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The fast accumulation of viral metagenomic data has contributed 
significantly to new RNA virus discovery. However, the short read size, complex 
composition, and large data size can all make taxonomic analysis difficult. In 
particular, commonly used alignment-based methods are not ideal choices for 
detecting new viral species. In this work, we present a novel hierarchical 
classification model named CHEER, which can conduct read-level taxonomic 
classification from order to genus for new species. By combining k-mer 
embedding-based encoding, hierarchically organized CNNs, and carefully trained 
rejection layer, CHEER is able to assign correct taxonomic labels for reads from 
new species. We tested CHEER on both simulated and real sequencing data. The 
results show that CHEER can achieve higher accuracy than popular alignment-
based and alignment-free taxonomic assignment tools. The source code, scripts, 
and pre-trained parameters for CHEER are available via GitHub: 
https://github.com/KennthShang/CHEER. 

1 Introduction 

Metagenomic sequencing, which allows us to directly 
obtain total genomic DNAs from host-associated and 
environmental samples, has led to important findings in 
many areas, such as digestive health [1]. While bacteria 
are the main focus of most metagenomic sequencing 
projects, there are fast accumulation of viral 
metagenomic data with sequencing viruses as the main 
purpose [2]. There are different types of viruses. We are 
mainly concerned with RNA viruses because many 
RNA viruses are notorious human pathogens, such as 
Influenza A, Human immunodeficiency virus (HIV), 
Ebola, SARS-CoV, and recently identified 2019-nCoV 
causing Wuhan pneumonia. Unlike DNA viruses, RNA 
viruses, which contain RNA genomes, lack faithful 
proofreading mechanisms during replication and thus 

can produce a group of related but different viral strains 
infecting the same host. This high genetic diversity 
within and across different hosts poses a great challenge 
for designing long-term protection strategies against 
these infectious diseases. For example, as the 
circulating strains can change every year, flu vaccine 
has to be administered every year. 
 
Advances in viral metagenomics have contributed 
significantly to new RNA virus discovery. According to 
a survey by Woolhouse et. al, the number of newly 
identified RNA viruses is changing from 1,899 in 2005 
to 5,561 in 2018, which is 3 times of increase [3]. Large-
scale RNA virus sequencing projects using next-
generation sequencing technologies have been 
conducted for different species. For example, Shi et al. 
have discovered a large number of new RNA viruses by 
sequencing samples from invertebrate and vertebrate 
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animals [4, 5]. Claire et al. have discovered 25 new 
RNA viruses by sequencing samples associated with 
different drosophilid [6]. Bolduc et al. sequenced RNA 
viruses from Archaeal and bacterial samples [7].  
Given fast accumulation of viral metagenomic data and 
expected discovery of new viruses, a key step is to 
conduct composition analysis for these data and assign 
taxonomic groups for possibly new species.  
 
Composition analysis can be conducted at the read level 
or contig level. There is no doubt that contigs can 
provide more information than short reads in taxonomic 
classification. However, metagenomic assembly is still 
one of the most challenging computational problems in 
bioinformatics. Unlike single genome assembly, 
metagenomic assembly is more likely to produce 
chimeric contigs that can contain regions from different 
species. Thus, metagenomic assembly is often preceded 
by read binning that groups reads with the same or 
similar taxonomic labels [8] in order to achieve better 
performance. 
 

In this work, we design a read level taxonomic 
classification tool (named as “CHEER”) for labeling 
new species in viral metagenomic data. To detect 
known species with available reference genomes, 
alignment-based methods can provide sufficient 
information for both classification and abundance 
estimation. This function has been incorporated in 
existing pipelines [9,10,11] and is thus not the focus of 
our tool. Instead, our tool is designed to handle the 
challenging cases of assigning taxonomic labels for 
reads of new species, which have not been observed 
before. This problem was clearly formulated in 
metagenomic phylogenetic classification tools such as 
Phymm and PhymmBL [8]. We first define the 
classification problem following the formulation in 
Phymm: the classification problem is the assignment of 
a phylogenetic group label to each read in input data sets. 
As we are only interested in the hard case of classifying 
reads of new species, which have not been sequenced 
and thus no label exists for these species, the expected 
labels for these reads are the higher-rank taxonomic 
groups such as genus, family, or order. All our data and 

experiments are designed so that the test species are 
masked in the reference database and the trained models. 
 

1.1 Related work 
Previous experiments have shown that nucleotide-level 
homology search is not sensitive enough for assigning 
higher rank taxonomic groups to reads from new 
species [9, 10]. Protein-based homology search is thus 
preferred for phylogenetic classification [11, 12]. In 
particular, a recent tool, VirusSeeker [13] utilized 
BLASTx to classify reads into bacteria, phages, and 
other viruses. It is not clear whether the protein 
homology search is able to generate accurate 
classification at lower ranks. We will evaluate this in 
our experiments.  
 

There are also alignment-free methods for phylogenetic 
classification. Many of those tools implemented 
different machine learning models and were mainly 
designed for bacteria. For example, RDP [14] adopted a 
Naïve Bayes based classifier that can automatically 
learn features from the reads and assigned taxonomic 
labels to sequences from bacterial and archaeal 16S 
genes and fungal 28S genes. The NBC classifier [15, 16] 
encoded metagenomic reads using k-mers and 
implemented a bag-of-word model to achieve the read-
level taxonomic classification. Phymm [8] utilized 
interpolated Markov models (IMMs) for metagenomic 
read classification. These learning-based models enable 
users to label reads originating from new species. 
 
The previous works have shown that sequence 
composition is still an important and informative 
feature for phylogenetic classification. Recent 
applications of deep learning models have achieved 
better performance than conventional machine learning 
methods in different sequence classification problems 
[17]. In particular, the convolution filters in 
Convolutional Neural Network models (CNN) can 
represent degenerated sequence motifs and thus help 
CNN models to learn abstract composition-based 
features. For example, frequently activated convolution 
filters learned by DeepFam often represented the 
conserved motifs in different protein domain families 
[18].
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Fig. 1 The flow chart and a simplified tree classification structure of CHEER. Order classifier: classify reads into orders O1 to O3. O1-O3: 

classifiers within O1, O2, and O3, which assign family-level labels within each order. F1-F7: classifiers within each family from F1 to F7, which 

assign genus-level labels within each family. The dash line under each classifier shows the early stop function. The highlighted path with orange 

color shows the top-down classification path for a read from genus 7. The highlighted path with yellow shows the top-down classification path 

that stops at the family level determined by the early stop function.  

 
The successful applications of deep learning in 
sequence classification motivated us to design a novel 
deep learning-based classification model for assigning 
taxonomic groups for new species in viral metagenomic 
data.  
 
Our main contributions are summarized below. First, 
our deep learning model can assign higher rank 
phylogenetic group labels (such as genus) for reads 
from new species. To achieve this goal, our model 
organizes multiple CNN-based classifiers in a tree for 
hierarchical taxonomic group assignment. Second, to 
enable our model to capture as much information as 
possible from short reads, we implemented and 
compared two encoding methods: one hot vs. 
embedding. Third, as viral metagenomic data usually 
contains contaminations from either the host genomes 
or other microbes, we formulated the pre-processing 
step as an open set problem in targeted image 
classification and rejected non-viral reads by choosing 
appropriate negative training sets. We tested our model 

on both simulated metagenomic data and also real 
sequencing data. The results show that our model 
competes favorably with other popular methods.  

2 Method 

In this section, we will introduce our method for 
viral metagenomic taxonomic classification. First, we 
will show the architecture of CHEER, which is a 
hierarchical classification model from order to genus. 
Second, classifiers at each level will be described. Third, 
we will introduce DNA sequence encoding using skip-
gram based word embedding and compare it with one-
hot encoding. Forth, we will describe the rejection layer, 
following the idea of the open set problem, which is 
adopted to filter reads not belonging to RNA viruses. 
Finally, we will detail our dataset used in training and 
validation. 
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2.1 Hierarchical classification model  
The architecture of our model is sketched in Fig. 1. The 
key component is a tree model that consists of multiple 
classifiers from order to genus. In order to conduct 
phylogenetic classification for reads from new species, 
or even new genus, our classification is conducted using 
a top-down approach from the root to the leaf node. The 
top layer is a trained CNN that can reject reads not 
belonging to RNA viruses, which is an important 
preprocessing step for viral metagenomic data because 
of the contamination from the host genome or other 
microbes. Then, the filtered reads (i.e. mostly RNA 
viral reads) will be fed into the hierarchical 
classification model, which is referred to as the tree 
model hereafter. Specifically, the order-level classifier 
is responsible for classifying the reads into their 
originating orders. Then each order has a separately 
trained classifier for assigning input reads to families 
within that order (O1 to O3 in Fig. 1). For all the reads 
assigned into one family, the family classifier (F1-F7) 
will assign the reads to different genus within that 
family. As an example, a path for classifying a read 
from a species in genus 7 is highlighted in Fig. 1. 
CHEER also implemented early stop functions at each 
level for stopping the classification path at higher ranks. 
This function can accommodate taxonomic 
classification for species from new genus or even higher 
ranks, which is possible for RNA viruses. It is 
convenient to add fine-grained classifiers within each 
genus so that we can assign species-level labels. 
However, as our focus is to conduct phylogenetic 
classification for reads from new species that do not 
have a species labels in the training data, we did not 
include the species-level assignment in this work.  
 
Alternative designs of hierarchical classification work, 
like [19, 20], either build a classifier for each taxonomic 
rank or build a binary classifier for each class. We 
implemented a structure that built just one classifier for 
each taxonomic rank and compared different structures’ 
performance. According to the result shown in 
[Supplementary file 1], the structure shown in Fig.1 is 
better than one classifier per rank. Although one 
classifier per rank requires fewer classifiers, it needs to 
train many more parameters because the number of 

labels for each classifier increases by times. As a result, 
we observe overfitting more frequently. 
 
2.2 The structure of each classifier 
Each classifier in the tree model is implemented using 
CNN, which has achieved superior performance in 
various sequence classification problems [18]. The 
convolution filters used in CNN resemble position-
specific weight matrix of motifs in genomic sequences. 
Frequently activated convolution filters can represent 
well-conserved motifs among sequences in the same 
class. Thus, a large number of convolution filters will 
be used in our CNN in order to learn well-conserved 
sequence features in different classes. Deep CNNs in 
fields such as computer vision often have multiple 
convolution layers in order to obtain more abstract 
features from training images. Here, we use a wide 
convolution design rather than a deep one, following the 
idea in [18]. Fig. 2 shows the classifier with the default 
hyper-parameters. First, reads will be encoded in 
matrices as input to the convolution layer using two 
methods. We will describe and compare these two 
encoding methods later in the Section 2.3. Then, 
multiple convolution filters of different sizes are 
utilized to learn the conserved sequence features. 
According to our empirical study, we choose 3, 7, 11, 
15 as the filter sizes, with 256 filters for each size 
respectively (see Fig. 2). Max pooling is then applied to 
each convolution filter’s output so that only the highest 
convolution value is kept. After the max-pooling layer, 
we have a 256-dimentional vector as the output of each 
convolution layer. We concatenate these four vectors 
into one 1024-dimentional vector and feed it to one fully 
connected layer with 512 hidden units. Dropout is 
applied to mitigate overfitting. The CrossEntropyLoss 
function supplied by Pytorch is adopted as an error 
estimation function. Due to the unbalanced size of each 
training class, we use the reciprocal of the proportion of 
each class as their error weight to help the model fairly 
learn from each class. And we utilize Adam optimizer 
with a 0.001 learning rate to update the parameters. The 
model is trained on HPCC with the 2080Ti GPU unit.  
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Fig. 2 The CNN structure for each classifier in the tree model. As 

there are two options for read encoding, the figure only includes 

convolution filter size for k-mer embedding.  

 
2.3 Read encoding 
In previous deep learning-based sequence classification 
models [21, 22], one hot encoding was commonly 
adopted to convert a sequence into a matrix, which will 
then be used as input to convolution layers. There also 
exist some methods using k-mer composition [23] and 
frequency [15, 16] to encode the DNA sequence, 
similar to the bag-of-words model in the field of natural 
language processing. However, these k-mers 
representation cannot give complete sequential 
information about the original reads. 
 
To incorporate both the k-mer composition and also 
their ordering information, we build a Skip-Gram [24] 
based embedding layer that can learn which k-mers tend 
to occur close to each other. Embedding is widely used 
in natural language processing to learn the semantic and 
syntactic relationships from sentences. A neural 
network with one hidden layer is trained to map a word 
to an n-dimensional vector so that the words that usually 
occur together will be closer in the n-dimension space. 
For our DNA read classification task, k-mers are the 
words and the embedding layer will map proximate k-
mers into vectors of high similarity.  

 
Fig. 3 The training procedure of the embedding layer. There are 

100 hidden units in the model.  

 

The main hyper-parameter when training the skip-gram 
model is the size of the training context m, which 
defines the maximum context location at which the 
furthest k-mer is taken for training. Specifically, for a k-
mer at position i as the input to the skip-gram model, 
the output k-mers are its neighbors located at i+jk, 
where −m	 ≤ 𝑗	 ≤ m. Larger m results in more training 
samples with a cost of training time. In our model, the 
default value of m is 1. As shown in Fig. 3, we will 
sample 3 k-mers as our dataset at a time with the middle 
one as the input and the surrounding two as the output.  
 
As proven in [24], Skip-Gram is able to automatically 
learn the relationship between proximate words and 
thus is expected to help learn the order between k-mers 
in genomic data. We implemented a hidden layer with 
100 hidden units shown in Fig. 3. After training the 
model, the co-occurrence features are embedded in the 
output of the hidden layer. Thus, a k-mer in a read will 
be represented as a 100-dimension vector, where each 
element in the vector is the output of the hidden unit in 
the hidden layer. 
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When we use this pre-trained embedding layer to 
encode the reads, we first split each read into sequential 
k-mers. Second, each k-mer is fed to the embedding 
layer and the output is a 100-dimension vector. Third, 
all these vectors are combined into a large matrix 
according to the original position of each k-mers. 
Finally, this matrix will be fed to the convolutional layer.  
 
Based on our large-scale experiments, we found that 
classifiers are easy to overfit with increase of k. Thus, 
we choose 100-dimensional feature vectors with k 
being 3 as our default embedding layer parameter set 
based on our empirical analysis. 
 
2.4 Viral read screening based on Open Set 

Problem 
Due to the small genome size and limitations in library 
construction, it is not rare that many viral metagenomic 
datasets are still contaminated with the genomes of the 
host and other microbes. Viral read screening is thus a 
key pre-processing step before the downstream 
composition analysis. Specifically, our tree model 
should only be applied to viral reads. However, the 
close set nature of the classifier forces it to assign a 
known label to each input without being able to 
distinguish viral reads from others. In this work, we will 
reject non-viral reads by formulating it as an open set 
problem in targeted image classification [25].  
 
In a majority of neural network models [26, 27], the 
logit of the last layer will be fed into the SoftMax 
function, which takes a vector of n real numbers as input 
and output a normalized probability vector for all 
labels/classes.  However, for an irrelevant input from 
an unknown clade, all classes in the model tend to have 
low probabilities and thus applying a threshold on 
uncertainty can be used to reject unknown classes [25]. 
Along with this idea, serval approaches [28, 29] have 
been proposed to solve the open set problem.  
 
In this work, we incorporate the pre-processing step in 
our hierarchical classification model by integrating a 
trained CNN and a SoftMax threshold. Contaminations 
such as bacteria will be rejected using empirically 
chosen SoftMax threshold τ . Our experiments show 

that SoftMax outputs a nearly uniform probability 
distribution of all labels if the input is not relevant. Thus, 
the SoftMax threshold τ  is used to reject reads not 
belonging to either DNA or RNA viruses. However, 
using this thresholding method is not able to distinguish 
DNA viral reads from RNA viral reads due to their 
similar sequence composition. To accommodate this 
challenge, we designed a rejection classifier in the top 
layer using DNA viral reads as the negative class in the 
training (see Fig. 1).  
 
2.5 The early stop function in the hierarchical 

classification 
As the focus of our work is to assign labels for new 
species, the hierarchical classification ends at genus-
level assignment, which is conducted by the bottom 
layer in Fig. 1. Given the fast accumulation of viral 
metagenomic data, there are cases where a new species 
does not belong to any existing genus and thus the label 
assignment should stop at the higher ranks. Thus, we 
allow our model to stop at a higher rank in the tree 
during the top-down classification. Towards this goal, 
we still apply SoftMax threshold in our early stop 
function, which stops reads from further classification 
by the child classifiers. This early stop function also 
serves as a quality control measure for preventing 
wrong classifications if the confidence is low. For 
example, when a read arrives, the model may be able to 
identify its order and family labels with high reliability 
but cannot decide which genus it belongs to. In this case, 
the model should only assign order and family label to 
this read rather than classifying it into a potentially 
wrong genus. To achieve this goal, SoftMax threshold 
is applied for every classifier in the tree. Only reads with 
a score higher than the threshold will be assigned to the 
child class.  
 
An example of early stop is highlighted by the yellow 
path in Fig. 1. The model can classify the read into order 
2 (O2) and then family 4 (F4) with high reliability but 
cannot decide which genus it belongs to.  
 
2.6 Training and validation datasets 
All the viruses used in the experiments were obtained 
from the RefSeq in the NCBI virus database. The 
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viruses’ taxonomic classification was downloaded from 
Virus Taxonomy 2018b Release [30] published by the 
International Committee on Taxonomic of Virus 
(ICVT). Because training deep learning classifiers 
required enough samples, we removed the orders with 
only one family, families with only one genus, and 
genera with less than 3 species from our dataset. Finally, 
there are 6 orders, 23 families, and 55 genera remained. 
The RefSeq genomes are available at the following 
URL:https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/fi
nd-data/virus. The information of the taxa can be found 
in [Supplementary file 1]. 
 
As CHEER conducts read-level taxonomic 
classification, the training is also conducted using reads.  
In order to train our model on each complete virus 
genome, we generated simulated reads by uniformly 
extracting substrings of 250 bp with 200bp overlaps. All 
these reads formed the training set so that the model can 
learn the features from the whole genome. The 
validation set, however, is generated by read simulation 
tool WgSim [31] with specified error rate so that we can 
have a better estimation of the model’s performance on 
real sequencing data.  
 
Some existing deep learning tools for taxonomic 
classification, like [21, 23], generate reads first, then 
randomly choose some of them as training set and 
others as testing set. This strategy cannot guarantee that 
the training and testing data sets have no overlaps from 
the same species. In order to test whether our model can 
learn the label of new species, we use test species 
masking in the training set. Specifically, we split our 
RNA virus database into two independent sets. For any 
test species, their reads are not used in the training data. 
Thus, the model will only use the knowledge of known 
species for the new species classification.  

3 Results and Discussion 

In this section, we will first give details of the 
hyperparameters of CHEER. Then we present the 
results of applying CHEER to both simulated and mock 
sequencing data. For the simulated data by WgSim, we 
evaluated how sequencing error rate affects the 

performance of CHEER and compared the taxonomic 
classification results with state-of-the-art. For the mock 
data, we tested CHEER’s performance in both 
taxonomic classification and its ability in distinguishing 
viral reads from others. 
 
3.1 Training and Testing procedure 
In our experiments, the minimum number of species 
within a genus is 3. We thus constructed three test sets, 
each containing reads from one species that is randomly 
chosen from each genus. The three test sets contain 
three different species, respectively. In total, 165 
species from 55 genera are chosen to be “new” species 
for testing and the information of these species can be 
found in [Supplementary file 1].  
 
We used WgSim to simulate reads from testing species. 
In order to evaluate the impact of sequencing error on 
CHEER, we simulated reads with an error rate of 0, 0.01, 
0.02, and 0.05, respectively. For each classifier (CNN), 
we computed the classification accuracy, which is 
defined in equation (1). To ensure that the computation 
of the accuracy is not affected by the number of reads 
from different species, we constructed a balanced test 
read set by simulating the same number of reads for 
each test species (1,000 reads for each).  
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	 ./0123	45	6433267	8329:67:4.
747;<	./0123	45	32;9=

    (1) 

 
For each component classifier in the tree model, we 
record the average accuracy for multiple test species. 
For each taxa level, we calculate the average accuracy 
of all the classifiers in the same level. 
 
3.2 Classification performance at each level 
We present the results of CHEER at each level in this 
section. Because CHEER is designed for new species, 
we benchmark it against alignment-free models. Based 
on the results shown by Wood et al. [7], Naïve Bayes 
Classifier (NBC) outperformed other alignment-free 
models. Thus, we compared the performance of 
CHEER and NBC. NBC in [14] was designed for 
bacteria taxonomic classification and thus, we re-
trained NBC on our RNA virus dataset. We 
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implemented the NBC model following [14] with the 
same parameters.  

 
Fig4. The classification accuracy at genus level. Y-axis: classifier 

within each family. X-axis: the accuracy. NBC: Naïve Bayes 

Classifier. CHEER-one-hot: one hot encoding option. CHEER: 

embedding layer option. Model name which suffix 0.01: testing 

reads with a sequencing error rate of 0.01.  

 
Fig. 5 The classification accuracy at family level. Y-axis: the 

classifier within each order. X-axis: the accuracy. Refer to Fig. 4 for 

the meaning of the labels. 

 
Fig. 6 The mean accuracy at each level. Y-axis: the taxonomic rank. 

X-axis: the accuracy. Refer to Fig. 4 for the meaning of the labels. 

 

Fig. 4 shows the classification accuracy for genera. 
Since each family has a separately trained classifier, 
which conducts genus classification within that family, 
there are totally 14 classifiers at this level. Fig. 5 shows 
the accuracy for labeling families. There are totally 6 
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classifiers that assign reads to families within each of 
the 6 orders. Fig. 6 shows the mean accuracy at each 
rank. The family and genus level accuracy are the 
average accuracy of all classifiers in Fig. 4 and Fig. 5. 
There is only one classifier for order level classification. 
 
As shown in Fig. 4, Fig. 5, and Fig. 6, CHEER has better 
performance than NBC across different ranks. We also 
compared the performance of using one-hot encoding 
and embedding layer in CHEER. The performance 
comparison at each rank shows that for most of the 
classifiers, the embedding layer improves the learning 
ability.  
 
Fig. 4, Fig. 5, and Fig. 6 also revealed the robustness of 
CHEER. Although the classification accuracy decreases 
as the error rate increases, the decrease is smaller than 
2%. The accuracy is almost identical for many 
classifiers. Thus, CHEER is not very sensitive to 
sequencing errors. We also conducted experiments for 
reads with higher error rates (0.02 and 0.05). The results 
can be found in [Supplementary file 1]. 
 
3.3 Real sequencing data 
The next experiment is to evaluate our model on a real 
sequencing dataset and test CHEER’s performance in 
both taxonomic classification and non-viral read 
rejection.  
 

 
Fig. 7 Taxonomy of Ebola. The red lines with arrows is the 

classification path for a new species in Ebolavirus in the tree model.  

 
We built a mock dataset by mixing Ebolavirus reads 
with gut bacterial reads from a gut amplicon sequencing 
dataset, which is chosen to ensure that we only use reads 

from bacteria. The taxonomic classification of Zaire 
Ebolavirus in the tree model is highlighted in Fig. 7. We 
chose one of the Ebola species named Zaire Ebolavirus 
as our testing species because it is the most dangerous 
of the five Ebolavirus species and was responsible for 
the 2014 West African Ebola outbreak. We downloaded 
the dataset from NCBI with accession number 
SRR1930021. These reads were sequenced by Illumina 
using whole-genome amplification strategy. Since Zaire 
Ebolavirus usually causes fatal hemorrhagic fever and 
abdominal pain, it is possible that this Ebola virus 
occurs with other gut bacteria. Thus, we created a mock 
viral metagenomic data by mixing these Ebola reads 
with a gut bacteria amplicon sequencing data in order to 
test whether CHEER can reject the bacterial reads at the 
top rejection layer. The gut bacteria dataset is 
downloaded from NCBI with accession number: 
SRR10714026. There are totally 2,737 Ebola virus 
reads and 51,280 gut bacterial reads in the mock data. 
After the rejection layer, the Ebola reads will be used to 
evaluate our tree model.  
 
To treat Zaire Ebolavirus as a “new” species, we 
removed its genome from our training set and re-trained 
the whole pipeline. As shown in Fig. 7, after removing 
this species, we still have four Ebola species in our 
training set. However, our read mapping experiment 
using Bowtie2 [32] showed that none of the reads from 
Zaire Ebolavirus can be mapped to other Ebola species 
with the default parameters, indicating that using usual 
alignment-based methods will have difficulty to 
conduct genus-level assignment. 
 
In our work, CHEER will first use rejection layer to 
remove the reads not belonging to the RNA virus. 
Second, the “Order classifier” will be applied to 
evaluate how many reads can be classified into 
Mononegavirales order. Third, “Mononegavirales 
classifier” takes all these Mononegavirales reads as 
input to predict how many reads will be assigned to the 
Filoviridae family. Finally, “Filoviridae classifier” is 
adopted to check how many reads belong to the Ebola 
genus. 
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3.3.1 Evaluation of the rejection layer 

 
Fig. 8 The ROC curve of the rejection layer for recognizing reads 

from Zaire Ebolavirus in the mock dataset. Y-axis: True positive rate 

of rejection layer. X-axis: False Positive rate of rejection layer. Four 

points corresponding to four thresholds are highlighted in the ROC 

curve. The percentage after each threshold means how many 

Ebolavirus reads pass the rejection layer. 
 
Fig. 8 show the ROC curve of the rejection layer. True 
positive rate reveals how many Ebolavirus reads pass 
the rejection layer. The false positive rate reveals how 
many gut bacterial reads pass the rejection layer. We 
generated thresholds from 0 to 1 with step size 0.01 and 
used each threshold for the rejection layer. Then for 
each threshold, we recorded the true positive rate and 
false positive rate for plotting the ROC curve. As shown 
in Fig. 8, with the increase of the threshold, more 
bacterial reads are filtered by the rejection layer, at the 
expense of missing more real Ebola reads. The default 
threshold for the rejection layer is 0.6 in CHEER. User 
can adjust the threshold according to their needs.  
 
3.3.2 Comparison to the NBC model 
After evaluating the rejection layer, we continued to test 
the hierarchical classification performance at each rank. 
We first compared our tree model with NBC. Then we 
also benchmarked CHEER with the method using 
protein-level alignment in Section 3.3.3.  

 
Fig. 9 Zaire Ebolavirus read prediction at each rank using the top-

down approach. Y-axis: different taxonomic rank with NBC and 

CHEER. X-axis: number of reads. Correct: reads with correct 

classification. Wrong: reads with wrong classification. Following 

the classification tree, only correct predictions (yellow bar) will be 

fed to the child classifier. 
 
The performance of the complete hierarchical 
classification pipeline of NBC and CHEER is shown in 
Fig. 9. From order to genus, each bar shows the 
accuracy of correctly classified reads by the parent 
classifier. For example, NBC correctly classified 1580 
at the order level. Then, 1564 out of the 1580 reads are 
correctly labeled at the family level. While Fig. 4, 5, and 
6 have shown the performance of CHEER and NBC at 
each taxonomic rank using the same set of reads as input 
for each level of classifiers, this experiment focused on 
comparing the hierarchical classification pipeline using 
only correctly predicted reads by the parent classifier. 
The results demonstrated that CHEER can classify 
Ebola reads with better performance. NBC can only 
classify 1,564 (57.1%) reads into Ebolavirus. CHEER, 
however, had totally 2407 (87.9%) reads classified 
correctly.  
 
3.3.3 Comparison with alignment-based methods  
Although nucleotide-level alignment models are not 
ideal choices for predicting new species, as mentioned 
in [8], protein-level alignment such as BLASTx is still 
frequently used for homology search because of the 
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conservation among homologous protein sequences. 
We followed VirusSeeker [10], which is a BLASTx 
based model, to align translated reads to virus-only 
protein database (VIRUSDB NR) provided by NCBI. 
Then, we kept alignments with E-value cutoff 0.001, 
which is used in VirusSeeker. The output of BLASTx 
shows that a read can often align to multiple proteins, 
making the phylogenetic classification ambiguous (see 
Fig. 11). Also, existing tools such as VirusSeeker often 
use the best alignment only, which does not always 
yield the highest accuracy. To optimize the usage of the 
alignment-based method, we implemented k-Nearest 
Neighbor (kNN) algorithm to record the best k 
alignments rather than only using the best one. The label 
of the input read is determined by the majority vote in 
the labels of the top k alignments.  
 
 

 
Fig. 10 Distribution of BLASTx hit numbers with E-value threshold 

0.001 

 
According to Fig. 10, most of the reads have hit 
numbers between 11 to 15 and 6 to10. Thus, we chose 
1, 5, 10, 15 as our k when running kNN. There are also 
512 reads that cannot be aligned with any VIRUSDB 
protein sequence. All these reads will be regarded as 
wrong prediction. 
 

 
Fig. 11 Ebola kNN BLASTx classification result with different k 

value. Y-axis: k value. X-axis: percentage of correct and wrong 

classification.  “ALL”: all hits satisfying the E-value cutoff are 

used to run the majority voting program. 

 
Fig. 11 shows the classification results of kNN. When 
we use the best hit as the prediction the accuracy is only 
64%. The best performance of kNN will be 74% with 
2,026 correct predictions when k is 5. But the accuracy 
sharply decreases if k is larger than 5. 
 
Fig. 10 and Fig. 11 also revealed that it is hard for users 
to choose a proper k in real classification tasks. The 
most common value of the hit number is 11-15 shown 
in Fig. 11. The best kNN result, however, has a k equal 
to 5. Thus, comparing to this alignment-based method, 
CHEER, with 2,407 (87.9%) reads classified correctly, 
is more practical and reliable. 
 
3.3.4 Evaluation of the early stop function  
The two main purposes of the early stop function are: 1) 
to handle the cases of a new species from an unseen 
genus or higher ranks; 2) to serve as a quality control 
measure for preventing wrong classifications in child 
classifiers. As Fig. 6 shows, the higher rank 
classification tends to be more accurate than lower 
ranks. Because the genus of Ebolavirus exists in our 
classification tree, the evaluation of the early stop 
function focuses on the second purpose. 
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Fig. 12 Comparison between different models. Y-axis: name of 

different classifier. NBC: Naïve Bayes classifier. kNN: k-Nearest 

Neighbor model. CHEER: without early stop threshold. CHEER 0.7: 

early stop threshold 0.7. CHEER 0.8: early stop threshold 0.8. X-

axis: percentage and number of correct, wrong, and early stopped 

classifications. “Classified into Ebola genus (yellow)”: correctly 

classified reads. “Early stop (light orange)”: reads that are stopped 

at higher ranks. “Wrong (dark orange)”: misclassified reads.  

 

Fig. 12 shows the percentage of how many reads are 
classified into Ebolavirus genus correctly for different 
classifiers. By allowing early stop, the number of wrong 
predictions decreased sharply. In short, although there 
are fewer reads being labelled at the genus level, the 
total number of reads with wrong classification is 
decreased. Thus, this is still a useful feature provided by 
CHEER. 
 
3.3.5 Comparison of execution speed   
Another significant advantage of CHEER is the high 
classification speed. Although training the model uses 
heavy computing resources, the inference procedure of 
this algorithm is fast. And with the help of GPU 
acceleration, the training time also decreases a lot. 
 
In the experiments shown in Section 3.4, it takes around 
46 minutes to run BLASTx against the virus protein 
database. Our method, however, only takes 7 second for 

the preprocessing step to convert the raw sequence into 
a vector, and then takes less than 35 second to make the 
prediction for all 2,737 reads.  

4 Conclusion 

In this work, all training data are RNA virus genomes 
downloaded from the NCBI RefSeq database. The 
training reads are extracted uniformly from the genome 
to make sure that classifiers can learn the features from 
the whole genome. To evaluate the model on new 
species detection, all species in the test set are excluded 
from the training data. Error rates are also added to 
evaluate the robustness of the model. The results reveal 
that the model is tolerant to the sequencing error. In 
addition, a SoftMax threshold rejection layer is applied 
to filter reads from non-RNA viruses. The SoftMax 
threshold in each classifier will also help early stop 
classification with low confidence and thus decreases 
the wrong predication rate. We show a case study on 
real-world data to identify how this threshold will 
influence the rejection classifier and early stop function. 
The results show that CHEER competes favorably with 
state-of-the-art tools.  
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