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ABSTRACT 7 

Processing in cortical circuits is driven by combinations of cortical and subcortical inputs. These signals 8 

are often conceptually categorized as bottom-up input, conveying sensory information, and top-down 9 

input, conveying contextual information. Using intracellular recordings in mouse visual cortex, we 10 

measured neuronal responses to visual input, locomotion, and visuomotor mismatches. We show that 11 

layer 2/3 (L2/3) neurons compute a difference between top-down motor-related input and bottom-up 12 

visual flow input. Most L2/3 neurons responded to visuomotor mismatch with either hyperpolarization 13 

or depolarization, and these two response types were associated with distinct physiological properties. 14 

Consistent with a subtraction of bottom-up and top-down input, visual and motor-related inputs had 15 

opposing influence in L2/3 neurons. In infragranular neurons, we found no evidence of a difference-16 

computation and responses were consistent with a positive integration of visuomotor inputs. Our 17 

results provide evidence that L2/3 functions as a bidirectional comparator of top-down and bottom-up 18 

input. 19 

INTRODUCTION 20 

Learning the relationship between body movements and the resulting sensory feedback is one of the 21 

fundamental tasks that the nervous system performs. Predicting the sensory consequences of self-motion 22 

is a central component of feedback guided motor control and allows the brain to infer whether sensory 23 

stimuli are self-generated or externally generated (Crapse and Sommer, 2008). Exactly how the nervous 24 

system learns and represents the relationships between movement and sensory feedback, however, is 25 

still unclear. One of the brain structures critically involved in more complex forms of sensorimotor learning 26 

is neocortex. A ubiquitous feature of cortical areas is that they receive both bottom-up sensory-driven 27 

input, and top-down input that is thought to signal contextual and motor information. The primary visual 28 

cortex of mice receives both bottom-up visual input from the lateral geniculate nucleus, as well as top-29 
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down input from a variety of other cortical areas, including higher order visual cortices, retrosplenial 30 

cortex and anterior cingulate cortex. These top-down inputs have been shown to convey various non-31 

visual types of information, including eye-movement related signals (McFarland et al., 2015), spatial 32 

information (Fiser et al., 2016; Saleem et al., 2018), head-direction (Vélez-Fort et al., 2018), and 33 

locomotion-related signals (Leinweber et al., 2017). Integrating movement-related input with visual input 34 

could allow the cortex to make an accurate inference about how the animal is moving through the world. 35 

There are different ideas about the computational purpose of integrating bottom-up and top-down 36 

inputs. One idea is that the top-down input associated with locomotion may function to increase the 37 

signal-to-noise ratio of visual responses. This was based on the finding that locomotion results in an 38 

increase of visual responses (Niell and Stryker, 2010), as well as a general increase in membrane potential 39 

(Bennett et al., 2013; Polack et al., 2013). Neuromodulatory inputs are more active during locomotion 40 

(Larsen et al., 2018), with cortex-wide changes in extracellular potassium (Rasmussen et al., 2019), 41 

indicating that there is a locomotion-related state change within and across cortical circuits that is likely 42 

to underlie this increased gain of visual responses (Fu et al., 2014; Polack et al., 2013). A second idea is 43 

that V1 may integrate positively weighted sums of locomotion speed and visual flow speed to estimate 44 

an animal’s speed through the world (Saleem et al., 2013). This was based on the finding that neurons in 45 

V1 can also be driven in complete absence of visual input in the dark (Keller et al., 2012) and often have 46 

activity that correlates positively with both visual flow speed and locomotion speed (Saleem et al., 2013). 47 

Another idea is that layer 2/3 (L2/3) neurons use a difference between bottom-up visual input and a top-48 

down prediction to compute visuomotor prediction errors (Keller and Mrsic-Flogel, 2018). This was based 49 

on the finding that a subset of L2/3 neurons strongly respond to a sudden mismatch between visual flow 50 

feedback and locomotion speed (Keller et al., 2012; Zmarz and Keller, 2016). This last interpretation is at 51 

the core of the framework of predictive processing. One of the key features of this model are prediction-52 

error neurons, which receive two sources of input: top-down inputs that convey a prediction of sensory 53 

input, and bottom-up inputs that carry sensory-driven information. By comparing these inputs, prediction 54 

error neurons are responsive to differences between the two. To do this, top-down and bottom-up inputs 55 

could be compared using a divisive mechanism (Spratling, 2008; Spratling et al., 2009), or by a subtractive 56 

mechanism (Keller and Mrsic-Flogel, 2018; Rao and Ballard, 1999). A subtractive mechanism would predict 57 

that in any given neuron the weights of two types of input are opposing. If bottom up sensory input is 58 

excitatory, the top down input should be inhibitory, and vice versa.  59 
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The predictive processing framework postulates the existence of two types of prediction error neurons: 60 

positive prediction error neurons that subtract a top-down prediction from the sensory input, and 61 

negative prediction error neurons that subtract sensory input from the top-down prediction (Keller and 62 

Mrsic-Flogel, 2018; Rao and Ballard, 1999). The mismatch-responsive neurons found in L2/3 using calcium 63 

imaging are consistent with the latter type of neurons. Visual cortex receives bottom-up excitation and  64 

visually driven bottom-up inhibition (Attinger et al., 2017), as well as a diverse combination of excitatory 65 

and inhibitory top-down inputs (Gilbert and Li, 2013; Leinweber et al., 2017; Zhang et al., 2014). If the 66 

strengths of the two sources of input were balanced and opposing in individual L2/3 excitatory neurons, 67 

prediction error responses would arise simply as a result of a temporary imbalance between the two 68 

inputs.  69 

To test for the existence of a balance between top-down and bottom-up input in L2/3 and infragranular 70 

neurons, we performed intracellular recordings in visual cortex of mice exploring a virtual reality 71 

environment. We show that there are two types of responses to visuomotor mismatch in L2/3 excitatory 72 

neurons: hyperpolarizing and depolarizing. These two response types are associated with differences in 73 

electrophysiological properties, visual responses, and membrane potential dynamics during locomotion 74 

indicating they may be different neuron types. Moreover, the sign of the response to visual input and the 75 

sign of the response to locomotion-related input was inversely related, consistent with L2/3 computing a 76 

difference between the two inputs. By contrast, deep layer neurons did not show this characteristic, 77 

instead exhibiting positive signs of responses to both types of input. Thus, we demonstrate layer and 78 

neuron-type specific integration of sensory and motor-related inputs.  79 

RESULTS 80 

To assess subthreshold responses to visuomotor mismatch, we made blind whole cell recordings in visual 81 

cortex of awake mice, head-fixed on a spherical treadmill with locomotion coupled to visual flow feedback 82 

in a virtual reality environment (Figure 1A) (Leinweber et al., 2014). To ensure sufficient levels of 83 

locomotion during recording experiments, mice were habituated to this paradigm in several sessions prior 84 

to whole cell recordings (Figure 1B). During each whole cell recording experiment, the mouse first 85 

experienced full-field visual flow that was coupled to its locomotion. The coupling of visual flow to 86 

locomotion was interrupted by suddenly halting visual flow for 1 s at random times to generate 87 

visuomotor mismatch events (Keller et al., 2012). Subsequently, we decoupled locomotion and visual 88 

stimuli to measure the independent contributions of locomotion and visual flow on neuronal activity. 89 
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Visual stimuli consisted of full-field, fixed-speed flow of the virtual tunnel walls, presented at random 90 

times for 1s, regardless of the mouse’s locomotion behavior. We made whole cell recordings from a total 91 

of 54 neurons. We focused our analysis on putative excitatory neuron types by excluding neurons with 92 

high input resistance (greater than 100 MΩ), as well as neurons with a spike half-width below 0.6 ms 93 

(Gentet et al., 2012; Pala and Petersen, 2015). By doing this, we excluded 15% of neurons in total, leaving 94 

46 putative excitatory neurons in the sample (Figure S1A-C). We then restricted the dataset to 32 putative 95 

L2/3 excitatory neurons by analyzing only neurons recorded at less than 400 µm vertical depth from the 96 

brain surface.  97 

Subthreshold mismatch responses are widespread in putative L2/3 excitatory neurons and distinguish 98 

different neuron types 99 

We first assessed the responses of putative L2/3 excitatory neurons to visuomotor mismatch (15 ± 10 100 

(mean ± standard deviation) mismatch presentations per neuron). Consistent with mismatch responses 101 

described previously using calcium imaging, we found neurons with clear depolarizing responses to 102 

visuomotor mismatch stimuli (Figure 1C and 1D). The strengths of these responses were often correlated 103 

with the running speed of the mouse immediately preceding the mismatch event (Figures 1E- and 1F, S1D 104 

and S1E), with the depolarization becoming stronger with faster locomotion speeds. This is congruent 105 

with the responses reflecting the degree of error between running speed and visual flow speed, and 106 

consistent with the responses found using calcium imaging (Zmarz and Keller, 2016).  107 

In total, 17 of 32 neurons significantly responded with at least 1 mV average depolarization and 6 of 32 108 

neurons responded with at least 1 mV hyperpolarization to visuomotor mismatch (Figures 2A-C). We will 109 

refer to these neurons as depolarizing mismatch (dMM) neurons and hyperpolarizing mismatch (hMM) 110 

neurons respectively. The remaining neurons (9 of 32) did not exceed the average 1 mV threshold but 111 

were not unresponsive and often showed brief depolarizing responses at the onset and/or the offset of 112 

mismatch. Spiking responses were less common, with only 3 of 32 neurons displaying more than 0.25 113 

spikes per mismatch stimulus on average (Figure 2D). Supporting the idea that hMM and dMM neurons 114 

are different neuron types driven by different input pathways, we found that electrophysiological 115 

properties differed between dMM and hMM neurons. dMM neurons had more depolarized resting 116 

membrane potentials (mean ± SD, dMM: -77.7 ± 7.2 mV, hMM: -90.4 ± 3.7 mV, p < 0.01, Student’s t-test; 117 

Figure 2E), more depolarized spike thresholds (mean ± SD, dMM: -34.7 ± 4.4 mV, hMM: -41.1 ± 2.1 mV; p 118 

< 0.05, Student’s t-test; Figure 2F) and lower spike rates than hMM neurons (dMM: median spike count = 119 

0, IQR = 0 to 0.0008 spikes; hMM: median spike count = 0.05, inter-quartile range (IQR) = 0 to 0.11 spikes; 120 
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p < 10-7, Brown-Forsythe test; p < 0.03, Wilcoxon rank sum test; Figure 2G). We found no significant 121 

differences in input resistances or membrane time constants between the two groups (Figure S2), 122 

however, using multiple linear regression involving five variables (input resistance, membrane time 123 

constant, resting membrane potential, baseline firing rate and membrane potential variance when 124 

stationary), we could explain almost 70% of the variance in mismatch responses (R2 = 0.68, p < 0.001, 23 125 

neurons). Thus, most L2/3 neurons responded to visuomotor mismatches, and the sign of this response 126 

to mismatch correlates with differences in electrophysiological properties.  127 

Mismatch responses are anticorrelated with visual flow responses in putative L2/3 excitatory neurons 128 

The observed mismatch responses either could be computed in L2/3 neurons or could be inherited from 129 

other layers in visual cortex, or from other brain regions that provide input to L2/3 visual cortex neurons. 130 

If they are computed locally and arise from a reduction in bottom-up visually driven input, we would 131 

expect to see an opposing relationship between the sign of the mismatch response and that of the 132 

response to visual flow. If the bottom-up visual input is depolarizing, mismatch responses should be 133 

hyperpolarizing, and vice versa. To examine this, we analyzed the responses of all neurons to visual input 134 

in the form of brief periods of visual flow, presented independently from locomotion. Since the visual flow 135 

responses during locomotion and during stationary periods were correlated (Figure S3), we included all 136 

presentations in our analysis in order to maximize trial number. Of the 32 putative L2/3 we lost 5 neurons 137 

before being able to record visual responses. Consistent with an opposing response to mismatch and 138 

visual input, we found that on average dMM neurons responded to these visual flow stimuli with a 139 

hyperpolarization (Figure 3A-C), while hMM neurons responded to visual flow stimuli with depolarization 140 

(Figure 3C). Of 27 neurons recorded, only 3 exhibited spiking responses to visual stimuli and were all hMM 141 

neurons. The subthreshold response difference to visual input was significantly different in dMM and 142 

hMM neurons (mean ± SD, dMM: -0.26 ± 1.57 mV, n = 14; hMM: 3.42 ± 2.91 mV, n = 5; p < 0.003, Student’s 143 

t-test; Figure 3D). Across all neurons, we found a significant negative correlation between visual flow 144 

response and mismatch response (R = -0.50, p < 0.01, n = 27, Figure 3E).  145 

In addition to responses to visual flow onset, we found that many neurons also exhibited depolarizing 146 

responses or persisting depolarization after visual flow offset (Figure 3C). One interpretation of this is that 147 

the offset of visual flow results in separate excitatory input to L2/3 neurons. Consequently, mismatch 148 

responses would be a combination of the reduction of a bottom-up input correlated with visual flow and 149 

a parallel increase in input driven by the visual flow reduction. Correcting the mismatch responses for this 150 

visual flow offset response revealed an almost perfect balance between opposing visually driven 151 
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responses and mismatch responses across the population of L2/3 neurons (R = -0.84, p < 10-7, n = 27; 152 

Figure 3E; see Methods).  153 

In a subset of neurons, we tested the effect of varying the visual flow speed and presented four distinct 154 

visual flow speeds (Figure 3F). For dMM neurons, visually driven hyperpolarization scaled with visual flow 155 

speed, resulting in negative correlations between visual flow speed and membrane potential response 156 

(mean R value ± SD, = -0.54 ± 0.21, n = 6) (Figure 3G). By contrast, in hMM neurons the correlation of 157 

visually driven depolarization with visual flow speed was positive, consistent with an excitatory bottom-158 

up input correlated with visual flow speed (mean R value ± SD = 0.1 ± 0.1, n = 4; dMM vs hMM: p < 0.003, 159 

Student’s t-test). This balance between opposing visual and mismatch responses is consistent with 160 

mismatch responses arising from transient removal of bottom-up visual input. 161 

The influence of locomotion on membrane potential differs depending on mismatch response  162 

Computing visuomotor prediction errors requires a top-down input to convey a prediction of visual flow 163 

given movement. A potential source for such a top-down input to V1 is A24b/M2 (Leinweber et al., 2017). 164 

If this were the case, we would expect to find a motor-related input to a given neuron whose strength is 165 

correlated with the strength of the mismatch responses and anti-correlated with the strength of visual 166 

response. Thus, dMM neurons should receive motor-related excitation, while hMM neurons should 167 

receive motor-related inhibition (Keller and Mrsic-Flogel, 2018). Complicating this is the fact that 168 

locomotion is associated with a brain state change, likely driven by neuromodulatory inputs (Fu et al., 169 

2014; Polack et al., 2013). We first analyzed the membrane potential changes driven by locomotion and, 170 

consistent with previous work, found a systematic change in both mean membrane potential (Vm) and 171 

variance (Figures 4A-C and S4) (Bennett et al., 2013; Polack et al., 2013). The membrane potential became 172 

more depolarized (mean ± SD, ΔVm= 4.5 ± 2.5 mV, p < 10-10, 39 neurons, paired t-test) and less variable 173 

(mean ± SD, ΔVm SD= -1.8 ± 1.5 mV, p < 10-8, paired t-test) during locomotion, with only a small change in 174 

spike rates (mean ± SD, ΔFR = 0.11 ± 0.65 Hz, p = 0.31, paired t-test). Quantifying the membrane potential 175 

changes driven by locomotion onset in absence of coupled visual flow in the open loop condition, we 176 

found that all neurons displayed locomotion-related depolarization of membrane potential that began 177 

prior to locomotion onset (Figure 4C). This is consistent with locomotion onset responses observed in 178 

suprathreshold responses in V1 (Keller et al., 2012; Saleem et al., 2013), and is likely caused by 179 

neuromodulatory input (Polack et al., 2013). We also found that locomotion caused visual responses to 180 

become significantly more depolarizing (Figure S3), consistent with previous findings (Bennett et al., 181 

2013). Although both dMM and hMM neurons both depolarized during locomotion, locomotion onset 182 
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responses correlated positively with mismatch responses (Figure 4E). These results are consistent with a 183 

neuromodulatory state change causing widespread depolarization of neurons, alongside a separate 184 

locomotion-related drive that correlates with mismatch response. To better separate the effects of the 185 

state change from a potential direct locomotion-related drive, we analyzed the correlation between 186 

membrane potential and locomotion speed of the mouse only during times of locomotion, to minimize 187 

the influence of state transitions associated with locomotion on- and offsets (see Methods; Figure S6). 188 

When comparing responses in hMM and dMM neurons restricted to times of locomotion, we found that 189 

dMM neurons depolarized with increasing locomotion speed, while hMM neurons hyperpolarized with 190 

increasing locomotion speed (dMM: mean R value ± SD = 0.14 ± 0.13, n = 12; hMM: -0.06 ± 0.07, n = 5; p 191 

< 0.005, Student’s t-test; Figure 4E). This would be consistent with a locomotion-related excitation onto 192 

dMM neurons and a locomotion-related inhibition onto hMM neurons that both scale with locomotion 193 

speed, in addition to the state-dependent depolarization. Lastly, if mismatch responses are the result of 194 

opposing visual flow and locomotion speed inputs, the correlation of the membrane potential with 195 

locomotion and that of membrane potential with visual flow speed should have opposite sign. This was 196 

indeed the case, the membrane potential of dMM neurons exhibited negative correlations with visual 197 

flow and positive correlations with locomotion speed, and the opposite was true in hMM neurons (Figures 198 

4F and S6). Consistent with a balance of two opposing inputs, we found that in both hMM and dMM 199 

neurons the timing of the peak cross-correlation of membrane potential with locomotion and was well 200 

matched with that of the cross-correlation of membrane potential with visual flow. These data are 201 

consistent with L2/3 mismatch-responsive neurons computing a comparison between a visual flow input 202 

and a locomotion related input using balanced and opposing excitatory and inhibitory input. 203 

Infragranular layers positively integrate visual and motor-related input differently from L2/3 204 

Based on physiological and anatomical characteristics, it has been suggested that infragranular layers 5 205 

and 6 (L5/6) neurons perform a computational function different from L2/3 neurons. L5 neurons, for 206 

example, are strongly and broadly interconnected and appear to employ a dense firing code, while L2/3 207 

are more weakly interconnected, fire sparsely and exhibit more prominent lateral inhibition (Harris and 208 

Mrsic-Flogel, 2013). To examine whether mismatch responses are computed in a layer-specific fashion, 209 

we compared the L2/3 responses to those of neurons recorded at a depth of between 480 and 750 µm 210 

from the brain surface (Figure 5A), which we will consider putative L5/6 neurons (n = 14). The 211 

electrophysiological properties of these neurons differed from those of L2/3 neurons: L5/6 neurons had 212 

significantly higher input resistances, lower spike thresholds, and tended to spike more than L2/3 neurons 213 
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(Figure S5). These differences are consistent with those previously found between L5 and L2/3 in 214 

neocortex (De Kock and Sakmann, 2009; Lefort et al., 2009; Sakata and Harris, 2009). We next analyzed 215 

the responses of L5/6 neurons to visuomotor mismatch (Figures 5B and 5C). In stark contrast to L2/3 216 

neurons, depolarizing responses to mismatch were rare in L5/6 (2 of 14 neurons), while half of the neurons 217 

(7 of 14) showed a hyperpolarizing response (Figure 5D). This resulted in a significant difference between 218 

average mismatch responses in L2/3 and L5/6 (mean ± SD, L2/3: 0.8 ± 2.4 mV, 32 neurons; L5/6: -1.3 ± 2.2 219 

mV, 14 neurons; p < 0.01; Student’s t-test; Figures 5E and 5F). This paucity of depolarizing mismatch 220 

responses in L5/6 could be the result of a) a reduced bottom-up visual inhibition, b) reduced excitatory 221 

locomotion-related input, c) a lack of balanced and opposing tuning between these two sources of input, 222 

or d) any combination of the above. To examine these possibilities, we analyzed visual flow responses and 223 

found that most L5/6 neurons exhibited depolarizing responses to visual flow stimuli (Figure 5G). The 224 

distribution of average visual responses did not significantly differ from that of L2/3 neurons (mean ± SD, 225 

L2/3: 1.3 ± 2.8 mV, 27 neurons; L5/6: 2.0 ± 1.9 mV, 13 neurons; p = 0.47, Student’s t-test; Figures 5H and 226 

5I), although hyperpolarizing visual responses did not occur in L5/6 neurons (L2/3: 26%, L5/6: 0%). Next, 227 

we looked at locomotion onset responses in L5/6 neurons. As with L2/3 neurons, nearly all L5/6 neurons 228 

underwent a depolarization at locomotion onset (Figures 5J and 5K) and displayed similar changes in 229 

membrane potential dynamics (Figure S4). However, on average this depolarization was smaller in L5/6 230 

neurons than that of L2/3 neurons (mean ± SD, L2/3: 3.6 ± 2.3 mV; L5/6: 2.0 ± 2.7 mV; p = 0.09, Student’s 231 

t-test; Figure 5L). We also found that locomotion had distinct effects on the visual response in L5/6 versus 232 

L2/3 neurons: while locomotion caused visual responses to be more depolarizing in L2/3 neurons, there 233 

was no consistent effect in L5/6 neurons (Figure S3), similar to findings in somatosensory cortex (Ayaz et 234 

al., 2019). Finally, we compared how the membrane potential in L5/6 neurons scaled with locomotion 235 

speed and visual flow speed. Unlike for L2/3 neurons, the membrane potential correlated positively with 236 

visual flow speed and locomotion speed for most L5/6 neurons (10 of 12 Figures 6A and S5). Plotting the 237 

correlation of membrane potential with visual flow against that of membrane potential with locomotion 238 

speed for each neuron, we found a significant anticorrelation between these values in the L2/3 population 239 

(R = -0.67, p < 0.001, 22 neurons; Figure 6A). In the L5/6 population we found no significant correlation, 240 

with most neurons in the top right quadrant of positive correlation with both visual flow speed and 241 

locomotion speed (R = -0.26, p = 0.42, 12 neurons). Representing each neuron as an angle based on the 242 

two correlation values, we found that L2/3 showed a significantly higher proportion of neurons with 243 

angles corresponding to opposing signs of correlation (90-180 degrees and 270-360 degrees) than L5/6 244 

neurons (L2/3: 17 of 22 neurons; L5/6: 2 of 12 neurons; p=0.001, Fisher’s exact test; Figure 6B). The 245 
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distribution of these angles for L2/3 and L5/6 neurons were significantly more anticorrelated than 246 

expected by chance (p < 0.02, see Methods). Across neurons, the difference between the correlation of 247 

membrane potential with locomotion and the correlation of membrane potential with visual flow was a 248 

good predictor of mismatch responses in L2/3 (R = 0.59, p < 0.01), but not in L5/6 (R = -0.06, p = 0.84) 249 

(Figure 6C). Thus, the absence of depolarizing mismatch responses in L5/6 neurons is likely a result of a 250 

combination of a reduced bottom-up inhibition, and a lack of a balanced and opposing tuning between 251 

visual and locomotion related inputs. In sum, widespread, strong mismatch responses and the opposing 252 

visual and motor-related inputs necessary to compute them are a specific feature of L2/3 and are absent 253 

in L5/6 neurons, indicative of separate computational roles of L2/3 and L5/6 in visuomotor integration.  254 

DISCUSSION 255 

A canonical feature of cortical circuits is the pattern of long-range inputs that is conceptually often divided 256 

into two types of input: bottom-up and top-down. Bottom-up input originates in thalamus and areas 257 

thought to be at a lower level in a local hierarchy of cortical areas and generally conveys sensory 258 

information from the periphery. Top-down input originates from areas at a higher level of a local cortical 259 

hierarchy and is thought to provide contextual information and underlie phenomena such as selective 260 

attention (Busse et al., 2017; Engel et al., 2001; Makino and Komiyama, 2015; Zhang et al., 2014). In some 261 

computational frameworks, top-down inputs are thought to convey a prior or prediction of bottom-up 262 

input. In the predictive processing framework, top-down predictions are thought to be subtracted from 263 

bottom-up input to compute bidirectional prediction errors that are used to update an internal 264 

representation (Keller and Mrsic-Flogel, 2018; Rao and Ballard, 1999). By probing intracellular voltage 265 

responses to visuomotor mismatches we found that putative L2/3 excitatory neurons fall into different 266 

response classes consistent with either bottom-up or top-down excitatory drive. These neurons exhibit a 267 

visual flow input of matching strength and opposite sign of motor-related input, consistent with a 268 

subtractive prediction-error computation in L2/3. This was not a feature of L5/6 neurons, which largely 269 

displayed hyperpolarizing responses to mismatch and appeared to integrate positive valued locomotion-270 

related and visual inputs. These results are consistent with a model of visual cortex in which L2/3 271 

generates sensorimotor prediction errors, and L5/6 integrates L2/3 input to update an internal 272 

representation of the world (Keller and Mrsic-Flogel, 2018; Rao and Ballard, 1999).  273 

A classic example of prediction errors can be found in the dopaminergic reward system. Here, reward 274 

prediction errors are thought to be encoded bidirectionally in individual neurons with increases and 275 
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decreases in firing rate corresponding to a positive or negative prediction error (Schultz et al., 1997). In 276 

our recordings, at least two kinds of mismatch response are distinguishable in L2/3: those that 277 

hyperpolarize and those that depolarize during mismatch. These neurons also show distinct visual 278 

responses, relationships between membrane potential and locomotion speed, and electrophysiological 279 

properties. These two neuron types could correspond to positive and negative prediction error neurons, 280 

which signal that the sensory input is higher or lower than predicted, respectively. Splitting prediction 281 

error responses into two separate populations of neurons is necessary when baseline firing rates are low, 282 

as they are in L2/3 neurons.  283 

What fraction of neurons that respond to mismatch would we expect to find assuming the predictive 284 

processing framework were a useful model? A simple upper bound on this would be at most half of the 285 

prediction error neuron population, half responds to positive prediction errors, the other half to negative 286 

prediction errors. However, this assumes that we are probing the entire space of all visual prediction 287 

errors represented in V1. In our experiments, we probe prediction errors by breaking the coupling 288 

between forward locomotion and backward visual flow. This represents only a small fraction of total space 289 

of visuomotor coupling a mouse will experience. V1 receives top-down input that conveys predictions of 290 

visual input given locomotion (Leinweber et al., 2017), spatial location (Fiser et al., 2016), and visual 291 

surround (Keller et al., 2020). In addition, V1 receives inputs that convey vestibular signals (Vélez-Fort et 292 

al., 2018) and auditory signals (Ibrahim et al., 2016; Iurilli et al., 2012). In principle, all of these top-down 293 

inputs could be associated with a population of prediction error neurons selective for the particular type 294 

of error. Suggestive of this is the finding that L2/3 neurons that respond to the omission of a visual input 295 

a mouse expects to see based on spatial location are different from those that respond to mismatch (an 296 

absence of visual flow expected based on forward locomotion) (Fiser et al., 2016). Thus, one would not 297 

expect all prediction error neurons to respond to a single type of prediction error. Using extracellular 298 

recordings across the entire cortical depth likely dominated by infragranular responses, a previous study 299 

found that only 5 of 73 neurons were selective for the difference between visual speed and locomotion 300 

speed (Saleem et al., 2013). The fraction of L2/3 neurons estimated to respond to visuomotor mismatch 301 

events based on calcium imaging is in the range of 20% to 30% (Attinger et al., 2017; Keller et al., 2012). 302 

Each neuron likely has some tuning that relates to the top-down input distribution conveying the 303 

prediction used to compute the prediction error. This tuning would be reflected in a graded subthreshold 304 

response to one particular type of prediction error as a result of balanced bottom-up and top-down input, 305 

independent of whether the neuron has a spiking response to that particular prediction error (Figure 6D). 306 
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Consequently, one would expect to find that negative prediction error neurons are net bottom-up 307 

inhibited and top-down excited, and vice versa for positive prediction error neurons. We do indeed find 308 

that about half of the L2/3 neurons exhibit depolarizing mismatch responses consistent with a negative 309 

prediction error input balance. The question remains as to why we find an underrepresentation of 310 

neurons that are bottom-up excited and top-down inhibited. This is likely a consequence of the fact that 311 

we used mismatch responses, a negative prediction error, to classify the neurons. Using the unbiased 312 

measure of correlation with visual flow and locomotion (Figure 6B), we find a more symmetric split 313 

between the two types of responses. Testing the model proposed in the predictive processing framework 314 

will require addressing the question of whether L2/3 neurons that do not exhibit spiking responses in this 315 

paradigm, would code for a different kind of prediction error.  316 

In sum, we show that visual and locomotion-related inputs to L2/3 neurons in visual cortex underlie 317 

visuomotor mismatch signals, and that this computation is likely specific to L2/3. In addition, we find that 318 

there are two functional types of neurons whose responses are consistent with signaling either positive 319 

or negative prediction errors. We speculate that L5/6 neurons integrate over prediction error inputs by 320 

being net inhibited by dMM neurons and net excited by hMM neurons. It is conceivable that the two 321 

functional neuron types in L2/3 are associated with different gene expression profiles. Identifying such 322 

markers would allow us to test the hypotheses put forward in the predictive processing framework.   323 
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FIGURES 324 

  325 

Figure 1. Whole cell recordings during visuomotor coupling and mismatch.  326 

(A) Schematic of whole cell recordings at L2/3 depth and of the visuomotor virtual reality set up. 327 

(B) Mice were habituated on the setup for 5 to 7 days before whole cell recording experiments. 328 
Experiments consisted of an initial closed-loop phase, during which visual flow feedback was coupled to 329 
the mouse’s locomotion interspersed with sudden unpredictable visual flow halts (mismatches). In a 330 
second phase, visual flow was presented in 1 s pulses of visual flow independent of locomotion.  331 

(C) Top: Locomotion (purple) and visual flow (green) speeds during a visuomotor closed-loop session. 332 
Dashed lines mark zero speed. Visuomotor mismatch events are marked by an orange bar and shading. 333 
Bottom: Example membrane potential trace from a depolarizing mismatch (dMM) neuron.  334 
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(D) Average membrane potential response (top) and firing rate (bottom) histogram for mismatch trials for 335 
example neuron shown in C (average over 45 mismatch events). Shading indicates SEM. 336 

(E) Left: Average membrane potential response for the 10 mismatch events with highest locomotion 337 
speed (black) and the 10 mismatch events with lowest locomotion speed (gray), for the example neuron 338 
shown in C. Shading indicates SEM. Right: Scatter plot between average locomotion speed in 2 s prior to 339 
mismatch and membrane potential response to mismatch for 45 trials recorded in example neuron shown 340 
in C. Dashed gray line shows a linear regression.  341 
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   342 

Figure 2. Subthreshold mismatch responses are widespread in L2/3 and the direction of response 343 
correlates with electrophysiological properties. 344 

(A) Locomotion (purple), visual flow (green) and membrane potential (black) traces from a neuron with a 345 
hyperpolarizing response to mismatch. Dotted lines indicate 0 cm/s for visual flow (green) and locomotion 346 
(purple). Mismatch events are marked by an orange bar and shading. 347 

(B) Average membrane potential response to mismatch for the example neuron in A. Shading indicates 348 
SEM over 15 trials. 349 

(C) Top: Heatmap of average membrane potential (Vm) responses to mismatch from all L2/3 neurons. 350 
Neurons are sorted by average mismatch response. Neurons classified as depolarizing mismatch (dMM) 351 
and hyperpolarizing mismatch (hMM) are marked by orange and turquoise shading respectively. Bottom: 352 
Average response across 17 dMM neurons (orange), 6 hMM neurons (turquoise), and the remaining 9 353 
unclassified neurons (gray). Asterisks indicate example neurons shown in panel A, and Figure 1A. 354 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2020. ; https://doi.org/10.1101/2020.03.25.008607doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.25.008607
http://creativecommons.org/licenses/by/4.0/


15 
 

(D) Top: Heatmap of average firing rate during mismatch. Color coding and sorting as in C. Bottom: 355 
Average mismatch induced change spike count for the same groups of neurons as in C.  356 

(E) Resting membrane potential recorded just after entering whole cell recording mode for 5 hMM 357 
neurons, 13 dMM neurons, and 8 unclassified neurons. *: p < 0.05, **: p < 0.01, Student’s t-test. Box plots 358 
show median, quartiles, and range excluding outliers. 359 

(F) As in E, but for spike threshold. Note, only neurons with spontaneous spikes were included. *: p < 0.05, 360 
Student’s t-test. 361 

(G) As in E, but for baseline spike count in a window 2 s prior to mismatch onset. *: p < 0.05, Wilcoxon 362 
rank sum test.  363 

  364 
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 365 

Figure 3. Visual flow responses inversely relate to mismatch responses in L2/3 neurons. 366 

(A) Example membrane potential trace (black) recorded from a dMM neuron during visual flow 367 
presentations. Brief 1 s visual flow stimuli (shaded green) evoked hyperpolarization. Locomotion is shown 368 
in purple. 369 

(B) Average membrane potential response to visual flow stimuli for the example neuron in A. Gray shading 370 
indicates SEM over 42 trials. 371 

(C) Top: Heatmap of average membrane potential response to full-field visual flow stimuli across of 27 372 
L2/3 neurons. Responses are sorted according to mismatch response, as in Figure 2C. Gray shading marks 373 
neurons for which we did not have sufficient data in the open-loop condition. Bottom: Average response 374 
across 17 dMM neurons (orange), 6 hMM neurons (turquoise), and the remaining 9 neurons (gray). 375 
Asterisk indicates example neuron shown in panel A. 376 

(D) Average Vm responses to 1 s visual flow, compared for 5 hMM, 14 dMM, and 8 unclassified neurons. 377 
**: p < 0.01, Student’s t-test. 378 
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(E) Scatter plot between average visual response and average mismatch response (gray triangles) for 27 379 
neurons. For red data points, mismatch responses are corrected for visual flow offset responses by 380 
subtracting the average response to visual flow offset from the mismatch response. Dashed gray and red 381 
lines are linear fits to the respective data.  382 

(F) Left: Average response to visual flow stimuli of lowest two visual flow speeds (gray, 7 trials), and 383 
highest two speeds (black, 11 trials) for an example neuron. Shading indicates SEM over trials. Right: 384 
Scatter plot between visual flow speed and membrane potential response to visual flow for 18 trials of 385 
the example neuron. 386 

(G) Correlation coefficients between visual flow speed and membrane potential response compared for 6 387 
hMM neurons, 4 dMM neurons and 5 unclassified neurons. *: p < 0.05, **: p < 0.01, Student’s t-test. 388 

  389 
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 390 

Figure 4. The influence of locomotion on membrane potential differs depending on mismatch response.  391 

(A) Example membrane potential trace (black) from a neuron during locomotion onset (vertical dashed 392 
line) in the open-loop condition.  393 

(B) Average Vm response to locomotion onset (purple dashed line) for example neuron in A. Shading 394 
indicates SEM over 4 trials.  395 

(C) Top: Heatmap of average membrane potential responses to locomotion onset for all L2/3 neurons. 396 
Responses are sorted as in Figure 2C, according to the average mismatch response. Gray shading marks 397 
neurons for which we did not have sufficient data in the open-loop condition. Bottom: Average response 398 
across 9 depolarizing mismatch neurons (orange), 4 hyperpolarizing MM neurons (turquoise) and the 8 399 
remaining neurons (gray). Shading indicates SEM over neurons. 400 

(D) Average locomotion onset response (0 to 6 s after locomotion onset) plotted against mismatch 401 
response for 21 neurons. 402 

(E) Correlation coefficients between locomotion speed and Vm compared for 12 dMM neurons, 5 hMM 403 
neurons and remaining 5 neurons. **: p < 0.01, Student’s t-test. 404 
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(F) Average cross correlations between membrane potential and locomotion speed (black) or visual flow 405 
speed (gray). Negative time values indicate locomotion/visual speed preceding membrane potential. 406 
Shading indicates SEM over neurons.  407 
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 408 

Figure 5. Deep layer neurons show lack of depolarizing mismatch responses and visuomotor integration 409 
differs from L2/3 neurons. 410 

(A) Neurons recorded at a vertical depth greater than 480 µm were classified as putative L5/6 neurons. 411 

(B) Example membrane potential trace from a putative L5/6 neuron recorded during visuomotor coupling 412 
with mismatch stimuli (orange bar and shading).  413 

(C) Average membrane potential response to mismatch stimulus for the neuron in B. Shading indicates 414 
SEM over 13 trials. 415 

(D) Heatmap of average membrane potential responses to mismatch of all L5/6 neurons. Neurons are 416 
sorted by average mismatch response.  417 

(E) Average response to mismatch across all L5/6 neurons (black, 14 neurons), compared to the average 418 
response to mismatch across all L2/3 neurons (gray, 32 neurons). Shading indicates SEM over neurons. 419 
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(F) Average mismatch responses of L2/3 and L5/6 neurons. **: p < 0.01, Student’s t-test. 420 

(G) As in D, but for visual flow responses. 421 

(H) As in E, but for visual flow responses. 422 

(I) As in F, but for visual flow responses. 423 

(J) As in D, but for locomotion onset responses. 424 

(K) As in E, but for locomotion onset responses. 425 

(L) As in F, but for locomotion onset responses. 426 

427 
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  428 

Figure 6. L2/3 neurons, but not L5/6 neurons, integrate locomotion and visual inputs with opposing 429 
sign.  430 

(A) Left: Scatter plot of the correlation coefficient between Vm and visual flow speed, and the correlation 431 
coefficient between Vm and locomotion speed for 22 L2/3 neurons. Right: The same for 12 L5/6 neurons. 432 
Data points are colored by mismatch response. Gray dashed line is a linear regression to the data. Pale 433 
solid lines indicate average angles for hMM neurons (turquoise), dMM neurons (orange), and remaining 434 
neurons (gray). 435 

(B) Histogram of the angles in A for each neuron. The two histograms are significantly anticorrelated 436 
compared to shuffled datasets (p < 0.02, see Methods).  437 

(C) The difference between the correlation of membrane potential with visual flow and the correlation of 438 
membrane potential with locomotion speed is a good predictor of mismatch responses in L2/3 neurons 439 
(R = 0.59, vertical red line), but not in L5/6 (R = -0.06, vertical red line). The gray histograms are shuffle 440 
controls in which the locomotion and visual flow correlation values are scrambled across neurons.   441 

(D) Schematic of hypothesized L2/3 circuit. Excitatory neurons (triangles) in L2/3 have a range of 442 
responses to visuomotor mismatch from strong depolarization (orange) to strong hyperpolarization 443 
(green). The strength of this response reflects the balance between feedforward and top-down excitation 444 
and inhibition for this particular combination of visuomotor inputs. Locomotion causes both direct 445 
excitatory input and disynaptic feed-forward inhibition (via inhibitory interneurons, in gray), as well as a 446 
state change that affects neurons via neuromodulatory input. Width of arrows indicates relative strength 447 
of input.  448 
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SUPPLEMENTARY FIGURES 449 

  450 

Figure S1. Exclusion of putative interneurons and correlations between mismatch responses and 451 
locomotion speed. Related to Figure 1.  452 

(A) Distribution of input resistance (top) and spike half-width (bottom) of the entire dataset, regardless of 453 
recording depth. Marked in red are neurons we excluded as potential interneurons, either based on input 454 
resistance > 100 MΩ or a spike half-width < 0.6 ms. Neurons excluded using each criterion did not overlap. 455 
Excluded neurons showed other electrophysiological properties that differed from the remaining dataset 456 
and were consistent with interneuron properties (see B-C). 457 

(B) Comparison of baseline firing rate (during stationary periods) for putative excitatory neurons versus 458 
the excluded putative interneurons. Firing rates for putative interneurons were significantly more variable 459 
(p < 10-3, Brown-Forsythe test), and significantly higher than in putative excitatory neurons (p < 0.03, 460 
Wilcoxon rank sum test). 461 

(C) As in B, but for resting membrane potential. Membrane potentials in putative interneurons were 462 
significantly less variable (p < 0.05 Bartlett test), and significantly more depolarized than for putative 463 
excitatory neurons (p < 10-3, Wilcoxon rank sum test). 464 

(D) Average mismatch responses from a dMM neuron at different locomotion speeds. Top: Average over 465 
5 trials with lowest locomotion speed. Bottom: Average over 5 trials with highest locomotion speed. 466 
Shading indicates SEM. Right: Scatter plot between locomotion speed and mismatch response for the 467 
same neuron. Gray dashed line indicates the linear regression. 468 
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(E) Histogram of R values for the correlation between locomotion speed and mismatch response in 19 469 
neurons with more than 10 mismatch trials. In black are neurons with a significant correlation (p < 0.05).  470 
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 471 

Figure S2. Comparison of properties between dMM and hMM neurons. Related to Figure 2. 472 

(A) Input resistances across the three groups of neurons. There was no significant difference between 473 
hMM and dMM groups (p = 0.54, Student’s t-test). 474 

(B) Membrane time constants across the three groups of neurons. There was no significant difference 475 
between hMM and dMM groups (p = 0.75, Student’s t-test). 476 

(C) Voltage sag during a -0.4 nA current step (a measure of Ih current) across the three groups of neurons. 477 
Voltage sag was larger in the hMM neurons compared to dMM neurons (likely as a consequence of the 478 
more hyperpolarized resting membrane potentials), though this did not reach significance (p = 0.09, 479 
Student’s t-test). 480 

(D) Vertical depth of recording from brain surface across the three groups. There was no significant 481 
difference between hMM and dMM groups (p = 0.06, Student’s t-test). 482 

  483 
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 484 

Figure S3. Effect of locomotion state on visual flow responses. Related to Figure 3. 485 

(A) Heatmaps of subthreshold visual responses of L2/3 neurons sorted by mismatch response (as in Figure 486 
2C), during locomotion (left), or during stationary periods (right). Gray marks neurons for which we did 487 
not have at least five visual flow presentations. Orange shading indicates dMM neurons and turquoise 488 
shading indicates hMM neurons. 489 

(B) Average visual flow response of L2/3 cells (top) and L5/6 cells (bottom) during locomotion (purple) 490 
and stationary periods (black). Shading shows SEM. Only neurons with at least five trials in each 491 
category were included. 492 

(C) Scatter plot of visual flow responses during stationary periods and visual flow responses during 493 
locomotion periods for all neurons with at least five trials in each category.  494 

(D) Change in visual flow response between locomotion and stationary periods for L2/3 neurons and 495 
L5/6 neurons. L2/3 neurons showed a significantly more positive responses during locomotion 496 
compared to stationary periods (p < 0.02, paired t-test). L5/6 neurons did not show this effect (p = 0.78, 497 
paired t-test). Changes were higher for L2/3 neurons versus L5/6 neurons (p = 0.06, Student’s t-test). 498 

  499 
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 500 

Figure S4. Membrane potential dynamics and firing rate changes between stationary periods and 501 
locomotion. Related to Figure 4. 502 

(A) Mean membrane potential (Vm) during stationary periods versus that during locomotion. All neurons 503 
showed depolarization of membrane potential during locomotion.  504 

(B) As in A, but for the standard deviation (SD) in membrane potential. 505 

(C) As in A, but for firing rates (FR). Right plot shows an expanded version of the left. 506 

  507 
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  508 

Figure S5. Comparison of properties between putative L5/6 and L2/3 excitatory neurons. Related to 509 
Figure 5.  510 

(A) Input resistance was significantly higher in L5/6 neurons than in L2/3 neurons (p < 10-3, Student’s t-511 
test).  512 

(B) Spike threshold was significantly higher in L2/3 neurons than in L2/3 neurons (p < 0.03 Student’s t-513 
test).  514 

(C) Baseline firing rate was significantly higher in L5/6 neurons than in L2/3 neurons (p < 0.03, Wilcoxon 515 
rank sum test). 516 

(D) Heatmap of average spike counts aligned to mismatch events for L5/6 neurons. Heatmap is sorted 517 
according to subthreshold mismatch responses, as in Figure 4.   518 
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  519 

Figure S6. Additional data for cross correlations between visual flow, locomotion and membrane 520 
potential. Related to Figure 6. 521 

(A) Top plots: Average autocorrelations for locomotion (left) and visual flow (right). Heatmaps show cross-522 
correlations for each L2/3 neuron between locomotion and membrane potential (left), and visual flow 523 
and membrane potential (right). Heatmaps are sorted by mismatch response as in main figures. All 524 
analyses excluded stationary periods. Note for all panels, negative time values indicate a lag of Vm relative 525 
to locomotion/visual flow. Shading indicates SEM over neurons. 526 

(B) Average R2 for all cross correlations (L5/6 and L2/3 pooled, n = 34) for locomotion and Vm (top) and 527 
visual flow and Vm (bottom). Red 1 s window indicates the time delay window used to calculate the 528 
average R value for each neuron (as plotted in Figure 6) – approximately centered around the peak R2 for 529 
locomotion and visual flow separately. 530 

(C) As in A, but for L5/6 neurons. 531 

(D) Average cross correlations between locomotion speed (black) or visual flow speed (gray) and 532 
membrane potential for the 7 L5/6 neurons which hyperpolarize during mismatch (‘hyp’), and the 533 
remaining 5 neurons (‘other’, including 2 depolarizing neurons) L5/6 neurons.   534 
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METHODS 535 

Animals and surgery. All animal procedures were approved by and carried out in accordance with 536 

guidelines of the Veterinary Department of the Canton Basel-Stadt, Switzerland. Mice were anesthetized 537 

using a mix of fentanyl (0.05 mg/kg), medetomidine (0.5 mg/kg) and midazolam (5 mg/kg). Analgesics 538 

were applied perioperatively. Lidocaine was injected locally on the scalp (10 mg/kg s.c.) prior to surgery, 539 

while metacam (5 mg/kg, s.c.), and buprenorphine (0.1 mg/kg s.c.) were injected just after completion of 540 

the surgery. An incision was made in the skin above the cranium, and the periosteum completely removed 541 

from the skull. The surface of the skull was roughened with a dental drill. To optimize stability of the brain 542 

for later recordings, a blunt tool was used to apply force to one of the intra-parietal skull plates just 543 

anterior to bregma until small forces applied to either intra-parietal or parietal skull plates did not result 544 

in relative movement of the bones. In this position, layers of tissue glue (Histoacryl, B.Braun, Germany) 545 

were used to fuse the skull plates along the sutures. Tissue glue was then applied to the whole skull 546 

surface, and a custom-made stainless-steel head bar was glued to the skull. At this point, right V1 was 547 

marked at 2 to 3 mm lateral, just anterior to the lambdoid suture. Dental cement was used to fix the head-548 

bar in place and build a recording chamber around V1. Anesthesia was then antagonized (Flumazenil, 0.5 549 

mg/kg and Atipamezole, 2.5 mg/kg i.p.), and the mouse was allowed to recover for 3 days, with 550 

buprenorphine injected as before on days 1 and 2 following surgery.  551 

Whole cell recordings. Micropipettes (5 to 8 MΩ) were fabricated using a PC-100 puller (Narishige, Tokyo, 552 

Japan) from 1.5 mm diameter filamented borosilicate glass (BF150-86-10, Sutter, California, USA). A small 553 

1 mm craniotomy and durectomy were made over the right primary visual cortex (2-3 mm lateral from 554 

the midline, just anterior to the lambdoid suture) under isoflurane anesthesia. To stabilize the brain, the 555 

craniotomy was then covered in a layer (0.5 - 1 mm) of 4% low-melting point agar (A9793, Sigma-Aldrich), 556 

dissolved in bath recording solution. The recording chamber was then submerged in bath recording 557 

solution (126 mM NaCl, 5 mM KCl, 10 mM HEPES, 2 mM MgSO4, 2 mM CaCl2, 12 mM glucose, brought to 558 

pH 7.4 using NaOH, with a final osmolarity 280-290 mOsm). The mouse was allowed to recover from 559 

isoflurane anesthesia for at least 20 minutes head-fixed prior to recordings, which were only attempted 560 

after the mouse had displayed regular locomotion behavior. Whole cell recordings were performed blindly 561 

by lowering the micropipette, back-filled with intracellular recording solution (135 mM KMeSO3, 5 mM 562 

KCl, 0.1 mM EGTA, 10 mM HEPES, 4 mM Mg-ATP, 0.5 mM Na2-GTP, 4 mM Na2-phosphocreatine, brought 563 

to pH 7.3-7.4 with KOH, with an osmolarity 284 to 288 mOsm), through the agar and 50 µm into the tissue 564 

with high pressure (>500 mbar) applied to the micropipette. Micropipette resistance was monitored in 565 
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voltage clamp via observing the electrode current while applying 15 mV square pulses at 20 Hz. Brain 566 

entry was detected by a step change in the current (Margrie et al., 2002), and at this point the descent 567 

axis was zeroed. Once a depth of 50 µm from the surface was reached, pipette pressure was lowered to 568 

20 mbar and neuron hunting began. This consisted of advancing the electrode in 2 µm steps until a 569 

substantial and progressive increase in pipette resistance was observed for at least 3 consecutive steps. 570 

Pressure in the pipette was then rapidly lowered to 0 mbar, and often a small negative pressure was 571 

applied to aid in forming a gigaohm seal. Once this was achieved, the pipette was then carefully retracted 572 

by up to 4 µm, and break-in achieved using suction pulses. Electrophysiological properties were 573 

determined in the first 60 s of the recording using a series of current steps from -0.4 to 0.3 nA, and the 574 

evoking of action potentials was used to confirm the neuronal nature of the cell. All recordings took place 575 

in current clamp mode. Recordings were terminated if series resistance displayed a substantial increase, 576 

as monitored by 25 ms current pulses between -0.1 and -0.25 nA applied at 1 Hz throughout the recording. 577 

Pipette capacitance and series resistance were not compensated. Data were acquired and Bessel low-pass 578 

filtered below 4 kHz using a MultiClamp amplifier (Molecular Devices, California USA) and digitized at 20 579 

kHz via custom written LabView software. A junction potential of -8.5 mV was measured for our solutions, 580 

and all values reported in the manuscript have been corrected for this. On average, there was an access 581 

resistance of 58 ± 22 MΩ, and a recording duration of 14 ± 5 minutes. 582 

Virtual reality. During all recordings, mice were head-fixed in a virtual reality system as described 583 

previously (Leinweber et al., 2014). Briefly, mice were free to run on an air-supported polystyrene ball, 584 

the rotation of which was coupled to linear displacement in the virtual environment projected onto a 585 

toroidal screen surrounding the mouse. From the point of view of the mouse, the screen covered a visual 586 

field of approximately 240 degrees horizontally and 100 degrees vertically. The virtual environment 587 

presented on the screen was a virtual tunnel with walls consisting of continuous vertical sinusoidal 588 

gratings. Prior to the recording experiments, mice were trained in 1 to 2-hour sessions for 5 to 7 days, 589 

until they displayed regular locomotion.  590 

Visual stimuli. During the first segment of each recording, visual flow feedback was coupled to mouse’s 591 

locomotion speed. At random intervals averaging at 7 s, 1 s long pauses in visual feedback were presented 592 

(referred to as ‘mismatch’ stimuli). After at least 3 minutes of this protocol, the visual feedback was 593 

stopped (i.e. no visual flow coupled to locomotion speed), and instead 1 s full-field fixed-speed visual flow 594 

stimuli were presented at random intervals (mean ± SD, 8.1 ± 1.3 s), regardless of locomotion behavior. 595 
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In a subset of recordings (12 of 27), these stimuli all had one fixed visual flow speed, and in the remaining 596 

subset (15 of 27), four different visual flow speeds were presented in a pseudorandom sequence.  597 

Data Analysis. All data analysis was performed using custom written Matlab 2019a (Mathworks) code. 598 

Comparison statistics: For each unpaired two-sample comparison, first a Lilliefors test was used to test 599 

whether the distribution was normal. If so, a Bartlett test was used to determine whether the two samples 600 

had an equal variance. If both conditions were satisfied (p > 0.05), a Student’s t-test was used to determine 601 

whether there was a significant difference between the two groups. If either condition was violated, a 602 

Wilcoxon rank-sum test was used instead. To test for significant differences in variance in non-normally 603 

distributed samples, a Brown-Forsythe test was performed. Box and whisker plots are all drawn such that 604 

the box represents the inter-quartile range and median, and the whiskers represent the 10th and 90th 605 

percentiles. For correlations, as in Figures 3E, 4D and 6A, a method of fitting robust to outliers was used 606 

(Matlab function Fitlm) based on bisquare weighting of residuals. 607 

Cell numbers: In total, we recorded from 54 neurons. Of these, 6 neurons were excluded as putative 608 

interneurons, as they had an input resistance higher than 100 MΩ. A subset of interneuron types (e.g. 609 

somatostatin-expressing neurons) have been described to have high input resistances. Two neurons were 610 

excluded due to spike half-widths below 0.6 ms (putative parvalbumin-expressing neurons). Consistent 611 

with the excluded neurons being interneurons, other electrophysiological features differed between 612 

these excluded neurons and the remaining putative excitatory neurons, including higher baseline spike 613 

rates, more depolarized resting membrane potential and lower spike thresholds (Figure S1). 32 of the 614 

remaining 46 putative excitatory neurons were recorded at a vertical depth of less than 400 µm below 615 

the brain surface. We refer to these as putative L2/3 neurons. Of these, 28 underwent both the 616 

visuomotor coupled and open-loop parts of the protocol, and the remaining 4 underwent only the former 617 

part. Of the 28 neurons with both parts of the protocol, 16 were presented with visual stimuli of four 618 

different speeds, while the remaining 12 were presented with only one visual flow speed. The neurons for 619 

which we do not have data in the open-loop condition are represented as uniform gray on response 620 

heatmaps of visual flow and locomotion onset response. 14 neurons were recorded at vertical depths 621 

lower than 480 µm, with a maximum depth of 723 µm. We refer to these as putative L5/6 neurons. Of 622 

these, 13 underwent both the visuomotor coupled and open-loop parts of the protocol, and the remaining 623 

1 underwent only the former part. Of the 13 neurons with both parts of the protocol, 12 were presented 624 

with four different visual flow stimuli of different speeds, and the remaining 1 was presented visual flow 625 

stimuli of one speed only. 626 
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Electrophysiological properties: A series of current steps from -0.4 to 0.3 nA were applied to the neuron 627 

at least 3 times at the beginning of the recording to determine input resistance. The total resistance was 628 

calculated by averaging the voltage response for each current step value and measuring the slope 629 

between the average response 25-125 ms after current step onset against the injected current. This was 630 

done separately for negative and positive current injection, as the former consistently showed a lower 631 

resistance than the latter (in part due to voltage sag during negative current injection). Next, access 632 

resistance was calculated by taking the slope between the current injected and the voltage response in 633 

the first 1 ms. Input resistance was calculated as the difference between total resistance and access 634 

resistance. Resting membrane potential was defined where the current-voltage slope crossed the voltage-635 

axis (at zero current). Note that resting membrane potential would often depolarize by a few mV before 636 

stabilizing during the first 3-5 minutes of the recording, presumably as the intracellular solution diffuses 637 

throughout the neuron. As such, membrane voltages read out at later time points (e.g. in Figure S4) are 638 

different to the resting membrane potential assessed just after break-in. Voltage sag was calculated as 639 

the difference in the average voltage response to a -0.4 nA step 15 to 25 ms after current step onset and 640 

150 to 250 ms after onset. Note that holding voltage was not controlled, so resting membrane potential 641 

differences account for some of the variance (R2 = 0.24) in the voltage sag measurement. The membrane 642 

time constant was estimated by finding the time at which the voltage change first exceeded 1-1/e of the 643 

difference between 1 ms after current step (-0.1 nA) onset and steady state (estimated as the voltage in 644 

the window 45-50 ms after the onset).  645 

Spike properties and subtraction: Spikes were detected from peaks exceeding -30 mV during zero current 646 

application from across the entire recording. Spikes with an amplitude less than 30 mV were rejected. The 647 

remaining spikes were then averaged together to get an average spike waveform. The spike threshold 648 

was determined as the voltage value of the average spike waveform at the time of the peak rate of change 649 

of the slope of the spike waveform. Spike amplitude was measured as the difference between value of 650 

the peak of the spike and that of the threshold. For spike threshold analysis, only naturally occurring spikes 651 

were included in the analysis, and not the spikes evoked during current injection. Thus, for silent neurons 652 

these values are missing. Spike half-width was then measured as the duration the average spike waveform 653 

exceeded half of the spike amplitude. For all average membrane potential response plots, spikes were 654 

removed from membrane potential traces by replacing them with a linear interpolation from the 655 

membrane potential recorded 2 ms prior to spike peak, and that recorded 3 ms after spike peak. Voltage 656 

responses to the 25 ms current pulses used to track access resistance were removed similarly, by replacing 657 

them with a linear interpolation from the time just before the current pulse turned on to that 70 ms later.  658 
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Mismatch responses: Presentation of visual flow halts were independent of locomotion speed. As only 659 

halts during non-zero visual flow speed would result in a change, mismatch events were defined as visual 660 

flow halts that occurred during an average locomotion speed exceeding 4 cm/s in the 1 s prior to and 661 

during mismatch stimulus. To calculate average Vm responses, spikes and current pulses were subtracted 662 

as described above and the average voltage in a window 1 s prior to mismatch was subtracted from the 663 

Vm for each trial. The mean of all resulting Vm traces was then taken to generate the average response. 664 

The average response for each neuron was taken as the mean Vm response during the entire 1 s of 665 

mismatch presentation. The significance of this response was determined by performing a paired 666 

Student’s t-test between the average Vm 1 s before mismatch, and that in the 1 s during mismatch for all 667 

included trials. Spiking responses were computed based on the same mismatch events and generated by 668 

taking the mean spike count in 250 ms time bins aligned to mismatch onset. 669 

Locomotion dynamics and correlations with Vm: To measure membrane potential average and variance, 670 

as well as spiking activity during locomotion and stationary periods (Figure S4), only the data from the 671 

open-loop condition was used. The data was binned into 500 ms time bins, and the spike count, median 672 

membrane potential and locomotion speed were calculated for each time bin. The locomotion speed trace 673 

was smoothed in a 1 s time window prior to this calculation. For quantification of Vm during stationary 674 

periods, all Vm values corresponding to times when the locomotion speed was below a threshold of 4 cm/s 675 

were pooled, and the mean and standard deviation of these values were calculated for each neuron. The 676 

same was then done for locomotion periods where the locomotion speed exceeded the 4 cm/s threshold.  677 

Calculation of cross correlations (Figures 4E, 4F and S6): Cross correlations were calculated between 678 

membrane potential and locomotion for the open-loop condition only. For this, the locomotion trace and 679 

visual flow trace recorded at 1 kHz were smoothed using a 500 ms time window. Membrane potential was 680 

binned in 1 ms time windows. Times when the mouse was stationary (locomotion < 4 cm/s), and times 681 

where visual flow stimuli were presented (as well as 1 s after the presentation) were excluded. We then 682 

computed the cross-correlation between locomotion trace and membrane potential in a window of -2000 683 

to +2000 ms. A similar procedure was used for the cross correlation between membrane potential and 684 

visual flow, again excluding periods when the mouse was stationary. For each neuron, the overall 685 

correlation coefficient for the Locomotion-Vm correlation was taken as the average correlation for time 686 

delays between -500 and +500 ms, as this is where the cross correlation averaged across the L2/3 and 687 

L5/6 samples combined peaked (Figure S6B). For each neuron, the overall correlation coefficient for the 688 

visual flow-Vm correlation was taken as the average correlation for time delays between -1000 and 0 ms, 689 
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as this is where the cross correlation averaged across the L2/3 and L5/6 samples combined peaked (Figure 690 

S6B). Only neurons with at least 25 s of locomotion in absence of visual flow were included in these 691 

analyses (n = 22 L2/3, n = 12 L5/6). 692 

To compare correlations for L5/6 and L2/3 datasets (Figure 6), we calculated an interaction angle for each 693 

neuron as the arcus tangent of the ratio of the locomotion-Vm correlation to the visual flow-Vm correlation. 694 

Polar histograms were then made for the L2/3 and L5/6 datasets separately (Figure 6B). The neuron 695 

counts for each time bin were then correlated between L5/6 and L2/3 datasets, generating an R value of 696 

-0.11. To test if this anticorrelation was significant, L5/6 and L2/3 angles were pooled, and random subsets 697 

corresponding to the sample sizes of the L5/6 and L2/3 datasets were drawn out. An R value was then 698 

calculated for the correlation between the resulting two polar histograms. This was repeated 10000 times 699 

to generate a distribution of R values. Only 0.6 % of the distribution had a negative R value below -0.11.  700 

To determine how well the correlations for visual flow speed and locomotion speed predicted a neuron’s 701 

mismatch response (Figure 6C), we computed the correlation between the difference of the two R values 702 

(R valuelocomotion - R valuevisual) and the mismatch responses, for L2/3 and L5/6 neurons separately. As a 703 

shuffle control, we then randomly permuted the visual flow correlation and locomotion correlation values 704 

across neurons 100000 times to create a shuffle distribution.  705 

Visual responses: Visual onsets were defined as e the visual flow trace crossing a threshold of 0.8 cm/s. 706 

For average visual responses, the membrane potential for each presentation was baseline subtracted by 707 

the average Vm in the 1 s prior to visual flow onset. The response was then averaged across all trials, 708 

regardless of locomotion behavior. For the subset of neurons which were shown four different visual flow 709 

speeds, responses were averaged regardless of visual flow speed. To determine the effect of locomotion 710 

on visual flow responses (Figure S3), visual flow presentations were separated according to locomotion 711 

speed: locomotion trials were defined as trials in which the average locomotion speed in the 1s prior and 712 

1 s during visual flow both exceeded 4 cm/s. Stationary trials were defined as trials in which the 713 

locomotion speed in these two epochs both were less than 4 cm/s. For correlations between visual flow 714 

speed and visual response, only trials in which the mouse was locomoting above 0.8 cm/s were included, 715 

and an R value for the correlation between the visual flow speed and membrane potential response across 716 

trials was generated for each neuron. 717 

Correlation between visual flow response and mismatch response: For the correlation between 718 

mismatch response and visual response across cells (Figure 3E), we first calculated the correlation 719 
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between the mismatch response (as averaged across the 1 s of mismatch) versus the visual response (as 720 

averaged across the 1 s of visual response). To account for any response to visual flow offset, we took the 721 

visual offset response as the average membrane potential response in the 1 s after visual flow offset, 722 

normalized to the average membrane potential in the 1 s prior to visual flow onset. This visual flow offset 723 

response was then subtracted from the mismatch response, and the correlation was calculated between 724 

the resulting values and the visual flow response. 725 

Locomotion onset responses: Locomotion velocity was first smoothed using a 1 s time window. To 726 

determine the time of locomotion onsets, we detected where the smoothed locomotion velocity crossed 727 

a threshold of 0.8 cm/s. We then excluded any onsets where the smoothed locomotion velocity 1 s prior 728 

exceeded 2.5 cm/s, and the velocity 1 s after onset was less than 2.5 cm/s. Average locomotion onset 729 

responses were then calculated for each neuron where there were at least 2 locomotion onsets. These 730 

were normalized by subtracting the average membrane potential in the 2.5 s prior to locomotion onset 731 

for each trial before averaging all traces. Locomotion onset responses were taken for each neuron as the 732 

average response 0-6 s after locomotion onset.  733 
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