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Abstract 

Infective endocarditis (IE) is a cardiovascular disease often caused by bacteria of the viridans 

group of streptococci, which includes Streptococcus gordonii and Streptococcus sanguinis. 

Previous research has found that a serine-rich repeat (SRR) proteins on the S. gordonii bacterial 

surface play a critical role in pathogenesis by facilitating bacterial attachment to sialyated glycans 

displayed  on human platelets. Despite its important role in disease progression, there are currently 

no anti-adhesive drugs available on the market. Here, we performed structure-based virtual 

screening using an ensemble docking approach followed by consensus scoring to identify novel 

inhibitors against the sialoglycan binding domain of the SRR adhesin protein Hsa from the 

S. gordonii strain DL1. In silico cross screening against the glycan binding domains of closely 

related SRR proteins from five other S. gordonii or S. sanguinis strains was also performed to 

further reduce false positives. Using our in silico screening strategy we successfully predicted nine 

compounds which were able to displace the native ligand (sialyl-T antigen) in an in vitro assay 

and bind competitively to adhesin protein Hsa (~20% hit rate). 
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Introduction 

Infective endocarditis (IE) (or bacterial endocarditis (BE)) is a life-threatening cardiovascular 

infection of the inner lining of the heart muscle (endocardium) and heart valves1. The viridans 

group of streptococci account for ~17-45% of all cases of IE2, 3. If the infection remains untreated, 

these bacteria form a biofilm that eventually destroys the valves and result in heart failure4. 

Moreover, these bacteria may also form small clots (emboli) which can block small arteries. IE 

affects 10,000-20,000 patients in the US every year and is associated with an in-hospital mortality 

rate of ~20% and a five year mortality rate of ~ 40-70 %1. Currently, the most common treatment 

for endocarditis combines surgical intervention with antibiotics. The rise in antibiotic resistance5 

has limited our pharmacological options6, 7, and resistant organisms have increased the mortality 

rate8. Although surgical intervention physically removes the biofilm from the heart valves, 47% 

or more of the patients eventually require valve replacement due to the damage incurred9. Given 

the associated morbidity and rising mortality rate, there is an urgent need to develop novel 

therapies against IE.  

Previous studies have reported that the binding of bacteria to host platelets contributes to 

the colonization of damaged aortic valves4. A cell wall-anchored serine-rich repeat (SRR) protein 

mediates the adherence of S. gordonii and S. sanguinis to sialoglycans displayed on the human 

platelet10 glycoprotein GPIb11, 12. SRR proteins have been demonstrated to be virulence factors for 

endocarditis11, 12, and disrupting the interaction between the SRR  protein and sialoglycans on host 

platelets may therefore reduce virulence. Streptococcus gordonii is one of the well-studied species 

that cause IE and is a normal component of the human oral microbiota13. Platelet binding by 

S. gordonii strains M99 and DL1 are facilitated by the homologous SRR proteins GspB and Hsa, 

respectively14. Although these two share significant sequence identity, their ligand binding regions 
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(BRs) differ significantly and have different sialoglycan selectivity11, 15, 16. GspB binds with narrow 

selectivity to sialyl-T antigen (sTa) whereas Hsa binds promiscuously to a range of glycans11, 15, 

16. Anti-adhesive therapies have been explored for the treatment of a wide range of other bacterial 

infections17, but have not yet been pursued for IE. Anti-adhesives can, in principle, complement 

traditional antibiotics and improve their efficacy, potentially eliminating the need for surgical 

intervention.  

The crystal structures of the BRs from a number of S. gordonii and S. sanguinis SRR 

proteins have been solved18-20. These all have two domains which are associated with sialoglycan 

binding: the Siglec (Sialic acid-binding immunoglobulin-like lectin) domain and the Unique 

domain (for which function is not known completely). Furthermore, recent studies have identified 

that the three loops (CD, EF and FG) adjacent to the sialoglycan binding site are critical for the 

affinity and selectivity between ligands20. Additionally, it has been reported that a conserved 

“YTRY” motif in the binding site is necessary for formation of hydrogen bond interactions with 

the sialic acid of the native ligand20. Importantly, there are also human sialoglycan-binding 

proteins, that contain a sialoglycan binding site but are distinct from the bacterial sialoglycan 

binding adhesin proteins21. 

With the above structural and dynamic information, a structure-based drug design (SBDD) 

strategy was followed to target SRR adhesin proteins. In our SBDD pipeline, we targeted the BR 

of the well-characterized SRR protein Hsa (HsaBR), using in-silico virtual screening. Moreover, 

since HsaBR binds promiscuously to many glycans using a conformation selection mechanism20, it 

is potentially a  good target for SBDD. Here, instead of using only the crystal structure for SBDD, 

we used molecular dynamics (MD) simulation to capture the flexibility of the binding pocket and 
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generate an ensemble of protein conformations22. Following subsequent high throughput ensemble 

docking, we prioritized the compounds using consensus scoring, which has previously shown to 

reduce the number of false positives and increase the hit rate23. To further improve our predictions, 

we cross screened the compounds against the BRs from five Hsa homologues, and identified 

compounds which bound to HsaBR with relatively higher docking scores compared to other BRs. 

From our virtual screening predictions, we were able to achieve a high hit rate of ~20%, finding 

that 9 out of 50 compounds that were suggested for experimental validation were able to displace 

the native ligand from the HsaBR binding pocket. To our knowledge, these are the first 

pharmacological compounds known to inhibit binding by the SRR adhesin protein. 

Methods 

System preparation and molecular dynamics simulation 

Crystal structures of the sialoglycan binding proteins HsaBR (PDB 6EFC)20, GspBBR (PDB 

6EFA)20, 10712BR (PDB 6EFF)20, SK150BR (PDB 6EFB)20, SrpABR (PDB 5EQ2)18, and SK678BR 

(PDB 6EFI)20 were used in this study. Molecular dynamics (MD) simulations was performed on 

all these proteins using the Amber14 ff14SB force-field parameters24, 25. Each of these proteins 

was surrounded by an octahedral box of water model TIP3P26 of 10 Å. First, the protein structure 

was held fixed with a force constant of 500 kcal mol-1 Å-2 while the system was minimized with 

500 steps of steepest descent followed by 500 steps with the conjugate gradient method. In the 

second minimization step, the restraints on the protein were removed and 1000 steps of steepest 

descent minimization were performed followed by 1500 steps of conjugate gradient. The system 

was heated to 300 K while holding the protein fixed with a force constant of 10 kcal mol-1 Å-2 for 

1000 steps. Then, the restraints were removed, and 1000 MD steps were performed. The SHAKE 

algorithm27 was used to constrain all bonds involving hydrogen in the simulations. 200 ns 
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production MD was performed at 300 K using the NPT ensemble and a 2 fs time step with 

nonbonded cutoff of 10 Å. The temperature was fixed with the Langevin dynamics thermostat28 

and the pressure was fixed with a Monte Carlo barostat29. This procedure yielded a total of 20,000 

snapshots for subsequent analyses. Three independent runs were performed for each simulation. 

In silico screening 

Ensemble docking is an in-silico structure-based drug discovery method using an 

‘ensemble’ of drug target conformations to discover novel inhibitors22. The workflow used is 

shown in Fig. 1. The ensemble was constructed by clustering snapshots from molecular dynamics 

(MD) simulation trajectories by root mean square deviation (RMSD) of the binding pocket 

residues and loops (Table S1) surrounding the binding pocket with the hierarchical agglomerate 

clustering algorithm using Cpptraj module30. 

The Vanderbilt small molecule database (~105,000 compounds) was docked to an 

ensemble of 5 conformations (4 representative structures obtained from clustering from MD and 

1 crystal structure) with a cubic box with edges of ~30 Å. VinaMPI31, a parallel version of 

AutodockVina32, was used to perform the in silico screening. The docked poses were then ranked 

by the AutodockVina scoring function33. The compounds were not only screened for HsaBR but 

also cross screened with 5 adhesin proteins (GspBBR, 10712BR, SK150BR, SrpABR, SK678BR). In 

this study, we aim to find a potential new scaffold and since all the adhesin proteins natively bind 

to a common motif (sialic acid), we believe the compounds which bind to all the adhesin proteins 

(with a high score) are more likely mimicking sialic acid or are very promiscuous. Hence, cross 

screening was performed to remove these sialic acid mimetics and promiscuous compounds, thus 

reducing the number of false positives. 
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From this ranked list of compounds, we tested compounds which were within the top 1% 

for HsaBR but not within the top 1% of the other 5 BRs (GspBBR, 10712BR, SK150BR, SrpABR, 

SK678BR).  

We note that we only experimentally tested binding to Hsa BR and not the selectivity of the 

predicted binders. Next, the resulting ~250 compounds were refined and rescored using two MOE 

scoring functions34. The non-polar hydrogens (not included in Vina docking protocol) were added 

before performing the “induced fit” docking protocol in MOE34. The docking poses were ranked 

using GBVI-WSA dG  and Affinity DG scoring functions34. Using consensus scoring, the top 50 

compounds, which were in top 1% in all the scoring functions, were suggested for experimental 

validation. A flowchart of the screening methodology used is shown in Fig. 1. 

 

Figure 1: Structure based virtual screening strategy workflow 

Cheminformatics 

All the physicochemical properties and fingerprints of small molecules were calculated using 

combination of MOE34, ChemBioServer35 and RDkit36. MACCS fingerprints were calculated for 
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each compound and similarity between them were compared with the Tanimoto coefficient, 

followed by hierarchical clustering to cluster the similarity matrix.  

Experimental assays 

Protein expression and purification 

GST-tagged HsaBR was expressed and purified as described in ref16. GST-HsaBR was expressed 

under the control of the pGEX-3X vector in E. coli BL21 (DE3) in a Terrific Broth medium with 

50 µg/ml kanamycin at 37 °C. When the OD600 reached 1.0, expression was induced with 1 mM 

IPTG at 24 °C for 5 hrs. Cells were harvested by centrifugation at 5,000 ´ g for 15 min, optionally 

washed with 0.1 M Tris-HCl, pH 7.5, and stored at –20 °C before purification. The frozen cells 

were resuspended in homogenization buffer (20-50 mM Tris-HCl, pH 7.5, 150-200 mM NaCl, 

1mM EDTA, 1 mM PMSF, 2 µg/ml Leupeptin, 2 µg/ml Pepstatin) then disrupted by sonication. 

The lysate was clarified by centrifugation at 38500 ´ g for 35-60 min and passed through a 0.45 

µm filter. Benchtop purification was performed at 4 °C using Glutathione Sepharose 4B beads, 

with pure GST-Hsa were eluted with 30 mM GSH in 50 mM Tris-HCl, pH 8.0.  

AlphaScreen high-throughput screening assay 

We used the AlphaScreen modification of an ELISA as the primary target-based proximity assay 

to monitor ligand displacement. AlphaPlate (Cat # PE 6005351, Lot # 8220-16081) with 384-well 

was used for the screening. In the experimental setup, biotinylated sialyl T antigen (sTa) was 

coupled to a streptavidin donor bead and GST-tagged Hsa was coupled to an anti-GST conjugated  

acceptor bead in PBS (phosphate buffered saline).  The reaction was excited at 680 nm to stimulate 

singlet oxygen-mediated energy transfer to the acceptor bead, which can be detected at 615 nm. 

The dose-dependent signal reflects the number of bead-coupled adhesins bound to bead-coupled 

glycans.  
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The GST-HsaBR concentration was titrated in a 10 point-3 fold dilution starting from 1000 

nM.  The biotinylated sTa concentration was titrated in a 9 point-3 fold dilution starting from 100 

nM,  The hooking point was found to be 3 nM for GST-HsaBR and 3 nM for biotinylated sTa.  The 

final chosen concentrations used in the screen was 2 nM of biotinylated sTa and 1 nM of GST-

HsaBR. 

The untagged-sTa competition assay was run in a dose response mode.  Untagged-sTa was 

tested in an 11 point-3 fold CRC, starting from 30 µM as the (1x) concentration.  30 µM was 

finally used in the screen. 

We applied this assay to the evaluation of the test compounds that were predicted as 

binding to HsaBR using virtual screening. This initial screen was performed with all test compounds 

in duplicate at a final concentration of 10 µM and DMSO was used as the negative control and 

unbiotinylated sTa was used as a positive control.   

Z’ factor calculation 

The Z’ factor is an indicator of high throughput screening assay performance and was calculated 

as follows: 

𝑍′ = 1 − 3(𝛿) + 𝛿+)/	|(𝜇+ − 𝜇))| 

 The standard deviations and means of the positive (p) and negative (n) controls are denoted by  

𝛿),  𝜇) and  𝛿+,  𝜇+ respectively.  DMSO and untagged sTa are the positive and negative control 

respectively. 

Hit identification analyses 

The alpha value of each test compound was measured and was filtered using 1-fold, 2-fold or 3- 

fold of either standard deviation (SD) from the mean of the entire test compound group, or absolute 

deviation from the median (MAD) of the entire population. Compounds that satisfied any of these 
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criteria were considered for the next round of filtering using percentage control (PC), calculated 

as follows: 

where, 𝛼 is the average alpha value for negative control (𝛼23), positive control (𝛼43) and 

compounds tested (𝛼356). PC is a measure of the alpha signal of the 10 µM test compound in 

percentage of the controls.   

Results and Discussion 

I. Protein dynamics and conformations  

We used MD simulations to capture the internal dynamics of the proteins and find binding site 

conformations not seen in the crystal structure37. We calculated the root mean square fluctuation 

(RMSF) to identify the flexible regions (Fig 2a). Although the overall structure of the Siglec 

domain is rigid, we observed that the loops (CD, EF and FG) close to the binding pocket are 

flexible for all the adhesin proteins (Fig 2a, S1). In the case of HsaBR, we observed that the CD 

and EF loops constitute the most flexible region of the protein. Moreover, critical binding pocket 

residues other than in these loops were identified from the crystal structure of HsaBR and the native 

ligand (sTa) (Table S1).  

To capture new conformations of the binding pocket that deviate from the initial crystal 

structure, the root mean square deviation (RMSD) of the loop residues and other critical residues 

(previously known to bind to the native ligand) (Table S1) were used to cluster the MD 

trajectories. The clustering resulted in four different clusters. The structure closest to the centroid 

of each cluster was used for docking. The “ensemble” of structures obtained from clustering and 

Percentage	control	(PC) = 1 − 234 − 2567235 − 285
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crystal structure were superimposed to observe the deviation of structures (as shown in Fig 2b).  

We observe that all the structures had similar secondary and backbone structures and the 

RMSDCalpha of the Siglec domain was calculated to be within ~1.5 Å. However, as seen in the 

superimposed structures (Fig 2b), the loop regions (especially CD and EF loop) have different 

orientations in the “ensemble” when compared to the crystal structure. Similarly, we observed that 

the side chains in the binding pocket residues orient differently between the structures, which can 

be critical for rigid body docking. 

 

Figure 2: a) Root mean square fluctuation of HsaBR from MD simulation showing DC, EF, 
FG loop regions; b) Superimposed structures (in ribbon) of HsaBR obtained from different 
clusters showing residues (in stick) used to during the clustering: crystal structure (in red) 
and ensemble structure (in shade of blue). 

II. Physicochemical properties of small molecule database 
 

The five structures obtained from MD simulations and the existing crystal structure were screened 

against the Vanderbilt small molecule database containing ~102K compounds. However, before 

performing the virtual screening, we wanted to characterize the physicochemical diversity of the 

small molecule database. Firstly, we calculated the molecular weight (MW) of the compounds (Fig 

250 275 300 325 350 3750

0.5

1

1.5

2

2.5

3

3.5
Hsa

FG loop

EF loop

CD loop

R
M

SF
 (Å

)

Residue number

CD EF FG

a) b)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2020. ; https://doi.org/10.1101/2020.03.27.006247doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.27.006247
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

3a), which is known to be critical for safety and tolerability reasons38. The Vanderbilt database 

has compounds with MW less than 500 Da that are considered to improve druglikeness39, 40 and 

also has low MW compounds (<300 Da) that are considered better initial hits because they serve 

as effective chemical starting points for lead optimization41. The polar surface area and the number 

of rotatable bonds have been found to better discriminate between compounds that are orally 

active. It has been predicted that compounds with 10 or fewer rotatable bonds and those having a 

polar surface area of less than 140 Å2 have a good oral bioavailability42. In our database, we 

observed that most compounds had a mean polar surface area of ~150 Å2 and less than 10 rotatable 

bonds (Figs 3b, c). Lipophilicity (SLogP) is another factor which is known to influence drug 

potency, pharmacokinetics, and toxicity39, 43. Compounds with SLog P values between −0.4 to 

+5.6 range are known to be more “druglike”40, 44. Here, we found that most of the compounds fall 

within this range (Fig 3d). Although the above is a set of physicochemical properties that are 

considered to be important for different aspects of druggability, there have been numerous FDA 

approved drugs which violate one or more of these rules45, 46.  
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Figure 3: Density profile of physicochemical properties of small molecule database: 
molecular weight (a), number of rotatable bonds (b), polar surface area (c), and Log of the 
octanol/water partition coefficient: SLogP (d). 
 

III. Docking results and poses 

After our virtual screening, we first ranked all the top poses for each compound based on the 

Autodock Vina scoring function33. Subsequently, we selected those compounds that were in the 

top 1% for HsaBR but did not rank within the top 1% for any other adhesin protein (GspBBR, 

10712BR, SK150BR, SrpABR, SK678BR). This was followed by implementing consensus scoring in 

which the poses (obtained from AutodockVina) were energy-minimized and then rescored using 

two MOE scoring functions34 (as mentioned in the Methods section). In the end, compounds that 

ranked within the top 50 for all the three scoring functions were suggested for experimental 

validation. Since the goal of this work was to find competitive inhibitors, we calculated the number 

of compounds that formed at least one hydrogen bond (HB) with one of the residues known to 

bind to the native ligand.  Backbone atoms of residues Tyr 337 and Thr 339 of HsaBR are known 
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to form HBs with the native ligand (sTa) (Fig. 4b), whereas sidechains of residues Arg 340, Val 

285 form multiple HBs with sTa. All the top 50 compounds, from our strategy were found to form 

at least one HB with the residues known to bind sTa (Fig. 4a). Moreover, out of these 50 

compounds, 25 compounds (50%) were predicted to bind to one of the “ensemble” structures 

generated from MD simulations and not to the crystal structure. This further illustrates the 

usefulness of using ensemble docking. 

 

Figure 4: a) Number of compounds within the top 50 compounds interacting with key 
residues in the HsaBR binding pocket; b) interaction map of native ligand (sTa) from crystal 
structure. 

IV. Experimental validation 

Alpha assay screening was performed for the top 50 compounds predicted to displace sTa (the 

highest affinity native ligand) from HsaBR. The Z’ factor value of the DMSO (negative control) 

versus untagged sTa (positive control) was 0.32. After filtering the small molecules using the 

experimental data based on the percentage control (PC), nine hits were retained. These nine 

compounds showed a statistically significant decrease in the signal when the two replicates were 
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averaged (Fig. 5). These compounds have a PC three standard deviations outside the mean of the 

negative control (DMSO).  

The IC50 of the untagged sTa (positive control) was calculated as 8.67 µM (Fig. S2a). At 

10µM concentration, the PC of the untagged sTa was 39% (Fig. S2b). At the same concentration, 

the PC of the 9 hits ranges from 23% to 70% and, out of these, two compounds have PC values of 

less than 39% and one has a PC of 41% (Table S2).  

 

Figure 5: Alpha Screen assay. Hits are marked by green boxes on the X-axes. Error bar 
represent the standard deviation. 

V. Computational and binding pose analyses of validated hits 

The nine hit compounds were screened for 25 known toxic and carcinogenic fragments, such as 

anthracene, quinone, hydroquinone, butenone--Michael acceptor, chloroethane--Michael 

acceptor35. Of the 9 experimentally validated compounds (C1-C9) (Table 1), only Compound 1  

(C1) was identified as potentially toxic, containing a benzo-dioxane and a catechol group. 

Moreover, to test the similarity between these hits and the native ligand, fingerprint-based 
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hierarchical clustering was performed. We found four clusters (as shown in Fig. S3), which 

showed that the compounds identified from the screen are diverse among themselves and are not 

similar to the native ligand. Additionally, we also tested the compounds for Lipinski’s rule40, to 

evaluate druglike-ness of the compounds. C4 was the only molecule with one violation (with 11 

hydrogen bond acceptors), whereas all the other compounds satisfied all the 4 rules. 

Following the above cheminformatics analyses of the experimentally-validated hits, we 

examined the computational models of the best poses and the interactions of the nine hits shown 

to have inhibition experimentally (Figs. 6, S4 and table S3). In the models C1, C2, C4, and C5 

form backbone HBs with Asp 255 and compounds C2-4 form backbone HBs with Val 367 while 

other compounds (C1, C5-9) form side chain HBs with Val 367. Other residues that form HBs 

with most of the compounds are Thr 339, Val 285 and Asn 361 (Table S3). All these residues 

form HBs with the native ligand or are in close proximity of the native ligand. Hence, it is likely 

that these nine compounds are able to displace the native ligand in part because they form HBs 

with these critical residues. 
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Figure 6: Docking pose of a) native ligand (sTa) (in red) and b) 9 validated compounds (in 
blue) in the binding pocket of HsaBR showing residues (in grey). 
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Table 1: The compound number, structure and ID of the nine validated hits 
 

 

Conclusions 

The SRR protein Hsa has been considered an attractive molecular target for drug development due 

to its role in infective endocarditis (IE). It is noteworthy that there is no vaccine or anti-adhesive 

drug approved against IE. Here, we performed structure-based virtual screening to identify 

Compound 
number Structure ID

C1 VU0079850

C2 VU0284203

C3 VU0490742

C4 VU0645728

C5 VU0514818

C6 VU0534073

C7 VU0617926

C8 VU0617940

C9 VU0624167
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competitive inhibitors for HsaBR. We combined three different SBDD strategies; ensemble 

docking, cross screening, and consensus scoring in one pipeline. For the ensemble docking, we 

generated an ensemble of receptor conformations from MD simulation, and then cross screened 

against five homologs (GspBBR, 10712BR, SK150BR, SrpABR, SK678BR). In the last step, three 

scoring functions (AutodockVina33 and MOE34) were used to rank and prioritize the list of 

compounds. The Vanderbilt database was used for the small molecules since it covers a wide 

distribution of different physicochemical properties.  

The goal of combining these strategies was to improve the hit rate and reduce the number 

of false positives. Indeed, we were able to achieve a hit rate of ~20% and identified nine 

compounds that could displace the native ligand in the experimental assay. The binding poses of 

all the nine compounds identified from docking show that they are in close proximity with residues 

known to form HBs with the native ligand (sialyl-T antigen).  These compounds may be used as a 

starting point for further medicinal chemistry optimization. Further studies need to be conducted 

to characterize the binding affinity and pose of these identified compounds, and similar analyses 

for other sialoglycan-binding SRR proteins is ongoing.  
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