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Understanding the immune-cell abundances of cancer and other disease-related tissues has

an important role in guiding cancer treatments. We propose data augmentation through

in silico mixing with deep neural networks (DAISM-DNN), where highly accurate and unbi-

ased immune-cell proportion estimation is achieved through DNN with dataset-specific train-

ing data created from partial samples from the same batch with ground truth cell propor-

tions. We evaluated the performance of DAISM-DNN on three publicly available real-world

datasets and results showed that DAISM-DNN is robust against platform-specific variations

among different datasets and outperforms other existing methods by a significant margin on

all the datasets evaluated.

Keywords: Cell type proportion estimation, deconvolution, data augmentation, data simula-

tions, deep learning
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In cancer treatments, it has been shown that the cellular composition of immune infiltrates

in tumours is linked directly to tumour evolution and response to treatment1, 2. High intratu-

moural infiltration of lymphocytes and dendritic cells is a favourable prognostic marker for can-

cer treatment3, 4, while a high stromal content of cancer-associated fibroblasts (CAFs) and M2

macrophages has been shown to associate with poor outcomes5, 6. Particularly, the recent progress

in immunotherapy has led to durable clinical benefits, but only in a subpopulation of patients

with “hot” tumour immune microenvironments that are characterized by high infiltration of lym-

phocytes. Therefore, the knowledge of patient-specific immune cell proportion of solid tumours

is invaluable in predicting disease progression or drug response as well as stratifying patients to

assign the most suitable treatment options.

In the past, fluorescence activated cell sorting (FACS) and immunohistochemistry (IHC)

were used as gold standards to measure the cell components in a patient sample7. FACS requires

a large amount of cells, which limits its clinical applications. On the other hand, IHC is only able

to estimate the cellular composition of a single biopsy slice and may not represent the full tumour

microenvironment (TME) due to its heterogeneity. More recently, single-cell RNA sequencing

(scRNA-seq) has emerged as a powerful technique to characterize cell types and states. However,

the high costs of labour, reagents and equipment of scRNA-seq at present restrain it from broad

applications in routine clinical practice.

With the rapid progress of RNA quantification technologies, such as microarray, high-throughput

RNA-seq, and Nanostring, large-scale expression profiling of clinical samples has become feasible
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in routine clinical settings8. These methods only measure the average expression of genes from

the heterogeneous sample in their entirety, but do not provide detailed information on their cellular

composition. To bridge the gap, numerous computational methods have been proposed to esti-

mate individual cell type abundance from bulk RNA data of heterogeneous tissues (Supplementary

Table S1). With the bulk gene expression values as input, the abundance of each cell type from

the mixed sample can be quantified by aggregating the expressions of the marker genes into an

abundance score (MCP-counter9), or by measuring the enrichment level of the marker genes using

statistical analysis (xCell10), or by deconvolution algorithms that adopt computational methods,

such as least squares (quanTiseq11, EPIC12), support vector regression (SVR) (CIBERSORT13,

CIBERSORTx14), or non-negative matrix factorization (NMF)15, to derive an optimal dissection

of the original sample based on a set of pre-identified cell type-specific expression signatures. Ob-

viously, regardless of the actual computational methods being used, the adoption of any of these

methods as a reliable clinical routine for cell type proportion estimation requires that its underlying

assumptions to be held over a large variety of cell types, tissues, and RNA sequencing conditions,

which is challenging in practice. For example, in deconvolution-based algorithms, it is expected

that the cell type-specific expression signature should truly represent the expression characteris-

tics of the underlying immune cells from the mixture samples. Unfortunately, the signature gene

expressions employed in existing methods were derived from either FACS-purified and in vitro

differentiated or stimulated cell subsets, or single-cell experiments. The application of antibodies,

culture material or physical disassociation may affect the cell status, resulting in signatures that de-

viate from those of the actual cells in vivo. Moreover, technical and biological variations between
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RNA quantification experiments may introduce additional confounding factors that lead to sam-

ple or dataset-specific bias in cell type estimation. Similarly, marker gene expression aggregating

methods such as MCP-counter require highly specific signature with genes that are exclusively and

stably expressed on certain cell types, which may not be possible for some immune cell lineages16.

To illustrate the above-mentioned limitations, we performed an extensive evaluation of nine

state-of-the-arts cell type proportion estimation algorithms including CIBERSORT, CIBERSORTx,

EPIC, quanTIseq, MCP-counter, xCell, ABIS, MuSiC and Scaden22 on nine independent datasets

(n = 641 total samples) acquired using different techniques or platforms (Supplementary Table

S2). As it was previously reported that the accuracy of deconvolution-based cell type proportion

estimation approaches is strongly dependent on the basis matrix rather than the deconvolution

method itself17, we included three established basis signature matrices, namely, IRIS18, LM2213

and immunoStates17, in our evaluation of CIBERSORT. Importantly, methods under evaluation in-

cluded several recent developments to improve the cross-dataset robustness of cell type proportion

estimation methods. ImmunoStates17 used a basis matrix built using 6160 samples with different

disease states across 42 microarray platforms to mitigate the technical bias from different plat-

forms. In MuSiC19, the deconvolution algorithm further included appropriate weighting of genes

showing cross-subject and cross-cell consistency to enable the transfer of cell type-specific ex-

pression information from one dataset to another. CIBERSORTx implemented bulk-mode batch

correction (B-mode) to reduce the potential bias from batch effects. However, none of these meth-

ods were able to fully address the estimation bias problem and deliver consistently accurate re-

sults across multiple datasets in our evaluation (Friedman test with post hoc two-tailed Nemenyi
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test, Supplementary Fig. S1a,b). T-distributed stochastic neighbor embedding (t-SNE) analysis of

all test datasets shows significant batch effects among those datasets and the difference among

the testing samples is dominated by batch effect rather than cellular composition (Supplementary

Fig. S1c). This result partially explains the inconsistent performance of the existing methods on

different datasets and the challenge in developing a one-size-fits-most cell type proportion estima-

tion method that performs uniformly well under different experiment conditions.

Recently, the development of deep neural networks (DNNs) has granted the computational

power to resolve complex biological problems using data-driven approaches with the vast trove

of data available from the biomedical research community powered by high-throughput genomic

sequencing technologies20, 21. An application of the DNN in cell type proportion estimation was

proposed in Scaden22, where a neural network was trained on bulk RNA-seq data simulated from

single-cell RNA-seq (scRNA-seq) data of different immune cell types to predict cell type pro-

portions from bulk expression of cell mixtures. A DNN-based model could automatically cre-

ate optimal features for cell fraction estimation during the training process, thus alleviating the

need to generate reliable gene expression profile (GEP) matrices for different immune cell types.

Moreover, it learns the potentially intricate nonlinear relationships between the gene expression

composition and cell type proportions from training data, which are not possible to be captured

by linear models used in other deconvolution algorithms. However, as the performance of DNN

is still subject to the same statistical learning principle that test and train conditions must match,

Scaden, similar to other algorithms, showed inconsistent performance on different datasets in our

evaluation (Supplementary Fig. S1). On the other hand, it is possible for DNN-based algorithms
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to deliver consistent performance under different experiment conditions, provided that sufficient

ground truth data are available to train a specific predictive model for each distinct experiment

condition. As a DNN model usually requires tens of thousands of training samples, the cost of

implementing such a method would be prohibitive in practice.

To address these challenges, we developed an in silico data augmentation method to work

together with a DNN model (DAISM-DNN) for robust and highly accurate cell type proportion

estimation. The DAISM-DNN method performs model training on a dataset augmented from a

calibration dataset, which refers to a small portion of the actual data from the same batch of RNA-

seq experiment of which the ground truth cell type proportions are available for calibration. In

order to create sufficient training data for DNN, the calibration dataset is augmented using purified

cell RNA-seq data or scRNA-seq data that are publicly available, or derived from the same batch

of samples (Fig. 1; all procedures are described in details in Methods). The DAISM-DNN method

is also highly customizable and can be tailored to estimate the proportions of a large variety of cell

types including those which are difficult for existing methods to estimate due to the lack of marker

genes or GEP signature matrices. Moreover, it is able to handle complicated tasks on immune cells

with overlapping marker or signature genes that are challenging, if not impossible, for existing

methods23, 24.

We evaluated the performance of DAISM-DNN on RNA-seq dataset SDY67 containing 250

samples with ground truth proportions of five cell types. The training data included 200 randomly

selected real samples from SDY67 augmented with scRNA-seq data of the five cell types. The
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performance of DAISM-DNN was then tested on the remaining 50 samples that were not used

in training. For comparison, we performed cell type proportion estimation for the same 50 sam-

ples using other algorithms. Overall, by using the augmentation of a portion from the real-data as

training data, DAISM-DNN outperformed all other algorithms by a significant margin in all the

cell types under evaluation (Fig. 2 and Supplementary Fig. S2). When evaluated by the average

per-cell-type Pearson correlation between the predicted and ground truth cell proportions, DAISM-

DNN achieved the highest correlation, followed by Scaden (Box plot in Fig. 2b; results after 30

bootstrapping permutations). In addition, DAISM-DNN had the lowest root mean square error

(RMSE) and the highest Lin’s concordance correlation coefficient (CCC) followed by ABIS (Bar

plots in Fig. 2b). Results show that DAISM-DNN significantly outperformed other methods by

using pairwise Student’s t-tests between the methods evaluated. We further tested DAISM-DNN

on two microarray datasets, i.e., GSE59654 and GSE107990, with 153 samples and 164 samples

respectively. Similarly, we randomly selected 50 samples as the test dataset and augmented the re-

maining samples with scRNA-seq data of the respective cell types to generate the training dataset

for the DAISM-DNN model (Methods). As expected, DAISM-DNN outperformed other algo-

rithms by a significant margin over all the cell types under evaluation (Fig. 2 and Supplementary

Fig. S2), except for the ABIS method on dataset GSE107990.

For RNA-seq datasets, we provided an alternative mode (DAISM-RNA) using purified RNA-

seq data to augment the data with ground truth cell type porportions (Methods). Compared with

DAISM-scRNA mode and other algorithms, DAISM-RNA mode performed equally well as DAISM-

scRNA mode and was significantly better than other algorithms (Supplementary Fig. S3). Results
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show that the global Pearson correlation and concordance correlation are very close in DAISM-

RNA and DAISM-scRNA modes (Supplementary Fig. S3a), as well as per-cell-type Pearson cor-

relation (Supplementary Fig. S3b), suggesting that purified RNA-seq data can be used for data

augmentation on RNA-seq datasets. To better elucidate this, we further compared DAISM-RNA

with other methods, showing that DAISM-RNA outperformed these methods and achieved the

highest mean of per-cell-type Pearson correlation and concordance correlation (Supplementary

Fig. S3c) and the lowest RMSE (Supplementary Fig. S3d) among all methods evaluated.

We performed t-SNE analysis to compare in silico mixed training data created using DAISM

versus direct mixing of RNA-seq or microarray data from sorted cells or scRNA-seq data of se-

lected cell types (Methods). All the in silico mixed training datasets followed the same cell propor-

tions and only the mixing strategies differ. The t-SNE plot reveals highly distinct clusters of these

datasets. Importantly, only the clusters of the DAISM-mixed dataset strongly overlapped with

SDY67 while the clusters from the remaining datasets showed a clear gap with SDY67, demon-

strating strong batch effects between them and the real samples (Supplementary Fig. S4). We

further compared the deconvolution performance of the DAISM-DNN model trained using differ-

ent in silico training datasets and found highly different cell fraction estimation performance when

different training datasets were used (Supplementary Fig. S4b), indicating that the choice of the

training data indeed plays a critical role in determining the performance of DNN-based models

for cell type proportion estimation. Among all these training datasets, DAISM-DNN achieved

significantly better performance on SDY67 when the DAISM-mixed training datasets were used

(Supplementary Fig. S4b), suggesting the effectiveness of the proposed method in creating a train-
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ing dataset that matches the real-life data to enable highly accurate cell type proportion estimation.

To identify the minimum number of samples needed to be sorted to achieve satisfactory

performance, we further tested the cell fraction estimation performance of DAISM-DNN with

respect to the number of real samples used for creating the augmented training data. We found

that in general, the estimation accuracy improved with an increasing number of real samples used

in creating the in silico mixed training data (Supplementary Fig. S5). When evaluate by CCC or

RMSE, which requires that the predicted cell fractions should follow the real fractions in terms

of absolute numbers, the estimation performance improved dramatically when the number of real

samples used in in silico mixing increased from zero to around 20∼40. Beyond that, the rate

of improvement slowed down significantly even if more real samples were used. Therefore, a

calibration data consisting of 20∼40 samples with ground truth cell type proportions would be

appropriate for DAISM to generate a suitable dataset to train a deep network with satisfactory

performance.

We developed DAISM-DNN to meet the challenge of accurate cell type proportion estima-

tion from bulk RNA expression quantification data. The DAISM method is able to populate a large

quantity of in silico mixed training data that match the distribution of the target dataset from a small

amount of tagged real samples (20∼40) with the aid from the large quantities of publicly available

expression data of purified immune cells from microarray, RNA-seq or single-cell sequencing

platforms. When using this in silico mixing strategy in combination with a DNN-based prediction

model, DIASM-DNN delivers consistent cellular fraction estimation performance across different
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experiment conditions and breaks the performance barrier of existing algorithms by a significant

margin. As such, DAISM-DNN would enable wide adoption of the digital sorting framework in

biomedical research and clinical applications for exploring cellular composition in complex tissues

given its accuracy and robustness.

Methods

Microarray datasets of purified cells. In total, 686 microarray expression profiles of eight pu-

rified immune cell types (B cells, CD4+ T cell, CD8+ T cell, monocytes, NK cells, neutrophils,

endothelium and fibroblast) from Affymetrix Human Genome 133A platform were downloaded

from Gene Expression Omnibus (GEO) (www.ncbi.nlm.nih.gov/geo/; Supplementary Table S3).

Expression profiles obtained as CEL files were RMA-normalized using R package “affy” (vesion

1.56.0) in Bioconductor. Probes were converted to HUGO gene symbols using chipset definition

files available from the NCBI GEO. The maximum expression values at gene level were chosen

when multiple probes mapped to the same gene. Finally, the normalizeBetweenArrays function

from R package “limma” was used to normalize the expression intensities of all samples.

RNA-seq datasets of purified cells. For RNA-seq data of purified immune cells, we used 1533

purified cell samples of the same eight immune cell types as above in this study (Supplementary

Table S4). Briefly, raw FASTQ reads were downloaded from the NCBI website, and transcription

and gene-level expression quantification were performed using Salmon25 (version 0.11.3) with

Gencode v29 after quality control of FASTQ reads using fastp26. All tools were used with default
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parameters. Transcription per million (TPM) normalization was performed on all samples before

further analysis.

scRNA-seq datasets. For scRNA-seq data of different immune cell types, we downloaded two

scRNA-seq datasets of PBMCs from patient blood samples from the 10X Genomics website (https:

//support.10xgenomics.com/single-cell-gene-expression/datasets, “8k PBMCs from a Healthy Donor”

and “Frozen PBMCs (Donor B)”), which are denoted as PBMC8k and DonorB, respectively.

PBMC8k was sequenced on Illumina Hiseq4000 with approximately 92,000 reads per cell, de-

tecting 8,381 cells in total. There are 7,783 cells detected in DonorB, which was sequenced

on Illumina Hiseq2500 with around 14,000 reads per cell. Briefly, raw scRNA-seq reads from

both datasets were aligned to the GRCh38 reference genome and quantified by Cell Ranger (10X

Genomics version 2.1.0). The resulting expression matrix was then processed using Seurat (v.

3.1.1)27. First, cells with less than 500 genes or greater than 10% mitochondiral RNA content, and

genes expressed in less than 5 cells were excluded from analysis. Then, cells with abnormal high

number of gene counts were considered as cell doublet and were excluded. Raw UMI counts were

log-normalized and the top 2000 highly variable genes were called based on the average expression

(between 0.0125 and 3) and average dispersion (> 0.5). Principal component analysis (PCA) was

performed on the highly variable genes to further reduce the dimensionality of the data. Finally,

clusters were identified using the shared nearest neighbor (SNN)-based clustering algorithm on

the basis of the first 20 principle components with an appropriate resolution (between 0.4 and 1.2

based on the total number of cells).
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Clusters were annotated on the basis of marker genes’ expressions. The marker genes were

obtained from the CellMarker database28 based on the target cell types in peripheral blood, specifi-

cally, CD4 for CD4+ T cells, CD8A and CD8B for CD8+ T cells, MS4A1 and CD79A for B cells,

CD14 and FCGR3A for monocytes, GNLY for NK cells, FLT3 and FCER1A for dendritic cells.

Cell types were identified manually by checking if the respective marker genes were highly differ-

entially expressed in each cluster. Clusters without high expression on the selected marker genes

or with high expression on the marker genes of other cell types were grouped into the “unknown”

type.

Datasets for benchmarking. We used nine public microarray and bulk RNA-seq datasets to eval-

uate the performance of different cell type proportion estimation methods (Supplementary Table

S2), of which the expression data and the corresponding ground truth cell fractions were publicly

available with reference to the original publications and used accordingly in our benchmarking

tests.

Data augmentation through in silico mixing (DAISM). Deep learning-based approaches require

a large amount of training data, but real tissue samples with known fractions of cell types and

gene expressions are clearly insufficient for use as a training set. In this regard, we extracted a

small number of real-life samples with ground truth cell type proportions to use as a calibration

dataset, and used the DAISM strategy to create a large number of in silico mixing samples from

this calibration dataset.

The expression profile of an in silico mixed sample of DAISM is calculated as follows. First,

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2020. ; https://doi.org/10.1101/2020.03.26.009308doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.26.009308
http://creativecommons.org/licenses/by-nc-nd/4.0/


we generated a random variable r with uniform distribution between 0 and 1 to determine the

fractions of the real sample in the mixed sample, andC random variables with Dirichlet distribution

pk, k = 1, . . . , C such that
C∑

k=1

pk = 1 to determine the fractions of the immune cells in the mixed

sample, where C is the number of cell types. The expression profile of the final mixed sample e is

then calculated as:

e = rθ + (1− r)φ,

where θ is the expression a real-life sample randomly selected from the calibration dataset as a

seed sample for this in silico mixed sample, and φ is the aggregated expression of single cell

samples or purified samples used for data augmentation. When scRNA-seq dataset was used for

data augmentation (DAISM-scRNA), we have

φ =
C∑

k=1

nk∑
j=1

εkj,

where nk = 500 · pk is the number of cells of type k extracted randomly from scRNA-seq datasets

for mixing, and εkj denote their expression profiles. Note that φ were further TPM-normalized

before mixing. When RNA-seq or microarray data from purified cells were used (DAISM-RNA),

we have

φ =
C∑

k=1

pkεk,

where εk is the expression profile of a randomly selected purified sample of cell type k from the

respective RNA-seq dataset. Once the expression profile of the in silico sample was created, its

“ground truth” cell fractions can be calculated following the same concept as follows:

ρk = rλk + (1− r)pk,
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where ρk is the fraction of cell type k in the in silico mixed sample, λk is the ground truth fraction

of cell type k in the selected seed sample which is known a priori through experiments, e.g., flow

cytometry analysis.

DAISM-DNN algorithm. We trained deep feed-forward, fully connected neural networks (multi-

layer perceptron networks) on in silico mixed training data by DAISM to predict the cell fractions

from bulk expression data. The network consists of one input layer, five fully-connected hidden

layers and one output layer and was implemented with the PyTorch framework (v1.0.1) in Python

(v3.7.3). As DNN can fit a large feature space with its large number of parameters (connection

weights), we did not perform any feature selection in advance. Instead, we used all the genes that

were present in both the training and testing datasets as input to the neural network. Moreover, the

expression profile of each sample was log2-transformed, and scaled to the range of [0,1] through

min-max scaling before using as inputs to DNN:

êi =
ei −min(e)

max(e)−min(e)
.

Here, ei is the log2-transformed expression of gene i, e is the vector of the log2-transformed

expressions of all genes of a sample, and êi is the min-max scaled expression.

The network was trained using the back-propagation algorithm with randomly initialized

network parameters. Mean square error (MSE) between the actual and predicted absolute cell

fractions was used as the loss function. The optimization function is set as Adam with an initial

learning rate of 1e-4. During the training process, the training set was randomly divided into a

number of mini-batches with a batch size of 32, which were then fed into the input layer of the
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network to obtain the predicted fraction values. The neural network then continuously adjusts

its network parameters to minimize the difference between the predicted and actual cell fractions

throught stochastic gradient descent. When the average MSE of all mini-batches in the current

epoch is higher than that of the last epoch, the learning rate was multiplied by an attenuation

coefficient until a minimum of 1e-5 is reached to avoid training noise from excessivly large learning

rates when the network converge to steady state. Furthermore, we randomly split the training set

and the validation set at a ratio of 9:1. Early-stopping strategy was adopted in the training process

where training is stopped when the validation error does not decrease in 10 epochs, and the model

producing the best results on the validation set during the training process was used as the final

model for prediction.

Performance comparison. Since cell types abundances were resolved at different granularities in

different deconvolution methods, regularizing the cell types of all methods to the same granularities

has to be performed to facilitate a fair comparison. In this study, for comparison of the methods,

we only test the performance of all methods on six specific coarse-grain cell types (B cells, CD4+

T cells, CD8+ T cells, NK cells, monocytes, neutrophils). The fine-grain cell type results of some

methods were mapped to coarse-grain cell types according to a hierarchy of cell types as defined

in Strum et al.24.

We ran quanTIseq, MCP-counter, EPIC, xCell through an R package, immunedeconv24,

which provided an integrated inference to benchmark on six deconvolution methods. The pa-

rameter tumor was set FALSE on performing deconvolution on all test PBMC datasets. As rec-
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ommended in the original paper, EPIC was run with BRef as the signature set on PBMC samples.

More details on other methods tested in this paper are listed as follows.

• CIBERSORT (CS)

CIBERSORT is a signature-based deconvolution algorithm which uses ν-support vector re-

gression to estimate cell abundance. Predicted cell proportions were obtained using R source

code requested from the CIBERSORT website (https://cibersort.stanford.edu/). In this study,

to compare the effect of different signature matrices on the deconvolution performance, we

used CIBERSORT with three signature matrices (LM22, IRIS and immunoStates) and de-

noted as three methods. The input data for CIBERSORT was in linear domain and all pa-

rameters were used as in their default settings.

• CIBERSORTx (CSx)

CIBERSORTx is an extended version of CIBERSORT. CIBERSORTx enables generating

the signature matrix from scRNA-seq data and provides two distinct batch correlation strate-

gies (B-mode and S-mode) for cross-platform deconvolution. The B-mode was designed

to remove technical differences between bulk profiles and signature matrices derived from

bulk sorted reference profiles while S-mode was used for signature matrices derived from

dropket-based or UMI-based scRNA-seq data. In this study, we tested both B-mode and S-

mode batch correction methods to perform deconvolution. For B-mode, LM22 were used as

the signature matrix. For S-mode, scRNA-seq dataset PBMC8k was chosen to generate the

signature matrix using CIBERSORTx, which was then applied in further deconvolution. We
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ran CIBERSORTx on its website (https://cibersortx.stanford.edu/). Quantile normalization

was disabled when input was RNA-seq or scRNA-seq simulated mixtures data.

• MuSiC

MuSiC predictions were obtained from R source package MuSiC (https://github.com/xuranw/

MuSiC). MuSiC is a deconvolution method which takes scRNA-seq data with cell type la-

bels as reference. Deconvolution using MuSiC was performed following the tutorial pro-

vided by the authors with five coarse-grained cell types (B cells, CD4+ T cells, CD8+ T

cells, NK cells and monocytes) from three single cell PBMC datasets download from the

10X Genomics website (PBMC6k, PBMC8k and Donor C) used as reference data for the

deconvolution process.

• ABIS

ABIS is a deconvolution method that enables absolute estimation of cell abundance from

both bulk RNA-seq and microarray data. Deconvolution was performed through an R/Shiny

app downloaded from https://github.com/giannimonaco/ABIS. The results provided were

absolute cell frequencies and were divided by 100 in this study for comparison with other

methods.

• Scaden

Scaden is a DNN-based deconvolution algorithm. For Scaden, we used the same train-

ing datasets provided by Scaden (https://github.com/KevinMenden/scaden), which contains 32,000 ar-

tificial mixtures from four scRNA-seq datasets. The training was performed for 5000 steps per model on
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each dataset as recommended in the original paper.

Performances of DNN on different training datasets. We trained DAISM-DNN on training

datasets generated from expression data of purified cells to compare the performance of DAISM-

DNN with and without using real-life calibration samples. To this end, we generated three training

datasets that used RNA-seq and microarray expression profiles of sorted cells and scRNA-seq data

respectively. The generation of these three in silico bulk data followed the same linear mathemati-

cal operation as previously defined, with the only exception that real-life samples with ground truth

cell fractions were not used in the mixing process. Briefly, for RNA-seq or microarray datasets,

the expression of a simulated sample e was calculated as

e =
C∑

k=1

pkεk,

where C is the number of cell types involved in mixing, pk, k = 1, . . . , C are random variables

with Dirichlet distribution that determined the fractions of different cells in the in silico mixed

sample, and εk is the expression profile of a randomly selected purified sample of cell type k from

the respective RNA-seq or microarray dataset. For scRNA-seq dataset, e is given by

e =
C∑

k=1

nk∑
j=1

εkj,

where nk = 500 · pk is the number of cells of type k extracted randomly from scRNA-seq datasets

for mixing, and εkj denote their expression profiles. Note that in this case e were further TPM-

normalized before used as training data.

For comparison, we also generated two training datasets by the DAISM strategy with 200
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randomly real-life samples from the SDY67 dataset as the calibration samples, which were further

augmented using scRNA-seq data or RNA-seq data of purified samples to train the DAISM-DNN

model. The remaining 50 samples from SDY67 not used in creating the training set were used

for testing. For fair comparison, the same number of training samples (16,000) and the same cell

fractions were used in the five training sets. For t-SNE analysis, all the 50 test samples of SDY67

and 500 randomly selected artificial mixtures from each training datasets were plotted based on

the common genes from SDY67 and the five training datasets. The perplexity was set to 30 in this

experiment and the other parameters were set as default.

Statistical analysis. We used three evaluation criteria to compare the performance of DAISM-

DNN and other methods. Pearson corrlation r was used to measure the linear concordance between

predicted cell proportions and the FACS ground truth. Lin’s CCC and the RMSE were further used

to evaluate the performance for methods which enable absolute cell type proportion estimation.

Differences in continuous measurements were tested using the two-tailed Student’s t-test.

Two-sided p-values were used unless otherwise specified, and a p-value less than 0.05 was con-

sidered significant. Ranking of the algorithms over multiple testing sets was determined using

Friedman test with post hoc two-tailed Nemenyi test29. PRISM was used for basic statistical anal-

ysis and plotting (http://www.graphpad.com), and the Python or R language and programming

environment were used for the remainder of the statistical analysis.
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Figure 1: The framework of DAISM-DNN. A typical DAISM-DNN workflow involves several
steps when performing cell type proportion estimation: (1) measuring the ground truth proportions
of cell types of interest on a small portion of calibration samples (e.g., 20∼40 samples) from the
batch of samples to be evaluated; (2) performing bulk RNA-seq on the calibration samples to
obtain their expression profiles; (3) performing data augmentation on the expression profiles of the
calibration samples through in silico mixing with RNA-seq data of purified cells or scRNA-seq
data (DAISM); (4) performing DNN training on the augmented data; (5) using the trained DNN
model for cell type proportion estimation for the remaining samples with their bulk expression
profiles. Note that steps (1)-(4) could be optional if the DNN model has already been trained for
the given RNA-seq experiment conditions.

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2020. ; https://doi.org/10.1101/2020.03.26.009308doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.26.009308
http://creativecommons.org/licenses/by-nc-nd/4.0/


D
AI

SM
-D

N
N

C
Sx

 (S
-m

od
e)

Pr
ed

ic
tio

n
Pr

ed
ic

tio
n

0.83

0.85

0.89

0.86

0.81

0.72

Mean

Monocyte

NK

CD8.T

CD4.T

B

0.0

0.2

0.4

0.6

0.8 r = 0.9741
P < 0.0001

SDY67

0.58

0.70

0.49

0.47

0.54

0.71

0.0 0.2 0.4 0.6 0.8 1.0

Mean

Monocyte

NK

CD8.T

CD4.T

B

Ground Truth Pearson r
0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8 r = 0.6622
P < 0.0001

GSE59654

0.0

0.2

0.4

0.6 r = 0.8990
P < 0.0001

0.71

0.53

0.87

0.64

0.80

Mean

Monocyte

CD8.T

CD4.T

B

Cell type

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8 r = 0.6343
P < 0.0001

0.40

0.18

0.59

0.13

0.72

0.0 0.2 0.4 0.6 0.8 1.0

Mean

Monocyte

CD8.T

CD4.T

B

Ground Truth Pearson r

Cell Type Cell Type

GSE107990

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6 r = 0.6323
P < 0.0001

0.57

0.51

0.77

0.54

0.66

0.0 0.2 0.4 0.6 0.8 1.0

Mean

Monocyte

NK

CD8.T

CD4.T

B

0.38

0.0

0.1

0.2

0.3

0.4

0.5 r = 0.9257
P < 0.0001

0.84

0.92

0.82

0.82

0.83

0.81

Mean

Monocyte

NK

CD8.T

CD4.T

B

Ground Truth Pearson r

Cell Type

RNA-seq Microarraya

SDY67 GSE59654 GSE107990
0.0

0.2

0.4

0.6

0.8

1.0

Pe
ar

so
n 

r

p < 0.0001 p < 0.0001 p < 0.0001

p = 0.23

SDY67 GSE59654 GSE107990
0.0

0.1

0.2

0.3

R
M

SE

p < 0.0001 p < 0.0001 p < 0.0001

SDY67 GSE59654 GSE107990
0.0

0.2

0.4

0.6

0.8

1.0

C
C

C

p < 0.0001 p < 0.0001 p < 0.0001

b

DAISM-DNN

Scaden

MuSiC

CSx (S-mode)

CSx (B-mode)

CS (LM22)

ABIS

EPIC

quanTIseq

MCP-counter

xCell

Figure 2: Performance of different algorithms on datasets SDY67, GSE59654, and GSE107990.
(a) Scatter plots of ground truth fractions (x-axis) and predicted cell fractions (y-axis) for DAISM-
DNN, CIBERSORTx (S-mode). Bar plots aside show the Pearson correlation on each cell type. (b)
Box plot of average per-cell-type Pearson correlation on 11 methods. Bar plots of RMSE (right)
and CCC (left) for 9 methods. Note that RSEM and CCC are not suitable to evaluate the two
marker-based methods, MCP-counter and xCell.
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