versions are connected with a line of the same color. 130 
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Taxa abundances 131 

We used the bracken software, and the kraken2 results, to re-estimate species abundance in the 2,311 132 

classified human gut metagenomes. This task was performed using the HumGut_01 version as a trade-133 

off between required computer memory and the resulting numbers of unclassified reads.  134 

We noted that the most abundant species was the uncultured Clostridiales bacterium (NCBI taxonomy ID 135 

172733), present in 99% of the samples with a 9.82 % average abundance. We also noted that 41 of 100 136 

top species were annotated as “uncultured,” i.e., MAGS (Supplementary material, Figure S2).  Our 137 

previous clustering results indicated that many of these MAGS, represented by the same taxonomy ID, 138 

belonged to several hundred different clusters at D = 0.05 threshold (representing species delineation). 139 

This suggested that although they shared names and taxonomy IDs, they could, in fact, represent several 140 

hundred different species. To ensure inclusion of results reflecting only true abundance /prevalence of a 141 

single species, all “uncultured” species were therefore excluded from the bracken results.  142 

We compiled a list of top remaining species. We found that there were 129 species present in more than 143 

90% of the samples, suggesting that they represent a core community of healthy human gut microbiota. 144 

Unsurprisingly, the list was capped by Bacteroides vulgatus with 3.21 % average abundance, followed by 145 

Bacteroides uniformis at 2.42 %. All abundances were computed as readcount per genome megabase, 146 

reflecting cell abundances rather than the amount of DNA from each taxon in a sample.  147 

There was a high correlation between the core species average abundances based on their continent of 148 

origin. A high correlation, as presented in Figure 5, was primarily observed between samples coming 149 

from Europe (n = 879), Asia (n = 840), and North America (n = 344) (Pearson R > 0.9, P-value < 0.05), 150 

showing that the core community is highly stable and geography-independent. The weakest linear 151 

relationship was observed between samples originating from Africa (n = 167) and North America (R = 152 
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0.79). We did not include samples from Australia (n = 20) and South America (n = 61) because of their 153 

small sample sizes.  154 

A list of top species found in > 80% of infants is presented in the supplementary material (Figure S3).  155 

Data on the participation of non-bacterial reads and the distribution of reads at the phylum level are 156 

presented in the supplementary material (Figures S4, S5). 157 
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 158 

Figure 5. Average abundance scatterplots for the most prevalent healthy human gut bacterial species, 129 in total, found present 159 

in > 90% of samples worldwide. Each dot represents a bacterial species, and axes show their average abundance in respective 160 
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continents (depicted in axes’ titles).  Samples originating from Europe, Asia, and North America showed a high Pearson’s 161 

correlation (R > 0.9). Both axes for all panels were square-root-transformed to aid visualization; however, the axes’ ticks reflect 162 

the actual abundances. 163 

We went further to calculate the number of reported species per sample by first rarefying the number 164 

of reads to the lowest depth found in our samples. We found that when MAGs were included, on 165 

average, there were 1,195 species per sample. The range of the number of species was from 108 to 166 

2,250. The lowest extreme was found mainly in infants. When MAGs were removed, the average 167 

number of species dropped to 999, while the range of species was from 86 to 1,999. 168 

Again, we wanted to check if the 2,311 metagenomes clustered together based on geography, using 169 

species abundances for comparison. We generated PCA plots based on the species’ read counts, as 170 

shown in Figure 6. We found that African and South American samples (exclusively represented by 171 

samples originating from Peru) showed closer positioning in the PCA ordination plot (left panel) 172 

compared to samples from other continents. As expected, the clustering showed a gradient when 173 

considering the sampled person’s age, i.e., infants showed a distinctly different composition. Samples 174 

from Europe, Asia, Australia, and North America did not form distinct clusters or gradients. The PCA 175 

loadings (right panel) show that Prevotella species were more abundant in Peruvian and African 176 

samples. In contrast, the Bacteroides species lay on the opposite side of the plot, indicating a negative 177 

correlation to the former. Infant samples were more abundant in Escherichia species.  178 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2020. ; https://doi.org/10.1101/2020.03.25.007666doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.25.007666
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

 179 

Figure 6. PCA score plot and loading plot. The left panel shows a PCA ordination plot, where each dot marks a metagenome 180 

sample. Color and marker indicate the continent and age group. The right panel shows the corresponding PCA loadings, where 181 

each dot is a species. The colors reflect some highlighted genera. 182 

Discussion 183 

All HumGut versions showed superior performance in terms of assigned reads compared to the standard 184 

kraken2 database, while demanding far less computational resources. We consider this to be a strong 185 

argument in favor of HumGut’s comprehensiveness and utility. Classifying a record-high proportion of 186 

reads per sample, HumGut aids the accuracy of taxonomic classification, which in turn facilitates a next-187 

generation exploration of the human gut microbiome.    188 

To the best of our knowledge, HumGut is the only validated, publicly available genome collection that 189 

can serve as a global reference for bacteria inhabiting the gut of healthy humans, highlighting its 190 

importance for future gut microbiome studies (available for download in 191 

http://arken.nmbu.no/~larssn/humgut/index.htm). 192 

Our analysis showed that the diversity of gut samples across the world is not profoundly affected by 193 

geography; therefore, having a global genome collection like HumGut is not only necessary, but 194 
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reasonable. We found 129 bacterial species present in more than 90% of the samples, regardless of the 195 

country of origin. This group of species, led by Bacteroides vulgatus, represents what we think is the 196 

core human gut bacterial community.  197 

Having B. vulgatus head the list was not surprising for us, considering that top-scoring genomes in our 198 

collection belonged to this species as well. B. vulgatus has commonly been found in human guts 14; 199 

however, its global prevalence, or the global prevalence of any bacterial species for that matter, was 200 

previously impossible to establish. We believe that by revealing the core human gut microbiome and the 201 

average number of species per individual (ca. 1,000), we cast light onto a crucial aspect of human health 202 

that can serve as a pillar for future diagnostic interventions.  203 

Although samples shared hundreds of species regardless of their continent of origin, our analysis 204 

showed that samples originating from Africa and South America were rich in Prevotella species and poor 205 

in Bacteroides, which made them cluster in our principal component analysis. A Prevotella – Bacteroides 206 

antagonism and their correlation to lifestyle and diet have long been described in literature15,16. Our 207 

results are, therefore, consistent with these findings. 208 

It is essential to state that these results do not consider species represented by MAGs. We decided not 209 

to report their abundance after observing that such genomes formed several hundred different clusters 210 

at the D = 0.05 threshold level, i.e., they had been assigned the same taxonomic species ID but scattered 211 

into hundreds of different clusters with 95% sequence identity. We consider these genomes to be an 212 

essential component of our collection. However, we believe that their current NCBI taxonomy IDs must 213 

reflect their individuality before we can include them in the characterization of gut microbiome 214 

taxonomy and abundance analysis. This will especially be important for our future work of linking 215 

functions to clusters based on the genomes they harbor.  216 
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Not all recently published human gut genomes and MAGs (retrieved specifically from human gut 217 

samples) qualified for HumGut inclusion, and many of those included were encountered in a limited 218 

number of metagenomes. This seemed to be the case, especially for many MAGs published by Nayfach 219 

et al. (2019) and Pasolli et al. (2019). This may be due to several reasons, but one is, of course, that re-220 

constructing genomes from short-read metagenome data is still a difficult task, risking the generation of 221 

poor-quality MAGs. Another contributing factor may be genomes representing unique microorganisms 222 

found in a limited number of individuals throughout the world. This raises the question of whether it is 223 

sensible to solely depend on locally re-constructed MAGs when it comes to comparing the microbiome 224 

composition of healthy individuals against diseased ones. We believe that using a unified and stable 225 

HumGut collection as a reference will lead to more reproducible science.  226 

We note that the decision regarding which version the HumGut collection to employ depends on users’ 227 

computational resources as well as the level of taxonomic resolution required. As mentioned above, we 228 

found a substantial genomic diversity in genomes assigned to the same taxonomy ID. We also saw many 229 

cases of the opposite, where even tight clusters of highly similar genomes sometimes come with many 230 

different taxonomy IDs. This suggests that using the highest resolution, with more than 160,000 231 

genomes and 16,000 taxonomy IDs, is probably a waste of effort for most applications. On our website, 232 

we have prepared files for building a custom kraken2 database where all HumGut clusters also have 233 

been given artificial ‘taxonomy IDs,’ making it possible to classify to clusters instead of taxa. HumGut will 234 

continuously be updated as more genomes, and human gut metagenomes will become available for the 235 

public. As future work, we will also extend our approach to disease-associated genomes and 236 

metagenomes, in addition to other species found in human guts. 237 

In conclusion, we believe that by using HumGut as a reference, the scientific community will be one step 238 

closer to method standardization sorely needed in the field of human gut microbiome analysis, and that 239 
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the discovery of potential microbiome markers will be facilitated with higher certainty in less time and 240 

computational resources.  241 

Methods 242 

Human gut reference metagenomes 243 

A set of publicly available human gut metagenome samples was collected first. These were used for 244 

ranking all genomes in our search for human gut relevant genomes. 245 

A text search for all human gut microbiome samples at the Sequence Read Archive (NCBI/SRA, 246 

https://www.ncbi.nlm.nih.gov/sra) was performed. The list of hits was manually curated, keeping only 247 

samples annotated as healthy individuals. NCBI/BioProject accessions of these projects were used to 248 

locate the same data in the European Nucleotide Archive (EMBL-EBI/ENA, https://www.ebi.ac.uk/ena), 249 

from which all samples were downloaded as compressed fastq-files, using the Aspera download system 250 

(https://www.ibm.com/products/aspera). This resulted in 3,654 metagenome runs (samples) covering 251 

58 BioProjects. This collection contained more than 90 billion read pairs, covering human guts from all 252 

continents. In addition, 95 samples containing gut metagenome data from primates were also 253 

downloaded, only used as an outgroup for the comparison of the human gut samples. 254 

A subset of this collection was used as a reference group of samples. For many BioProjects, some 255 

samples tended to be very similar to each other. We presume this was due to persons sampled being 256 

from the same geographical sub-population, sharing genetics, lifestyle, etc., factors that may affect the 257 

human gut microbiome. To avoid too much bias in the direction of such heavily sampled sub-258 

populations, samples were initially clustered, then, from each cluster, one member was selected for our 259 

reference group. 260 
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From each metagenome sample, a MinHash sketch of 10,000 21-mers was computed using the MASH 261 

software 17. Singletons were discarded. Next, the MASH distances between all pairs of samples were 262 

calculated based on these sketches. A MASH distance close to 0 means two metagenomes are very 263 

similar, sharing many 21-mers. Next, hierarchical clustering with complete linkage was computed, and 264 

samples partitioned at a selected distance threshold. This means the resulting clusters have a 'diameter' 265 

no larger than this chosen threshold. The medoid sample from each cluster, i.e., the one with the 266 

minimum sum of distances to all members of the cluster, was retained as the reference sample 267 

representing its cluster.  268 

Genome collections 269 

The primary source of bacterial genomes was the NCBI/Genome, the GenBank repository at 270 

ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria/. At the time of writing, >427,000 genomes were 271 

downloaded from this site. In addition, recently published genomes, specifically obtained from human 272 

guts, were collected (Table 2). From the Metagenome-Assembled Genomes (MAGs), only the highest 273 

quality subsets, as annotated by the authors, were downloaded. In total, >486,000 genomes were 274 

considered. 275 

Table 2. Recently published genomes explicitly retrieved from the human gut 276 

Genome set Number of 

genomes 

Type References 

UMGS 27058 MAG Almeida et al. (2019)3 

IGG 23793 MAG Nayfach et al. (2019)5 

SGB 4933 MAG Pasolli et al. (2019)6 

ZOU 1523 cultivated Zou et al. (2019)4 

HGG 1354 cultivated Forster et al (2019)2 

 277 
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Genome ranking 278 

For all genomes, again, the MASH software was used to compute sketches of 1,000 21-mers, including 279 

singletons18. Based on the genome-sketches, the number of shared hashes (w) between a genome and 280 

each reference metagenome was computed using MASH screen 18. A high number of shared hashes 281 

between a genome and a metagenome sample means many 21-mers from the genome are also found in 282 

the metagenome sample. This indicates that the genome, or some close relative, is present in the 283 

sample. 284 

The MASH screen compares the sketched genome hashes to all hashes of the metagenome, and if a 285 

genome has identity I  to a genome in the metagenome, the binomial model means we expect to 286 

observe w shared hashes according to the equation  287 

 𝑤 = 𝑠 ∙ 𝐼𝑘  288 

where s is the sketch size (1,000), and k the length of the k-mers (21 in our case). Thus, for I = 0.95, we 289 

get w = 340.56, and we used the value w = 341 as a lower threshold for considering a genome as present 290 

in a metagenome, given that identity 0.95 is regarded as a species delineation for whole-genome 291 

comparisons 19. All w-values meeting this threshold were summed for each genome, resulting in a 292 

genome score, which was then used to rank them. The genome with the highest score was considered 293 

the most prevalent among the reference samples, and thereby the best candidate to be found in any 294 

human gut.  295 

Even if a genome is absent from the reference metagenomes, its w-value will not, in general, be 0, since 296 

some 21-mers will overlap by chance. To investigate this, a list of 126 genera reported by many 16S-297 

based studies to be found in the human gut were compiled. These represented seven different phyla 298 

(Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, Verrucomicrobia, Fusobacteria, and 299 

Synergistetes). From our GenBank-collection, and using the NCBI/Taxonomy database, all genomes from 300 
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all the other phyla (excluding these seven phyla) were collected. There were 8,290 such genomes in 301 

total, which we expected to be absent from the human gut, or at least present at very low abundance, 302 

thereby producing a low w-value. For each of these genomes, we also computed the shared hashes with 303 

the reference samples as described above.  304 

Genome clustering 305 

The genomes were clustered from the ranked list of all genomes. Many genomes were very similar, 306 

some even identical. Due to errors introduced in sequencing and genome assembly, it made sense to 307 

group genomes and use one member from each group as a representative genome. Even without any 308 

technical errors, a lower meaningful resolution in terms of whole genome differences was expected, i.e., 309 

genomes differing in only a small fraction of their bases should be considered identical. 310 

Again, the MASH software was used, and 1,000 21-mer sketches were computed for each genome, and 311 

the MASH distance between genomes was computed. The genomes were then grouped by the following 312 

greedy algorithm: Starting at the top of the ranked list, the first genome formed a cluster centroid and 313 

was removed from the list. Then, all other genomes with MASH distance below a given threshold to this 314 

centroid were assigned to this cluster and removed from the list. This was repeated for the remaining 315 

members of the list until all genomes were clustered. The centroid genomes formed the human gut 316 

genome collection. Using different distance thresholds produced various genome collections, i.e., using 317 

a threshold D will create clusters where no two centroids are closer than distance D from each other. 318 

Thresholds of 0.00, 0.01, 0.02, 0.03, 0.04 and 0.05 were used, each threshold giving a genome collection 319 

at gradually lower resolution. 320 

Classifications 321 

The kraken2 software was used for classifying reads from the metagenome samples. To see the effects 322 

of using a different database, the standard kraken2-database was used first. Next, custom databases 323 
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using the resolutions 0.00 up to 0.05 of the HumGut genome collection (see above) were made. In these 324 

databases, the standard libraries for the human genome, viruses, fungi, and vectors available from the 325 

kraken2 website were also included. Thus, only the prokaryotes (archaea and bacteria) were replaced 326 

with our HumGut genomes. All classifications were performed using default settings in kraken2. 327 

Since kraken2, like most other software for taxonomic classification, uses the Lowest Common Ancestor 328 

(LCA) approach, many reads are assigned to ranks high up in the taxonomy. The bracken software 20 has 329 

been designed to re-estimate the abundances at some fixed rank, by distributing reads from higher 330 

ranks into the lower rank, based on conditional probabilities estimated from the database content. For 331 

each kraken2 database (standard and the six HumGut versions) a bracken database was also created and 332 

used to re-estimate all abundances at the species rank. 333 

A Principal Component Analysis was conducted on the matrix of species readcounts for all metagenome 334 

samples, after the following transformation: All sample readcounts were rarefied to the lowest 335 

readcount (853,741), and a pseudo-count of 1 was added to all species before using Aitchison’s centered 336 

log-ratio transform 21,22 to remove the unit-sum constraint otherwise affecting a PCA of such data.  337 
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Supplement 429 

 430 

Figure S1. Participation of different genome sources in different clustering levels. The main source for clusters with D = 0.00 was 431 

GenBank, reflecting thusly the high proportion of genomes downloaded from there, rather than from other databases. As soon as 432 

clustering at 99% identity was performed (D = 0.01), MAGs and newly published cultivated genomes emerged, suggesting that 433 

they were different from one another in terms of sequence identity. Clustering at 95% (0.05) identity showed that the participation 434 

of GenBank genomes in the 4,779 genome groups was almost the same with the other MAG sources (~ 24%). Cultivated genomes 435 

– published by Zou et al (2019) and Forster et al (2019) – had a representation of ~1% each, IGG MAGs (Nayfach et al, 2019) 436 

comprised ~19%, ~21% of genomes originated from UMG MAGs (Almeida et al, 2019), while the biggest share belonged to SGB 437 

MAGs with ~35% (Passoli et al, 2019). 438 

 439 
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 440 

Figure S2. Top 100 abundant bacterial species in healthy human guts (MAGs included) 441 
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 442 

Figure S3. Top 50 abundant bacterial species that were encountered in > 80% of infants. 443 
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 444 

Figure S4. Boxplot of reads classified as non-bacterial. The mean percentage of reads classified as non-bacterial is lower than 445 

0.05% for HumGut, while reads classified as human were nearly 0.2% when the standard kraken2 database was used. Fungi were 446 

not part of the standard database. 447 

 448 
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Figure S5. Bar charts showing the relative abundance of reads classified in the phylum level. All HumGut versions were very 449 

consistent in their results while kraken2 standard database reported different proportions for these phyla. Relatively higher 450 

fraction of reads were classified as Actinobacteria and Proteobacteria when samples were analyzed with the standard database.  451 
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