10th December 2019

1		
2	Malaanlay	determinants of θ amostin coupling to formational bound
3 4	woiecular	determinants of β -arrestin coupling to formoterol-bound β_1 -adrenoceptor
5		
6 7	Vang Lee	e ¹ , Tony Warne ¹ , Rony Nehmé ¹ , Shubhi Pandey ² , Hemlata Dwivedi-
8	I ang Loo	Agnihotri ² , Patricia C. Edwards ¹ Javier García-Nafría ^{3,4} ,
9	Δn	drew G.W. Leslie ¹ , Arun K. Shukla ² & Christopher G. Tate ¹ *
10	2 11	arew G.W. Lesne, Man R. Shakia & Christopher G. Tate
11		
12	¹ MRC Labora	tory of Molecular Biology, Francis Crick Avenue, Cambridge CB2
13	0QH, UK	
14		
15	² Department of	of Biological Sciences and Bioengineering, Indian Institute of
16	Technology, I	Kanpur 208016, India
17		
18	³ Institute for I	Biocomputation and Physics of Complex Systems (BIFI), University of
19	Zaragoza, BII	FI-IQFR (CSIC), 50018, Zaragoza, Spain.
20		
21	⁴ Laboratorio	de Microscopías Avanzadas, University of Zaragoza, 50018, Zaragoza,
22	Spain	
23		
24	* Correspond	ing author
25		
26	Corresponden	ce for the manuscript:
27	Dr. C.G. Tate	
28	MRC Laborat	ory of Molecular Biology,
29	Francis Crick	Avenue,
30	Cambridge Cl	B2 0QH, UK
31		
32	Email	cgt@mrc-lmb.cam.ac.uk
33	Telephone	+44-(0)1223-267073
34		
35		

10th December 2019

36 ABSTRACT

The β_1 -adrenoceptor (β_1 AR) is a G protein-coupled receptor (GPCR) 37 activated by the hormone noradrenaline, resulting in the coupling of the 38 heterotrimeric G protein G_s^1 . G protein-mediated signalling is terminated by 39 phosphorylation of the receptor C-terminus and coupling of β -arrestin 1 (β arr1, 40 41 also known as arrestin-2), which displaces G_s and induces signalling through the MAP kinase pathway². The ability of synthetic agonists to induce signalling 42 preferentially through either G proteins or arrestins (biased agonism)³ is 43 important in drug development, as the therapeutic effect may arise from only 44 45 one signalling cascade, whilst the other pathway may mediate undesirable side effects⁴. To understand the molecular basis for arrestin coupling, we determined 46 the electron cryo-microscopy (cryo-EM) structure of the β_1 AR- β_a rr1 complex in 47 lipid nanodiscs bound to the biased agonist formoterol⁵, and the crystal structure 48 of formoterol-bound β_1 AR coupled to the G protein mimetic nanobody Nb80⁶. 49 β arr1 couples to β_1 AR in a distinct manner to how G_s couples to β_2 AR⁷, with the 50 finger loop of *βarr1* occupying a narrower cleft on the intracellular surface 51 closer to transmembrane helix H7 than the C-terminal $\alpha 5$ helix of G_s. The 52 conformation of the finger loop in β arr1 is different from that adopted by the 53 finger loop in visual arrestin when it couples to rhodopsin⁸, and its β -turn 54 55 configuration is reminiscent of the loop in Nb80 that inserts at the same position. β_1 AR coupled to β_1 arr1 showed significant differences in structure compared to 56 β_1 AR coupled to Nb80, including an inward movement of extracellular loop 3 57 (ECL3) and the cytoplasmic ends of H5 and H6. In the orthosteric binding site 58 59 there was also weakening of interactions between formoterol and the residues Ser211^{5.42} and Ser215^{5.46}, and a reduction in affinity of formoterol for the β_1 AR-60 β arr1 complex compared to β_1 AR coupled to mini-G_s. These differences provide 61 62 a foundation for the development of small molecules that could bias signalling in the β -adrenoceptors. 63

- 64
- 65

66 Ligand bias arises through differential activation of the G protein pathway 67 compared to the arrestin pathway and has been observed in ligands binding to many 68 different GPCRs such as the μ -opioid receptor⁹, the angiotensin receptor (AT₁R)¹⁰

10th December 2019

and the β -adrenoceptors, $\beta_1 AR$ and $\beta_2 AR^{5,11}$. The ligands can show complex 69 70 pharmacology. For example, carvedilol is an inverse agonist of β_1 AR when G protein 71 activity is measured, but it is a weak agonist of the MAPK pathway activated by βarr1¹¹. In contrast formoterol is an agonist of both pathways, but stimulates the βarr1 72 pathway more than the G protein pathway⁵. Current theories favour the hypothesis 73 that GPCRs exist in an ensemble of conformations and that ligands preferentially 74 stabilise specific conformations¹². This suggests that the conformation of a receptor 75 bound to a heterotrimeric G protein could be different from the conformation that 76 77 binds ßarr. There is considerable spectroscopic evidence to support the existence of an ensemble of conformations of a GPCR even in the absence of ligands, and that 78 specific ligands selectively stabilise specific conformations¹³⁻¹⁵. A notable study on 79 80 AT₁R using electron paramagnetic resonance also supports the notion that βarr biased 81 ligands stabilise a different subset of conformations compared to G protein biased ligands¹⁶. Structures have been determined of many different GPCRs and a number of 82 83 distinct states have been identified. For example, X-ray crystallography has identified two major structural states of β -adrenoceptors, comprising a number of inactive 84 states¹⁷⁻¹⁹ and a number of active states^{6,7,20-22}. In the absence of a G protein, the most 85 86 thermodynamically stable state of the agonist-bound receptor is very similar to the inactive state, except for a small contraction of the ligand binding pocket. The active 87 88 states have to be stabilised by binding of a G protein or a G protein-mimetic (e.g. nanobody Nb80 or Nb6B9)^{6,22} at the intracellular cleft that opens transiently on the 89 cytoplasmic face of the receptor with increased frequency upon agonist binding¹³. 90 91 Although the details of how an agonist activates the β -adrenoceptors is known in great detail^{6,7,17} and also the molecular basis for how G protein coupling increases 92 93 ligand affinity²¹, there are few molecular details alluding to the mechanism of biased 94 agonism. The structure of carvedilol-bound β_1AR has been determined in the inactive 95 state, and this suggested that interactions of the ligand with the extracellular end of 96 H7 could promote the biased effect of the ligand as this is not observed in other unbiased ligands²³. However, an active-state structure of β_1AR coupled to $\beta_{11}AR$ 97 required to further understanding of biased signalling, so we determined the cryo-EM 98 99 structure of the formoterol-bound β_1 AR- β_{arr1} complex.

100 A complex of β arr1 coupled to purified β_1 AR could not be formed effectively in 101 detergent, so β_1 AR was inserted into nanodiscs (see Methods). The β_1 AR construct

10th December 2019

102 contained six mutations to improve thermostability and a sortase sequence to allow ligation of a phosphorylated peptide (V_2R_{6P}) identical to the C-terminal sequence of 103 104 the vasopressin receptor V₂R. Pharmacological analysis of purified β_1 AR in nanodiscs 105 indicated that coupling of Barr1 caused an increase in agonist affinity (Extended Data Fig. 1) as observed for coupling of mini-G proteins to detergent-solubilised $\beta_1 A R^{21}$. 106 This implied that the receptor coupled to arrestin was in an active state, as has been 107 also observed for other GPCRs²⁴. The structure of the formoterol-bound β_1 AR- β_1 AR- β_1 AR- β_2 108 complex in nanodiscs (Fig. 1a-c) was determined by cryo-EM (see Methods and 109 Extended Data Figs. 2-5), in the presence of the antibody fragment F_{ab}30 that locks 110 arrestin into an active conformation²⁵ and was essential to provide sufficient mass for 111 the alignment of the particles. The overall resolution was 3.3 Å, with the best-resolved 112 113 regions of the cryo-EM map at the interface between β_1 AR and β_1 arr1, reaching a local resolution of 3.2 Å (Extended Data Fig. 2 and Table 1). We also determined the 114 115 structure of formoterol-bound β_1 AR-Nb80 complex in detergent by X-ray 116 crystallography at 2.9 Å resolution (Fig. 1d and Table 2) to allow a direct comparison 117 between $\beta_1 AR$ coupled to different proteins but bound to the same ligand. The $\beta_1 AR$ -Nb80 complex is too small (~50 kDa of ordered protein) for structure determination 118 by single-particle cryo-EM. The overall structures of formoterol-bound β_1AR in the 119 β_1 AR-Nb80 and β_1 AR- β_{arr1} complexes were virtually identical (rmsd 0.6 Å). 120 121 However, there were small significant differences in the extracellular surface, 122 intracellular surface and in the orthosteric binding site (discussed below). $\beta_1 AR$ in complex with β arr1 was also very similar to other structures of β_1 AR in an active 123 state (rmsds ~0.6 Å) and also to β_2AR coupled to heterotrimeric G_s (PDB 3SN6; rmsd 124 0.8 Å)^{7,21}. This allowed a detailed comparison between β_1AR - β_2AR - G_s and 125 β_1 AR-Nb80 (see below). 126

127 The overall structure of β arr1 coupled to β_1 AR (Fig. 2) is very similar to the X-128 ray structure of S-arrestin (also known as visual arrestin) coupled to rhodopsin⁸ (PDB 129 5W0P; rmsd 1.3 Å, 1853 atoms) and the structure of activated β arr1 coupled to F_{ab}30 130 and the V₂Rpp peptide²⁵ (PDB 4JQI; rmsd 1.1 Å, 1861 atoms). The buried surface 131 area of β_1 AR that makes contact to β arr1 (~1200 Å²; excluding the phosphopeptide 132 interface) is slightly smaller than the surface area of rhodopsin making contact to S-133 arrestin (~1400 Å²). In addition, there is a 20° difference in tilt of arrestin relative to

10th December 2019

134 rhodopsin compared to $\beta_1 AR$ (Extended Data Fig. 6). However, the regions of $\beta_1 AR$ 135 and rhodopsin that make contact to either ßarr1 or S-arrestin respectively are conserved, as are the positions on the arrestin molecules that make contacts to the 136 receptors (Extended Data Fig. 7 and 8). The position of the C-terminal V_2R_{6P} peptide 137 138 in the cryo-EM structure is also virtually identical to the position of the peptide in the 139 crystal structure of the $\beta arr1$ - $F_{ab}30$ - V_2 Rpp complex (Extended Data Fig. 6), with the 140 exception of the phosphate on Thr359. Phospho-Thr359 does not make contacts to β arr1 in the β arr1-F_{ab}30-V₂Rpp complex, but it appears to make contact with the tip 141 of the lariat loop (Lys294, His295) of β arr1 in the β_1 AR- β arr1 complex. No density 142 143 was observed in the β_1 AR- β_1 arr1 cryo-EM structure equivalent to the N-terminal region of V₂Rpp (RTpPPSpLGP) that is adjacent to the finger loop in the βarr1-F_{ab}30-144 145 V₂Rpp structure; this would clash with the new orientation of the finger loop and the receptor in the β_1 AR- β_1 arr1 complex. The most significant difference between these 146 147 three structures is the orientation and structure of the finger loop region (Fig. 2). In the activated non-receptor-bound $\beta arr1-F_{ab}30-V_2Rpp$ structure, the finger loop forms 148 149 an unstructured region that does not superpose with either the finger loop in S-arrestin 150 coupled to rhodopsin or with β arr1 coupled to β_1 AR. In contrast, the receptor-bound finger loop of S-arrestin and ßarr1 superpose, but they adopt different structures (Fig. 151 152 2). The finger loop of S-arrestin contains a short α -helical region whereas in β arr1 it forms a β -hairpin. When the arrestin molecules are aligned, it also appears that the tip 153 154 of the β -hairpin of β arr1 protrudes about 5 Å deeper into the receptor than the α helical region of S-arrestin. An interesting observation is that the CDR3 loop of 155 156 nanobody Nb80 that inserts into the receptor bears a remarkable resemblance to the 157 finger loop of βarr1 (Fig. 2), although the polypeptides run in antiparallel directions 158 and bear little sequence similarity except for the Val-Leu residues at the tip of the 159 loops.

160 Structure determination of the $β_1$ AR- $β_{arr1}$ complex in nanodiscs showed it in 161 relation to the lipid bilayer surface (Fig. 1a). This allowed the identification of 32 162 amino acid residues in $β_{arr1}$ that potentially interact with lipid head groups, although 163 ordered density for lipids was not observed. Two regions of arrestins had previously 164 been suggested as interacting with lipids, the '344-loop' (s18s19 loop) and the '197-165 loop' (s11s12 loop)^{26,27}. The nomenclature in parentheses is that implemented for

10th December 2019

arrestins in GPCRdb²⁸. Both these loops in βarr1 contain backbone and side chains 166 167 apparently buried in the head group region of the lipid bilayer and are flanked by residues where only the side chain interacts (Extended Data Figs. 8 and 9). Ten 168 169 residues at the tip of the s18s19 loop were disordered and their position could 170 therefore not be determined. Both the s11s12 and s18s19 loops in ßarr1 are distant 171 from the receptor in the complex. In contrast, two other regions of Barr1 that also 172 appeared to interact with lipids (s8s9 and s15s16) contained residues that also interact with β_1 AR. The mutation L68C at the base of the finger loop is also accessible to the 173 lipid bilayer, and is consistent with monobromobimane labelling studies, which shows 174 a change in fluorescence when labelled arrestin couples to a GPCR²⁹. Finally, the β -175 sheet s15 and the loop s14s15 contain many residues that could also potentially 176 177 interact with lipids. It is notable that of the 18 residues in Barr1 that might interact with lipids through their side chains, 10 are either Lys or Arg. This suggests that 178 negatively charged lipids such as phosphatidylinositols and/or phosphatidylserine, 179 may play an important role in arrestin coupling³⁰ in vivo, as has been suggested for 180 coupling of the G protein G_s^{31} . 181

182 The structure of the formoterol-bound β_1 AR- β_{arr1} complex was compared with the $\beta_2 AR - G_s$ complex⁷. The amino acid sequences of $\beta_1 AR$ and $\beta_2 AR$ are 59% 183 184 identical (excluding the N-terminus and C-terminus) and have very similar inactive state structures (rmsds 0.4-0.6 Å)^{17,19} and active state structures coupled to 185 nanobodies (rmsds 0.4-0.6 Å)^{6,21,22} so the comparison is reasonable. Superposition of 186 β_1 AR and β_2 AR from the respective complexes (rmsd 1.0 Å, 1634 atoms) shows that 187 the long axis of β arr1 is at ~90° angle to the long axis of G_s (Extended Data Fig. 6). 188 189 This could have an influence on the coupling efficiency of G proteins compared to arrestins if the GPCR form dimers³² and whether coupling occurs or not could be 190 191 dictated by which transmembrane helices form the interface. The only significant 192 difference in secondary structure between the different receptors is that the 193 cytoplasmic end of H6 is an additional 7 Å away from the receptor in β_2 AR coupled to G_s compared to β_1AR coupled to β_{arr} (Fig. 2). The cleft in the intracellular face is 194 thus 8 Å narrower when β arr1 is coupled to β_1 AR compared to G_s coupled to β_2 AR 195 196 (measured between the C α of Ser346-Arg284 in β_1 AR and the C α of Ser329-Lys267 197 in $\beta_2 AR$). The amino acid residues forming the interface between $\beta_1 AR$ and β_{arr1} are 198 very similar to those forming the interface between β_2AR and G_s (Fig. 3a). In

10th December 2019

199 particular, both complexes rely on extensive contacts between ICL2 and the 200 cytoplasmic end of H3 of the receptor and either ßarr1 or G_s. However, there are contacts between the cytoplasmic ends of H2, H3, H7 and H8 in β_1 AR and β_{arr1} that 201 202 are absent in the β_2 AR-G_s complex. There are also more extensive contacts between H5 and H6 of β_2 AR to G_s compared to the β_1 AR- β_{arr1} complex. The amino acid side 203 204 chains in $\beta_1 AR$ and $\beta_2 AR$ at the respective interfaces are also similar in position, with the exception of Arg^{3.50} (Arg139 in β_1 AR and Arg131 in β_2 AR) in the DRY motif. In 205 206 the β_2 AR-G_s complex and also in related complexes such as between the adenosine A_{2A} receptor and G_s^{33} , $Arg^{3.50}$ extends away from the helix axis of H3 to form an 207 208 interface between Tyr391 of the G protein and the hydrophobic interior of the receptor (Fig. 3c). In contrast, $Arg^{3.50}$ in the β_1AR - β_arr1 complex adopts a different 209 rotamer making extensive polar interactions with Asp138^{3.51} and Thr76^{2.39} in the 210 receptor and with Asp69 of β arr1 in the finger loop (Fig. 3b). The rotamer of Arg^{3.50} 211 212 and its interactions to other $\beta_1 AR$ side chains in the $\beta_1 AR$ - β_{arr1} complex is virtually 213 identical to those observed in inactive state structures of β_1AR and in active state structures stabilised by nanobodies^{17,21}. One final observation in the comparison 214 between the β_1 AR- β_{arr1} complex and the β_2 AR- G_s structure is that the α 5 helix of G_s 215 does not overlap precisely with the position of the finger loop of β arr1 in the β_1 AR-216 217 β arr1 complex, with the finger loop lying closer to H7-H8 than the α 5-helix (Figs. 3d 218 & 3e).

219 Experimental data suggest that formoterol, carmoterol and carvedilol are arrestin biased ligands and that isoprenaline is a balanced agonist signalling equally 220 between the G protein and arrestin pathways^{5,34} (see Fig. 4d for ligand structures). To 221 222 identify elements that may be involved in biased signalling we therefore compared 223 formoterol-bound β_1 AR coupled to β_1 and to Nb80 (Nb80 being a known mimetic of the G protein G_s^{6}). The largest differences were observed on the intracellular face 224 225 of β_1 AR where the ends of H5 and H6 were closer to the receptor core by 6.7 Å (C α of Ile241) and 1.9 Å (Ca of Lys284), respectively, when Barr1 was coupled compared 226 to when Nb80 was coupled (Fig 4b). On the extracellular face of the receptor (Fig 4c), 227 228 the largest change is in ECL3 that occludes the entrance to the orthosteric binding pocket through a 2.2 Å shift in its position (as measured at C α of Arg317). There was 229 230 no significant density for side chains in ECL3 of the β_1 AR- β_{arr1} structure, so we

10th December 2019

231 cannot compare changes in their interactions. In the orthosteric binding site there was a significant difference in the interactions between formoterol and the residues 232 Ser211^{5.41} and Ser215^{5.46} (Fig. 4a). Three potential hydrogen bonds between 233 formoterol and either Ser215^{5.46} (one hydrogen bond) or Ser211^{5.41} (two hydrogen 234 bonds) are reduced in length by 0.4 Å, 0.8 Å and 0.2 Å, respectively, which is 235 236 consistent with the decreased affinity of formoterol when ßarr1 is coupled compared 237 to mini-G_s (Extended Data Fig. 1). This also correlates with the inward movement of the cytoplasmic end of H5 by 6.7 Å. In comparison to isoprenaline, formoterol also 238 makes extra contacts to both H6 (Val326^{7.36} and Phe325^{7.35}) and ECL2 (D200), 239 similar to the additional contacts observed in β_1AR structures with bound 240 carmoterol¹⁷ or carvedilol²³ (Fig. 4a). Previous work identified a causal link between 241 G protein coupling and changes in the extracellular positions of H6-ECL3-H7 that 242 resulted in the decreased rates of ligand association/dissociation³⁵ and an increase in 243 ligand affinity²¹. The β_1 AR- β_1 arr1 structure suggests that this region is also implicated 244 in ligand bias, with the arrestin biased ligands of β -adrenoceptors possessing moieties 245 246 that interact with the extracellular end of H6 and ECL2. This would be anticipated to affect the dynamics of the extracellular region which, in conjunction with the 247 increased length of hydrogen bonds to H5, would affect the structure on the 248 249 intracellular face where G proteins and arrestins couple.

250 The structure of β_1 AR- β_{arr1} suggests possibilities of designing biased agonists 251 that result in repositioning of H5 compared to balanced agonists, and also new 252 opportunities for developing drugs that bind on the intracellular surface of receptors. The difference in position of the α 5 helix in β_2 AR-G_s away from H7-H8 offers the 253 254 possibility of a small molecule drug binding in this region that would not affect G_s 255 coupling, but would sterically block ßarr1 binding, resulting in G protein-biased 256 signalling. Targeting the interfaces between H6 and other helices to prevent the larger 257 displacement of H6 in the β_2 AR-G_s structure compared to the β_1 AR- β_{arr1} structure would result in arrestin-biased signalling. These approaches are plausible given that 258 allosteric ligands are known to interfere with receptor signalling when bound to the 259 intracellular region of a receptor³⁶ whilst others bind to the lipid-exposed surface of 260 transmembrane domains³⁷. The challenge remains in designing compounds that 261 262 specifically target these sites.

10th December 2019

264

265

267

266 Acknowledgements

The work in C.G.T.'s laboratory was funded by a grant from the European Research 268 269 Council (EMPSI 339995), Heptares Therapeutics Ltd and core funding from the 270 Medical Research Council [MRC U105197215]. The research program in A.K.S's 271 laboratory is supported by an Intermediate Fellowship of the Wellcome Trust/DBT 272 India Alliance Fellowship (grant number IA/I/14/1/501285), the Science and Engineering Research Board (SERB) (EMR/2017/003804). Innovative Young 273 274 Biotechnologist Award from the Department of Biotechnology (DBT) (BT/08/IYBA/2014-3) and the Indian Institute of Technology, Kanpur. H.D.-A. is 275 276 supported by the National Post-Doctoral Fellowship of SERB (PDF/2016/002930) 277 and DBT-BioCaRE grant (BT/PR31791/BIC/101/1228/2019). We thank Diamond 278 Light Source (UK) for access and support of the cryo-EM facilities at eBIC (proposal 279 EM17434) funded by the Wellcome Trust, MRC and BBSRC. We thank the beamline 280 staff at the European Synchrotron Radiation Facility MASSIF-1 for help with X-ray 281 diffraction data collection. We thank T. Nakane and P. Kolb for helpful discussions, 282 D. Gloriam for access to unreleased data from GPCRdb, and G. Cannone from the 283 LMB EM facility and J. Grimmett and T. Darling from LMB scientific computing for 284 technical support during this work.

285

287

286 Author contributions

Y.L. performed receptor, arrestin and zap1 expression, purification, nanodisc 288 reconstitution and complex formation, cryo-EM grid preparation, data collection, data 289 290 processing and model building. T.W. performed receptor and nanobody expression, purification and complex formation, crystallization, cryo-cooling of the crystals, X-291 292 ray data collection, data processing, and X-ray structure refinement. Y.L. and T.W. performed the pharmacological analyses. S.P. and H.D.-A. performed F_{ab} expression, 293 294 purification and validation. R.N. developed the sortase ligation of phosphorylated 295 peptides onto β_1AR . P.C.E purified mini-G_S. J.G.-N. advised on cryo-EM data 296 collection, data processing and model building. A.G.W.L. advised on X-ray data 297 processing, structure solution and analysis. Y.L. and C.G.T. carried out structure 298 analysis and manuscript preparation. A.K.S. managed the production of F_{ab}. C.G.T.

10th December 2019

- analysed data and managed the overall project. The manuscript was written by C.G.T
- 300 and Y.L., and included contributions from all the authors.
- 301

302 **Author information.** Reprints and permissions information is available at 303 <u>www.nature.com/reprints</u>. The authors declare the following competing interests: 304 CGT is a shareholder, consultant and member of the Scientific Advisory Board of 305 Heptares Therapeutics, who also partly funded this work. Correspondence and 306 requests for materials should be addressed to <u>cgt@mrc-lmb.cam.ac.uk</u>.

307

308 References309

- Evans, B. A., Sato, M., Sarwar, M., Hutchinson, D. S. & Summers, R. J.
 Ligand-directed signalling at beta-adrenoceptors. Br J Pharmacol 159, 10221038, (2010).
- DeWire, S. M., Ahn, S., Lefkowitz, R. J. & Shenoy, S. K. Beta-arrestins and
 cell signaling. Annu Rev Physiol 69, 483-510, (2007).
- 315 3 Smith, J. S., Lefkowitz, R. J. & Rajagopal, S. Biased signalling: from simple
 316 switches to allosteric microprocessors. Nat Rev Drug Discov 17, 243-260,
 317 (2018).
- Kenakin, T. Biased Receptor Signaling in Drug Discovery. Pharmacol Rev 71,
 267-315, (2019).
- 320 5 Rajagopal, S. *et al.* Quantifying ligand bias at seven-transmembrane receptors.
 321 Mol Pharmacol 80, 367-377, (2011).
- Rasmussen, S. G. *et al.* Structure of a nanobody-stabilized active state of the
 beta(2) adrenoceptor. Nature 469, 175-180, (2011).
- Rasmussen, S. G. *et al.* Crystal structure of the beta2 adrenergic receptor-Gs
 protein complex. Nature 477, 549-555, (2011).
- 326 8 Zhou, X. E. *et al.* Identification of Phosphorylation Codes for Arrestin
 327 Recruitment by G Protein-Coupled Receptors. Cell **170**, 457-469 e413,
 328 (2017).
- Siuda, E. R., Carr, R., Rominger, D. H. & Violin, J. D. Biased mu-opioid
 receptor ligands: a promising new generation of pain therapeutics. Curr Opin
 Pharmacol 32, 77-84, (2017).

10th December 2019

332	10	Violin, J. D. et al. Selectively Engaging beta-Arrestins at the Angiotensin II
333		Type 1 Receptor Reduces Blood Pressure and Increases Cardiac Performance.
334		Journal of Pharmacology and Experimental Therapeutics 335, 572-579,
335		(2010).

- Wisler, J. W. *et al.* A unique mechanism of beta-blocker action: carvedilol
 stimulates beta-arrestin signaling. Proc Natl Acad Sci U S A 104, 1665716662, (2007).
- Kobilka, B. K. & Deupi, X. Conformational complexity of G-protein-coupled
 receptors. Trends Pharmacol Sci 28, 397-406, (2007).
- 341 13 Manglik, A. *et al.* Structural Insights into the Dynamic Process of beta2342 Adrenergic Receptor Signaling. Cell 161, 1101-1111, (2015).
- 343 14 Nygaard, R. *et al.* The dynamic process of beta(2)-adrenergic receptor
 344 activation. Cell **152**, 532-542, (2013).
- Ghanouni, P. *et al.* Functionally different agonists induce distinct
 conformations in the G protein coupling domain of the beta 2 adrenergic
 receptor. J Biol Chem 276, 24433-24436, (2001).
- Wingler, L. M. *et al.* Angiotensin Analogs with Divergent Bias Stabilize
 Distinct Receptor Conformations. Cell **176**, 468-+, (2019).
- Warne, T. *et al.* The structural basis for agonist and partial agonist action on a
 beta(1)-adrenergic receptor. Nature 469, 241-244, (2011).
- Rosenbaum, D. M. *et al.* Structure and function of an irreversible agonistbeta(2) adrenoceptor complex. Nature 469, 236-240, (2011).
- Cherezov, V. *et al.* High-resolution crystal structure of an engineered human
 beta2-adrenergic G protein-coupled receptor. Science **318**, 1258-1265, (2007).
- 356 20 Masureel, M. *et al.* Structural insights into binding specificity, efficacy and
 357 bias of a beta2AR partial agonist. Nat Chem Biol 14, 1059-1066, (2018).
- Warne, T., Edwards, P. C., Dore, A. S., Leslie, A. G. W. & Tate, C. G.
 Molecular basis for high-affinity agonist binding in GPCRs. Science 364, 775778, (2019).
- 361 22 Ring, A. M. *et al.* Adrenaline-activated structure of beta2-adrenoceptor
 362 stabilized by an engineered nanobody. Nature **502**, 575-579, (2013).
- Warne, T., Edwards, P. C., Leslie, A. G. & Tate, C. G. Crystal structures of a
 stabilized beta1-adrenoceptor bound to the biased agonists bucindolol and
 carvedilol. Structure 20, 841-849, (2012).

10th December 2019

366	24	Staus, D. P. et al. Sortase ligation enables homogeneous GPCR
367		phosphorylation to reveal diversity in beta-arrestin coupling. Proc Natl Acad
368		Sci U S A 115 , 3834-3839, (2018).
369	25	Shukla, A. K. et al. Structure of active beta-arrestin-1 bound to a G-protein-
370		coupled receptor phosphopeptide. Nature 497 , 137-141, (2013).
371	26	Sommer, M. E., Hofmann, K. P. & Heck, M. Distinct loops in arrestin
372		differentially regulate ligand binding within the GPCR opsin. Nat Commun 3,
373		995, (2012).
374	27	Lally, C. C., Bauer, B., Selent, J. & Sommer, M. E. C-edge loops of arrestin
375		function as a membrane anchor. Nat Commun 8, 14258, (2017).
376	28	Pandy-Szekeres, G. et al. GPCRdb in 2018: adding GPCR structure models
377		and ligands. Nucleic Acids Res 46, D440-D446, (2018).
378	29	Kumari, P. et al. Functional competence of a partially engaged GPCR-beta-
379		arrestin complex. Nat Commun 7, 13416, (2016).
380	30	Sommer, M. E., Smith, W. C. & Farrens, D. L. Dynamics of arrestin-
381		rhodopsin interactions: acidic phospholipids enable binding of arrestin to
382		purified rhodopsin in detergent. J Biol Chem 281, 9407-9417, (2006).
383	31	Yen, H. Y. et al. PtdIns(4,5)P2 stabilizes active states of GPCRs and enhances
384		selectivity of G-protein coupling. Nature 559, 423-427, (2018).
385	32	Borroto-Escuela, D. O. & Fuxe, K. Oligomeric Receptor Complexes and Their
386		Allosteric Receptor-Receptor Interactions in the Plasma Membrane Represent
387		a New Biological Principle for Integration of Signals in the CNS. Front Mol
388		Neurosci 12, 230, (2019).
389	33	Garcia-Nafria, J., Lee, Y., Bai, X., Carpenter, B. & Tate, C. G. Cryo-EM
390		structure of the adenosine A2A receptor coupled to an engineered
391		heterotrimeric G protein. Elife 7, (2018).
392	34	Nivedha, A. K. et al. Identifying Functional Hotspot Residues for Biased
393		Ligand Design in G-Protein-Coupled Receptors. Mol Pharmacol 93, 288-296,
394		(2018).
395	35	DeVree, B. T. et al. Allosteric coupling from G protein to the agonist-binding
396		pocket in GPCRs. Nature 535, 182-186, (2016).
397	36	Oswald, C. et al. Intracellular allosteric antagonism of the CCR9 receptor.
398		Nature 540 , 462-465, (2016).

10th December 2019

399 37 Jazayeri, A. *et al.* Extra-helical binding site of a glucagon receptor antagonist.
400 Nature 533, 274-277, (2016).

- 401
- 402

403 404 Fig. 1 | Overall cryo-EM reconstruction of the β_1AR - β_arr1 complex. a, The density of the cryo-EM map (sharpened with a B factor of -80 $e/Å^2$) is coloured 405 406 according to polypeptides (β_1AR , blue; β_{arr1} , green) and overlaid on density of the nanodisc (grey). F_{ab}30 has been omitted from the structure for clarity (see Extended 407 408 Data Fig 2). **b**, The orthosteric binding pocket of β_1AR (pale blue) with formoterol 409 (sticks: vellow, carbon) and its density in the cryo-EM map (grey mesh). c, The finger 410 loop of Barr1 with side chains shown as sticks (light green, carbon) and its density in 411 the cryo-EM map (grey mesh). Helix 8 of β_1 AR has been removed for clarity. Maps were contoured at 0.02 (2 Å carve radius in panels **b** and **c**) and visualised in Chimera. 412 413 **d**, Crystal structure of the β_1 AR-Nb80 complex: β_1 AR, rainbow colouration; Nb80, 414 grey; formoterol, magenta spheres (carbon); water molecules, red spheres; purple 415 sphere, Na⁺ ion; detergent Hega-10, grey sticks (carbon). The inset shows an omit 416 map of formoterol in the β_1 AR-Nb80 complex contoured at 1 σ (blue mesh).

417

418 **Fig. 2** | **Structure of βarr1 in complex with β**₁**AR. a**, βarr1 (pale green) coupled to 419 $β_1$ AR (surface representation) was aligned with the structures of S-arrestin (pale 420 brown) coupled to rhodopsin (PDB 5W0P) and the structure of active βarr1 (mauve) 421 bound to the phosphopeptide V₂Rpp and F_{ab}30 (PDB 4JQI). The phosphopeptide 422 shown (carbon, magenta) is V₂R_{6P} linked to β₁AR. Full alignments of the 423 phosphopeptides are shown in Extended Data Fig. 6b. **b-e**, details of coupled arrestin 424 finger loops and G protein α5 helices after alignment of the following receptors (PDB

10th December 2019

425	code in parentheses) using GESAMT (ccp4 program suite): S-arrestin coupled to
426	rhodopsin (5W0P, pale brown); transducin (G_t) coupled to rhodopsin (6OYA, pale
427	pink); $\beta arr1$ coupled to $\beta_1 AR$ (pale green); Nb80 coupled to $\beta_1 AR$ (6IBL, grey); G _s
428	coupled to $\beta_2 AR$ (3SN6, blue).
429	
430	Fig. 3 Comparison of the receptor coupling interfaces in the complexes of
431	$\beta_1 AR - \beta_1 AR - \beta_2 AR - G_s$. a, snake plot of the intracellular region of turkey $\beta_1 AR$
432	with amino acid residues colour coded according to interactions: red, contact between
433	$\beta_1 AR$ and $\beta arr1;$ blue, contact between $\beta_2 AR$ and $G_s;$ purple, both of the previously
434	mentioned contacts. b , detail of the interface between the $\beta arr1$ finger loop (pale
435	green) and β_1AR (pale blue). $\boldsymbol{c},$ detail of the interface between the $\alpha 5$ helix of the G_s
436	α -subunit (blue) and $\beta_2 AR$ (green). In panels b and c , depicted are polar interactions
437	(red dashes), Van der Waals interactions (blue dashes; atoms \leq 3.9 Å apart) and
438	Arg ^{3.50} (sticks; carbon, grey). d-e , cross-sections through the intracellular halves of
439	$\beta_1 AR$ and $\beta_2 AR$ to highlight the different shapes of the intracellular cleft formed upon
440	coupling of β arr1 compared to G _s . Transmembrane helices are shown for orientation
441	and they are in front of the cross-section.

442

443 Fig. 4 | Differences between formoterol-bound $β_1AR$ coupled to either βarr1 or 444 Nb80. a-c, superposition of $β_1AR$ coupled to βarr1 (blue cartoon) and $β_1AR$ coupled 445 to Nb80 (grey cartoon) with residues interacting with the ligand shown as sticks. 446 Residues labelled in orange interact with formoterol but not isoprenaline. **d**, structures 447 of arrestin biased ligands (formoterol, carmoterol, carvedilol) and a balanced agonist 448 (isoprenaline). Regions in blue are identical to adrenaline and the red region in

10th December 2019

- 449 carvedilol is the oxypropylene linker typical of β -adrenoceptor antagonists of the G
- 450 protein pathway.

451

10th December 2019

453 Materials and Methods

Cloning, expression and purification of β_1 AR. The turkey (*Meleagris* 454 gallopavo) β_1 AR constructs used for crystallization (see Extended Data Fig. 10) of the 455 β_1 AR-Nb80 complex (trx- β_1 AR) was based on β 44-m23¹⁷. The construction of trx-456 β_1 AR has been described previously²¹. Relative to wild-type β_1 AR, trx- β_1 AR contains 457 truncations at the N- and C-termini (upstream of A33 and downstream of L367, 458 respectively), and in intracellular loop 3 (C244 to R271, inclusive). Thioredoxin (E. 459 coli trxA, with mutations C32S & C35S) was attached to the N-terminus via the linker 460 EAAAK. trx- β_1 AR also contains the four thermostabilising mutations (R68S^{1.59}. 461 $M90V^{2.53}$, F327A^{7.37} and F338M^{7.48}), as well as two additional mutations C116L^{3.27} 462 and C358A^{8.59}. A hexahistidine tag is fused to the C-terminus of trx- β_1 AR. 463

The turkey $\beta_1 AR$ construct used for electron cryo-microscopy of the $\beta_1 AR$ -464 β arr1-F_{ab}30 complex (β 83S) was also based on β 44-m23¹⁷. β 83S (see Extended Data 465 Fig. 10) shares the same truncations at the N-terminus and in intracellular loop 3 as 466 trx- β_1 AR. β_83S contains six thermostabilising mutations (M44C^{1.35}, M90V^{2.53}, 467 $V103C^{2.66}$, $D322K^{7.32}$, $F327A^{7.37}$ and $F338M^{7.48}$), as well as three additional mutations 468 C116L^{3.27}, E130W^{3.41} and C358A^{8.59}. The sequence downstream of C358A^{8.59} has 469 470 been replaced with a linker sequence mimicking the C-terminal tail of vasopressin receptor 2 (V₂R). The sequence contains a sortase recognition site (LPETG) followed 471 472 by a heptahistidine tag [ARGRPLPETGGGRRHHHHHHH]. The sortase site is 473 positioned in order to maintain the relative distance between H8 in V₂R and the conserved phosphoserine triad motif following sortase assembly (Extended Data Fig. 474 4). 684S is identical to 683S except for an N-terminal MBP domain fusion 475 constructed with a flexible linker. 476

10th December 2019

478	The generation of trx- β_1AR baculovirus and its expression and subsequent
479	purification was performed as described previously ²¹ . It was solubilized and purified
480	in decylmaltoside (DM, Generon) and eluted off the alprenolol sepharose ligand
481	affinity column as described previously 17,38,39 with 100 μM formoterol. The $\beta 83S$
482	construct was cloned into the baculovirus transfer vector pBacPAK8 (Clontech).
483	Baculovirus expressing $\beta 83S$ was prepared using the flashBAC ULTRA system
484	(Oxford Expression Technologies Ltd). β83S was expressed in Trichoplusia ni cells
485	(Expressions Systems). Cells were grown in suspension in ESF 921 medium
486	(Expressions Systems) to a density of 3 x 10^6 cells/ml. Cultures were supplemented
487	with 5% BSA prior to infection with β 83S baculovirus and incubated for 40 h.

488 β83S was solubilized in 2% dodecylmaltoside (DDM, Generon) from the membrane fraction and further purified in 0.02% DDM by Ni²⁺-affinity 489 490 chromatography and alprenolol sepharose ligand affinity chromatography. It was 491 eluted from the alprenolol sepharose column with 100 µM alprenolol. 683S was 492 further polished on a Superdex 200 Increase column to remove excess alprenolol. $\beta 83_{6P}$ was generated by sortase A-mediated covalent assembly⁴⁰ of purified $\beta 83S$ with 493 a synthetic phosphopeptide, V_2R_{6P} (GGGDE[pS]A[pT][pT]A[pS][pS][pS]LAKDTSS, 494 495 Tufts University Core Facility). The expression plasmid for sortase A(P94S, D160N, 496 D165A, K196T) was a gift from S. Eustermann and D. Neuhaus. 683S (1 mg/ml) was 497 incubated overnight on ice with 10-fold molar excess of V_2R_{6P} and His-tagged sortase A at 1:10 (mol/mol) enzyme:receptor ratio. The assembly mixture was pre-adjusted 498 499 with NaOH to pH 7.5 prior to the addition of receptor. Unreacted receptor and enzyme were removed by negative Ni^{2+} -affinity chromatography. $\beta 83_{6P}$ was further 500 501 polished on a Superdex 200 Increase column.

10th December 2019

503 **Expression and purification of nanobody Nb80.** A synthetic gene (Integrated DNA 504 Technologies) for Nb80⁶ was cloned into plasmid pET-26b(+) (Novagen) with a N-505 terminal His₆ tag followed by a thrombin protease cleavage site. Expression in *E. coli* 506 strain BL21(DE3)RIL (Agilent Technologies) and purification from the periplasmic 507 fraction was as described elsewhere²², but with removal of the His₆ tag was by a 508 thrombin (Sigma) protease cleavage step before concentration to 40 mg/ml.

509

Formation of formoterol-bound trx- β_1 AR-nanobody complex and purification with detergent exchange by size exclusion chromatography. Preparation of receptor-nanobody complex was performed as described previously²¹. Formoterolbound trx- β_1 AR (1.5 mg) was mixed with 1.5-fold molar excess nanobody (0.65 mg), cholesteryl hemisuccinate (Sigma) was added to 0.1 mg/ml in a final volume of 150 µL, and then incubated for 2 h at room temperature.

516 After incubation, size exclusion chromatography (SEC) was performed to 517 separate receptor-nanobody complex from excess nanobody and to exchange the 518 detergent from DM to HEGA-10 (Anatrace) for crystallization by vapour diffusion. A 519 Superdex 200 10/300 GL Increase column (GE Healthcare) was used at 4 °C, the 520 column was equilibrated with SEC buffer (10 mM Tris-Cl⁻ pH 7.4, 100 mM NaCl, 0.1 521 mM EDTA, 0.35% HEGA-10) supplemented with 10 µM formoterol. Samples 522 containing complex were mixed with 200 μ l SEC buffer and centrifuged (14,000 x g, 523 5 minutes) immediately prior to SEC (flow rate 0.2 ml/minute), with a run time of one 524 hour which was sufficient for a near-complete detergent exchange as indicated by quantitation of residual glycosidic detergent⁴¹. Peak fractions corresponding to 525 complex were concentrated to 15 mg/ml for crystallization by vapour diffusion using 526 527 Amicon Ultra-4 50 kDa centrifugal filter units (EMD-Millipore).

10th December 2019

528

529 Crystallization of receptor-nanobody complex, data collection, processing and refinement. Crystals were grown in 150 + 150 nl sitting drops by vapour diffusion at 530 18 °C against reservoir solutions containing 0.1 M HEPES-Na⁺ pH 7.5 and 21-24% 531 532 PEG1500. Crystals usually appeared within 2 h and grew to full size (up to 200 µm in length) within 48 h. Crystallization plates were equilibrated to 4 °C for at least 24 533 534 hours before cryo-cooling. Crystals were picked with LithoLoops (Molecular Dimensions Ltd) and dipped in 0.1 M HEPES-Na⁺ pH 7.5, 25% PEG1500, 5% 535 536 glycerol before plunging into liquid nitrogen.

537 Diffraction data for the trx- β_1 AR-Nb80 complex with formoterol bound were collected at ESRF. Grenoble using the autonomous beamline MASSIF-1⁴². X-ray 538 diffraction data were collected from a single point on the crystal using automatic 539 protocols for the location and optimal centring of crystals⁴³. The beam diameter was 540 541 selected automatically to match the crystal volume of highest homogeneous quality 542 and was therefore collimated to 30 µm, and strategy calculations accounted for flux and crystal volume in the parameter prediction for complete data sets⁴⁴. Diffraction 543 data were processed using MOSFLM⁴⁵ and AIMLESS⁴⁶, the structure was solved 544 using PHASER⁴⁷ with use of the crystal structures of the active state β_2AR stabilized 545 with nanobody Nb80⁶ and wild-type thioredoxin (PDB codes 3P0G, 2H6X) as search 546 models. Diffraction was anisotropic, as indicated by the estimated resolution limits 547 $(CC_{1/2}=0.3)$ in h,k,l directions (Extended Data Table 2). In order to retain statistically 548 549 significant diffraction data, but eliminating reflections in less well diffracting 550 directions, the data were truncated anisotropically using the UCLA Diffraction 551 Anisotropy Server (http://services.mbi.ucla.edu/anisoscale/). Model refinement and rebuilding were carried out with REFMAC5⁴⁸ and COOT⁴⁹. 552

10th December 2019

553

554 Cloning, expression and purification of human β-arrestin-1. Wild-type human 555 βarr1 was cloned into the pTrcHisB vector with a TEV protease-cleavable N-terminal 556 His₆ and FLAG tag. Two mutations were introduced by site-directed mutagenesis: 557 L68C, a finger loop-mutation commonly used in the functional labelling of arrestins²⁹. and R169E, which disrupts the polar core and predisposes arrestin to activation⁵⁰. 558 559 Arrestin was expressed in BL21 cells. Cells were grown in LB medium supplemented 560 with 100 µg/ml ampicillin at 25 °C. Expression was induced with 30 µM IPTG at a 561 cell density of OD_{600} 0.5. The temperature was lowered to 15 °C and the cells allowed 562 to grow for an additional 20 h. Cells were harvested and flash frozen in liquid nitrogen and stored at -80 °C. Arrestin was purified sequentially by Ni²⁺-affinity 563 chromatography, TEV protease-cleavage of its N-terminal affinity tags, and Heparin 564 565 chromatography, eluting off the Heparin column using 1 M NaCl. Purified arrestin 566 was further polished on a Superdex 200 prep grade column (GE Healthcare) 567 equilibrated in 20 mM Tris-Cl⁻ pH 8.0, 0.1 M NaCl, 10% glycerol, 0.5 mM DTT. 568 Peak fractions were pooled and concentrated to 20 mg/ml and flash frozen as aliquots in liquid nitrogen and stored at -80 °C. 569

570

571 Expression and purification of zebra fish apo-lipoprotein A-1. Zebra fish apo-572 lipoprotein A-1 (zap1) was expressed and purified as previously described⁵¹. Briefly, 573 a pET-28a vector harbouring zap1 with a HRV-3C protease-cleavage N-terminal His₆ 574 tag was transformed into *E. coli* BL21(DE3)RIL cells. Cells were grown at 37°C in 575 TB medium supplemented with kanamycin. Expression was induced at OD_{600} 1-1.5 576 with 1 mM IPTG. The temperature was lowered to 25°C and the culture was allowed 577 to grow for 3 h. Cells were lysed by sonication in the presence of 1% (v/v) Triton X-

10th December 2019

578 100. Cell lysate was clarified by centrifugation and passage through a 0.22µm filter 579 prior to loading onto a HisTrap-FF column. The pellet from the previous 580 centrifugation step was resuspended in buffer containing 6 M guanidine hydrochloride 581 (GnHCl), clarified by centrifugation, and loaded onto the HisTrap column. The 582 column was washed in successive buffers (base: 20 mM Tris-Cl⁻ pH 7.5, 0.3 M NaCl, 583 20 mM imidazole) containing first, 6 M GnHCl, then 0.2% Triton X-100, followed by 584 50 mM Na-cholate, before eluting in 20 mM Tris-Cl⁻ pH 7.5, 150 mM NaCl, 20 mM 585 Na-cholate, 0.3 M imidazole. Purified zap1 was treated with HRV-3C protease in the 586 presence of 0.5 mM TCEP to remove the His₆ tag prior to polishing on a Superdex 587 200 Increase column equilibrated in 20 mM Tris-Cl⁻ pH 7.5, 150 mM NaCl, 20 mM 588 Na-cholate.

589

590 **Expression and purification of F_{ab}30.** The coding region of F_{ab} 30 was synthesized 591 by GenScript based on previously published crystal structure (PDB 4JOI). For large-592 scale purification, F_{ab}30 was expressed in the periplasmic fraction of *E. coli* 55244 cells (ATCC) and purified using Protein L (GE Healthcare) gravity flow affinity 593 chromatography as published previously²⁹. Briefly, Cells harboring F_{ab}30 plasmid 594 595 were used to inoculate 2xYT and grown overnight at 30 °C. Fresh 2xYT was 596 inoculated with 5% initial inoculum and grown for an additional 8 h at 30°C. Cells 597 were harvested and resuspended in an equal volume of CRAP medium supplemented with ampicillin, and grown for 16 h at 30 °C. 598

For $F_{ab}30$ purification, cells were lysed in Fab-lysis buffer (50 mM HEPES-Na⁺ pH 8.0, 0.5 M NaCl, 0.5% (v/v) Triton X-100, 0.5 mM MgCl₂) by sonication. Crude cell lysate was heated in a 65°C water bath for 30 min and chilled immediately on ice for 5 min. Subsequently, lysate was clarified by centrifugation at 20,000 x g

10th December 2019

and passaged through pre-equilibrated Protein L resin packed gravity flow affinity column. After binding at room temperature, beads were washed extensively with wash buffer (50 mM HEPES-Na⁺ pH 8.0, 0.5 M NaCl). Protein was eluted with 100 mM acetic acid into tubes containing 10% vol. neutralization buffer (1 M HEPES pH 8.0). Following elution, sample was desalted into Fab-storage buffer (20 mM HEPES pH 8.0, 0.1 M NaCl) using a pre-packed PD-10 column (GE Healthcare). Purified F_{ab}30 was flash frozen stored in buffer supplemented with 10% glycerol.

610

Functional validation of purified $F_{ab}30$. Functionality of purified $F_{ab}30$ was 611 612 assessed using co-immunoprecipitation with their reactivity towards V₂Rpp-bound β arr1 as readout following a previously published protocol⁵². Briefly, F_{ab}30 (1.5 µg) 613 was incubated with purified βarr1 (2.5 µg) in the presence or absence of V₂Rpp (pre-614 615 incubated with 5-10 fold molar excess compared to Barr1) in 100-200ul reaction 616 volume. After 1h incubation at room temperature, pre-equilibrated Protein L beads 617 were added to the reaction mixture and incubated for an additional 1 h. Subsequently, 618 Protein L beads were washed 3-5 times using 20 mM HEPES-Na⁺ pH 7.4, 150 mM 619 NaCl, 0.01% MNG to remove any non-specific binding. Bound proteins were eluted 620 using 2×SDS loading buffer and separated by SDS-PAGE. Interaction of $F_{ab}30$ with activated ßarr1 was visualized using Coomassie-staining and Western blot. 621

622

623 Reconstitution of purified β_1 AR into nanodiscs and complex formation. 624 Reconstitution was performed by adapting established protocols⁵³. Stocks of 16:0-625 18:1 PC (POPC) and 16:0-18:1 PG (POPG, Avanti Polar Lipids) in chloroform were 626 dried down under a nitrogen stream and fully solubilised in 20 mM HEPES-Na⁺, 150 627 mM NaCl, 100 mM Na-cholate to make 50 mM lipid stocks. β83_{6P} (500 µg) was

10th December 2019

628 reconstituted into zap1-supported nanodiscs containing 7:3 (mol/mol) POPC:POPG. 629 Receptor, zap1 and lipids at a molar ratio of 1:10:1000 (net. 18 mM cholate) were mixed and incubated for an hour on ice. A three-fold excess of damp, pre-equilibrated 630 631 Bio-Beads SM-2 (Bio-Rad) was added in batch and the sample was mixed end-overend overnight at 4 °C. An absorption capacity of 80 mg cholate/g was used to 632 calculate the requisite amount of polystyrene beads⁵⁴. The reconstituted sample, 633 634 composed of a mixture of $\beta 83_{6P}$ -incorporated nanodiscs and zap1/lipid-only nanodiscs, was further polished on a Superdex 200 Increase column equilibrated in 20 635 636 mM HEPES-Na⁺, 150 mM NaCl, 5 µM formoterol.

637 The nanodisc mixture was supplemented with a further 10 µM formoterol and incubated with a 2-fold excess of $\beta arr1(L68C, R169E)$ for 1 h on ice. A 2-fold excess 638 of His-tagged F_{ab}30 was added and the mixture incubated for 1 h. Subsequently, the 639 640 mixture was left to incubate in batch with 1 mL Ni-NTA resin (QIAGEN) overnight at 4°C. A pull-down of $\beta 83_{6P}$ - $\beta arr1$ - $F_{ab}30$ complex in nanodisc was performed by 641 Ni^{2+} -chromatography exploiting His-tagged $F_{ab}30$ to remove tag-free zap1/lipid-only 642 643 nanodiscs. The nanodisc-embedded ternary complex was separated from excess F_{ab}30 644 on a Superdex 200 Increase column equilibrated in 10 mM HEPES-Na⁺ pH 7.5, 20 645 mM NaCl, 2 µM formoterol. SEC fractions were either used immediately for crvo-646 EM grid preparation or divided into aliquots and flash frozen and stored at -80°C. 647 Grids prepared with freshly isolated complex or samples that had been subjected to a freeze/thaw cycle were identical in apparent quality. 648

649

650 β_1 AR-β-arrestin1-F_{ab}30 cryo-grid preparation and data collection. Cryo-EM 651 grids were prepared by applying 3 μL sample (at a protein concentration of 1 mg/ml) 652 on glow-discharged holey gold grids (Quantifoil Au 1.2/1.3 300 mesh). Excess

10th December 2019

653 sample was removed by blotting with filter paper for 2-3 s before plunge-freezing in 654 liquid ethane (cooled to -181 °C) using a FEI Vitrobot Mark IV maintained at 100% relative humidity and 4 °C. Data collection was carried out on grids made from a 655 single preparation of β_1 AR- β_{arr1} - F_{ab} 30 complex. Images were collected on a FEI 656 657 Titan Krios microscope at 300 kV using a GIF Quantum K2 (Gatan) in counting 658 mode. Data were collected in 3 independent sessions-two on LMB-Krios2; one on 659 Diamond eBIC-Krios1-to give a total of 18,581 movies. When processing previous datasets, particles were assessed by cryoEF⁵⁵ to have an orientation distribution 660 661 efficiency, $E_{od} \sim 0.55$, indicating moderately severe preferential orientation of the particles in freestanding ice. In order to improve orientation distribution, micrographs 662 663 in this study were collected with a 30°-stage tilt. On LMB-Krios2, automated data acquisition was performed using serialEM⁵⁶. Grid squares were subdivided into 3x3 664 665 grid hole-matrices. Stage shift was used to align the central grid hole within the 666 acquisition template. Subsequently, image shift with active beam-tilt compensation 667 was used to record from the nine holes. Large changes in sample height due to stagetilt were compensated for by an equivalent degree of defocus adjustment, pre-668 669 determined and applied so as to normalise to the target defocus value. On eBIC-670 Krios1, data collection was performed using EPU (Thermo Fisher Scientific). Stage 671 shift was used to centre individual grid holes. In all sessions, two non-overlapping exposures, aligned along the tilt axis, were collected per grid hole. Micrographs were 672 collected with a total accumulated dose of ~45-50 e⁻/Å² Each micrograph was 673 collected as dose-fractionated movie frames (~1.0 $e^{-}/Å^{2}/frame$) at a dose rate of 4.5 e^{-} 674 /pix/sec (LMB) or 3.3 e⁻/pix/sec (eBIC) with an energy selection slit width of 20 eV. 675 676 The datasets were collected at a magnification of $105,000 \times (1.1 \text{ Å/pix, LMB})$ and 677 130,000× (1.047 Å/pix, eBIC).

10th December 2019

678

679 Data processing and model building. RELION-3.0.7 was used for all data processing unless otherwise specified⁵⁷. Drift, beam-induced motion and dose-680 weighting were corrected in Warp-1.0.6 using a spatial resolution of 5×5 and a 681 temporal resolution equal to the number of movie frames⁵⁸. CTF estimation and 682 683 determination of the focus gradient was performed in Warp using movie frame input, 684 with 5×5 spatial resolution and a temporal resolution of 1. Micrographs were curated 685 for quality based on ice contamination, CTF fitting quality, estimated resolution, and 686 astigmatism, resulting in a trimmed dataset of 18,101 micrographs. Auto-picking was 687 performed with a Gaussian blob as a template, which resulted in optimal particle 688 picking. The CTF parameters for the picked coordinates were interpolated from the 689 focus gradients modelled in Warp. Particles were extracted in a box-size equivalent to 690 264 Å and downscaled initially to 4.4 Å/pix. For each LMB-Krios2 session, 691 micrographs were further separated into two halves, generating a total of five groups 692 of particle stacks. Each group was processed independently. For each group, particles 693 were subjected to two rounds of 3D classification in 6 classes using an *ab initio* model 694 as reference. In the second round of 3D classification, particle distribution appeared to 695 be dictated in part by the size of the nanodisc component (Extended Data Fig. 3). 696 Aberrant classes of particles, such as C4 and C5 (Extended Data Fig. 3) were 697 excluded from subsequent rounds of processing, as they probably arose from distorted 698 nanodiscs (C4) or aggregation effects (C5) that arose during grid preparation. 699 Particles of varying nanodisc sizes were combined, re-extracted with downscaling to 700 1.69 Å/pix, and refined to achieve an overall consensus alignment. Clear density 701 could be observed for the transmembrane helices as well as two protrusions from the 702 lipid boundary corresponding to ECL2 and ICL3, demarcating the volumes

10th December 2019

703 corresponding to receptor and zap1/lipid. Particles were subjected to Bayesian 704 polishing before further refinement. Correcting for per-particle beam-induced motion 705 consistently improved resolution by two resolution shells (according to a gold-706 standard FSC of 0.143). Signal subtraction was performed to remove most of the non-707 receptor component of the nanodisc, facilitating refinement of the β_1 AR- β_{arr1} - F_{ab} 30 708 complex that included a thin annular layer of lipid. Subsequently, 3D classification 709 without alignment into 6 classes (regularisation parameter, T=20) identified a subset 710 of particles (~8%) that refined to high resolution and showed fine map details in the 711 receptor and arrestin regions. On trace-back, this subset of good particles constituted roughly an equal proportion of the class averages identified in the preceding round of 712 713 3D classification (*i.e.* class distributions based loosely on nanodisc morphology). At 714 this stage, the good particles from the five groups were combined, re-extracted with 715 downscaling of 1.1 Å/pix, and processed as a single dataset. The merged particle set 716 was split according to microscope session for independent Bayesian polishing before 717 re-merging for downstream processing. Following signal subtraction of the nanodisc 718 and refinement, the model reached a resolution of 3.43 Å. Subsequently, refined 719 particles were imported into and processed in RELION-3.1. On account of the image 720 shift collection strategy used in LMB-Krios2, the particles from those two sessions 721 were assigned to 1 of 18 optical groups-by sessions and based on position within their respective 3×3 matrices. Including the eBIC-Krios1 particles, this produced 19 722 723 optical group assignments, which were corrected independently for residual beam-tilt, 724 anisotropic magnification, per-micrograph astigmatism, and per-particle CTF 725 estimation. In the final refinement sequence, half maps were locally filtered between 726 refinement iterations using SIDESPLITTER (K. Ramlaul, C.M. Palmer & C.H.S. 727 Aylett, manuscript in preparation), an adaption of the LAFTER algorithm (Ramlaul et

10th December 2019

728 al. 2019) that maintains gold-standard separation between the two half maps. The 729 final model contained 403,991 particles and reached an overall resolution of 3.3 Å 730 with side chains visible for most of the complex (Extended Data Figs. 2 and 4). Local 731 resolution estimates were calculated with RELION-3.1 showing the β_1 AR- β_{arr1} and β arr1-F_{ab}30 interfaces at ~3.2 Å and rising gradually to ~3.7 Å at the level of the 732 β_1 AR orthosteric binding site; H1 and the extracellular regions of the receptor, the C-733 734 distal end of arrestin, and CL-CH1 domains of F_{ab}30 are at poorer resolution, with the 735 worst regions reaching ~4.5 Å at the most exposed edges. The final particle set was assessed to have an orientation distribution efficiency, $E_{od} \sim 0.72$. 736

Model building and refinement was carried out using the CCP-EM⁵⁹ and 737 PHENIX⁶⁰ software suites. The formoterol-bound trx- β_1 AR-Nb80 and β_{arr1} -F_{ab}30-738 739 V_2 Rpp crystal structures were used as starting models (PDB 6IBL and 4JQI). β_1 AR 740 was modelled from A42 to A358 with a gap from R243 to R279 (inclusive) on 741 account of weak density. The V_2R_{6P} portion of β_1AR has been modelled from E372 to 742 D384. The intervening linker region to A358 was too flexible to be resolved. Density for all phosphoresidues was well resolved. Barr1 was modelled from T6 to E359, with 743 744 a gap between R331 and S340 (inclusive), which constitutes a region encompassing the C-distal "344-loop" that potentially interacts with the lipid head group region. 745 Initial manual model building was performed in COOT⁴⁹ following a jelly-body 746 refinement in REFMAC5⁴⁸. Restraints for formoterol were generated using AM1 747 optimisation in $eLBOW^{61}$. In order to better maintain geometry in the regions of weak 748 749 density, secondary structure restraints, Ramachandran restraints and rotamer restraints 750 were applied during real space refinement in PHENIX. The model followed iterative 751 cycles of manual modification in COOT and restrained refinement in PHENIX. The final model achieved good geometry (Extended Data Table 1) with validation of the 752

10th December 2019

model performed in PHENIX, Molprobity⁶² and EMRinger⁶³. The goodness of fit of the model to the map was carried out using PHENIX using a global model-vs-map FSC (Extended Data Fig. 4). Over fitting in refinement was monitored⁶⁴ using FSC_{work}/FSC_{test} by refining a 'shaken' model against half map-1 and calculating a FSC of the resulting refined model against half map-2.

758

Expression and purification of mini-G_s. Mini-G_s (construct R393) was expressed in *E. coli* strain BL21(DE3)RIL and purified by Ni²⁺-affinity chromatography, removal of the His tag using TEV protease and negative purification on Ni²⁺-NTA for TEV and undigested mini-G_s removal; and final SEC to remove aggregated protein⁶⁵. Purified mini-G_s was concentrated to a final concentration of 100 mg/ml in 10 mM HEPES-Na⁺ pH 7.5, 100 mM NaCl, 10% v/v glycerol, 1 mM MgCl₂, 1 μ M GDP and 0.1 mM TCEP.

766

Radioligand binding studies on β_1 **AR in nanodiscs.** Purified β 84S was inserted into nanodiscs and ligated to the phosphorylated peptide as described for β 83S. Zap1 with lipid only (no receptor) was used to determine background binding. Nanodiscs containing either empty nanodiscs, β 84_{6P}, or β 84_{6P} in the presence of β arr1 were prepared in the absence of ligands and then diluted into assay buffer for radioligand saturation binding studies as previously described for insect cell membranes²¹.

773

774 **Competition binding assays.** Nanodiscs containing $\beta 84_{6P}$ were resuspended in 20 775 mM HEPES-Na⁺ pH 7.5, 50 mM NaCl, 2.5 mM MgCl₂, 0.1% BSA. Aliquots were 776 supplemented with mini-G_S construct R393 or $\beta arr1$ (final concentration 25 μ M), 777 either formoterol or isoprenaline (8 points, with the final concentration between 1 pM

10th December 2019

778	and 100 μM), and apyrase (final concentration 0.1 U/ml; only with mini-G_s) to give a
779	final volume of 120 μL or 220 $\mu l.$ Samples were incubated at 20 °C for 1 h, before
780	adding [³ H]-DHA (Perkin Elmer) with concentrations of competing ligand in the
781	range 1-2.5 x K_D . Non-specific binding was determined by measuring binding in the
782	presence of 100 μM unlabelled ligand. Samples were incubated at 20 °C for 1-5 h,
783	before filtering through 96-well Multiscreen HTS GF/B filter plates (Merck
784	Millipore) pre-soaked in 0.1% (w/v) polyethyleneimine, separating bound from
785	unbound [³ H]-DHA. Filters were washed three times with 200 μ l chilled assay buffer,
786	dried, and then punched into scintillation vials with 4 ml Ultima Gold scintillant
787	(Perkin Elmer). Radioligand binding was quantified by scintillation counting with a
788	Tri-Carb Liquid Scintillation Analyser (Perkin Elmer) and K _i values were determined

790

791 Methods references

- Warne, T., Chirnside, J. & Schertler, G. F. Expression and purification of
 truncated, non-glycosylated turkey beta-adrenergic receptors for
 crystallization. Biochim Biophys Acta 1610, 133-140, (2003).
- Warne, T., Serrano-Vega, M. J., Tate, C. G. & Schertler, G. F. Development
 and crystallization of a minimal thermostabilised G protein-coupled receptor.
 Protein Expr Purif 65, 204-213, (2009).
- Kobashigawa, Y., Kumeta, H., Ogura, K. & Inagaki, F. Attachment of an
 NMR-invisible solubility enhancement tag using a sortase-mediated protein
 ligation method. J Biomol NMR 43, 145-150, (2009).
- 41 Urbani, A. & Warne, T. A colorimetric determination for glycosidic and bile
 802 salt-based detergents: applications in membrane protein research. Anal
 803 Biochem 336, 117-124, (2005).
- 80442Bowler, M. W. *et al.* MASSIF-1: a beamline dedicated to the fully automatic805characterization and data collection from crystals of biological806macromolecules. J Synchrotron Radiat 22, 1540-1547, (2015).

10th December 2019

807	43	Svensson, O., Malbet-Monaco, S., Popov, A., Nurizzo, D. & Bowler, M. W.
808	J.	Fully automatic characterization and data collection from crystals of biological
809		macromolecules. Acta Crystallogr D Biol Crystallogr 71 , 1757-1767, (2015).
810	44	Svensson, O., Gilski, M., Nurizzo, D. & Bowler, M. W. Multi-position data
811		collection and dynamic beam sizing: recent improvements to the automatic
812		data-collection algorithms on MASSIF-1. Acta Crystallogr D Struct Biol 74,
813		433-440, (2018).
814	45	Leslie, A. G. The integration of macromolecular diffraction data. Acta
815	10	Crystallogr D Biol Crystallogr 62 , 48-57, (2006).
816	46	Evans, P. Scaling and assessment of data quality. Acta Crystallogr D Biol
817	40	Crystallogr 62 , 72-82, (2006).
818	47	McCoy, A. J. <i>et al.</i> Phaser crystallographic software. J Appl Crystallogr 40,
819	ч <i>1</i>	658-674, (2007).
820	48	Murshudov, G. N. <i>et al.</i> REFMAC5 for the refinement of macromolecular
821	70	crystal structures. Acta Crystallogr D Biol Crystallogr 67 , 355-367, (2011).
822	49	Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics.
823	77	Acta Crystallogr D Biol Crystallogr 60 , 2126-2132, (2004).
824	50	Gurevich, V. V. & Gurevich, E. V. The molecular acrobatics of arrestin
825	50	activation. Trends Pharmacol Sci 25 , 105-111, (2004).
826	51	Banerjee, S., Huber, T. & Sakmar, T. P. Rapid incorporation of functional
827	51	rhodopsin into nanoscale apolipoprotein bound bilayer (NABB) particles. J
828		Mol Biol 377 , 1067-1081, (2008).
829	52	Ghosh, E. <i>et al.</i> Conformational Sensors and Domain Swapping Reveal
830	52	Structural and Functional Differences between beta-Arrestin Isoforms. Cell
831		Rep 28, 3287-3299 e3286, (2019).
832	53	Ritchie, T. K. <i>et al.</i> Chapter 11 - Reconstitution of membrane proteins in
833	55	phospholipid bilayer nanodiscs. Methods Enzymol 464 , 211-231, (2009).
834	54	Rigaud, J. L., Levy, D., Mosser, G. & Lambert, O. Detergent removal by non-
835	54	polar polystyrene beads - Applications to membrane protein reconstitution and
836		two-dimensional crystallization. Eur Biophys J Biophy 27, 305-319, (1998).
837	55	Naydenova, K. & Russo, C. J. Measuring the effects of particle orientation to
838	55	improve the efficiency of electron cryomicroscopy. Nat Commun 8 , (2017).
839	56	Mastronarde, D. N. Automated electron microscope tomography using robust
839 840	50	
040		prediction of specimen movements. J Struct Biol 152, 36-51, (2005).

10th December 2019

870

841	57	Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure
842		determination in RELION-3. Elife 7, (2018).
843	58	Tegunov, D. & Cramer, P. Real-time cryo-electron microscopy data
844		preprocessing with Warp. Nat Methods, (2019).
845	59	Wood, C. et al. Collaborative Computational Project for Electron cryo-
846		Microscopy. Acta Crystallogr D 71, 123-126, (2015).
847	60	Adams, P. D. et al. PHENIX: a comprehensive Python-based system for
848		macromolecular structure solution. Acta Crystallogr D 66, 213-221, (2010).
849	61	Moriarty, N. W., Grosse-Kunstleve, R. W. & Adams, P. D. electronic Ligand
850		Builder and Optimization Workbench (eLBOW): a tool for ligand coordinate
851		and restraint generation. Acta Crystallogr D Biol Crystallogr 65, 1074-1080,
852		(2009).
853	62	Chen, V. B. et al. MolProbity: all-atom structure validation for
854		macromolecular crystallography. Acta Crystallogr D 66, 12-21, (2010).
855	63	Barad, B. A. et al. EMRinger: side chain directed model and map validation
856		for 3D cryo-electron microscopy. Nat Methods 12, 943-946, (2015).
857	64	Amunts, A. et al. Structure of the Yeast Mitochondrial Large Ribosomal
858		Subunit. Science 343 , 1485-1489, (2014).
859	65	Carpenter, B. & Tate, C. G. Expression, Purification and Crystallisation of the
860		Adenosine A2A Receptor Bound to an Engineered Mini G Protein. Bio-
861		Protocol 7, (2017).
862	66	Tan, Y. Z. et al. Addressing preferred specimen orientation in single-particle
863		cryo-EM through tilting. Nat Methods 14, 793-796, (2017).
864		
865 866		
0(7	F 4	ded Dete Fig. 1 The medulation of 0 AD security officiate her officiate
867	Exte	nded Data Fig. 1 The modulation of $\beta_1 AR$ agonist affinity by effector
868	prote	eins. a-b, Representative competition binding curves using either formoterol or
869	isopro	enaline, respectively, show the high-affinity state of β_1AR stabilised by either

performed in a molar excess of mini- G_s (green curve) or $\beta arr1$ (red curve) and

mini- G_s or $\beta arr1$. Experiments (see Methods) to determine the high affinity state were

872 compared to the low affinity state (blue curves). Experiments were performed 2-4

10th December 2019

873	times in duplicate and errors represent the SEM. The apparent K _i s were determined
874	using the Cheng-Prusoff equation and apparent K_ds for $^3H\text{-}DHA$ of 6 nM ($\beta84_{6P}$ and
875	$\beta 84_{6P} + \beta arr1$) and 1.5 nM ($\beta 84_{6P} + mini-G_s$). K _i values for formoterol are 1.5 ± 0.4
876	μ M (β 84 _{6P}), 42 ± 18 nM (β 84 _{6P} + β arr1) and 0.7 ± 0.1 nM (β 84 _{6P} + mini-G _s). K _i
877	values for isoprenaline are 340 ± 70 nM ($\beta 84_{6P}$), 4.4 ± 0.8 nM ($\beta 84_{6P} + \beta arr1$) and
878	$0.13 \pm 0.02 \text{ nM} (\beta 84_{6P} + \text{mini-}G_s).$

879

880 Extended Data Fig. 2 | Cryo-EM single particle reconstruction of the β_1 AR-881 β arr1-F_{ab}30 complex. a, Representative micrograph (magnification 105,000×, defocus $-1.9 \mu m$) of the $\beta_1 AR$ - β_{arr1} - $F_{ab}30$ complex collected using a Titan Krios 882 with the GIF Quantum K2 detector. **b**, Representative 2D class averages of the β_1 AR-883 884 $\beta arr1-F_{ab}30$ complex determined using ~1 million particles following 3D 885 classification. Copies of the final reconstruction are juxtaposed to indicate relative 886 orientations. c, FSC curve of the final reconstruction (black) showing an overall 887 resolution of 3.3 Å using the gold standard FSC of 0.143. Shown in colour are the directional 3D-FSC curves calculated from the two half-maps⁶⁶. d. Final 888 889 reconstruction coloured by polypeptides (contour level 0.023). e. Local resolution 890 estimation of the β_1 AR- β_{ab} 30 map as calculated by RELION.

891

Extended Data Fig. 3 | Flow chart of cryo-EM data processing. Micrographs were collected during three sessions on a Titan Krios (between 48 h and 96 h long) using a 30° stage tilt to reduce preferential particle orientation. Each dataset was corrected separately for drift, beam-induced motion and radiation damage. After focus gradient and CTF estimation, particles were picked using a Gaussian blob. At this stage, each of the LMB Krios2 datasets was split into 2 halves by micrographs, generating a total

10th December 2019

898 of five groups of particles. Each group was processed and curated independently. The 899 number of particles from group G1 is indicated on the flowchart as a guide. At the 900 bottom of the figure, the final number of particles is shown. Particles were submitted 901 to two rounds of 3D classification using an *ab initio* model as a reference. In each 902 round, classification was performed in six classes. The models with the best features 903 were merged and refined together before correcting for per-particle beam-induced 904 motion. Subtracted particles were generated by removing most of the non-receptor 905 nanodisc signal and refined. 3D classification without alignment was performed in 6 906 classes using a mask encompassing the entire complex. The models showing the best 907 features were refined either individually or in combination. The quality of the 908 particles was judged based on both resolution and map features and weighed against 909 the size of the particle set (the resolution of the models refers to the resolution after 910 refinement and calculation of gold-standard FSC of 0.143). The best particles from 911 each group were merged and re-extracted. Following merging, the combined particle 912 set was processed together except at the stage of per-particle beam-induced motion 913 correction, where particles were split into their session-stacks for Bayesian polishing. 914 Following penultimate refinement, particles were assigned to one of 19 optical groups 915 (see Methods) and corrected for beam-tilt, per-micrograph astigmatism, anisotropic 916 magnification and per-particle CTF estimation. A final model with 403,991 particles 917 was refined and achieved a global resolution of 3.3 Å.

918

919 Extended Data Fig. 4 | Cryo-EM map quality of the β_1AR - β_{arr1} - $F_{ab}30$ complex 920 and model validation. a, Transmembrane helices of β_1AR with density shown as a 921 mesh. b, Intracellular loop 2 of β_1AR . For clarity, the neighbouring β_{arr1} side chains

922 are depicted without density. **c**, Extracellular loop 3 of β_1AR and the adjacent helical

10th December 2019

923 turns of H6 and H7. All density maps in panels **a-c** were visualised using Chimera 924 (contour level 0.017) and encompass a radius of 2 Å around the region of interest. d. 925 FSC of the refined model versus the map (green curve) and FSC_{work}/FSC_{free} validation 926 curves (blue and red curves, respectively). e, Amino acid sequence of the $\beta_1 AR$ 927 construct used for the cryo-EM structure determination. The residues are numbered 928 according to the wild-type sequence of $\beta_1 AR$. Residues are coloured according to how they have been modelled. Black, good density allows the side chain to be modelled; 929 930 red, limited density for the side chain, therefore the side chain has been truncated to 931 CB; blue, no density observed and therefore the residue was not modelled. In some 932 cases, side chains were included where there was only weak density as it aided maintenance of main chain geometry during restrained refinement. Regions 933 934 highlighted in grey represent the transmembrane α -helices, amphipathic helix 8 is 935 highlighted in yellow, and phosphorylated residues are highlighted in green. The 936 dashes represent amino acid residues deleted.

937

Extended Data Fig. 5 | Cryo-EM map quality of $\beta_1AR-\beta_{ab}30$ in the 938 939 orthosteric binding site, arrestin-binding pocket and phosphorylated Cterminus. Unless otherwise stated, density maps (visualised in Chimera) are depicted 940 with contour level 0.017 and encompass a radius of 2 Å around the region of interest. 941 942 **a**, Formoterol and the neighbouring side chains in the orthosteric binding site. **b**, The 943 finger loop of β arr1. **c**, The β_1 AR side chains neighbouring the finger loop of β arr1. **d**, 944 The phosphorylated V_2R_{6P} C-terminus. Inset, interaction between the V_2R_{6P} phosphothreonine dvad and the ßarr1 lariat loop. Density in the inset is depicted with contour 945 946 level 0.01 (carve radius 2 Å).

10th December 2019

948	Extended Data Fig. 6 Comparison of the active states of arrestin. a,
949	superposition of arrestin molecules in the complexes of $\beta_1AR\text{-}\beta arr1$ (green) and
950	rhodopsin-arrestin (pale brown). The different angle between the respective receptors
951	and coupled arrestins is shown by the 20° difference in tilt of H3 (blue, H3 in
952	rhodopsin; red, H3 in β_1AR). b , superposition of the active state of $\beta arr1$ (pale brown;
953	PDB code 4JQI) not bound to receptor and $\beta arr1$ (green) coupled to β_1AR . The
954	phosphopeptides are shown as sticks: yellow carbon atoms, V ₂ Rpp in 4JQI; magenta
955	carbon atoms, V_2R_{6P} in the β_1AR - $\beta arr1$ complex. c , superposition of β_1AR and β_2AR
956	(pink and purple cartoons, respectively) coupled to either $\beta arr1$ (magenta surface) or
957	G _s (blue and purple surfaces), respectively.
958	
959	Extended Data Fig. 7 Comparison of the receptor-G protein and receptor-
960	arrestin binding interface. Residues in GPCRs that make contact (within 3.9 Å) of
961	arrestins or G proteins are highlighted. a , sequence of turkey $\beta_1 AR$ is depicted. b ,
962	sequence of human rhodopsin is depicted. Plots were made using GPCRdb.

963

964 Extended Data Fig. 8 | Comparison of the S-arrestin and βarr1 interfaces with

965 **GPCRs.** A snake plot (GPCRdb) of human β arr1 depicts the secondary structure 966 elements in the protein, with amino acid residues making contact with β_1 AR coloured 967 blue. Equivalent regions in murine S-arrestin that make contact to rhodopsin are 968 shown in red. Alignments of human arrestins show the variation of amino acid 969 sequences within these specific regions, with residues making contact to the 970 respective receptors highlighted.

10th December 2019

972 **Extended Data Fig. 9** | Lipid-interacting residues in β arr1. β_1 AR is depicted in surface representation and ßarr1 as a cartoon (green) with atoms predicted to be 973 974 within the head group region of the lipid bilaver shown as spheres: oxygen, red: 975 nitrogen, blue; carbon, green or cyan. Residues coloured cyan are predicted to be 976 entirely within the lipid head group region, whilst the carbons coloured green are the portions of these side chains that are potentially interacting with lipid head groups. **a**, 977 978 view of the lipid interacting surface viewed through the receptor; **b**, view parallel to 979 the membrane plane.

980

981 Extended Data Fig. 10 | Description of constructs used for structural studies and 982 the purification strategy. a, cartoon of the constructs used for X-ray crystallography 983 (trx- β_1AR), cryo-EM (β_{83S}) and pharmacology (β_{84S}) indicating the sites of 984 truncations and point mutations. b, Purification scheme for the preparation of 985 phosphorylated β_1AR coupled to β_1ar1 for structure determination by cryo-EM.

- 986
- 987

988 Extended Data Table 1. Cryo-EM data collection and refinement statistics.

989

990 Extended Data Table 2. X-ray data collection and refinement statistics.

Figure 1

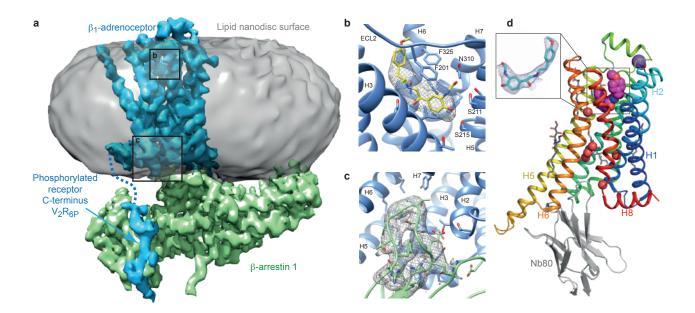
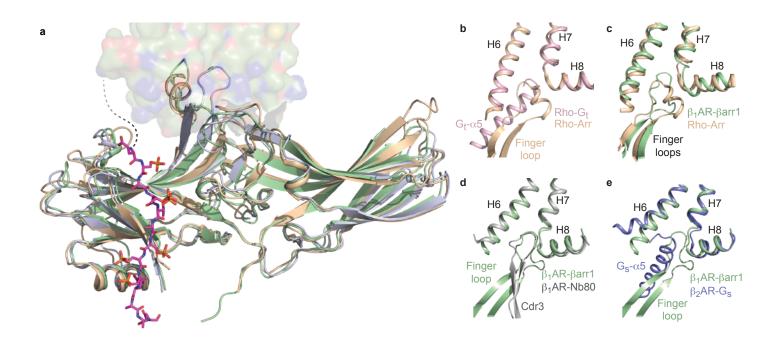
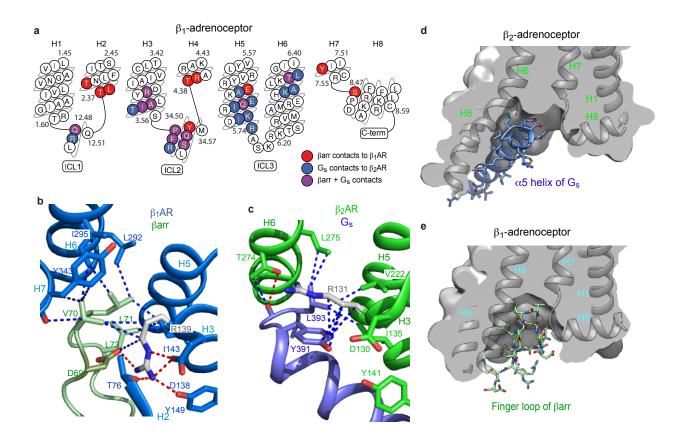
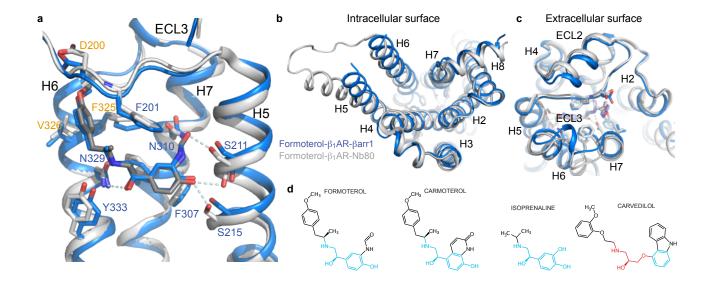
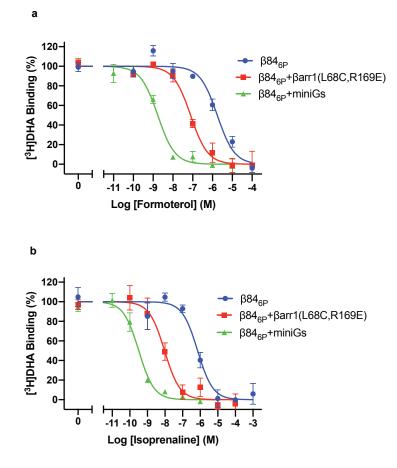
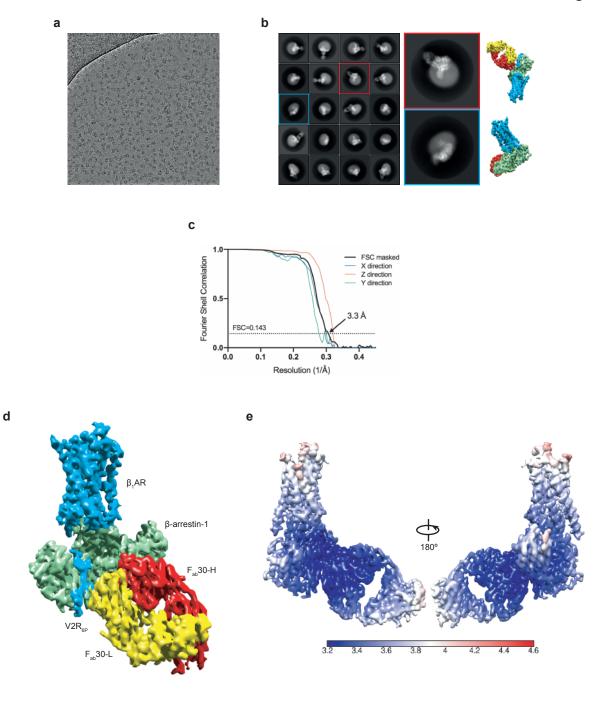
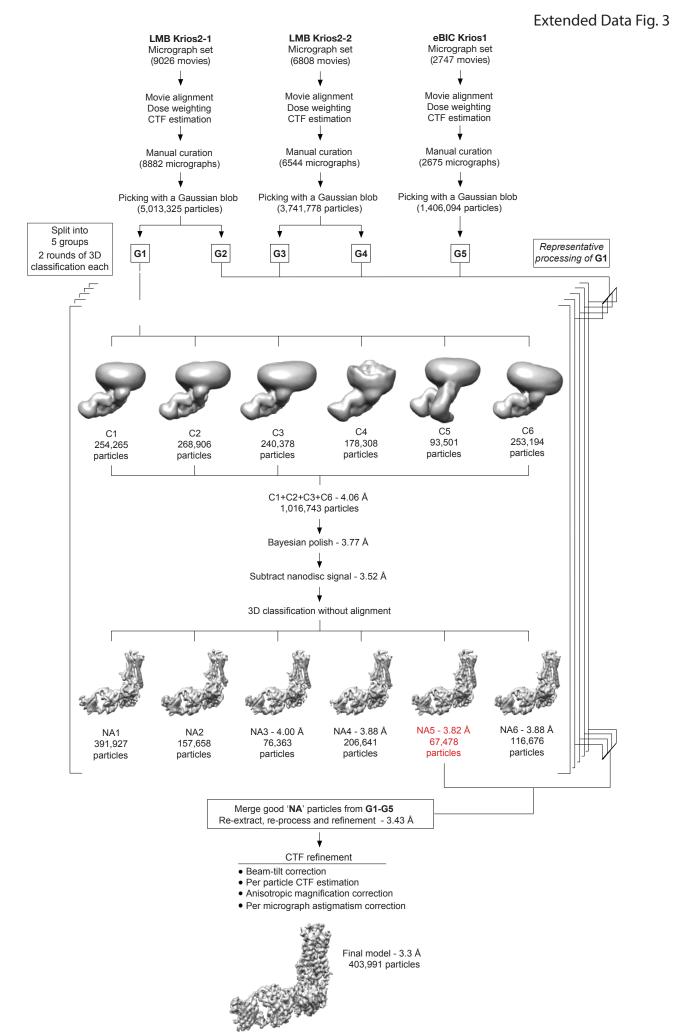
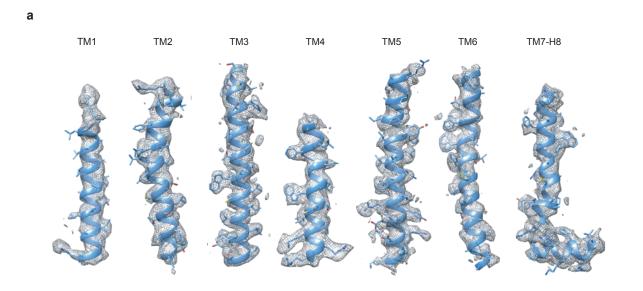



Figure 2

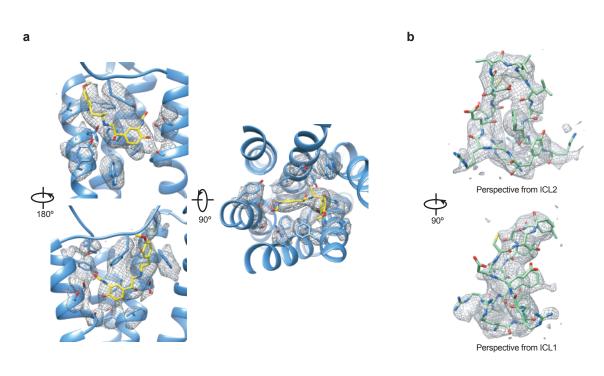






Figure 4

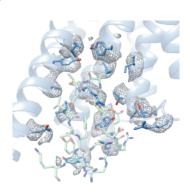

Extended Data Figure 1

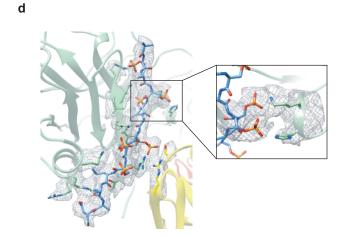
Extended Data Fig. 4

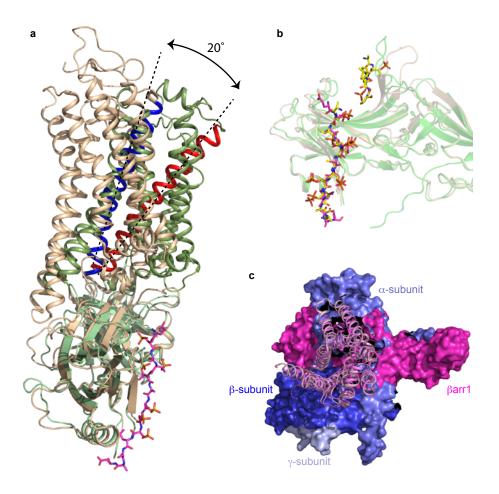
b С d 1.0 Model vs map Fourier Shell Correlation FSC_{work} FSCtest 0.5-FSC=0.5 3.66 Å 0.0 0.0 0.1 0.2 0.3 0.4 0.5 Resolution (1/Å)

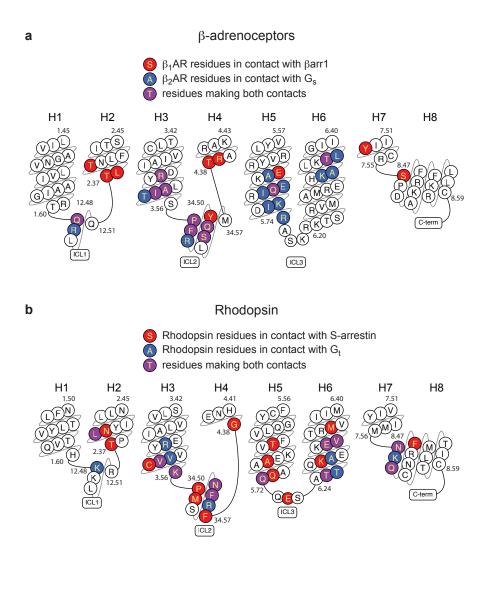

31	GAELLSQQWEAGCSLLMALVVLLIVAGNVLVIAAIGRTQRLQTLTNLFITSLACADLVV	90		
91	GLLVVPFGATLVCRGTWLWGSFLCELWTSLDVLCVTASIWTLCVIAIDRYLAITSPFRYQ	150		
151	SLMTRARAKVIICTVWAISALVSFLPIMMHWWRDEDPQALKCYQDPGCCDFVTNRAYAIA	210		
211	SSIISFYIPLLIMIFVYLRVYREAKEQIRKIDRASKRKTSR	270		
271	<mark>VMAMREHKALK</mark> TLGIIMGVFTLCWLPFFLVN <mark>IVNV</mark> FNRDLVP <mark>KWL</mark> FVAFNW	330		
331	lgyansamnpiiycrs <mark>pdfrkafkrlla</mark> argrplpetgggde <mark>s</mark> atta <mark>sss</mark> lakdtss			
Key:				

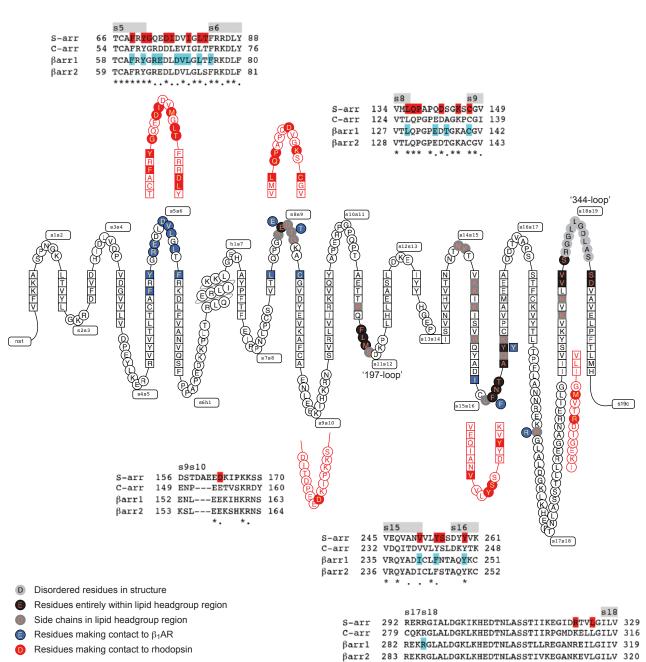
- No density, nothing modeled
- Weak density, side-chain left unmodeled
- Weak density, side-chain modeled to maintain main chain geometry
- Side chains modeled

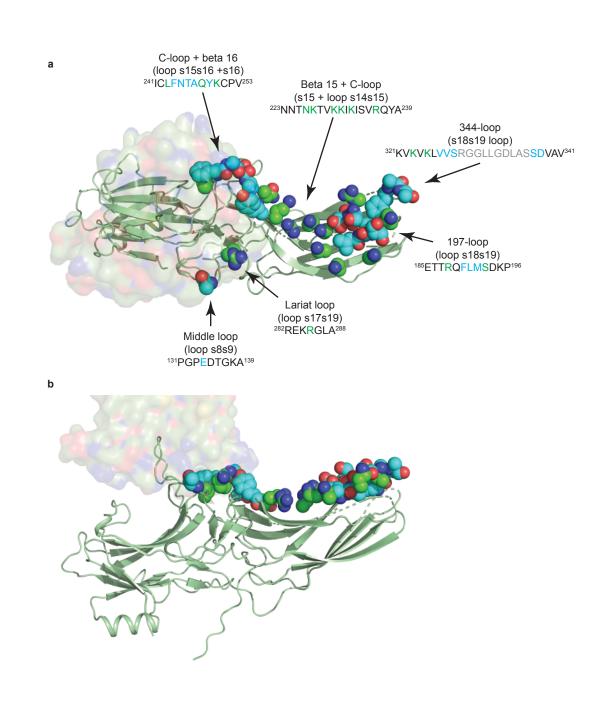

е

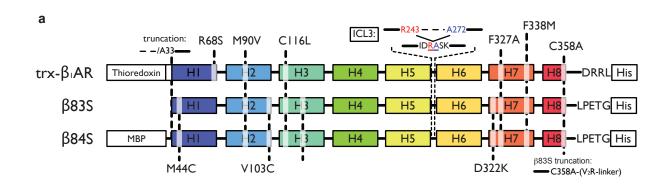

• Phospho-residues modeled

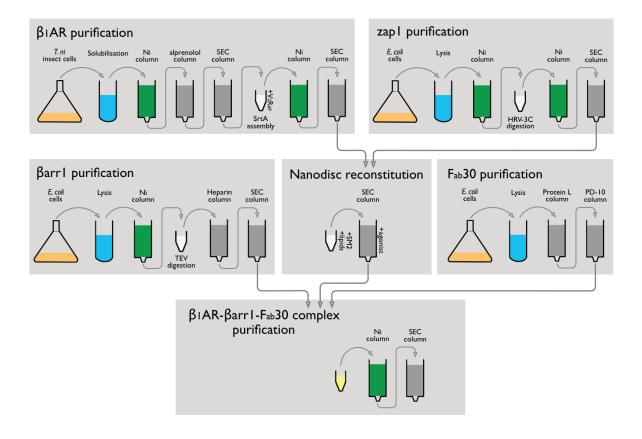

Extended Data Fig. 5




С






- 283 REKRGLALDGKLKHEDTNLASSTIVKEGANKEVLGILV 320 **.****.**********
 - . .***.*

Extended Data Fig. 10

b

Extended Data Table 1 | Data collection and refinement statistics

	formotero	l-bound $\beta_1 AR - \beta$ -arrest	in-1–Fab30	
	(EMDB-10515)			
		(PDB 6TKO)		
Session	LMB Krios2-1	LMB Krios2-2	DLS eBIC Krios	
Data collection and processing				
Magnification	105,000 <i>x</i>	105,000 <i>x</i>	130,000 <i>x</i>	
Voltage (kV)	300	300	300	
Electron exposure $(e^{-}/Å^2)$	51	49	45	
Defocus range (µm)	-1.2 to -3.0	-1.2 to -3.0	-1.2 to -3.0	
Pixel size (Å)	1.1	1.1	1.047	
Symmetry imposed	C1	C1	C1	
Initial particle images ^a (no.)	2,257,195	1,959,236	448,633	
Contribution to final particle images (no.)	175,204	183,140	45,647	
Final particle images (no.)	,	403,991	,	
Map resolution (Å)		3.3		
FSC threshold		0.143		
Map resolution range ^b (Å)		~3.2 to ~4.5		
Refinement				
Initial model used (PDB code)		6IBL, 4JQI		
Model resolution ^c (Å)		3.66		
FSC threshold		0.5		
Map sharpening <i>B</i> factor ($Å^2$)		-80		
Model composition				
Non-hydrogen atoms		8085		
Protein residues		1052		
Ligands		25		
<i>B</i> factors ($Å^2$)				
Protein		80.5		
Ligand		115		
R.m.s. deviations				
Bond lengths (Å)		0.001		
Bond angles (°)		0.411		
Validation				
Molprobity score		1.06		
Clashscore		2.75		
Poor rotamers (%)		0.23		
EMRinger score		2.06		
Ramachandran plot				
Favored (%)		99.02		
Allowed (%)		0.98		
Disallowed (%)		0		

^bLocal resolution range.

^cResolution at which FSC between map and model is 0.5.

	formoterol-bound trx-β ₁ AR–Nb80	
	(PDB 6IBL)	
Data statistics		
Number of crystals	1	
Space group	P 2 ₁ 2 ₁ 2 ₁	
Cell dimensions <i>a</i> , <i>b</i> , <i>c</i> (Å)	116.6, 121.1, 129.8	
Resolution range (Å)	44.28-2.7 (2.79-2.7) ^a	
Unique reflections	50611 (4416) ^a	
Completeness before truncation (%)	99.0 (95.3) ^a	
Multiplicity	$4.6 (4.7)^{a}$	
Mean I/oI	$6.6 (1.7)^{a}$	
R _{merge}	0.151 (0.936) ^a	
$CC_{1/2}=0.3$ h, k, l axes & overall (Å)	2.7, 3.62, 3.43, 2.92	
Refinement statistics		
Resolution (Å)	88.6-2.7 (2.78-2.7) ^a	
Completeness, truncated data (%)	62.71 (2.78)	
No. of reflections	30378	
R_{work}/R_{free} (%)	0.242/0.276 (0.323/0.348) ^a	
No. of atoms	8271	
Protein	7984	
Ligands & detergents	258	
Water	29	
B-factors ($Å^2$)		
Protein	70.2	
Ligand & detergents	57.9, 73.8	
Waters	38.5	
R.M.S.D.		
Bond lengths (Å)	0.008	
Bond angles (°)	1.17	
^a Outer resolution shell.		

Extended Data Table 2 | X-ray data collection and refinement statistics