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Abstract

Motivation: Horizontal gene transfer (HGT) is a major source of variability in prokaryotic genomes. Regions
of Genome Plasticity (RGPs) are clusters of genes located in highly variable genomic regions. Most of
them arise from HGT and correspond to Genomic Islands (GIs). The study of those regions at the species
level has become increasingly difficult with the data deluge of genomes. To date no methods are available
to identify GIs using hundreds of genomes to explore their diversity.
Results: We present here the panRGP method that predicts RGPs using pangenome graphs made of all
available genomes for a given species. It allows the study of thousands of genomes in order to access the
diversity of RGPs and to predict spots of insertions. It gave the best predictions when benchmarked along
other GI detection tools against a reference dataset. In addition, we illustrated its use on Metagenome
Assembled Genomes (MAGs) by redefining the borders of the leuX tRNA hotspot, a well studied spot of
insertion in Escherichia coli. panRPG is a scalable and reliable tool to predict GIs and spots making it an
ideal approach for large comparative studies.
Availability: The methods presented in the current work are available through the following software:
https://github.com/labgem/PPanGGOLiN. Detailed results and scripts to compute the benchmark metrics
are available at https://github.com/axbazin/panrgp_supdata.
Contact: vallenet@genoscope.cns.fr and acalteau@genoscope.cns.fr
Supplementary information: None.

1 Introduction
Horizontal gene transfer (HGT) is a major mechanism that shapes gene
repertoires of bacterial species providing and maintaining diversity at
the population level (Ochman et al., 2000; Niehus et al., 2015). This
pervasive evolutionary process spreads genes between, potentially very
distant, bacterial lineages (Thomas and Nielsen, 2005) and is a significant
source of gene novelty (Treangen and Rocha, 2011). In prokaryotes,
HGT is promoted by three main mechanisms: conjugation, transformation
or transduction. Clusters of consecutive genes likely acquired by HGT
are commonly described as Genomic Islands (GIs) (Hacker and Kaper,
2000). GIs are part of the flexible gene pool of bacteria and may bring

an evolutionary advantage allowing adaptations to new environments or
bringing new pathogenicity capacities for instance (Hacker and Carniel,
2001). They are widely distributed in pathogenic and environmental
microorganisms outlining the interest that researchers have in studying
their evolution and functional impact on bacterial populations.

GIs are characterized by their large size (>10 kb), a usually different
G+C content compared with the rest of the chromosome for recent
acquisitions (Lawrence and Ochman, 1997), and are often associated with
mobile elements such as transposons, integrons, Integrative Conjugative
Elements (ICEs) and prophages. Many GIs insertion sites are associated
with tRNA-encoding genes and are flanked with repeat structures
(Dobrindt et al., 2004). Some of those insertion sites, called hotspots,
are more active than the rest of the genome in terms of acquisition rate
of new elements and tend to have a much more diverse gene content even
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between closely related individuals (Oliveira et al., 2017). Since GIs carry
so many genes of interest, countless methods have been published to detect
and analyze them (Langille et al., 2008; Lu and Leong, 2016; Bertelli et al.,
2018). These methods are often grouped into two categories: composition-
based methods and comparative genomic-based methods. A recent review
describes many of the methods that were developed in this field (Bertelli
et al., 2018) and benchmarks them using a curated dataset (Langille et al.,
2008).

Nowadays, a deluge of microbial genomes is available in public
databanks with more than half a million prokaryotic genomes in Genbank
(last accessed 2nd March 2020) (Sayers et al., 2019). In parallel,
environmental data made of Metagenome Assembled Genomes (MAGs)
or Single-cell Assembled Genomes (SAGs) are increasing dramatically.
Hence, conducting comparative genomics studies on hundreds to
thousands of genomes has become a challenge and can lead to millions
of pairwise comparisons requiring intensive computations for analysis.
Accurately identifying GIs in all of those genomes that may be incomplete
and fragmented is becoming crucial to get a global overview of the diversity
within species.

To tackle this challenge, methods based on pangenomes could be
the answer. The concept of pangenome corresponds to the entire gene
repertoire of a taxonomic group (Tettelin et al., 2005). A pangenome
can be described by two components: the core genome, which contains
genes shared by all individuals, and the accessory genome, which gathers
every other genes. Lately, multiple methods have been developed to study
pangenome structures and to perform comparative studies on hundreds of
genomes (Fouts et al., 2012; Page et al., 2015; Snipen and Liland, 2015;
Gautreau et al., 2020). Among them, the PPanGGOLiN method proposes
a representation of all genes of all genomes in a pangenome graph where
nodes represent gene families and edges represent genomic neighborhood
(Gautreau et al., 2020). The pangenome graph is divided using a statistical
model in three partitions that represent the occurrence of the gene families
as following : (i) the persistent genome which corresponds to genes that are
present in most individuals of the studied clade, (ii) the shell genome which
groups genes that are conserved between some individuals of the group
but not most and (iii) the cloud genome which corresponds to genes that
are rare within the population and found only in one or a few individuals.
The shell and cloud genomes are partitions of the accessory genome. The
persistent genome is conceptually similar to the core genome but it is
more adapted to large-scale genomic comparisons as it allows for missing
genes due to ponctual evolutionary loss events or technical reasons such
as assembly or gene calling artifacts (Gautreau et al., 2020).

As most newly acquired genes are expected to arise from HGT events
(Treangen and Rocha, 2011), it is expected that most of the genes included
in the shell and cloud genomes have a non-vertical origin and are either
part of GIs or plasmids. Here, we use the concept of Regions of Genome
Plasticity (RGP) to refer to regions composed of shell and cloud genomes
(Mathee et al., 2008; Vallenet et al., 2009; Ogier et al., 2010). We expect
RGPs to mostly consist of GIs or plasmids. In the case of significant
genome reduction in the studied species, regions that have been lost in some
individuals might be included in the shell genome and thus considered as
RGPs. While GIs have previously been studied in the scope of pangenomes
and were shown to include most of the variable genome in different species
(Kittichotirat et al., 2011; Zhu et al., 2019), so far no method uses the
concept of pangenome to predict them.

To study the evolution of GIs in a population, it may be of interest to
look at spots of insertion within a pangenome. The name spot of insertion
has been used previously to describe the variable genome of multiple
individuals that was located in-between the same core genes (Lescat et al.,
2009; Oliveira et al., 2017). A related concept can be found in the literature
in the name of flexible genomic regions (fGR) which is a group of flexible
genomic islands (fGI) (Chan et al., 2015), a term originally used to describe

the variable genome of different individuals which was located in between
the same core genes and involved in similar functions (Rodriguez-Valera
and Ussery, 2012). We will use the term spot throughout this paper and
we do not assume that genes in a same spot have related functions.

In the present paper, we propose a new method called panRGP which
detects RGPs and gathers them into spots of insertion to study the dynamics
of GIs. It is a comparative genomic-based method that uses a pangenome
graph reconstructed from hundreds to thousands of genomes of the same
species. We benchmarked panRGP along a selection of other tools against
a previously published dataset on GIs (Langille et al., 2008). Finally, we
illustrated its use on incomplete and fragmented genomes such as MAGs
in the context of the analysis of an insertion spot in Escherichia coli.

2 Materials and Methods

2.1 panRGP method

The panRGP method predicts RGPs from a query genome that is annotated
with a set of protein-coding genes. It uses as input a partitioned pangenome
graph that is built from the genomes of related organisms usually from the
same species. This graph is based on the PPanGGOLiN data structure
(Gautreau et al., 2020) where nodes are homologous gene families and
edges indicate a relation of genetic contiguity. The different steps for the
detection of RGPs are shown in Figure 1 and are detailed in subsections
2.1.1 and 2.1.2. Firstly, each gene of the query genome is assigned to the
pangenome partition of its gene family and thus classified as persistent,
shell or cloud. Secondly, a score is computed for each gene sequentially
along the genome. It is based on both the gene partition and the score of
the previous gene. Finally, RGPs are detected using the gene scores and
correspond to sequences of shell and cloud genes possibly interrupted by
few persistent genes. In addition, RGPs from different genomes can be
grouped in spots of insertion based on their conserved flanking persistent
genes using the pangenome graph as explained in subsection 2.1.3.

Fig. 1. Overview of the RGP detection method. The different steps of the RGP detection
method are presented. Boxes represent protein-coding genes and their color is indicative
of their gene families for the annotated genome and their pangenome partition for the
other genome representations. Dashed boxes indicate genes belonging to multigenic gene
families. In this example, two RGP are detected. RGP1 has a score of 5, and RGP2

a score of 4. n values indicate for each gene the number of upstream consecutive genes
classified as persistent. f(g) values indicate the result of a function that is used to compute
the gene score sg . In this example, the default values for p and v parameters are used and
are 3 and 1, respectively.
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2.1.1 Computation of initial gene scores
The initial step consists of assigning a score to each gene g,∀g ∈ C where
C is an ordered set of genes that are present on each contig of a genome
assembly. The gene scores sg are computed sequentially along the contigs
as follows:

sg = (sg−1 + f(g))+

sg−1 is the score of previous gene on the contig. If a gene has no previous
neighbor the sg−1 score is 0. f(g) is a function whose result depends on
the gene partition and on whether or not the gene belongs to a multigenic
gene family:

f(g) =

{
−(p)n if the gene is persistent and not multigenic

v + ε if the gene is shell, cloud, or multigenic

n is the number of consecutive persistent genes previously encountered
and any shell or cloud gene resets its value to 0. The p constant is used to
penalize the inclusion of persistent genes in an RGP whereas the v constant
promotes the inclusion of shell and cloud genes. ε is a constant set to 1/∞
that is used to obtain identical results regardless of the reading direction
of the contig. A gene family is considered as multigenic if it contains
duplicated genes in more that d% of the genomes in the pangenome graph.
The default values of p, v and d were determined empirically and set to
3, 1 and 5%, respectively. In the case of circular sequences, if at least one
gene had a score of 0, the algorithm continues after the end of the sequence
to reevaluate gene scores from the beginning until reaching a gene score
of 0 or reaching the last gene that had a score of 0 at the first pass.

2.1.2 Detection of RGPs and score updates
After all genes have been associated to a score sg , RGPs are detected using
the following algorithm on each contig.

• Step 1: initialization of a new RGP

- If no gene on the contig has a sg ≥ smin, stop here.
- Select the gene g with highest score sg (in case of equality, the gene

closest to the end of the contig is selected).
- A new RGP that ends at the selected gene g is created and the score
sg is assigned to the RGP.

• Step 2: extraction of the RGP

- Add previous genes to the RGP until reaching a gene with sg = 0.
- Set all the sg of the RGP genes to 0.
- Save the RGP if its length in nucleotides is ≥ lmin

• Step 3: score updates

- Recompute sg scores from the gene selected at step 1 until reaching
a gene with sg = 0.

- Go to step 1.

This algorithm results in the prediction of RGPs that correspond to ordered
sets of genes. A minimal gene score criterion smin is used as a threshold
to consider an RGP. Its default value is set to 4. In addition to smin, a
minimal length in nucleotides of an RGP lmin is defined and set to 3 000
by default.

2.1.3 Grouping RGPs into spots
From a set of genomes with predicted RGPs, spots are determined by
comparing their persistent flanking genes. At both ends of each RGP,
we select the c consecutive genes that are persistent and not multigenic.
These genes are ordered according to their distance from the RGP and then
converted into their corresponding gene family. The borders of an RGP is
thus defined as a pair of ordered sets of gene families. A graph G(V,E)

is built where each node v represents the borders of an RGP and each
edge indicates that they share similar sets of gene families. Two borders
vi and vj are similar if their first e gene families are identical or if their
ordered sets overlap by at least o families. If all borders of two compared
RGPs match, we add an edge between their corresponding nodes. Once
the graph is built, all connected components are extracted and corresponds
to the spots. Then, the list of associated RGPs are retrieved for each spot.
The default values of c, e and o are 3, 1 and 2, respectively. Spots are
associated to multiple metrics such as the numbers of RGPs, gene families
and different sets of gene families that compose the RGPs. RGPs that do
not have c consecutive persistent genes on both ends are not considered for
spot prediction. Either they are not complete as they end at contig borders
or they are plasmids and thus do not have a persistent context.

2.2 Benchmark protocol

To assess the reliability of GI detection by panRGP, we used two previously
published reference datasets (Langille et al., 2008) that were recently
updated (Bertelli et al., 2018). The C-dataset is made of 104 genomes
among 53 species from which GIs have been automatically predicted using
a comparative genomic method based on IslandPick (Langille et al., 2008).
The L-dataset contains 6 genomes whose GIs have been curated. While it
does not cover as much microbial diversity, it contains literature-curated
GIs rather than automatically detected ones which makes it a much more
reliable source of information. Genomes of the L-dataset are also present
in the C-dataset but it should be noted that the GIs of C-dataset only partly
cover those of the L-dataset (Bertelli et al., 2018). For each dataset and in
each genome, ‘positive regions’ correspond to regions that are potential
GIs and ‘negative regions’ to those that are not considered to be GIs.

A prerequisite for the execution of panRGP is the computation of
pangenomes for each studied species. All available NCBI RefSeq genomes
(downloaded the 21st November 2019) (Haft et al., 2017) were used as
PPanGGOLiN input to obtain a partionned pangenome graph. However,
only species with at least 15 RefSeq genomes could be analyzed due
to the statistical constraint of the PPanGGOLiN method. Among the
54 species present in the GI datasets, 14 of them did not meet this
condition. Furthermore, Prochlorococcus marinus was not considered in
the analysis as this group of organisms does not seem to be a relevant
single species at the genomic level (Parks et al., 2018). An additional 3
had to be removed as their assemblies did not match the version which
were originally used to predict their GIs. A total of 81 genomes from 36
species from the reference datasets could be analyzed. The list of RefSeq
genomes with their identifiers that were used to build pangenomes is
available from https://github.com/axbazin/panrgp_supdata. The panRGP
results were obtained with the PPanGGOLiN software version 1.1.72 with
default parameters.

The results of panRGP were compared to other tools on the same
reference datasets. We included tools that were found to correctly predict
GIs in a recent study (Bertelli et al., 2018): Islandpath-dimob (Bertelli and
Brinkman, 2018), SigiCFR (Waack et al., 2006), SigiHMM (Waack et al.,
2006), Alien Hunter (Vernikos and Parkhill, 2006), PredictBias (Pundhir
et al., 2008), ZislandExplorer (Wei et al., 2017) and IslandViewer4
(Bertelli et al., 2017), which combines results from Islander (Hudson
et al., 2014), Islandpath-dimob, SigiHMM and IslandPick (Langille et al.,
2008). In addition, three recent tools for GI detection were included in
the benchmark: GI-cluster (Lu and Leong, 2018), XenoGI (Bush et al.,
2018) and IslandCafe (Jani and Azad, 2019). GI-Cluster relies on sequence
composition and functional annotation to cluster regions. XenoGI uses
bidirectional best hits with the information of a phylogenetic tree to
identify gene families that arose from the same HGT. IslandCafe uses
sequence composition and functional annotation with a custom database
of hidden Markov models including genes that are often associated with
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HGT. All these tools were run with default parameters. XenoGI was
used only with the L-dataset as it requires a manual selection of related
genomes with a phylogeny. We selected four or five genomes from
closely related species and compared them with mashtree (Katz et al.,
2019) to obtain the phylogenetic tree for each analyzed species. The
selected genomes and the trees that were used for XenoGI are available
from https://github.com/axbazin/panrgp_supdata. For Islandviewer and
PredictBias, the predicted GIs were downloaded from their respective
websites. Sofware versions, or commit numbers, and the mode of
installation are provided in https://github.com/axbazin/panrgp_supdata.

To evaluate these tools, we compared their predictions with the
positive and negative regions of the two datasets using the protocol
described in (Bertelli et al., 2018). The predicted regions that correspond
to positive regions are considered as true positives (TP ) and those that
correspond to negative regions are considered as false positives (FP ).
The negative regions that were not predicted are true negatives (TN ) and
the positive regions that were not predicted are false negatives (FN ).
We computed Matthew’s correlation coefficient (MCC), F1score,
accuracy, precision and recall as in (Bertelli et al., 2018) to compare
the prediction performance of the different tools.

recall =
TP

TP + FN

precision =
TP

TP + FP

accuracy =
TP + TN

TP + FP + FN + TN

F1score =
2TP

2TP + FP + FN

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

2.3 Preparation of the MAG dataset

In addition to the benchmark, 1416 Escherichia coli MAGs that have
been published in a recent metagenomic study (Pasolli et al., 2019) were
downloaded from https://opendata.lifebit.ai/table/SGB. These MAGs were
annotated using Prokka 1.13 (Seemann, 2014) before being analyzed by
panRGP to predict RGPs and spots. The analysis was made with version
1.1.72 of PPanGGOLiN using the –defrag parameter to link potential gene
fragments to their native gene family.

3 Results and Discussion

3.1 Software overview

The methods of panRGP for the detection of RGPs and spots have been
implemented in the PPanGGOLiN pangenomic software suite (version≥
1.1.72) available through Github (https://github.com/labgem/PPanGGOLiN)
under the CeCiLL 2.1 open source license. It is coded in Python3 with
embedded code in C and can be easily installed using bioconda (Grüning
et al., 2018). We have also written an extensive documentation of every
possible output files and the different ways of using the software in the
GitHub wiki (https://github.com/labgem/PPanGGOLiN/wiki).

An overview of the panRGP workflow is given in Figure 2. The whole
workflow can be run through the command ’ppanggolin panrgp’. First, the
PPanGGOLiN partitioned pangenome graph is built from a set of input
genomes chosen by the user. The genomes are expected to be from the
same species and can be provided as gff3/gbff annotation files or as fasta
sequences. In the latter case, genomes are annotated using the procedure
described in (Gautreau et al., 2020). A clustering step using MMseqs2
(Steinegger and Söding, 2017) is then executed if gene families are not

provided as input by the user. In that case, families are built with 80%
amino acid identity and 80% coverage on both query and target proteins
for the sequence alignments and with the greedy set cover algorithm for
the clustering (default PPanGGOLiN parameters). Afterwards, the graph is
constructed and partitioned in persistent, shell and cloud families. Finally,
RGPs and spots are predicted using the methods described above. The
pangenome and all analysis results are stored in an HDF5 file. Each step
of the workflow has a dedicated subcommand in the software suite. The
user can then adapt parameters or (re-)execute only a part of the workflow.
These subcommands take as input either the raw original files or an HDF5
file representing the pangenome.

Fig. 2. Overview of the panRGP workflow. Each rounded box represents one of the
possible commands of the software. The panRGP workflow computes the pangenome using
the PPanGGOLiN method, predicts the RGPs and gathers them into spots. The pangenome
and results are saved in an HDF5 file. This file can be used as an input with the ’align’
command (i) to compare a new genome to the pangenome and predict the RGPs (ii) to align
protein sequences to the pangenome families to extract related RGPs and spots. A summary
of results in tsv text files and figures can be obtained using respectively ’write’ and ’draw’
commands, respectively.

When a reference pangenome is available, a new genome of the same
species can be used as input to predict RGPs using the algorithm described
in section 2.1. This is done by the ’align’ subcommand that maps the genes
of the genomes to the gene families of the pangenome using the MMseqs2
software. The ’align’ subcommand can also be used with protein sequences
as input. In this case, they will be aligned to the pangenome gene families
and the related RGPs and spots will be extracted, thus providing contextual
information for proteins of interest.

The panRGP workflow ends by providing different output files. Tab-
separated values (tsv) files contain a summary of the predicted RGPs and
spots. Figures can be drawn to represent all RGPs of a spot using the
genoplotR library (Guy et al., 2010). Furthermore, a subgraph of the
pangenome graph (in a GEXF format) can be extracted to represent all
the gene families found in a spot with their genomic organization (see
subsection 3.3). It can then be visualized with the Gephi software (Bastian
et al., 2009) by applying a layout algorithm such as ForceAtlas2 (Jacomy
et al., 2014).

3.2 Benchmark results

To evaluate the panRGP method, we ran a benchmark as described in
’Materials and Methods’ section in comparison with ten other tools for
GI prediction and on two different reference datasets. Those methods
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Table 1. Benchmark results on the C-dataset

Tool MCC F1 score Accuracy Precision Recall Approach

panRGP 0.778 0.809 0.924 0.949 0.764 Comparative
IslandViewer4 0.762 0.820 0.911 0.908 0.788 Hybrid
IslandPath-DIMOB 0.523 0.570 0.781 0.891 0.477 Composition
GI-Cluster 0.483 0.592 0.780 0.674 0.633 Composition / Functional
SigiCRF 0.450 0.492 0.803 0.909 0.398 Composition
PredictBias 0.393 0.528 0.739 0.593 0.633 Composition
IslandCafe 0.377 0.444 0.761 0.769 0.355 Composition / Functional
AlienHunter 0.364 0.526 0.754 0.586 0.551 Composition
SigiHMM 0.338 0.455 0.756 0.655 0.376 Composition
ZislandExplorer 0.194 0.260 0.705 0.690 0.201 Composition

Table 2. Benchmark results on the L-dataset

Tool MCC F1 score Accuracy Precision Recall Approach

panRGP 0.879 0.932 0.931 1.000 0.884 Comparative
XenoGI 0.829 0.917 0.905 0.935 0.924 Comparative
IslandViewer4 0.684 0.791 0.817 0.998 0.669 Hybrid
IslandCafe 0.606 0.715 0.752 1.000 0.574 Composition / Functional
GI-Cluster 0.589 0.743 0.761 0.870 0.714 Composition / Functional
PredictBias 0.587 0.805 0.788 0.856 0.771 Composition
IslandPath-DIMOB 0.527 0.636 0.702 0.998 0.479 Composition
SigiCRF 0.424 0.520 0.687 0.993 0.434 Composition
AlienHunter 0.398 0.642 0.705 0.753 0.570 Composition
SigiHMM 0.268 0.444 0.591 0.817 0.325 Composition
ZislandExplorer 0.163 0.278 0.513 0.833 0.180 Composition

can be classified in two types: comparative-based and composition-
based methods. IslandViewer4 is an hybrid method as it combines both
approaches. It aggregates results from SigiHMM which is a composition-
based method, and IslandPick which is a comparative-based method.
Other methods like IslandCafe and GI-Cluster use additional functional
information.

The C-dataset contains GIs on 81 genomes that were automatically
predicted using a comparative genomic method. Results for the different
methods are presented in Table 1. The panRGP method gives the
best results in terms of MCC, accuracy and precision whereas
IslandViewer4 produces better results regarding F1score and recall.
Overall, computed metrics for IslandViewer4 and panRGP are very
close. Methods based on sequence composition do not perform as well.
Some have a good precision (e.g. SigiCFR, IslandPath-DIMOB) but
their recall and accuracy values are lower than comparative genomics
based methods. It should be noted that the C-dataset was generated
using comparative genomics which may explain the good performance
of IslandViewer4 and panRGP, which are the only tools using comparative
genomics.

The L-dataset contains curated GIs on 6 genomes that were expertized.
Results for the different methods are presented in Table 2. The benchmark
was carried out on the same methods plus XenoGI which is a comparative-
based method that uses a phylogenetic tree to detect insertion events from
HGT. As with the C-dataset, panRGP performs best in terms of MCC,
accuracy and precision, as well as theF1score. Regarding the recall,
XenoGI provides the best results. IslandViewer4 performs well but the
metrics drop somewhat in comparison to the C-dataset. IslandCafe and
GI-cluster which both rely on composition and functional annotation fare
much better on this dataset. Overall, composition-based methods perform
worse than comparative-based ones.

This benchmark shows that comparative-based methods are the most
reliable to predict GIs in comparison to composition-based methods.
Surprisingly, IslandViewer4 that combines both approaches does not
perform better than panRGP or XenoGI, which only rely on comparative
genomics. We can assume that the tools based on comparative genomics
are more reliable when they use a larger number of genomes representing a
greater diversity within the studied species. This may explain why panRGP
comes on top in this study. Indeed, the reference pangenome graph that
is used by panRGP can contain information from hundreds to thousands
of genomes. On the other hand, IslandViewer4 and XenoGI are limited to
few genomes. IslandViewer4 uses up to 12 genomes (6 by default). For
XenoGI, authors indicate the use of 500 gigabytes (GB) of memory and
a run time of 20 hours on 50 threads for 40 strains, thus limiting its use
on larger datasets. Conversely, panRGP can use far more than hundreds
of genomes without requiring extensive computational resources. For the
complete workflow of panRGP including the pangenome construction and
RGP/spot prediction, it takes 3 minutes and 1.2 GB of memory to analyze
40 strains of E. coli and 45 minutes and 14 GB of memory for 1000 strains
of E. coli on 16 threads of an Intel Xeon CPU E5-2699v3. Most of the
time is dedicated to genome annotation and pangenome partitioning.

3.3 Application of panRGP on a pangenome built from
MAGs

To illustrate the potential of panRGP on MAGs, we studied the genomic
context of a previously described hotspot in E. coli (Lescat et al., 2009)
using a pangenome constructed from MAG sequences from a recently
published metagenome dataset (Pasolli et al., 2019). The pangenome was
built using 1 413 MAGs. It is made of 43 741 gene families including
5 111 342 genes. Those families are partitioned into 3 724 persistent, 2
490 shell and 37 618 cloud gene families. The persistent genome is very
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Fig. 3. Pangenome subgraph of the leuX hotspot in MAGs of E. coli. This figure illustrates the genetic diversity of the leuX hotspot both in terms of gene content and genome organization.
Each node is a gene family and an edge is drawn between two families that share neighboring genes. Colors for persistent, shell and cloud pangenomes partitions are orange, green and
blue, respectively. The size of the nodes is proportional to the number of occurrences in the spot. For each family, the most represented gene name is indicated. The tRNA leuX and the fim
operon are not represented as they are not members of spot predicted by panRGP. leuX is located next to yjgB and the fim operon is just before nanC. This visualization was produced using
Gephi (Bastian et al., 2009) and the ForceAtlas2 layout algorithm (Jacomy et al., 2014).

similar to the one that was already computed on a pangenome built from
GenBank genomes (3706 families) (Gautreau et al., 2020) indicating that
the persistent was well retrieved even though the MAGs are much more
fragmented and incomplete than genomes from isolates. As a consequence,
pangenome partitions obtained on these MAGs can be a reliable source
of information to predict GIs with panRGP. A total of 47 692 regions
were predicted by panRGP among which 18 030 are in-between persistent
genes and could be used to predict spots of insertion with the algorithm
previously described. Those 18 030 RGPs have been grouped into 294
spots of insertion. A list of all spots with descriptive metrics are available
from https://github.com/axbazin/panrgp_supdata..

Among all the predicted spots, we focused our analysis on the leuX
tRNA hotspot as it is one of the most diverse region of E. coli and involved
in pathogenicity (Blum et al., 1994; Touchon et al., 2009). This spot
was described as being in-between two core genes, namely uxuA and ahr
(previously named yjgB), in a comparative analysis of 14 genomes (Lescat
et al., 2009). To retrieve this spot from panRGP results, we used the protein
sequences of both of those genes from E. coli K-12 MG1655 (P24215 and
P27250 proteins from UniProt, (UniProt Consortium, 2019)) and aligned
them to the pangenome gene families (subcommand ‘align’ see ’Materials
and Methods’ section). We find that only one panRGP spot is associated
with both genes and corresponds to the spot number 10. It gathers 131
RGPs that are represented by 79 different sets of gene families. The size
of these RGPs is between 5 to 91 genes, with an average of 19 genes. There
is a total of 585 different gene families. Among all predicted spots, it is
the third most diverse in gene family content, confirming that it is one of
the most dynamic regions of the E. coli genome.

Figure 3 shows the pangenome subgraph of this spot in a compact
representation with the indication of gene names that are most often
associated with each family. The spot borders were formerly assumed
to be ahr and uxuA genes (Lescat et al., 2009). While we agree that ahr
borders the spot, the nan operon composed of the nanS, nanM and nanC
genes (previously named yjhS, yjhT and yjhA) is the most common border
predicted by panRGP instead of uxuA. Indeed, nan genes are persistent

and thus present in most E. coli genomes from the gut microbiome. The
punctual deletion of the fimbrial operon fim in few E. coli strains (e.g.
55989 and O42 strains, see Figure 4 in (Lescat et al., 2009)), which is
located between the nan operon and uxuA in the other strains, misled
the authors in determining the hotspot frontiers as few genomes where
available when their work was published.

The spot detection method illustrated here is inspired from (Oliveira
et al., 2017) with, however, a fundamental difference: our method is not
centered on a pivot genome but is applied on the whole pangenome without
any reference. Furthermore, it allows for variations in terms of gene content
and organization in the definition of the spot borders. The leuX hotspot
is a great example showing that spot borders can vary throughout the
evolution of a species. The panRGP method provides an exhaustive list of
spot associated with several metrics (e.g. numbers of RGPs, gene families
and different sets of families). Those results can be the starting point of
studies on the dynamics of GIs within and between species.

4 Conclusion
We presented an original method that can identify RGPs on thousands of
genomes and analyze them together to detect spots of insertion. Indeed,
panRGP uses a partitioned pangenome graph of gene families that makes
comparative-based approach to predict GIs more efficient. Indeed, our
method is much more scalable on large datasets than already published
tools, which rely on time-consuming pairwise sequence comparisons. We
showed that panRGP results are highly reliable when compared to a dataset
of curated GIs. We introduced a novel algorithm for the detection of spots
of insertion which was illustrated in the context of the analysis of an E.
coli hotspot using MAGs from the human gut. Overall we believe that
panRGP provides an original approach to detect GIs to study their diversity
and dynamics in a species of interest. Its ability to predict GIs and spots
among thousands of genomes makes it an ideal approach for large scale
studies.
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The tool is freely available and easily installable as part of the
PPanGGOLiN software suite. It is also integrated in the MicroScope
platform with a dedicated web page for result analysis and exploration of
prokaryotic genomes (Vallenet et al., 2019). An improvement of panRGP
could be to analyze conserved alternative paths within RGPs using the
pangenome graph structure. This could allow to automatically identify
functional modules, i.e. set of genes involved in the same biological process
akin to what was described in (Lescat et al., 2009) and (Touchon et al.,
2009).
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