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ABSTRACT 

 

Protein structures are crucial for understanding their biological activities. Since the outbreak 

of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there is an urgent need to 

understand the biological behavior of the virus and provide a basis for developing effective 

therapies. Since the proteome of the virus was determined, some of the protein structures could 

be determined experimentally, and others were predicted via template-based modeling 

approaches. However, tertiary structures for several proteins are still not available from 

experiment nor they could be accurately predicted by template-based modeling because of lack 

of close homolog structures. Previous efforts to predict structures for these proteins include 

efforts by DeepMind and the Zhang group via machine learning-based structure prediction 

methods, i.e. AlphaFold and C-I-TASSER. However, the predicted models vary greatly and 

have not yet been subjected to refinement. Here, we are reporting new predictions from our in-

house structure prediction pipeline. The pipeline takes advantage of inter-residue contact 

predictions from trRosetta, a machine learning-based method. The predicted models were 

further improved by applying molecular dynamics simulation-based refinement. We also took 

the AlphaFold models and refined them by applying the same refinement method. Models 

based on our structure prediction pipeline and the refined AlphaFold models were analyzed 

and compared with the C-I-TASSER models. All of our models are available at 

https://github.com/feiglab/sars-cov-2-proteins .   
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INTRODUCTION 

 

Protein tertiary structures are essential for understanding their biological mechanisms. Such 

insight at the molecular level, allows those proteins to be exploited as therapeutic targets by 

identifying either already approved drug molecules that could be repurposed or discovering 

new drug candidates via computational methods such as virtual screening. Since the SARS-

CoV-2 infection reached pandemic level since early 2020, there is now an urgent need for high-

resolution structures of this virus. As protein sequences for the virus proteome were determined 

quickly1, some of the protein structures could be obtained experimentally. However, 

experimental structures of many proteins are still not available to date, leaving prediction via 

computational methods as the only alternative. SWISS-MODEL2 could predict tertiary 

structure models for a subset of proteins by relying on template-based modeling techniques. 

since many of the genes in the SARS-CoV-2 genome are close homologs to proteins in other 

organisms with known structures. However, for some of the proteins, template-based modeling 

is not possible because of lack of experimentally determined close homologs. Recently, the 

prediction of tertiary structures for proteins where no template structures are available, has 

been advanced significantly via novel machine learning methods3. This approach predicts inter-

residue distances from multiple sequence alignment via deep learning. Using this approach, 

DeepMind applying the AlphaFold method3 to make predictions for six proteins, where close 

homolog structures are not available4. In addition, the Zhang group predicted models for the 

entire proteome5, including targets for which no homologs can be identified, by using the novel 

C-I-TASSER platform6, which is a combined method of contact-based and template-based 

modeling. 

 We also made predictions for those proteins which do not have close homolog 

structures and focused in particular on applying a high-resolution physics-based refinement 

protocol to improve the accuracy of machine-learning based models7. We followed two 

protocols: In the first, we generated initial machine learning-based models by using trRosetta8. 

In the second protocol we started from DeepMind’s AlphaFold models. Both sets of machine-

learning based models were subjected to our latest molecular-dynamics based refinement 

protocol9,10 to maximize model accuracy. Here we compare the resulting models with each 

other and with the predictions from C-I-TASSER. A particular focus is on establishing, which 

structural aspects are conserved based on consensus from different approaches and where 

significant uncertainty remains in the accuracy of the computer-generated models. All of our  
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predicted protein tertiary models are publicly available at https://github.com/feiglab/sars-cov-

2-proteins . 
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RESULTS 

 

We predicted structures of 10 proteins from the SARS-CoV-2 proteome, as summarized in Table 1. 

Protein models were generated initially from inter-residue distance predictions rather than template-

based modeling because of a lack of experimentally determined close homolog structures. The resulting 

models were then further refined by a molecular dynamics simulation-based refinement protocol to 

improve the physical realism at the atomistic level of the structures. We also applied the same 

refinement protocol to the models predicted by DeepMind’s AlphaFold method. The detailed 

procedures are described in METHOD section. We compared our models with the other available 

models, i.e. the original AlphaFold models and the predictions from the Zhang group. As shown in 

Table 1, our models and the models from the Zhang group provide more complete sequence coverage 

than the AlphaFold models.  

When we applied our latest refinement protocol to AlphaFold protein models, the structure 

changes upon refinement were moderate, usually less than 2 Å in Cɑ-RMSD. (Table 2) The most 

significant changes occurred mostly in loops and the relative orientation between secondary structure 

elements. For example, in Figure 1D, a loop structure was changed, and the relative orientations of an 

α-helix and two β-strands were adjusted with respect to the other secondary structure elements. As 

another example, in Figure 2D, an α-helix was moved to improve hydrophobic packing and salt bridges 

between charged residues. We found earlier that machine learning-based models can be improved at 

the atomistic level by physics-based refinement and we expect that to the extent that the general features 

of the initial models are correct, refinement resulted in improved models. 

When comparing the models from our protocol with the (refined) AlphaFold models and the 

models from the Zhang group, we find that the resulting models do not reach a high degree of consensus 

for most of the modeled proteins (Figures 1–7). This may be expected as the modeled proteins were 

very difficult to predict. However, there is consensus on some of the proteins. For the domain of Papain-

like proteinase (PL-PRO), residues 1763–1927, ours and AlphaFold’s model resemble each other with 

a Cɑ-RMSD of 2.96 Å. Moreover, for one of the domains of nsp4, residues 274–399, ours and 

AlphaFold’s model have the same topology, an α-helix bundle with the only significant difference being 

the orientation of the N-terminal helix (residues 274–309) that led to an overall difference between the 

structures of 8.27 Å in Cɑ-RMSD. Moreover, the membrane glycoprotein structure was also predicted 

with a similar topology between our protocol and AlphaFold with presumed trans-membrane N-

terminal helices in a similar orientation and a globular C-terminal domain for residues 117–203 with a 

similar β-strand topology. The difference between our model and the AlphaFold prediction was 8.69 Å 

in Cɑ-RMSD mainly because of the orientation of two beta-strands (residues 117–133). Except for these 

cases, none of the structures shared a same topology.  
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We evaluated MolProbity score11 for all available models (Table 3). Although this score does 

not indicate whether a model reflects the overall correct structure or not, it can tell if a given model 

satisfies basic protein stereochemistry or not. All of the models generated from our modeling pipeline 

has less than 1.5 MolProbity score. Especially, steric clashes and rotamer outliers, rarely exist. Most of 

the AlphaFold models also have good MolProbity scores, although there are sometimes a few numbers 

of steric clashes between atoms and some rotamer outliers. After refining those models, most of the 

poor local geometries could be resolved, and the resulting MolProbity scores after refinement of the 

AlphaFold models are very good. In contrast to these models, models from Zhang group have poor local 

geometries as measured by the MolProbity score. These models have numerous atomic clashes, poor 

side-chain conformations, and bad backbone dihedral angles that generally suggest poor 

stereochemistry.  
 
Table 1. Summary of the modeled proteins and comparisons of predicted residues with other available models 

Protein name RefSeq FeigLab AlphaFold Zhang 

nsp2 YP_009725298.1 1–638 1–345, 438–638 1–638 

nsp4 YP_009725300.1 1–500 1–489 1–500 

nsp6 YP_009725302.1 1–290 1–278 1–290 

PL-PRO (nsp3) YP_009725299.1 1260–1945 1571–1927 1–1945 

ORF3a YP_009724391.1 1–275 38–233 1–275 

Membrane 

glycoprotein 

YP_009724393.1 1–222 11–203 1–222 

ORF6 YP_009724394.1 1–61 N/A 1–61 

ORF8 YP_009724396.1 1–121 N/A 1–121 

ORF10 YP_009725255.1 1–38 N/A 1–38 

ORF7b YP_009725296.1 1–43 N/A N/A 

 

 
Table 2. Structure change of AlphaFold models upon refinement measured in Cɑ-RMSD 

Protein name Residues Structure change upon refinement [Å] 

nsp2 1–345 1.50 

438–638 1.86 

nsp4 1–273 1.79 

274–399 1.90 

400–489 0.80 

nsp6 1–278 2.01 

PL-PRO (nsp3) 1571–1762 1.12 

1763–1927 1.13 
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ORF3a 38–233 2.26 

Membrane glycoprotein 11–203 1.27 

 

 
Table 3. MolProbity scores for the modeled proteins 

Protein 

name 

FeigLab AlphaFold Refined AlphaFold Zhang 

nsp2 1.34 

(0.9 / 0.7% / 89.3%) 

1.68 

(4.8 / 1.7% / 96.3%) 

0.55 

(0.1 / 0.4% / 98.2%) 

4.41 

(281.87 / 7.2% / 68.6%) 

nsp4 1.13 

(0.3 / 0.9% / 90.6%) 
 

1.30 

(3.4 / 1.6% / 98.0%) 

0.73 

(0.3 / 0.0% / 97.3%) 

4.20 

(216.46 / 6.6% / 76.1%) 

nsp6 0.94 

(0.4 / 0.0% / 95.8%) 

1.28 

(1.8 / 2.9% / 98.2%) 

0.66 

(0.0 / 0.0% / 97.1%) 

5.12 

(292.67 / 34.9% / 38.5%) 

PL-PRO 

(nsp3) 

1.04 

(0.5 / 0.5% / 94.6%) 

1.25 

(2.2 / 2.2% / 98.9%) 

0.77 

(0.9 / 0.0% / 98.6%) 

4.18 

(215.81 / 6.5% / 77.2%) 

ORF3a 1.20 

(0.5 / 0.0% / 90.5%) 

2.40 

(6.0 / 5.1% / 90.7%) 

1.09 

(0.6 / 0.0% / 94.3%) 

4.10 

(66.68 / 12.9% / 52.4%) 

Membrane 

glycoprotein 

0.74 

(0.0 / 0.5% / 96.4%) 

1.38 

(1.9 / 3.7% / 99.0%) 

0.50 

(0.0 / 0.0% / 98.4%) 

4.55 

(95.65 / 28.6% / 44.1%) 

ORF6 0.50 

(0.0 / 0.0% / 98.3%) 

N/A N/A 4.02 

(31.79 / 25.0% / 49.2%) 

ORF8 1.38 

(1.0 / 0.9% / 89.1%) 

N/A N/A 4.45 

(86.1 / 24.3% / 45.4%)  

ORF10 1.00 

(0.0 / 0.0% / 91.7%) 

N/A N/A 3.50 

(17.6 / 17.1% / 72.2%) 

ORF7b 0.50 

(0.00 / 0.0% / 100.0%) 

N/A N/A N/A 

* Detailed geometric features for MolProbity score, clash score, rotamer outlier, and residues with backbone torsions in 

Ramachandran-favored regions are shown in parentheses. The clash score is the number of clashes per 1,000 atoms. Rotamer 

outlier and Ramachandran favored are percentages of residues with rotamer outliers and favored Ramachandran angles, 

respectively.  
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Figure 1. Protein models for nsp2: FeigLab (A), Zhang group (B), and AlphaFold models and their refined models 

for residues 1–345 (C) and 438–638 (D). Structures are shown in cartoon representation and colored in rainbow 

from blue (N-terminal) to red (C-terminal). (C and D) Refined AlphaFold models are shown in rainbow, while 

AlphaFold models are shown in grey. Significantly changed regions after refinement are indicated by red arrows.    
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Figure 2. Protein models for nsp4: FeigLab (A), Zhang group (B), AlphaFold models and their refined models 

for residues 1–273 (C), 274–399 (D), and 400–489 (E). See Figure 1. 

 

 

 
Figure 3. Protein models for nsp6: FeigLab (A), Zhang group (B), AlphaFold model and its refined model (C). 

See Figure 1. 
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Figure 4. Protein models for Papain-like proteinase (PL-PRO, nsp3): FeigLab (A), Zhang group (B), AlphaFold 

models and their refined models (C). Domains for residues 1260–1570, 1571–1762, and 1763–1927 are shown 

left, center, and right, respectively. See Figure 1. 

 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 28, 2020. ; https://doi.org/10.1101/2020.03.25.008904doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.25.008904
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 5. Protein models for ORF3a: FeigLab (A), Zhang group (B), AlphaFold model and its refined model 

(C). See Figure 1. 

 

 

 

 
Figure 6. Protein models for Membrane glycoprotein: FeigLab (A), Zhang group (B), AlphaFold model and its 

refined model (C). See Figure 1. 
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Figure 7. Protein models from FeigLab (A) and Zhang group (B). From the left to the right, protein models for 

ORF6, ORF8, ORF10, and ORF7b are shown. See Figure 1. 
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METHODS 

Structure models of SARS-CoV-2 proteins were predicted by inter-residue distance prediction-

based modeling, followed by molecular dynamics (MD) simulation-based refinement. We used 

trRosetta8 to predict inter-residue distance and orientations and build tertiary structure models. 

We also used AlphaFold models4 as starting models for MD-based refinement.  

 

Inter-residue distance prediction-based model preparation 

We applied the trRosetta method to generate inter-residue distance predictions and to build 

initial models for further refinement. The original machine-learning trRosetta pipeline was 

modified to be applied to multiple domain proteins. We iteratively searched sequences and 

predicted inter-residue distances where contact information was not enough to build a model 

until all the residues could be built or there was no contact information update. We built 10 

models for each protein, and the lowest energy structure was selected for the following 

refinement step.  

 In addition to trRosetta-based modeling, we took AlphaFold models from their web 

page (https://deepmind.com/research/open-source/computational-predictions-of-protein-

structures-associated-with-COVID-19) as another set of initial machine-learning based models.  

 

Molecular dynamics simulation-based refinement 

Our latest molecular dynamics simulation-based refinement protocol was applied to the protein 

models. The method is an improved version of our previous protocol used during CASP139. 

Generally, we followed our previously published iterative protocol, but without iterations. We 

ran more (10 trajectories) and longer (200 ns) simulations at 360 K instead of 298 K. At the 

scoring step, we used RWplus12 instead of Rosetta score13.  

 For two of the AlphaFold models, nsp2 and nsp4, the models were split into domains 

to reduce the computational cost. nsp2 was split into two domains based on its discontinuity: 

1–345 and 438–638. nsp4 was split into three domains by visual inspection: 1–273, 274–399, 

and 400–489.  
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