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ABSTRACT 
As microbes deplete local resources and transition from exponential to stationary phase they can change 
greatly in size, morphology, growth and expression-profiles. These responses can also vary importantly 
between individual cells, as shown by population snapshots. However, it has been difficult to track individual 
cells along the growth curve to determine the progression of events or correlations between how cells enter 
and exit dormancy. We have developed a platform for tracking >105 parallel cell lineages in dense and changing 
cultures, independently validating that the imaged cells closely track the batch population. This provides a 
microcosm of bulk growth with exceptional resolution and control, while enabling conventional bulk assays on 
the same culture. We used the platform to show that for both Escherichia coli and Bacillus subtilis, growth 
changes from an ‘adder’ mode in exponential phase to a mixed ‘adder-timer’ entering stationary phase, and 
then a near-perfect ‘sizer’ upon exit – creating broadly distributed cell sizes in stationary phase – and rapid 
return to narrowly distributed sizes upon exit. By high-throughput tracking of single cells as they enter and 
exit stationary phase, we further show that the heterogeneity in entry and exit behavior has little consequence 
in regular wake up from overnight stationary phase but can play important role in determining population 
fitness after long periods of dormancy or survival against antibiotics. 
 

INTRODUCTION 
Bacteria in natural environments go through periods of starvation and stress punctuated by the arrival of fresh 
nutrients that then get depleted again as cells grow and divide1,2. Many mechanisms have therefore evolved to 
help cells weather busts and exploit booms3–5. Traditionally these have been studied by inoculating cultures of 
stationary phase cells into fresh media and following them along the growth curve back into stationary phase6–

8. However, batch assays consider average properties of cells, while single cell studies have revealed great cell-
to-cell heterogeneity during stress9,10. This could be a mere side effect of saturated pathways displaying less 
heterogeneity than sub-saturated pathways, making all cells ‘happy the same way but unhappy in different 
ways’, but could also be an adaptive response to maximize inclusive fitness in uncertain times11, e.g. by making 
a small fraction of cells persistent to drugs12. Either way, because the heterogeneity is so substantial and so 
profoundly changes the fate of stressed cells, effective studies of bacterial responses to stress and starvation 
should ideally monitor individual cells as they enter and exit stationary phase.  

This is challenging for several reasons: First, though it is straightforward to sample cultures at different times, 
either manually13 or with microfluidic automation14, this only provides snapshots of the heterogeneity. The 
dynamics of fluctuations are also important, since rapidly changing heterogeneity is easily time-averaged by 
affected processes while slowly changing heterogeneity can effectively establish cell states. Snap-shots provide 
little information about the progression of events or the connection between heterogeneity and growth15. 
Second, studies of heterogeneity are hard to interpret or reproduce unless local conditions are tightly 
controlled, which is particularly challenging to achieve when components become limiting and conditions keep 
changing. Third, many important outliers in stress response and stationary phase, e.g. persister cells, can be 
exceedingly rare, making it important to sample large numbers of cells. Some microfluidic devices boost 
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effective throughput by accumulating data over long time windows16, but experiments during changing 
conditions, e.g. along the growth curve, must instead rely purely on high-throughput parallel imaging.  

Here we present a microfluidic platform based on the ‘mother machine’ design17 that addresses all these 
challenges. We monitor the physiology and gene-expression of individual cell lineages over multiple 
consecutive growth curves in and out of stationary phase, while ensuring that the cells imaged behave 
quantitatively as the cells in a connected batch culture that can be simultaneously sampled. This provides a 
microcosm of bulk growth in the microfluidic device, with exceptional resolution and control, while also 
enabling conventional bulk assays on the same culture. Our current throughput of >100,000 cell lineages in 
parallel, imaging 108 cells per day, each every few minutes, is high enough that we observe spontaneous 
persisters without using special mutants18,19. The setup also works at very high cell densities, e.g. OD600≈10, 
both for the Gram-negative Escherichia coli and Gram-positive Bacillus subtilis. In a first application we probed 
the size-regulation principles of E. coli during entry into and exit from stationary phase, and demonstrated 
trade-offs between the behaviors entering and exiting stationary phase. 

 

RESULTS 
 
A platform for studying single cells along a growth-curve  

Several imaging platforms allow for long-term tracking of cells, and some can run almost indefinitely17,20. 
However, only a handful of studies have actually required ultra-long-term imaging (see e.g. Norman et al.16), 
and the main difference between platforms instead lies in how tightly they can control local conditions, which 
translates into data quality. Platforms like the ‘mother machine’17 where individual cells grow and divide in 
narrow trenches that are fed diffusively by orthogonal flow-channels, have emerged as the methods of choice 
in this regard, and can, if designed and operated properly, achieve exceptional spatial and temporal uniformity. 
However, to our knowledge all studies that used this setup have considered balanced growth of cells in 
constant, dilute medium – in stark contrast to microbiology experiments more broadly, despite the fact that 
time-lapse imaging of single cells is arguably most sorely needed as cells enter or exit starvation21–23. Thus even 
the most reliable methods for controlling local growth environment has so far been limited to a small subset of 
the conditions of interest in microbiology.  

The challenge is that fluid handling for non-viscous and unchanging liquids is very different from the handling 
of dense and changing cell cultures needed to study stationary phase cells or ecosystems. Also, in changing 
systems, it is important that the cells imaged track cells in the batch culture of interest. Specifically, it is easy to 
starve cells on any platform by simply letting media run out, but for reproducibility and interpretability, the 
imaged cells need to be starved the same way as in a standard bulk experiment.  

We therefore built a system that can flow dense cultures of cells from a conventional batch experiment into a 
mother machine type of microfluidic device, (Fig. 1a-b), such that cells loaded in the mother machine will 
experience the same environment as cells in the batch, whether a gradual depletion of nutrients or sudden 
stresses, and therefore undergo the same physiological changes24. Since cells can be retained in the device for 
hundreds of generations, this allows us to observe how individual cell lineages pass through multiple rounds 
of entering and exiting stationary phase (Supplementary Movie 1). The process is fully automated, has virtually 
zero dead volume and provides near-perfect timing about when the media changes occur (Supplementary 
Information section 1). The optical density is monitored continuously using a custom OD-meter, in series with 
the flow path, to align any part of the observed single-cell data to the bulk OD (see Supplementary Information 
section 2 and 7).  
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Fig. 1| Accurate high-throughput measurement of cell-growth physiology and gene-expression along growth-curve. 
(a) A simplified schematic depicting the growth curve platform. The platform is based on the mother machine microfluidic 
device (right of the panel) in which cells under observation are grown in trenches (shown in red) while liquid media is 
pumped through an orthogonal flow channel. To observe growth dynamics, we flow actively growing bulk culture into the 
mother machine device while continuously observing its Optical Density (OD). As the bulk culture flows past (black cells) 
the red cells in the device (red) respond synchronously with the batch culture. At any point, a switch can be made to flow 
fresh media, allowing us to observe cells return to optimal exponential growth. The dimensions (W, L, and G in the inset) of 
the mother machine were highly optimized to meet the demanding requirements associated with flowing dense cultures 
through the flow channels. (b) The optimizations made to the mother machine design have greatly improved the 
throughput. We can image up to 16 strains in parallel, with imaging of 705 fields of view (FOV), each containing 1861 
lineages, in under 5 minutes, giving a throughput of 131,072 (= 16 ∙ 8,192) lineages imaged every 5 minutes often for 
multiple days. We show a montage 500 such FOVs in the top left corner. Note the range of intensities present in the 
individual FOVs in the montage of FOVs has been increased for visualization purposes. (c) (TOP) A kymograph showing a 
single lineage of cells in a trench expressing a fluorescent RpoS transcriptional reporter as it goes through two consecutive 
rounds of growth-curve as depicted in the panel below. (BOTTOM) Here we show 80 single-cell traces, from a single field 
of view, of RpoS expression and cell-size as cells enter and exit from two consecutive rounds of stationary phase. Two cell 
size traces and two expression traces are highlighted and illustrate high variability between the two rounds of stationary 
phase. The high-throughput measurements of each property allow us to measure accurate distributions of expression level 
and cell sizes at any time-point along the growth-curve. 

This allows us to correlate specific states of nutrient depletion and bulk properties with their corresponding 
single-cell phenotypes at any time. However, the mother machine was so far designed and used for exponential 
growth under constant condition, and a series of technical challenges must be overcome to ensure that the cells 
in mother machine are representative of cells grown in the flask whose physiology and environment in 
changing over time:  
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First, as opposed to a simple syringe of fresh media that can be kept next to the microfluidic device, shaking 
batch cultures must sometimes be much larger to allow for bulk assays, and must be separated from the 
microscope to prevent vibrations from affecting image acquisition (Supplementary Information section 3). To 
ensure that cells in the flow-path do not undergo changes during transit from the culture to the microfluidic 
device, the flow paths must be short and carefully designed to prevent bio-film formation, non-uniform 
temperatures, exposure of cells to surfaces other than inert tubing, and cross-contamination between the fresh-
media and culture paths. After extensive trial and error, our setup (see Supplementary Information section 1) 
achieves that in a way that can be easily adopted for any batch culture and any microscopy setup. 

Second, shaking cultures contain large amounts of bubbles, which can greatly change the flow in the 
microfluidic chip and thereby greatly change local conditions. This required the incorporation of custom-
designed automated bubble-traps, to prevent the transmission of bubbles to the mother machine (see 
Supplementary Information section 2). Third, though low-density cultures can be flown through most 
microfluidic devices, at high ODs it is necessary to optimize the dimensions to prevent clogging from dense 
cultures while maintaining proper diffusive feeding and retention of cells for experiments that typically last 
multiple days. This is particularly challenging because the cell volumes also change greatly during the 
experiment (E. coli MG1655 can change 15-fold in volume along the growth curve, and MC4100 even more than 
that). We therefore evaluated approximately 540 combinations of widths, heights, and lengths of the narrow 
trenches where cells grow and divide, (L, W, and G in Fig. 1a) to find near-optimal parameters for each growth 
condition (Supplementary Information section 4). All of the experiments described in this paper were 
performed in Neidhardt defined medium25 (rich: EZ-rich defined medium, poor: Mops buffered medium; 
recipes for both media are provided in the Supplementary Information section 18). Both the rich and poor 
media were adjusted to desired osmolarity (0.28 Osm) with NaCl26. The experiments with B. subtilis were 
performed with a modified version of the EZ-rich defined medium published by the Weisshaar group27. 

Fourth, since it is no longer possible to simply accumulate data over time, as under constant conditions in 
regular mother machine experiments, we systematically optimized the chip to increase parallelism and 
statistical sampling. We determined the smallest inter-trench distance that did not introduce significant 
fluorescent bleed-through artifacts from point-spread function overlap (Supplementary Information section 
5), and further optimized the dimensions of the feeding channels and overall layout to maximize the number 
of cells imaged while still maintaining effective feeding and high image quality (Supplementary Information 
section 6). This e.g. included designing the flow-channel layout of traditional mother machine to have trenches 
on both sides of the flow channel. This allowed us to observe 186 individual trenches in every Field of View at 
40x magnification (Fig. 1b), while scanning 705 FOVs every 5 minutes for a single color and every 7 minutes 
for two-color imaging. The platform records cell size, morphology, and changes in gene-expression levels as 
cells traverse the growth-curve, while tracking either 8,192 lineages from each of 16 different strains or 
122,880 (= 15 ∙ 8,192) lineages of a single strain (Supplementary Information section 6), imaging every few 
minutes over the course of multiple days as cells experience multiple rounds of entry and exit from stationary 
phase (see Supplementary Information section 6). Because each trench contains multiple cells, this allows us 
to observe on the order of 100 million cell divisions per experiment – enough to observe many rare events and 
to accurately measure distributions of properties, while also correlating multiple events along the growth-
curve. To illustrate a typical experiment, Fig. 1 shows the layout of the device and time-lapse images of cells 
entering and exiting stationary phase while expressing a transcriptional reporter of the master regulator of 
stress response, RpoS (Prpos-GFP). 

Finally, our goal is not merely to subject cells to some unknown level of stress and starvation, but to observe 
cells along virtually the same growth curve as in the connected batch culture. We therefore first tracked the 
dynamics of cell-size and the expression of an rpoS transcriptional reporter (Prpos-GFP) upon entry to 
stationary phase. As the OD of the batch culture goes through a diauxic shift, the bulk growth-rate drops 
momentarily, and both the cell length and Prpos reporter fluorescence respond synchronously (Fig. 2a, 
Supplementary Movie 2). This indicates that the bulk dynamics are impacting cells in the microfluidic device 
with minimal delay and in the expected ways, i.e. population doubling time, individual cell-size and rpoS 
expression as a result of increased stress. The specific growth-rate of cells displays a sharp drop during this 
time, mimicking the bulk growth rate, but displaying much richer behavior that is difficult to infer from the 
bulk OD data (see Supplementary Information section 8).  
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To further ensure that the cells in the mother machine are quantitatively representative of cells in the batch 
culture, even at the level of single cell fluctuations, we sampled cells from batch for immediate microscopy, and 
compared to the cells growing in the mother machine at the same time points. We compared the cell length and 
reporter activity of the Prpos-GFP reporter strain from the device at different time-points along the growth-
curve to small aliquots taken from bulk culture at corresponding times and imaged via snapshots (Fig. 2b). For 
the entry to stationary phase, cells were aliquoted from the batch culture at multiple time-points during growth 
and imaged under agar pads. The cells were imaged within 5 minutes of being removed from batch culture and 
care was taken to keep cells at 37ºC throughout. The magnitude and dynamics of the Prpos expression-
dynamics and the cell length matched closely to the results for the mother cell, see Fig. 2c. The slight 
discrepancy of PrpoS dynamics in stationary phase was demonstrated to come from a slight PSF artefact in the 
agar-pads (see Supplementary Information section 5 and 8) where some of the light emitted by a cell will be 
allocated to its neighbors – another reason to use mother machine setups instead of two dimensional 

microcolonies. For exit from stationary phase, 
high statistical sampling is difficult with 
traditional microscopy since the cultures are so 
dilute. We therefore used a second microfluidic 
device which makes it possible to take snap-
shots of cells from batch cultures in very high 
throughput28. Similar to what was observed for 
entry, the results from this control closely 
matched that observed with the platform (Fig. 
2d). These orthogonal controls within the same 
experiment, i.e., for the same time-points of the 
same culture, demonstrate the ability of our 
platform to capture single cell dynamics in 
conventional batch culture. 

Fig. 2| (a) The bulk dynamics observed in the flask are 
synced with the dynamics of the mother machine. 
When the optical density (black), goes through an 
inflection point -- valley in bulk growth rate (grey), 
representing here the rate of change in OD per minute 
– there is a synchronous drop in the cell length (blue) 
and an increase of RpoS transcriptional activity 
(orange) of the cells in the mother machine device. (b) 
To determine how well the cells in the mother 
machine trenches mimic the cells grown in bulk, 
snapshots were taken of cells grown in the growth 
chamber flask. During entry (c) and exit (d) from 
stationary phase the measured cell length and RpoS 
intensity match that found with the mother cells in 
the growth chamber platform,  with snapshots of cells 
sampled from bulk. The average trend from the cells 
in mother-machine are plotted as solid lines (blue – 
cell length, orange – RpoS transcriptional activity).  In 
(c) simple agar pad snapshots (blue circles – cell 
length, orange circle – RpoS)  are compared with 
measurements in mother-machine during the entry 
to stationary phase. OD600 (black) of the culture is 
shown in [0, 7.2] range as in both y-axis. During exit, 
the snapshots were acquired with the MACS 
microfluidic device28, which allows very dilute 
cultures present during exit from stationary phase to 
be observed (d). The value from individual cells are 
plotted as blue circles (length) and orange diamonds 
(RpoS). The shadowed region and the errorbars 
corresponds to +/- 1 standard deviation. 
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Size regulation during entry and exit from stationary phase 

The ability to quantitatively track growth and expression dynamics with single-cell resolution as bacteria enter 
and exit dormancy could provide important information about virtually any process in the cell. We first applied 
it to study how cells regulate their size along the growth-curve, as they enter stationary phase from exponential 
phase and exit upon the introduction of fresh media. Specifically, previous analyses have characterized where 
cell size regulation falls with respect to three simple mechanisms: adders, sizers and timers, that capture how 
individual cells in a population respond to being born smaller or larger than average. The adder mode is 
characterized by a constant addition of cell volume each division, the sizer mode is characterized by division at 
a fixed volume threshold, and timers are characterized by division after a fixed time interval29, all with some 
variation but independently of the size of the newborn cell. Virtually all studies on size control to our knowledge 
have concluded that cells, including several bacteria, archaea, and eukaryotes, closely follow the adder model 
of growth control, in a wide range of environments from fast growth to starvation30–33. However, though size 
regulation in E. coli has been evaluated in a large number of conditions, including starvation, it has to our 
knowledge not yet been tested for the gradual entry into and exit from stationary phase which is so often 
encountered by growing populations. 

We used a 100x apodized phase objective, imaging 2,215 lineages of E. coli MG1655 at one-minute intervals for 
over 30 consecutive hours to observe growth dynamics during balanced growth and then entry and exit from 
stationary phase. The 100x apodized phase imaging using the oil objective and one-minute sampling rate 
reduces our throughput but provides extremely fine resolution and accuracy for the size-regulation study. We 
first computed the specific growth rate (rate of increasing cell mass), and the splitting rate (inverse of time 
between cell divisions) (Fig. 3a). The details of this calculation are provided in supplementary material section 
14. In balanced growth, the observed average specific growth rate (0.043 per minute) and splitting rate (0.044 
per minute) are both similar to the estimated bulk growth rate (0.043 per minute) (Supplementary Information 
section 7 and section 14). The CV in specific growth rate (0.053) was approximately three times lower than the 
standard deviation in the splitting rate (0.16), in agreement with previous literature34,35. After the period of 
balanced growth, we observed an initial sharp drop in the specific growth-rate followed by a brief increase. The 
specific growth-rate drops and partially recovers couple more times, and then steadily decline to zero, as 
expected as cells go through diauxic shift but then deplete all nutrients (Fig. 3b-c, Supplementary Information 
section 8). The splitting rate by contrast is much more refractory through the diauxic shift all the way into 
stationary phase (Fig. 3c). This mechanism allowed cells to produce daughters with ever decreasing sizes as 
cells enter stationary phase, causing the average cell size to drop rapidly (see Supplementary Information 
section 10). A similar phenomenon was previously observed in bulk experiments during nutrient downshifts, 
and attributed to ‘rate-maintenance’36, caused by the fact that cells can only split into two daughter cells once 
initiated rounds of replications are completed. However, whatever the mechanism, this suggests that cells 
change their cell-size regulation as they enter stationary phase from exponential phase. 

To determine which mode of the three—timer, sizer, or adder—best described the observed size-regulation in 
different phases of the growth-curve, we examined the Pearson correlation coefficient (C) between cell size at 
birth (Lbirth) and division (Ldiv)29. In the “timer” model C = 1, since Lbirth and Ldiv are near-perfectly correlated, 
whereas in the “sizer” strategy C = 0, where the size at division is fixed (Ldiv = constant), thus yielding no 
correlation between Lbirth and Ldiv. The adder represents a compromise between the other two growth modes 
with C=0.5 giving a strong but not perfect correlation between Lbirth and Ldiv. We first confirmed that our cells 
used an adder-like mechanism during balanced exponential growth (C=0.54), as expected (Fig. 3d). For non-
balanced conditions, the analysis must be done carefully to avoid confounding effects from an average that 
changes systematically in time. Thanks to the high throughput, we could avoid such effects by only comparing 
cells born in the same brief time interval, analyzing their subsequent growth as a function of their varying initial 
size (see Supplementary Information section 9). Consistent with the rate-maintenance phenomenon, where 
cells maintained a constant division time even as they start to grow more slowly, this revealed that size control 
becomes a mix of an adder and timer (C=0.8, Fig. 3e). During exit from stationarity the cells started out with 
widely varying sizes but still underwent the first division at a uniform size, i.e., with almost pure sizer dynamics 
(C=0.09, Fig. 3f). We further calculated the slopes of the linear fit of division length vs. birth length, observing 
slopes of 0.998 for exponential phase, 1.23 for entry to stationary phase and 0.06 for exit from stationary, 
consistent with the proposed adder, mixed adder-timer and sizer models respectively. We note that while the 
cells act as near-perfect sizers in the first division during exit, they then immediately switch back to adder mode 
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from the second division onwards (Fig. 3g). The size regulation strategies observed in the rich growth medium 
(EZRDM) at 37°C were also consistent with measurements at different temperatures (30°C and 40°C) 
(Supplementary Information Table S12).  

 

Fig. 3| Cell size regulation during entry and exit from stationary phase reveals novel control principles. (a) Cell 
length of a single bacterium is plotted (log-scale) with time showing exponential growth of size at single cell-level and 
division occurring every 20 minutes. Both the specific growth-rate (g) and splitting-rate (s) can be computed from a single 
trace (see Supplementary Information section 14). Since the data is collected every 1 min, we get a high-resolution 
estimation of the size at birth (Lbirth) and size at division (Ldiv). (b) Cell lengths of three representative bacteria is shown as 
they enter stationary phase after passing through diauxic shift (d.s.). (c) The average splitting rate and specific growth-rate 
of the population are plotted in terms of number of doublings per minute at each time point of the experiment relative to 
the diauxic shift time-point. During the entry to stationary phase, the cell splitting rate (purple line) is changing gradually 
through the diauxic shift (dotted line), but the natural specific growth rate (blue) drops precipitously. (d) Correlation 
between cell lengths at birth and division are plotted during exponential growth phase. Grey circles are data from single 
division events, and black circles are binned along the x-axis. Theoretical lines for the adder, timer, and sizer models are 
shown as red, purple, and green lines. (e) Correlation between cell lengths at birth and division are plotted during the entry 
to stationary phase (1.0 hour from diauxic shift at OD 1.5). (f) Correlation between cell lengths at birth and division are 
plotted during the exit from stationary phase. (g) Investigating the size-regulation mode for every division cycle reveals the 
dynamics of switch between different modes. Top –The correlation coefficient between lengths at birth and division for the 
last four divisions before cells stop dividing shows that cells switch to the timer mode (purple line) of size regulation in the 
last two division before entering stationary phase. Bottom - Cells are perfect sizer (green) during the first division as they 
exit stationary phase (C ~0), but are already in adder mode (red line) in the second division and after. (h) Size-regulation 
strategies of B. subtilis cells along the growth-curve: Left - Correlation between cell lengths at birth and division are plotted 
during exponential growth phase; Right - Correlation between cell lengths at birth and division are plotted during the exit 
from stationary phase. 
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To explore whether such regulation strategies are shared across different types of bacteria, we performed 
similar measurements on the Gram-positive model organism B. subtilis, which is separated from E. coli by a 
billion years of evolution. The details of the single-cell growth-curve experiments of B. subtilis cells are provided 
in Supplementary Information section 16. In remarkable similarity to E. coli cells, the cells of B. subtilis also 
displayed adder mechanism of size regulation during exponential phase (C=0.52) as previously observed, while 
following a near-perfect sizer mechanism (α=0.09) for exit from stationary phase (Fig. 4c-d). Analysis of the 
size-regulation during entry to stationary phase for the B. subtilis strain is complicated by lysis of cells and 
consequent growth-resumption of cells in the same trench (Supporting Movie 3) This is reminiscent of the 
‘cannibalistic’ behavior observed in bacillus strains during starvation37, and detailed analysis of this behavior 
is out of the scope of this paper. However, we found that B. subtilis cells also display ‘rate-maintenance’ during 
the entry to stationary phase, which suggests we should expect them to follow timer dynamics during this 
phase. 

Many different mechanistic models have been found to be consistent with the ‘adder’ mode of size control, from 
titration mechanisms to various forms of control connected to chromosome replication38,39. Our additional 
observations may also be consistent with more than one model as well, but by demonstrating three distinctly 
different modes in three different situations, we believe that, combined with more systematic analyses of 
various mutants, this kind of experiments will help distinguish between possible mechanistic models40,41.  

Consequences of cell size variation in stationary phase 

Sizers, adders and timers are expected to create very different overall heterogeneity in cell volumes, where 
pure timers fail to compensate for deviations in size and accumulate great variation, while sizers could 
accurately correct size deviations and adders are intermediate between the two. Partly as a consequence of the 
mixed adder-timer growth dynamics during entry to stationary phase, the distribution of cell volumes in 
stationary phase is therefore much broader than in exponential growth (CV about 0.26 in stationary phase 
compared to 0.16 in exponential growth). The sizer mechanism at exit from stationary phase then causes a 
rapid return to narrowly distributed volumes (CV=0.15).  

However, some of the size variation in stationary phase also reflects the fact that a subpopulation of cells can 
undergo several more divisions than others (Fig. 4a). Simply being more numerous can be highly advantageous 
since individual cells can explore the world independently, and have a higher overall chance of finding new 
resources. However, those smaller cells would also exit from stationary phase with less cellular resources. 
Understanding the consequences of heterogeneity therefore requires tracking of cells as they enter and exit 
from stationary phase in multiple rounds, to compare advantages and disadvantages.  

We found that during an overnight in stationary phase (~8 hours), cells display great heterogeneity in division 
patterns both when entering and exiting, but in a negatively correlated manner such that the net effect is to 
display virtually no variation in the total number of divisions (Fig. 4b).  For example, during a time window 
around the stationary phase, where every cell had at least one division before entry and after exit (Fig. 4a), the 
largest 10% of cells in stationary phase, that divide the least as they enter stationary phase, on average go 
through 3.14 ± 0.07 doublings during a time window, whereas the smallest 10%, which divide the most as they 
enter stationary phase, similarly double 3.26 ± 0.05 times. The same principle was found under all media 
conditions tried, and demonstrates the importance of tracking individual cells. This observation – which is 
made possible by tracking cells over time – could in fact help explain why such great heterogeneity in either 
phase (entry/exit) can exist, since, at least in the short term, there appears to be no substantial advantage or 
disadvantage of either strategy.  

We then considered longer periods of stationary phase to investigate the consequence of such heterogeneity of 
entry-exit strategies. After one week of starvation, we tracked exit from stationary phase upon addition of a 
poorer defined medium (MOPS buffered medium, MBM)25. This by contrast revealed a great net growth 
disadvantage of cells that divide more times as they entered in stationary phase, where e.g. none of the smallest 
10% of cells began growth within 10 hours of adding fresh media, but 85% of the largest 10% of cells started 
to divide in that time window (Fig. 4c-d). Larger cells, which spend less resources on increasing their numbers 
in the entry to stationary phase, can thus reap a substantial growth advantage after long periods of dormancy. 
Indeed, the fraction of cells that started dividing in the observation window (10 hours) was a monotonically 
increasing function of the cell size in stationary phase (Fig. 4d).  
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 Fig. 4| Stationary phase length distribution and 
survival of deep stationary phase (a) Two sample 
traces shown in blue and red highlight the differing 
number of divisions performed during entry and exit 
for small vs. large stationary phase cells respectively. 
(b) The number of divisions performed during entry 
(brown), exit (green) and in total from entry through 
exit (yellow) are plotted vs. stationary phase cell size 
binned by percentile. The mean values are plotted 
with error bars (SEM) and a linear regression line is fit 
to these points. (c) Cells were subjected to a stationary 
phase lasting 1 week before being provided with fresh 
media. Cell length time traces for 10 example cells that 
exited from deep stationary phase are plotted in 
translucent red, a sample trace is overlaid in opaque 
red. The same is shown in blue for a sample of 10 cells 
that did not begin dividing within 10 hours of 
receiving fresh media. (d) The percent of cells for a 
given cell size that began dividing within 10 hours is 
shown in red and the percent that never began 
dividing are shown in blue. 

 

 

These results raise the question of why all cells do not stop dividing earlier, to ensure viability after stress. One 
reason may be the simple advantage in being more numerous, but we also considered if smaller cells could be 
more prone to persist in the presence of antibiotics42.  A small fraction of cells can become persistent towards 
antibiotic treatment after experiencing starvation, a phenomenon that is called ‘triggered persistence’19. It has 
so far been hard to monitor persisters cells over time, both because many platforms cannot ensure local 
uniformity under stress and because persistence usually is limited to a very small fraction of cells (<10-2). 
However, our combination of tightly controlled local conditions and extreme imaging throughput enables us to 
directly track a large number of natural persisters, without relying on mutants which may change not only the 
frequency of persisters but also their properties18. Because cells in our setup occupy dedicated growth 
trenches, cells at the end of each trench are also shielded from competition, which enables long-time 
monitoring of slow growers that would otherwise be lost by dilution in bulk cultures.  

Using this approach we tracked ~80,000 individual mother-cells that were kept in stationary phase for 36 
hours. The cells were then treated for 3 hours with fresh media containing a lethal dose of ampicillin (100 
μg/ml, 10x MIC, 99.7% mortality), an antibiotic known to specifically target actively dividing cells43. To 
determine which cells return to an actively growing state, antibiotic-free rich growth medium was then flowed 
past the cells 3 hours post antibiotic treatment for an additional 12 hours. We found that a majority of cells 
exiting stationary phase during this 3 hours period were killed by the antibiotic (grey traces in Fig. 5b) 
treatment, but that some persister cells remained dormant through the antibiotic treatment, and then switched 
into a non-persister growing state once the antibiotic was removed (see example in Fig. 5a, Supplementary 
Movie 4). We observed a total of 214 such persister cells, at a relative frequency of 3x10-3, (orange, Fig. 5b), 
consistent with our own bulk measurements (see Supplementary Inforation section 15) and previous reports42.  

Comparing the properties of cells that did or did not turn into persisters showed a striking trend: the cells that 
were smaller as they enter stationary phase were much more likely to turn into persisters (Fig. 5c). Indeed, of 
the 10% smallest cells, a fraction of 3% turned into persisters, while none of the 45,000 cells that were larger 
than the average cell produced a single persister. This also provides what may be an important new clue in the 
search for persister-creating mechanisms, by showing that the decision to become a persister is at least partly 
determined already when cells enter stationary phase, such that cells that divide into smaller cells are the only 
ones that – at least under our conditions – form persisters.  
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Thus, we observe a clear tradeoff: prolonged stays in stationary phase confer great advantages to cells that stop 
dividing early if cells exit stationary phase without drugs, but instead a great disadvantage if cells exit 
stationary phase with drugs. This may suggest that there is selective pressure behind the great heterogeneity 
observed in the entry to stationary phase: on short time-scale there is no disadvantage to such heterogeneity, 
but for longer periods of stationary phase – where it is increasingly difficult to anticipate the environment 
under which the cells will wake up – that variation can be necessary to ensure that at least some cells survive.  

 Fig. 5| Size distribution in 
stationary phase and survival 
during antibiotic treatment. (a) 
Kymograph showing a trench 
containing persister mother cell, 
during antibiotic treatment and 
recovery. (b) 200 sample traces of 
persister cells (orange) and non-
persisters (cells that chain and die 
during Amp treatment) are 
shown. The largest and smallest 
cell in the population are 
highlighted in black and red. 
Larger cells tend to exit quickly 
and are therefore vulnerable to 
Amp treatment, whereas smaller 
ones exit stationary phase later 
and survive. (c) Distribution of cell 
sizes in stationary phase for cells 
that eventually become persisters 
in stationary phase is compared to 
the overall population, where each 
population has been 
independently normalized.  

 

DISCUSSION 
The success of microbes in natural environments depends on their ability to exploit booms and weather busts44. 
To some extent this in turn relies on the ability to sense and adapt to environmental changes. For example, we 
observe ‘rate-maintenance’* in the entry to stationary phase, where cells maintain the generation times from 
balanced exponential growth for several more divisions than they maintain their mass growth rates, which 
causes cells to get smaller rapidly. This can be advantageous by creating a larger number of ‘exploring units’ 
that could separately venture into new niches and suggests that cells are able to track depletion in nutrient. 
However, in many cases it is not possible to adapt fast enough. For example, cells may not survive the sudden 
arrival of drugs unless they are already in a drug-tolerant state, and unless they are immediately ready to grow 
and divide they may instead be unable to take advantage of fresh resources before these are depleted by 
competing cells. Clonal populations could therefore benefit from hedging their bets and ensuring that 
individual cells are prepared for different future environments45,46.  

Great phenotypic heterogeneity has indeed been observed both as cells enter and exit stationary phase21,47. 
However, both the temporal patterns of heterogeneity and their consequences for survival and propagation 
have been hard to analyze due to the limitations of existing methods15. The method we present here enables us 
to track lineages entering and exiting stationary phase with precise enough control of local environments to 
make the results straightforwardly interpretable, over long enough time window, and with high enough 
throughput to observe key outliers. The first proof-of-principle applications already reveal important insights 
into the dynamics of bacteria under such complex changing conditions. First, we found that B. subtilis and E. 
coli qualitatively change their size regulation with growth phase, which then dictates the variability in cell size. 
Specifically, as many others before us30–35, we found that cells act as ‘adders’ in exponential phase, in the sense 
of adding a volume that is uncorrelated with the birth-size. However, we then found that cells change control 
in the entry to stationary phase to become closer to ‘timers’ where division occurs after a specific time since 
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the last division, and almost perfect ‘sizers’ in the first division upon exit from stationary phase in the sense of 
dividing at a critical volume regardless of the size of the newborn cells. The timer dynamics contributes to the 
large variation in stationary phase cells and the sizer dynamics ensures a fast return to much smaller size 
variation in exponential phase. Interestingly cells use sizer mode for only the first division after exiting from 
stationary phase, and switch to ‘adder’ mode immediately after the first division from exit. The observation 
that growth control displays a distinct pattern of adders, timers and sizers, may in turn restrain models more 
than the observation of adders alone. Specifically, many models of growth control invoke replication patterns, 
and as described above, those patterns are different in entry and exit from stationary phase39,40. However, 
dividing more times without additional protein production also causes changes in the levels of division 
proteins, which also have been invoked in explanations of growth control41,48. More detailed models of how 
these processes change during entry into and exit from stationary phase may thus help discriminate between 
various hypotheses, especially if also analyzing how various mutants control growth as they enter and exit 
stationary phase.  

Second, by tracking individual cell lineages through multiple rounds of growth and starvation we not only 
observe the heterogeneity at any given growth phase, but also trade-offs between them. We believe the rate-
maintenance phenomenon underlies the shift to timer-mode observed in cells during the entry to stationary 
phase. This causes cells to get smaller rapidly and, because some cells stop dividing later than others, 
contributes to the heterogeneity observed in size. This in turn has consequences for how cells exit stationary 
phase. After short periods of starvation, cells that entered stationary phase smaller accordingly delay their 
divisions upon exit. By comparing divisions before and after we find that the two effects closely offset each 
other: despite great heterogeneity in how cells both enter and exit, the total number of divisions is virtually 
constant. Thus, the heterogeneity appears to have little impact on net growth under those conditions. The rate 
maintenance mechanism may then be advantageous by creating a larger number of ‘exploring units’ that could 
separately venture into new niches. After longer periods of dormancy, however, we see very different patterns: 
the smallest cells are then by contrast much less likely to survive, or greatly delay growth if they do survive, 
but those small cells are also the only ones that became persisters and transiently survive antibiotics.  

The molecular mechanisms behind both growth control and persisters have been notoriously controversial, 
with many studies making credible claims for competing hypotheses49. Though we do not pinpoint any 
mechanisms here, we believe our phenotypic observations and methodology could help future studies 
converge on molecular explanations. First, the observation that the cells that become persisters divided more 
times during entry into stationary phase shows that whatever mechanism is behind the persisters can be 
triggered already at that time. For example, the tendency to continue to divide even as mass growth is slowed 
or stopped has been linked to replication, where cells prioritize completing replication forks and placing 
chromosomes in separate cells. Extended replication in some cells could in turn deplete resources. 
Alternatively, persisters could be created by the growth and division process itself, e.g. due to fluctuations to 
low concentrations that arise when cells sub-divide an already low protein content into multiple small cells, 
which perhaps does not change the average concentration but should create more heterogeneity between cells. 
Indeed, we observe that only some of the small cells become persisters.  

In conclusion, many processes in cells display interesting heterogeneity, and virtually every process could 
display much richer behavior along the growth curve than in balanced growth alone. Our method transforms 
the microfluidic platform ‘mother-machine’ into a microcosm of bulk growth with exceptional resolution and 
control, while enabling conventional bulk assays on the same culture. Because the cell culture can contain 
virtually any mix of cells, our method could equally be used to study individual cells in ecosystems, e.g. 
microbiome studies. We therefore believe the ability to track the growth, death and expression patterns of 
individual cells over time in dense, complex and changing cultures – potentially containing whole ecosystems 
– could be transformative in many areas of microbiology.  
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METHODS 

Strain construction: Strain BO37 was used in the bulk culture flask. It was built by P1 transducing glmS::PRNAI-
mCherry1-11-mKate-T1 terminator-FRT Kan FRT::pstS allele into MG1655 as described in Okumus et al.28. For 
all the strains used in the mother machine, we used the MG1655 7740 background with ΔmotA. The strain SB8 
was used for the phase contrast imaging experiments depicted in Fig. 3b-g and Fig. 4a-b is the background 
strain for all the other strains containing transcription reporters used in this study. SB8 was constructed by a 
P1 transduction from the Keio collection strain CGSC#:9565, ΔmotA743::kan into MG1655 and flippase was 
used to remove the kanamycin resistance50. For fluorescent segmentation marker, we made a fluorescent 
version called SB7, by P1 transducing glmS::PRNAI-mCherry1-11-mKate-T1 terminator-FRT Kan FRT::pstS into 
this SB8 strain. We made 16 different strains containing transcription reporters for different processes, 
including the PrpoS reporter, by integrating the transcription reporters constructed by Uri Alon’s group51 into 
the SB7 strain. To rigorously check if the ΔmotA was introducing any artifacts to our measurements, we 
compared our results with ΔfliC, which also renders the cell nonmotile, and finally compared with the MG1655 
6300, which is much less motile than 7740 version and found that the results were identical.  

Mother machine chip preparation: The construction of the wafer and selecting dimension of the single-cell 
trenches are described in detail in the Supplementary Information. Here we give a brief description of how we 
made the mother machine devices once we have the wafer ready. To prepare the PDMS for the mother machine 
chips, dimethyl siloxane monomer (Sylgard 184) was mixed in a 10:1 ratio with curing agent, defoamed and 
then poured onto the silicon wafer. This was then degassed for 1h using vacuum, and then cured at 95 °C for 1 
hour. Individual mother-machine chips were cut out of the PDMS mold and holes were created for the inlets 
and outlets using a biopsy puncher (0.75 mm). Coverslips were cleaned by sonication in KOH followed by 
sonication in DI water and then bonded to the feature side of the mother-machine chips using oxygen plasma 
treatment (30 seconds at 50 W and O2 pressure set to 170 mTorr) followed by incubation at 95 °C for at least 1 
hour. Chips were bonded the day before being used in experiments.  

Loading cells in the mother machine chips: There are two types of experiments described in this article and 
they use two different types of mother machine devices (see Supplementary Information section 16). In 
general, 16 different strains can be loaded into the 16 different lanes of the device type 1. We used 16 pairs of 
gel-loading tips for loading those lanes and centrifuge the chips to load the cells into the trenches that are 
orthogonal to the loading lanes. The high-throughput experiments involve a single strain to be loaded in a 
mother machine device where 15-lanes are connected via a continuous snake-like feeding channel. In this case, 
the overnight culture is concentrated 10x before loading into the device. The chip is then spun at 4500 rcf in a 
benchtop centrifuge for 2 min, using a custom-built holder. The centrifugal force rapidly loads the cells in the 
narrow-trenches. The dense culture from the feeding channel was washed quickly with fresh growth-medium 
before starting the image acquisition.  

Description of growth curve platform: Cells are grown in a 500 mL baffled bottom flask (ChemGlass) that is 
being shaken at 220 rpm on an orbital shaker with magnetic clamps (Benchmark Scientific Orbi-Shaker Jr). A 
set of peristaltic pumps (Langer Instruments) circulates the culture to and back from a custom-designed inline 
OD-meter (see Supplementary Information section 2). Another set of pumps takes the culture to the mother 
machine device loaded on the microscope stage and flows through it. In order to make sure that throughout 
this entire process cells are maintained at 37°C, to avoid any cold or heat shock, we house the entire systems 
of pumps, valves, and the shaker with culture flask in a home-built incubator. The incubator was constructed 
using T-slot framing and acrylic, then heated with an OEM resistive heater and fan. The temperature of the 
incubator is constantly monitored in two places using a custom microcontroller solution and a data-logging 
thermometer. This incubator houses multiple peristaltic pumps, solenoid valves and a culture shaker. The 
tubing containing the culture and fresh media go out of this incubator into the incubator that houses the 
microscope. The path between the two incubators is kept insulated using an insulating duct the inside of which 
is actively kept warm using fans that blows the 37°C air from the incubator.  

Description of a growth-curve experiment: Before any experiment is run with the platform, an automated 
system is used to wash the entire media and culture tubing path. The wash consists of ~40 minute wash with 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.27.006403doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.27.006403
http://creativecommons.org/licenses/by-nc-nd/4.0/


20% bleach, followed by 40 minute wash with 20% ethanol and finally a 40 minute wash with dH2O. Then, just 
prior to running the experiment, a bottle containing EZ-rich defined medium (EZRDM) is hooked up to the 
platform and pumped through all the tubing to remove the water and replace it with media. While this is taking 
place, the chip is loaded as described below. Once the fresh media has washed out the water, the media used 
for wash is removed and the flask containing the growth media is attached to the setup. 

At the beginning of an experiment, the 500 ml baffled flask containing 200 ml of pre-warmed media is 
inoculated 1:10,000 of liquid culture. It is then immediately placed into the incubator where it is both 
maintained at 37°C and actively shaken at 220 rpm. The liquid from a flask containing either fresh media or the 
actively growing culture is pumped through silicone tubing then into the microscope incubator where it is 
connected to the mother machine via blunt-end needles. In this path, there is a small, sealed chamber that acts 
to remove bubbles and is also a vessel in which the OD is continuously measured. A different set of flask and 
pumps are used to flow fresh media when we need to monitor the cells that exit from stationary phase. The 
switch between the culture and the fresh media is handled with pinch-valves setup that minimizes any delay 
between the two conditions and also avoids any possible contamination in the fresh media from the culture 
(see Supplementary Information section 1).  

Microscopy and image acquisition: We have custom-designed a microscope for the fast acquisition needed 
for the high-throughput imaging of mother machine. We replaced the turrets that house the dichroic mirror 
and emission filter to have a single quad band dichroic mirror for all the excitation and have a fast emission 
filter wheel for all the emission filters. This avoids the lags from the slow movement of the turret and improved 
our speed of acquisition tremendously. We then used an air objective with high NA (Apochromat, 40x, 0.95 NA) 
to acquire the images, which made the entire time for stage movement comparable to exposure time, allowing 
us to scan the entire device in less than 5 minutes. Images were acquired with a sCMOS camera (ANDOR Zyla 
4.2), which allowed us to have fast frame-rate with very high QE (84%). We used a LED lamp as the white-light 
source for the phase contrast imaging and the Spectra-X light engine LED excitation source (Lumencor) for 
fluorescence imaging. Using these settings we acquired a total of 705 field of views every 5 min, allowing us to 
track cells in 131,072 trenches over time. For phase contrast imaging, we switched to a high magnification 
apodized phase contrast objective (100x oil NA 1.3, PH3), that allowed us to get high-contrast images of cells 
in mother machine. We sampled 85 field of views in 1 min using this oil objective allowing us to image a total 
of 3,500 trenches. For long acquisition it is important to keep the entire sample in perfect focus, and so the focal 
drift was controlled via the Nikon Perfect Focus system. The entire setup of flow-switch and the Nikon Ti 
inverted microscope was housed in a temperature-controlled incubator (OKO lab). We have used the Nikon 
Elements software for the acquisition control and to create position list using a grid structure. The fluorescent 
colors were ordered according to their order in the filter wheel, and the travel of the stage along the position 
list was optimized to get the fastest possible scanning of the entire chip. The PSF was always kept in ‘on’ option 
for fast scanning. The data were saved locally in ND2 format to improve writing and saving speed and 
eventually extracted for analysis into single TIFF files using a custom-made ND2extractor Python script. 

Data processing: segmentation and single-cell tracking: We have developed an image-processing pipelines 
for processing the large volume of high-throughput data collected per experiment (~1.5 TB/ experiment). A 
multi-core extraction algorithm was used to extract single TIFFs from the ND2 file and organize them into 
folders for each field of view (FOV). We then proceeded to analyze the stack of single TIFFs for each FOV over 
time. The pipeline for the analysis involves four major sections: image segmentation, data extraction, single-
cell tracking, and trace-cleaning. The image segmentation step involves processing the entire field of view to 
identify single cells and find a contour for each cell from which the intensity data is going be extracted. One 
major challenge for single-cell segmentation for a data along the growth-curve is that cells continuously change 
their size and shape along the growth-curve. To address this, we have developed a custom build segmentation 
algorithm that is more flexible for variable cell sizes. We first adjust contrast across all the frames of the time-
lapse image stack to correct for changes in intensity of segmentation marker/phase contrast for every 
individual the TIFF files. Then we perform background subtraction intensity using a rolling ball algorithm. The 
background subtracted images were processed with a combination of global and local thresholding to create 
binary masks for cells from background and use a marker-based watershed algorithm to separate all the binary 
masks into masks single cells in a reliable manner. The segmentation algorithms are different for the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.27.006403doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.27.006403
http://creativecommons.org/licenses/by-nc-nd/4.0/


fluorescent images and phase contrast images. After the segmentation, we extract the fluorescence intensity 
properties and shape properties for each connected component from the list of masks.  

The next step is to track single masks over time to get time-lapse data. An individual FOV has ~230 
trenches with ~8 cells each. Therefore, in order to track single cells over time, we have to assign the ~1300 
binary masks to their corresponding masks in different time-points. This is a massive task if to be done by the 
traditional frame-by-frame nearest neighbor assignment. To address this challenge, we have developed a novel 
clustering algorithm that cluster all the cells in a single trench over the entire duration of the experiment and 
then assign the top one in each frame as the mother cell. Specifically, we use DBSCAN clustering to cluster the 
data into lineages from individual trenches and then sort the data to get the top cell in each trench and assign 
all of their properties to mother-cell properties. The segmentation algorithm is not perfect, so we define criteria 
to help filter out data that is un-physical. The ratio of the division length and birth length should be 0.5, so we 
filter out any division interval where the length at birth over the length at the preceding division differs from 
0.5 by more than 20%, The single-cell traces of the different properties of interest were further cleaned to 
remove unnatural trends using the reference marker intensity traces.  
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