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Summary 

 
Ramachandran plots report the distribution of the (φ, ψ) torsion angles of the protein 
backbone and are one of the best quality metrics of experimental structure models. 
Typically, validation software reports the number of residues belonging to “outlier”, 
“allowed” and “favored” regions. While “zero unexplained outliers” can be considered the 
current “gold standard”, this can be misleading if deviations from expected distributions, 
even within the favored region, are not considered. We therefore revisited the 
Ramachandran Z-score (Rama-Z), a quality metric introduced more than two decades ago, 
but underutilized. We describe a re-implementation of the Rama-Z score in the 
Computational Crystallography Toolbox along with a new algorithm to estimate its 
uncertainty for individual models; final implementations are available both in Phenix and 
in PDB-REDO. We discuss the interpretation of the Rama-Z score and advocate including it 
in the validation reports provided by the Protein Data Bank. We also advocate reporting it 
alongside the outlier/allowed/favored counts in structural publications. 
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Introduction 

 
Validation is an integral part in obtaining three-dimensional models of macromolecules in 
X-ray crystallography (MX; Read et al., 2011) and in cryo- Electron Microscopy (cryo-EM; 
Henderson et al., 2012). It is also key in interpreting the quality of models from the Protein 
Data Bank (PDB; Burley et al., 2019), as there is no formal structure quality requirement 
for acceptance to this repository. A key quality metric used in validation of the quality of 
atomic models of proteins is the Ramachandran plot (Ramachandran et al., 1963). 
Ramachandran plots describe the two-dimensional distribution of the protein backbone (φ, 
ψ) torsion angles. They have been used for the validation of protein backbone 
conformations since their introduction in PROCHECK (Laskowski et al., 1993), and then 
later in software packages such as O (Kleywegt & Jones, 1996), WHAT_CHECK (Hooft et al., 
1996) and MolProbity (Lovell et al., 2003). The phrase “no Ramachandran plot outliers” is 
widely considered as the “gold standard” for a high-quality structure and is often found in 
the main text of papers reporting protein structures, while the absolute number or the 
percentage of residues in the so-called “outlier”, “allowed” and “favored” regions is 
typically reported in tabular form. It should be noted that a better phrase is “no 
unexplained Ramachandran plot outliers”, as it is not uncommon for there to be a very 
small number of legitimate outliers in the plot, which are supported by the experimental 
data and often relate to some functional aspect of the protein (Richardson et al., 2018).  
 
All software for refining macromolecular models uses a standard set of stereochemical 
restraints on covalent geometry (Engh & Huber, 2012): these provide sufficient 
information for structures at 3.0Å resolution or better. Advances in electron cryo-
microscopy (Li et al., 2013; Bai et al., 2015) have led to greatly improved resolution of cryo-
EM maps, but while this improved resolution enabled full-atom refinement of 
macromolecular structures (Afonine et al., 2018; Nicholls et al., 2018), the majority of cryo-
EM models are still solved in the 3-5Å resolution range. Likewise, in X-ray crystallography, 
low-resolution data sets remain an issue: atomic modeling and refinement against low-
resolution data is challenging and can benefit substantially from using all available a priori 
knowledge about the molecule at hand (Kleywegt & Jones, 1998).  
 
At low resolution it is often necessary to use information beyond the stereochemical 
restraints on covalent geometry: internal molecular symmetry (Kleywegt, 1996); 
homologous structure models determined in higher resolution as a reference (Smart et al., 
2012; Nicholls et al., 2012; Headd et al., 2012; Schröder et al., 2010) or as a source for 
hydrogen bond length restraints (Beusekom et al., 2018); information about secondary 
structure and rotameric states of protein amino-acid side chains (Headd et al., 2012) have 
all been used in various software implementations to provide additional information in low 
resolution refinement. Clearly, the well-defined distribution of protein main-chain φ and ψ 
angles in Ramachandran space is yet another source of information that can guide model 
building and refinement (Kleywegt & Jones, 1996). Ramachandran restraints can help 
prevent deterioration of backbone conformation during low-resolution refinement, thereby 
maintaining chemically meaningful model stereochemistry. Many software packages 
provide an option to use Ramachandran restraints, e.g. in XPLOR/CNS (Brunger, 1993; 
Brünger et al., 1998), QUANTA (Oldfield, 2001), Coot (Emsley et al., 2010) and Phenix 
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(Headd et al., 2012). The Rosetta (Leaver-Fay et al., 2011) all-atom energy function 
includes term based on Ramachandran distribution (Alford et al., 2017). 
 
While helpful for refinement, actively using the Ramachandran plot as a source of 
restraints reduces its utility as an independent validation metric. It can, however, still be 
used to report on the model quality, similar to how bond length and bond angle deviations 
are reported even though these are nearly always restrained. A larger issue arises during 
the construction of Oldfield-like (Oldfield, 2001) Ramachandran restraints: assigning (and 
restraining) each pair of (φ, ψ) angles in the model to a nearby target within the plot. This 
assignment is purely reliant on the input model, which may not be correct. Incorrectly fit 
peptide planes, which are associated with large differences between the current and the 
correct position of two residues on the Ramachandran plot, occur in more than half of all 
atomic models (Joosten et al., 2012) and we have previously shown that correction of such 
errors requires model rebuilding (e.g. peptide flipping) rather than refinement (Joosten et 

al., 2011). Errors in starting models will lead to incorrect Oldfield-like restraint target 
assignments and (φ, ψ) errors will propagate into the model as a result of refinement 
(Kleywegt & Jones, 1998; Richardson et al., 2018). The refined model may then appear to 
have desirable Ramachandran statistics in terms of expected fractions of residues 
belonging to favored/allowed/outlier regions, while the distribution of (φ, ψ) itself is 
improbable. Unfortunately, this may not be obvious to an untrained eye.  
 
We illustrate this in Figure 1, contrasting a nearly perfect-looking Ramachandran plot1 
derived from an ultra-high resolution structure (Fig. 1, left) with an obviously poor plot 
(Fig. 1, middle). The ultra-high resolution plot in Figure 1, left contains few outliers, has a 
majority of points in the favored region and follows the observed distribution that is shown 
in the background color of the plot. The middle plot in Figure 1 has a preponderance of 
outliers, and is trivial to identify both visually and by the number of outliers. In Figure 1, 
right, however, we illustrate that simple visual inspection or outlier count can be 
misleading: while residues are within the most favored region with no outliers, the 
distribution does not coincide with the most favorable peak (darkest blue) in alpha-helical 
and beta-sheet regions. While such anomalies are apparent to a trained eye, they are not 
reflected either by the count or the percentage of outliers, nor in the counts in 
outlier/allowed/favorable regions: these numbers are practically identical between figures 
1 (left) and 1 (right) making it hard both to computationally and manually mine for such 
anomalies to report them in a clear manner. 
 
Fortuitously, (Hooft et al., 1997) proposed a numerical metric, called the Ramachandran Z-
score (Rama-Z), that characterizes the shape of the (φ, ψ) angle distribution in the 
Ramachandran plot. That metric was based on the statistical analysis of high-quality 
models available in the PDB at that time. While this metric has been available since 1997 in 
the WHAT_CHECK program and has been routinely reported by PDB-REDO (Joosten et al., 
2009, 2014), it never made it into mainstream validation pipelines (Read et al., 2011) nor 
did it become standard practice to report the metric in the model quality summary in 
“Table 1”. There is now an avalanche of lower resolution structures being deposited, in a 
large part thanks to the cryo-EM revolution (Li et al., 2013; Bai et al., 2015), and to 
dramatic improvements in refinement methods (Afonine et al., 2018; Nicholls et al., 2018) 
that now actively exploit the majority of available a priori information about model 
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geometry. The explicit use of the (φ, ψ) angles distribution in refinement now makes it 
essential for new model quality measures that are independent of the information used in 
the refinement target function.  
 
Here we demonstrate the value of this old but powerful Rama-Z validation metric, and 
showcase its utility across a number of examples where standard validation tools fail to 
pinpoint the issue. We describe the implementation of the Rama-Z score in CCTBX (Grosse-
Kunstleve et al., 2002) and propose a method to estimate its reliability for a particular 
model. Implementations taking into account the current distribution of (φ, ψ) angles in 
high-quality and high-resolution models in the PDB and including the reliability metric are 
now available both in Phenix and PDB-REDO. Based on specific examples and a global 
evaluation we argue that the Rama-Z score should be broadly adopted.  
 
Results and discussion 

 
Interpretation of the Rama-Z score 

 
The Rama-Z score describes how ‘normal’ a model is compared to a reference set of high-
resolution structures (Hooft et al., 1997). As in the original paper, we calibrated the score 
to make the average score for the reference set zero with a standard deviation of 1.0. The 
original paper suggested that a Z-score of -4 and lower indicates a serious problem with the 
structure. We suggest stricter cutoffs since the number of models in the reference set is 
significantly bigger and we can expect that the distributions will account for rarer but still 
valid cases. Large positive Rama-Z scores also show significant deviation from the 
reference distribution hence they are as unlikely as large negative ones. Presuming a 
normal distribution, only 0.2% of structures would be expected to have |Rama-Z| 
> 3; however, we observe that only 0.04% of high-resolution models have |Rama-Z| > 3 in 
the PDB. Therefore Rama-Z scores with absolute values above 3 correspond to 
geometrically improbable structures (in terms of main chain geometry), absolute values 
between 3 and 2 (which would encompass 4.2% in a normal distribution and in practice 
are 0.8% of high-resolution models) correspond to less likely yet possible models, and 
anything between -2 and 2 indicates normal protein backbone geometry.  
 
The Rama-Z score is a global metric that provides an overall assessment of model quality 
and is not able to report on local issues with the main chain conformation. We also note 
that apart from the single, global, Rama-Z score, separate Rama-Z scores are calculated for 
strands, helices, and loops: these are worth checking, especially for “suspicious” Rama-Z 
values (2<|Rama-Z|<3). The single value of Rama-Z on its own is still most useful for an 
overall assessment of the model. However, we recognize that some applications would 
require an estimate of the reliability of the Rama-Z score for the model being analyzed. An 
application that requires tracking both the Rama-Z score and its RMSD is the rapid 
evaluation of whether the backbone geometry is significantly better after rebuilding and 
refinement, as performed in PDB-REDO. When the overall model quality and fit to the 
experimental data improves, the Rama-Z score typically follows, and can be used to show 
model improvement in PDB-REDO runs (Joosten et al., 2009). The RMSD can also be used to 
assess the significance of a difference in Rama-Z score between two models; an 
implementation of this feature in the context of PDB-REDO is shown in Suppl. Figure 2. As 
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the reliability of the Rama-Z score was not explored in the original paper, we developed a 
method for its calculation and call it Rama-Z RMSD (RMSD for short from herein; see 
Methods). 
 

Rama-Z scores for models in the Protein Data Bank 

 
We calculated the Rama-Z score for all X-ray (107,800) and cryo-EM (1,711) structures 
available in the PDB, (Figure 2). The vast majority of the models at resolution of 2Å or 
better have Rama-Z scores that we consider good (between -2.0 and 2.0); most models 
between 2-2.5Å resolution also have good Rama-Z scores. While there is a clear trend that 
the Rama-Z score distribution deteriorates at lower resolution, rather surprisingly, the 
distribution and median between 3 and 5Å remain almost constant. Slightly better values 
for very low-resolution models are likely a result of these models being complex structures 
of fitted higher-resolution homologous models and do not correspond to de-novo modeling 
and atomic refinement against the data. The distribution for cryo-EM models is similar to 
X-ray models at matching resolutions, with the only observable trend being better models 
for X-ray crystallography between 2.5 and 3.0Å. 
 
In Figure 3 we show the Rama-Z score and the percentage of residues in the favored 
regions of the Ramachandran plot for cryo-EM and X-ray structures solved at resolutions 
better than 5Å. We filtered out small structures with fewer than 100 protein residues 
because their Rama-Z values usually have a large uncertainty (see Methods), leaving 
104,470 structures. It is clear that the Rama-Z score correlates with the fraction of residues 
in favored regions of the Ramachandran plot. Among models solved with experimental data 
in the 1.2-5Å range (black dots in Figure 3) 28% have Rama-Z < -2 and 14% have Rama-Z < 
-3; 0.19% have Rama-Z > 2, and only 0.01% have Rama-Z > 3. At the same time, of the high-
resolution models (better than 1.2Å, dark blue dots on the plot) only 0.4% have Rama-Z < -
2 and no model has Rama-Z < -3. Similarly, 0.4% have Rama-Z > 2 and 0.04% have Rama-Z 
> 3. The red “x” in Figure 3 denotes structures with a relatively high percentage of 
Ramachandran favored residues, but low Rama-Z score. These examples are discussed in 
more detail below (Selected examples from cryo-EM) and the corresponding 
Ramachandran plots are shown in Figure 4. 
 
Selected examples from cryo-EM 

 
We here analyze in more detail twelve examples of problematic plots, where the underlying 
issues are less obvious (red crosses in Figure 3 and more detail in Figure 4). All the models 
in these examples are from cryo-EM; with most in the 3.5-4.0Å resolution range. They are 
not single occurrence examples, but are rather representatives of whole sets of models 
with similar artifacts of the Ramachandran plot. Below we discuss the pathologies in these 
structures that are trivial to detect using the Rama-Z score (all but three examples have 
Rama-Z < -3.0) but could go unnoticed using the standard favored or outlier metrics (many 
examples have >90% in the favored region and all but one example have less than 2% 
outliers). 
 
5vhw: In this 7.8Å structure, except for a few outliers, the plot itself does not appear very 
unusual, except maybe for slightly systematic clustering of residues in the alpha and beta 
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regions, although this does not produce a particularly alarming Rama-Z score (-1.6). 
However, the individual Rama-Z values are -1.9, -2.5 and 0.7 for helices, sheets and loops 
respectively. The low score for the beta-sheet part of the model explains the somewhat 
odd-looking distribution of residues in the beta region. Although the helix score of -1.9 
belongs in the good range, it borders on “suspicious”, which is again in line with the 
somewhat unusual distribution in the alpha region. 
 
5kip: All residues belong to the favored and allowed regions (no outliers) in this 3.7Å 
structure. Visually the plot does not trigger any major alarm, except that the residues look 
almost randomly distributed inside the favored regions with only 83.7% inside these 
regions. A very low Rama-Z score highlights this oddity. 
 
5Lks2: This 3.6Å structure shows one of the most usual looking plots in this series, with 
various strangely shaped ridges separated by nearly empty valleys in the favored regions. A 
Rama-Z score of -2.3, in the suspicious range, raises concerns. Individual scores of -4.0, -4.2 
and 0.2 for helices, sheets and loops provide the insight that poor distributions and scores 
for helices and sheets are masked by the overall good distribution for the loops. Notably, 
65% of this this model consists of loops but this was not enough to completely suppress the 
overall Rama-Z score for reasons described in Methods. 
 
6j2q: The plot for this 3.8Å structure shows residues clustering exactly around peaks of the 
favored regions and two peculiar horizontal clusters: one in the allowed region just below 
the helices and one at the favored strands region (including residues both on the top and 
on the bottom of the plot); the Rama-Z score clearly identifies this issue, with a low overall 
score of -3.5.  
 
3ja8 and 6eyc: these two entries represent the same model at 3.8Å resolution; 6eyc a 
version of 3ja8 that has been extensively re-built and re-refined manually and made 
available as a separate entry in the PDB (Croll, 2018). The plot for the rebuilt structure 
(6eyc) is much improved, as clearly indicated by the Rama-Z score (-2.5 instead of -4.3). 
Although 6eyc still shows an unusual distribution in the helices and particularly in the 
strand region (note the three distinct clusters to the left), the Rama-Z score does not report 
it as poor but rather suspicious. 
 
3j8a: In this 3.8Å structure, the number of residues in Ramachandran favored region is 
already low (87.4%, lower than the MolProbity guidelines of 90%) and that is also evident 
in the Rama-Z score (-4.2). That alone hints at some problems with backbone geometry. 
Additionally, these residues are clustered in groups of four residues due to the presence of 
chains related by internal molecular symmetry. 
 
5t4q: This very low-resolution structure (8.5Å) provides another unusual looking plot. The 
residues form essentially two clusters: one broad lane on the left, spanning the alpha and 
beta regions and one very slim line on the right. This is very unlikely to represent the real 
main-chain conformation of the protein and this is clearly highlighted by the very low 
Rama-Z score of -6.2. Such a distribution is very likely created by the use of an 
inappropriate target function in the model’s refinement and the low resolution of the map 
itself which doesn’t justify refinement of atomic coordinates. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.26.010587doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.26.010587


7 
 

 
6f38: In yet another low-resolution structure (6.7Å) this is another instance of a very 
unlikely distribution. The residues lie along the borders of the alpha and the beta regions; 
no residues are observed in between the regions. The Rama-Z score highlights this with a 
poor score of -4.7. This is likely a result of refinement (or pure geometry optimization) 
using strong Ramachandran plot restraints, starting with a model that had many 
Ramachandran plot outliers. 
 
2xkv, 6qnt and 5voy: These three models, at resolutions of 13.5, 3.5 and 7.9Å respectively, 
have the majority of residues in favored regions, with virtually no outliers. However, we 
note that all residues are distributed such as to completely avoid the most prominent peaks 
of the plot. This typically happens when stereochemistry terms with a strong non-bonded 
repulsion dominate refinement target and the model does not include explicit hydrogen 
atoms. All three cases receive very poor Rama-Z scores. 
 
High values of Rama-Z score from cryo-EM 

 
Very low values of Rama-Z score indicate unlikely backbone geometry and probable 
artifacts in the Ramachandran plot. At the same time, very high values may also indicate 
unusual Ramachandran distributions and sub-optimal backbone geometry. One example is 
illustrated in Figure 5. Two 100% sequence identical structures are considered: 1jz7 was 
solved by X-ray crystallography at 1.5Å resolution and has a good Rama-Z score of -0.8, 
while 3j7h was solved by cryo-EM at 3.2Å resolution and has Rama-Z score of 2.4. Both 
models are very similar, with a root-mean-square deviation between the main-chain atoms 
of 0.65Å. However, as the 1jz7 model has an excellent fit (Rfree 0.22) to high-resolution data, 
it is much more likely to represent the true structure. The high Rama-Z value of the lower 
resolution cryo-EM model (3j7h) indicates problems, and this is reinforced by a MolProbity 
clashscore of 131. Indeed, the researchers used tight Ramachandran restraints in Coot for 
the entire model optimization process (Bartesaghi et al., 2014). This resulted in residues 
clustering almost exclusively on top of Ramachandran plot peaks, which is a very unlikely 
distribution. This serves as a warning that one should be careful to avoid over-optimizing, 
especially using unreasonable weights in restraints such as those implemented in 
interactive real space refinement, as in Coot (Emsley et al., 2010).  
 
Another example is illustrated in Figure 6. The 3.9Å starting model 5jLh (Fig. 6A) was used 
to derive 9Å model 6g2t (Fig. 6B), both using cryo-EM data. Comparison of number of 
residues lies in favored (93.3% and 97.6%) and outlier (1.6% and 0.4%) region would lead 
us to believe that lower-resolution model has better backbone geometry. However, the high 
Rama-Z score of 2.5 is in the “suspicious” range compared to the score of -1.6 for 5jLh and 
suggests that the backbone geometry is worse for 6g2t. Importantly, visual inspection of 
the 6g2t plot identifies unusual grid-like distributions in the favored regions of the 
Ramachandran plot. These were not inherited from the starting model (5jLh), so this 
particular artifact must be the result of the refinement protocol used. That refinement 
involved H-bond restraints followed by Ramachandran plot restraints (Risi et al., 2018). 
The related models 6cxi and 6cxj have the same pattern in the Ramachandran plot (Suppl. 
Fig. 3). Apparently, this particular protocol of all-atom refinement systematically produces 
such artifacts. This leads us to note that a detailed description of the refinement protocol 
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used to obtain final atomic models should always be included in the experimental methods 
section of structural papers. In these examples, the authors are not “blamed” for producing 
erroneous Ramachandran features: rather, they are congratulated for describing their 
experiment in enough detail to help understand the underlying causes and make it possible 
for developers to create better re-refinement and re-building procedures in the future.  
 
Selected examples from crystallography 

 

In the preceding sections we focused on models obtained using cryo-EM data, as this is a 
rapidly growing field where there is a predominance of models from lower resolution data. 
It might be tempting to think that models derived from crystallographic data are less 
susceptible to the same problems, and that the Rama-Z score has limited applicability. 
However, analysis of the crystallographic structures in the Protein Data Bank suggests 
otherwise, as we observe several cases where the score is useful in identifying problematic 
models. Therefore, the utility and applicability of the Rama-Z validation metric does not 
depend on the experimental method used to obtain an atomic model. Here we present a 
number of models with both similar and different artifacts compared to cryo-EM cases to 
illustrate this point (Fig 7). 
 
1rje: This 2Å resolution model (Rfree 0.21) does not show any negative geometry metrics 
with 95.3% of residues in the favored Ramachandran region and only 0.3% Ramachandran 
outliers. Nevertheless, an extremely low Rama-Z score of -5.4 indicates something 
abnormal. Indeed, points on the Ramachandran plot are visibly shifted to the left side of the 
most favorable alpha-helical region. 
 
1ycy: This lower-resolution (2.8Å) model has 0% Ramachandran outliers. The points in the 
plot lie around the alpha-helix peak, and only sparsely populate the peak itself. The Rama-Z 
score of -4 clearly identifies this unusual distribution. 
 
3vbb: Another lower-resolution (2.8Å) model with a low Rama-Z score of -3.3. The 
Ramachandran distribution displays similar features to structure 6j2q in Figure 4. This 
reinforces the idea that model artifacts are independent of the type of experiment. 
 
4akg: This 3.3Å model displays too uniform a distribution of residues in the Ramachandran 
plot without clearly following the most frequent peaks. The abnormality is also indicated 
by a Rama-Z score of -3.7. 
 
6adg: This model solved with 3Å resolution data shows signs of overfitting with respect to 
the Ramachandran plot. Most residues occupy the most prominent peaks. The Rama-Z 
score highlights this abnormality with a very high positive value of 3.4.  
 
4s0s: This model is another example of very high positive Rama-Z score of 4.7. The model 
was solved with X-ray data at 2.8Å resolution. The Ramachandran plot shows even more 
overfitting with residues also forming vertical lines in alpha-helical region. 
 
Limitations of the Rama-Z score 
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One of the limitations of the Rama-Z score is that it is not very suited for small (sub-) 
structures with few residues. This is largely a result of the reliance on normalization 
against a control set of structural models (Hooft et al., 1997). In general, normalization is 
not well suited to small sample sizes, i.e. few available residues. Therefore, the Rama-Z 
score should be interpreted in light of the calculated uncertainty – the RMSD value; both 
PDB-REDO and Phenix report these values. 
 
Conclusions 

 
We have shown that the simple counting of residue fractions that belong to favored and 
outlier regions of the Ramachandran plot is insufficient to validate protein backbone 
conformation, particularly when additional restraints have been introduced into the 
refinement process. These counts may still obey the recommended guidelines, but 
corresponding Ramachandran plots may show unlikely distributions. These odd 
distributions may range from trivially identifiable with the naked eye to very subtle. With 
the an increasing number of lower resolution models becoming available, particularly from 
cryo-EM, and refinement algorithms actively using all the available information to improve 
low-resolution refinement by, for example, using Ramachandran plot as restraints, 
additional validation tools are necessary. 
 
The Ramachandran Z score introduced by Hooft et al. more than two decades ago did not 
make it into mainstream validation procedures, but has now found its place. Here we have 
demonstrated the utility of this validation metric to pinpoint unlikely distributions of 
protein main-chain conformations that often are not obvious to an untrained eye nor can 
be flagged by other standard validation metrics. The expanded database of protein 
structures has made it possible for us to suggest new cutoffs for Rama-Z validation, with 
|Rama-Z| > 3 indicating improbable backbone geometry, 2 < |Rama-Z| < 3 unlikely yet 
possible, and |Rama-Z| < 2 normal backbone geometry. We have also devised a much 
needed method to calculate the uncertainty in the Rama-Z score, which should be used in 
its interpretation. 
 
The rapid growth in the number of atomic models derived from lower resolution cryo-EM 
data, and the concomitant changes in structure refinement algorithms, argues for improved 
validation metrics. We therefore advocate for greater acceptance of the Rama-Z metric by 
the structural biology community and note that PDB-REDO has been reporting the Rama-Z 
score since its inception. Routine use of this metric by researchers refining atomic models 
at lower resolution, and also by the Protein Data Bank in its validation reports, would likely 
greatly improve the quality of macromolecular models.  
 
 
Availability 

 
The method is implemented and available in open-source CCTBX (mmtbx.rama_z) library 
as well as in Phenix as a command line tool phenix.rama_z and also in various validation 
reports generated by Phenix. The tortoize implementation is available in PDB-REDO and 
will become available in the CCP4 and CCP-EM suites in the near future. 
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Footnotes 
1 The usage of “Ramachandran plot” refers to the list of (φ, ψ) values from a specific model 
being superposed on the contoured heatmap representation of the expected (φ, ψ) values 
determined from a filtered set of accurate proteins. 
2 PDB protein codes follow the convention outlined in Moriarty (2015) 
 
 
Methods 

 
Rama-Z implementation. 

 
The Ramachandran plot Z-score calculation was implemented in the CCTBX closely 
following the original algorithm from Hooft et al. (Hooft et al., 1997); a similar re-
implementation has been reported for tortoize in PDB-REDO (Beusekom, Joosten et. al. 
2018). A notable difference is that we used the Top8000 database (Williams et al., 2018) of 
high-quality manually curated models as the underlying data. We used only (φ, ψ) angles 
formed by residues with B-factor less than 30Å2. A very similar set of models was used to 
derive the current Ramachandran contours in MolProbity (Williams et al., 2018). This led 
to 1,604,080 residues used in the determination of the distributions. Assignment of 
secondary structure was performed with the from_ca algorithm (Terwilliger et al., 2018) 
with adjusted parameters to make results similar to ones obtained by KSDSSP – an 
alternative implementation of Kabsch’s & Sander’s DSSP algorithm (Kabsch & Sander, 
1983; Joosten, te Beek et al., 2011). In addition to the standard residue types we 
distinguished pre-Proline and trans-Proline cases for all secondary structure types and cis-
Proline for loops. Seleno-methionine residues were counted together with methionine. The 
total number of residue types was 64: 21 standard residues (including pre-Proline and 
trans-Proline) in the three helix/sheet/loop secondary structures and additional cis-Proline 
in loops. The least populated group is cis-Proline with 3953 residues and the most 
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populated group is Glycine in loops with 70,883 residues. The full table of residue counts 
per group is available in Table S1. The increased number of residues allowed us to reduce 
the bin size from the original 10° to 4° maintaining a minimum average of one residue per 
4° bin for most of the categories. In addition to reporting the whole-model Rama-Z our 
implementation also reports Rama-Z scores for helices, sheets and strands separately. 
 
Thus, now, in addition to the original implementation in WHAT_CHECK, there are two new 
implementations: CCTBX and tortoize in PDB-REDO.  
 
As there are now multiple implementations that calculate the Rama-Z value, their 
compatibility should be asserted. The Rama-Z values from CCTBX in Phenix, tortoize in 
PDB-REDO, and WHAT_CHECK were calculated for a test set of 124518 PDB entries. 
Despite differences between the underlying data and minor technical differences, the 
correlation between calculated scores, using linear regression, was very high with 
correlation coefficients of 0.96 between CCTBX and tortoize, 0.93 between CCTBX and 

WHAT_CHECK and 0.93 between WHAT_CHECK and tortoize. Figure S1A shows the relation 
between CCTBX and tortoize. A slope of linear correlation of 0.8 indicates that the Rama-Z 
distribution calculated by CCTBX is more “dense” than that of tortoize. This is the result of 
tortoize being based on data from the PDB-REDO databank rather than the PDB. We 
calculated Rama-Z for large number of models and conclude that the latter are very similar, 
as expected and can be used interchangeably. 
 
Secondary structure-dependent Rama-Z scores. 

 
Separate distributions were calculated using the same method for helices, sheets and loops. 
If there are enough residues in a respective region, one can get a better insight about the 
quality of the backbone geometry for secondary structure elements. It should be noted, that 
Secondary structure-dependent Rama-Z scores and the Rama-Z score for the whole model 
are related in an unobvious way: the scores for helices, sheets, loops and the whole model 
were calibrated separately to achieve a mean score of 0 and an RMSD of 1 for the reference 
models, therefore the calibration values are different. This becomes obvious in some corner 
cases: for example, if the whole model does not have any helices and beta-sheets, the score 
for loops and for the whole model will be different. As a general guideline we suggest 
checking the separate the Rama-Z scores when the Rama-Z score for the whole model does 
not indicate any problems. 
 
Rama-Z reliability. 

 
Since Rama-Z is a statistical metric, the larger the model (more instances of Ramachandran 
pairs) the smaller the expected error and the more precise the calculated result. To 
estimate the reliability of the Rama-Z score for a particular model we use the Jackknife 
method (Quenouille, 1956; Tukey, 1958), resampling to estimate RMSD: 
 

���� �  �� 	 1� ��
� 	 
����

���
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where n is the number of (φ, ψ) pairs in the model, 
�  the Rama-Z score calculated for the 
model with omission of i-th (φ, ψ) pair, 
� the average of all 
� . 
 
RMSD values for 143,567 models available in PDB are shown on Figure S1 (B). It can be 
seen that the RMSD of the Rama-Z score indeed largely depends on the size of the model. 
Indicatively, for models of 100 residues the average RMSD is 0.73, for models of 1000 
residues 0.24, and for models of 5000 residues 0.09. This reliability estimation algorithm 
has also been implemented in the tortoize module of PDB-REDO. 
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Figure 1. Examples of Ramachandran plots: Left: a good-looking Ramachandran plot for
(1ix9, 0.9 Å), Middle: an obviously bad Ramachandran plot (5a9z, 4.7 Å) and Right: a
suspicious Ramachandran plot (6dzv, 4.2 Å). PDB ID code of the models in top right corner
Two numbers (bottom right) indicate percentage of residues in favored (top) and outlier
(bottom) regions.  
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Figure 2. Distribution of Rama-Z scores by resolution for structures solved by X-ray 
diffraction and cryo-EM. Solid horizontal bars on each violin indicate the mean. The 
background color represents proposed Rama-Z ranges. Red (below -3 and above 3) is for 
geometrically improbable backbone geometry, yellow (from -3 to -2 and from 2 to 3) for 
unlikely yet possible, green (from -2 to 2) is for normal backbone geometry. 
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Figure 3. Rama-Z values versus percentage of residues in favored region of Ramachandran
plot for all X-ray and cryo-EM derived models in PDB at resolution 5Å or better containing
more than 100 amino acid residues. Blue dots represent models with resolution better than
1.2 Å, black dots represent models with resolution between 1.2-5 Å, red crosses represent
models shown on Figure 4. The background color represents proposed Rama-Z ranges. Red
(below -3 and above 3) is for geometrically improbable backbone geometry, yellow (from -
3 to -2 and from 2 to 3) for unlikely yet possible, green (from -2 to 2) is for normal
backbone geometry. 
 
  

8 

n 
g 
n 
t 
d 
-
l 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.26.010587doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.26.010587


19
 

 
 
Figure 4. Examples of Ramachandran plots with unusual distribution of (φ, ψ) angles. Plots
are referred to by the PDB code of corresponding atomic model (upper right corner of each
plot). Triplets of numbers on the bottom right on each plot indicate, from top to bottom
percentage of residues in favored and outlier regions, Rama-Z. 
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Figure 5. Ramachandran plots for two 100% sequence identical structures: 1jz7 (X-ray
1.5Å resolution) and 3j7h (cryo-EM, 3.2Å resolution). The cryo-EM structure was refined
with Ramachandran plot restraints in Coot (Bartesaghi et al., 2014). Triplets of numbers on
the bottom right on each plot indicate, from top to bottom: percentage of residues in
favored and outlier regions, Rama-Z. 
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Figure 6. Ramachandran plots of 5jLh used to derive 6g2t. Residues of 6g2t form clear
horizontal and vertical lines which is indicated by rather high Rama-Z. Triplets of numbers
on the bottom right on each plot indicate, from top to bottom: percentage of residues in
favored and outlier regions, Rama-Z. 
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Figure 7. Examples of Ramachandran plots with unusual distribution of (φ, ψ) angles. Plots
are referred to by the PDB code of corresponding atomic model (upper right corner of each
plot). Triplets of numbers on the bottom right on each plot indicate, from top to bottom
percentage of residues in favored and outlier regions, Rama-Z. 
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Figure S1. Validating the Rama-Z implementations and RMSD estimation A. Rama-Z from 
CCTBX vs Rama-Z from tortoize for 124518 PDB-REDO entries; the diagonal is marked as a 
black line. B. Jackknife RMSD estimations (blue dots). 
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Figure S2. Two examples for the use of the RMSD value of Rama-Z in PDB-REDO: in 1c61
the improvement of the Rama-Z (blue line to orange line) appears significant, but it is not
considering the large RMSD for this small structure (blue and orange background
indicating 1= RMSD); in 3opq a similar absolute value change in Rama-Z can be considered
significant using the same criterion. 
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Figure S3. Examples of grid-like distributions on Ramachandran plot with high Rama-Z
score. Triplets of numbers on the bottom right on each plot indicate, from top to bottom
percentage of residues in favored and outlier regions, Rama-Z. 
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Table S1. Residue counts. 
 
Residue type Helix Sheet Loop 

ALA 70631 19896 42026 

LEU 67451 30469 43158 

GLU 49958 12828 35618 

LYS 36805 12588 32908 

VAL 35831 39369 39014 

ARG 35611 12931 28789 

ILE 33485 27816 29069 

SER 33288 15612 41675 

ASP 32091 11212 43895 

GLY 31498 16608 70883 

THR 27955 19858 35816 

GLN 27391 7765 20117 

PHE 22729 16370 24794 

ASN 22412 8715 32360 

TYR 19585 13879 22883 

MET 16014 6738 10847 

HIS 12777 6802 16117 

transPRO 12581 7615 47244 

prePRO 12093 8164 44056 

TRP 8341 5154 9754 

CYS 6606 5211 8371 

cisPRO - - 3953 
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