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Summary  25 

Bifidobacterium is an important gut microbiota member during early life that is associated 26 

with improved gut health. However, the underlying health-driving mechanisms are not well 27 

understood, particularly how Bifidobacterium may modulate the intestinal barrier via 28 

programming of intestinal epithelial cells (IECs). In this study, we sought to investigate the 29 

global impact of model strain Bifidobacterium breve UCC2003 on the neonatal IEC 30 

transcriptome, including gene regulation and pathway modulation. Small IECs from two-31 

week-old neonatal mice administered B. breve UCC2003 for three consecutive days or PBS 32 

(control group) were subjected to global RNASeq, with various bioinformatic approaches 33 

used to determine differentially expressed genes, pathways and affected cell types between 34 

control and experimental groups. Whilst colonisation with B. breve had minimal impacts on 35 

the neonatal microbiota, we observed extensive regulation of the IEC transcriptome; ~4,000 36 

genes significantly up-regulated, including key genes associated with epithelial barrier 37 

function. Enrichment of cell differentiation and cell proliferation pathways were observed, 38 

along with an overrepresentation of stem cell marker genes, indicating an increase in the 39 

regenerative potential of the epithelial layer. Expression of distinct immune-associated 40 

pathway members (e.g. Toll-like Receptors) were also affected after neonatal B. breve 41 

colonisation. In conclusion, B. breve UCC2003 plays a central role in driving universal 42 

transcriptomic changes in neonatal IECs that enhances cell replication, differentiation and 43 

growth, predominantly in the stem cell compartment. This study enhances our overall 44 

understanding of the benefits of B. breve in driving intestinal epithelium homeostatic 45 

development during early life, with potential avenues to develop novel live biotherapeutic 46 

products.  47 

 48 

Key words: RNA-Seq, in vivo, Bifidobacterium breve, intestinal epithelial cells, gene 49 

expression, neonatal 50 

 51 

Introduction 52 

Bifidobacterium represents a keystone member of the early life gut microbiota [1-3]. Certain 53 

species and strains are found at high levels in vaginally delivered breast-fed infants including; 54 

Bifidobacterium longum subsp. infantis, B. longum subsp. longum, B. bifidum, B. 55 
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pseudocatenulatum and B. breve  [4-7]. As a dominant member of the neonatal gut 56 

microbiota, Bifidobacterium is associated with metabolism of breast milk, modulation of host 57 

immune responses, and protection against infectious diseases [8-11]. However, the 58 

mechanisms driving improved health outcomes during early life are largely underexplored.  59 

A key interface between Bifidobacterium and the host is the intestinal epithelial cell (IEC) 60 

barrier [12, 13]. Previous studies have indicated that certain strains of Bifidobacterium 61 

specifically modulate IEC responses during inflammatory insults, which may help protect 62 

from certain gut disorders [14-16]. In murine experimental models, previous work by our 63 

group has shown that infant-associated B. breve UCC2003 modulates cell death-related 64 

signalling molecules, which in turn reduces the number of apoptotic IECs [17]. This 65 

protection from pathological IEC shedding appeared to be via the B. breve exopolysaccharide 66 

(EPS) capsule and the host-immune adaptor protein MyD88. Another strain of B. breve, 67 

NumRes 204 (commercial strain) has also been shown to up-regulate the tight junction 68 

proteins Claudin 4 and Occludin in a mouse colitis model [18, 19].  69 

Many of the studies to date have focused on the role of Bifidobacterium and modulation of 70 

IECs in the context of acute or chronic gut inflammation, with expression profiling limited to 71 

specific immune or apoptosis signalling targets [14, 20-22]. As many of these studies have 72 

involved pre-colonisation of the gut with Bifidobacterium strains, followed by inflammatory 73 

insult, this suggests that initial priming during normal ‘healthy’ conditions may modulate 74 

subsequent protective responses. Furthermore, these studies have often been performed in 75 

adult mice rather than exploring effects during the early life developmental window, where 76 

Bifidobacterium effects are expected to be most pronounced. Previous work has indicated 77 

that there is significant modulation of the neonatal IEC transcriptome in response to gut 78 

microbiota colonisation, but to date no studies have probed how particular early life 79 

associated microbiota members, like Bifidobacterium may modulate neonatal IEC responses 80 

[23]. Thus, to understand if and how Bifidobacterium may modulate IEC homeostasis during 81 

the early life developmental window, we colonised neonatal mice with B. breve UCC2003 82 

and profiled transcriptional responses in isolated small intestine IECs using global RNA-Seq. 83 

Our analysis indicated whole-scale changes in the transcriptional programme of IECs (~4,000 84 

significantly up-regulated genes) that appear to be linked to cell differentiation/proliferation 85 

and immune development. Notably the stem cell compartment of IECs seemed to elicit the 86 

strongest gene signature. These data highlight the role of the early life microbiota member B. 87 

breve UCC2003 in driving early life epithelial cell differentiation and maturation; impacting 88 
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intestinal integrity and immune functions, which provides a mechanistic basis for 89 

understanding associated health-promoting effects.  90 

Results 91 

To examine the effects of B. breve UCC2003 on the transcriptional profiles of host IECs 92 

under homeostatic conditions, we extracted RNA from isolated IECs of healthy two-week old 93 

neonatal mice (control group) and mice gavaged with B. breve UCC2003 for three 94 

consecutive days (n=5 per group). Isolated RNAs from IECs were subjected to RNA-Seq to 95 

determine global mRNA expression (Fig. 1). Subsequently, Differential Gene Expression 96 

(DGE) analysis was performed to understand B. breve-associated gene regulation  97 

Colonisation of B. breve UCC2003 and impact on the wider neonatal microbiota 98 

Initially, we confirmed gut colonisation of B. breve UCC2003 and impact on the wider 99 

microbiota using culture and 16S rRNA microbiota profiling approaches (Fig. 2a-b). We 100 

observed high levels of B. breve UCC2003 across the four days in faecal samples, with 101 

higher levels of B. breve UCC2003 within the colon (~108 CFU/g), when compared to the 102 

small intestine (~105 CFU/g; Fig. 2b). Based on 16S rRNA analysis, relative abundance of 103 

Bifidobacterium increased significantly in the UCC2003 group (P=0.012) following bacterial 104 

administration, while the control group displayed very low relative Bifidobacterium 105 

abundance (~0.01%; Fig. 2c). Principal component analysis (PCA) on gut microbiota profiles 106 

(control vs UCC2003) showed a distinct change in microbial community composition in the 107 

UCC2003 group; primarily driven by Bifidobacterium, and to a lesser extent by Lactobacillus 108 

and Bacteroides (Fig. 2d). Supplementation of B. breve also significantly increased the 109 

overall microbial diversity in the UCC2003 group (Fig. 2e). Further Linear Discriminant 110 

Analysis (LDA) demonstrated that although Bifidobacterium was enriched in UCC2003 111 

group, colonisation had minimal impact on overall microbiota profiles, although very low 112 

relative abundance (<2%) microbiota members Streptococcus, Ruminococcus, Prevotella, 113 

Coprococcus were significantly reduced in the B. breve UCC2003 group (Fig. 2f-g). 114 

Impact of B. breve UCC2003 on the neonatal intestinal epithelial transcriptome  115 

To understand the distribution of samples based on IEC gene expression profiles we 116 

performed PCA analysis (Fig. 3a; Table S1). All samples clustered according to group 117 

(control vs UCC2003), suggesting a significant impact of B. breve UCC2003 on gene 118 

expression profiles, with distance-wise clustering (Jensen-Shannon) also supporting 119 

separation of experimental groups (Fig. 3b). To define Differentially Expressed Genes 120 
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(DEG), we employed a filter of absolute log2(fold change) > 1.0 (with adjusted P < 0.05), 121 

which equates to a minimum two-fold change in gene expression (Fig. 3c-e; Table S2). After 122 

analysis, a total of 3,996 DEGs were significantly up-regulated, while 465 genes were 123 

significantly down-regulated in B. breve UCC2003 supplemented animals when compared to 124 

controls (Fig. 3c and 4a). Notably, we also performed the same experimental protocol on 125 

healthy mice aged 10-12 weeks, and we did not observe any DEGs, suggesting B. breve 126 

UCC2003 modulation of IECs is strongest within the early life window under homeostatic 127 

conditions.  128 

To determine the functional role of the DEGs, we examined the most significantly regulated 129 

genes ranked by False Discovery Rate (FDR) adjusted p values (or, q values). We first looked 130 

at the top 20 up-regulated DEGs in the B. breve UCC2003 experimental group (Fig. 4b). 131 

Most genes annotated with known biological processes were cell differentiation and cell 132 

component organisation functions including Ccnb1ip1, Hist1h4b, Vps13b and Fgd4 133 

(annotated in the PANTHER Gene Ontology [GO] Slim resource). Two genes were involved 134 

in cell death and immune system processes, namely Naip6 and Gm20594 (Table S3). When 135 

we ranked the top-regulated genes using log2-fold change, we observed increased expression 136 

of Creb5, which is involved in the regulation of neuropeptide transcription (cAMP response 137 

element binding protein; CREB) (Fig. 4c). CREB is also known to regulate circadian rhythm, 138 

and we also identified additional circadian-clock-related genes that were significantly up-139 

regulated including Per2 and Per3. We noted that several top down-regulated DEGs were 140 

annotated as genes involved in metal binding, or metal-related genes including Mt1, Mt2, 141 

Hba-a1, Hbb-bt and Ftl1-ps1 (Fig. 4d; Table S4). These data suggest indicates B. breve 142 

stimulates specific genes involved in important physiological processes highlighting the 143 

importance of this microbiota member during the early life developmental window.     144 

B. breve UCC2003 modulation of intestinal epithelial barrier-associated genes 145 

As B. breve strains have been previously shown to modulate certain tight junction/barrier-146 

related proteins, we next investigated DEGs associated with intestinal epithelial barrier 147 

development/intestinal structural organisation (Fig. 4e). Several tight-junction (TJ) structural-148 

associated DEGs were observed, including Claudin-encoding gene Cldn34c1 (Log2 fold-149 

change [LFC] 3.14), Junction Adhesion Molecules-encoding genes Jam2 (LFC 2.9), and 150 

Tight Junction protein (also called Zonula Occludens protein; ZO) -encoding gene Tjp1 (LFC 151 

1.49). Other important TJ-associated protein-encoding genes including Ocln (encodes 152 

Occludin), and Tjp2 and Tjp3 and Cldn12 (which represent ZO encoding genes) appeared to 153 
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be transcriptionally up-regulated, although they did not pass the significant foldchange 154 

threshold. Genes that encode integrins (involved in regulation of intracellular cytoskeleton) 155 

also exhibited a trend of increased expression (13/14; 92.8%). Both Piezo genes, which assist 156 

in tight junction organisation, Piezo1 (LFC 1.25) and Piezo2 (LFC 1.9), were significantly 157 

up-regulated in the B. breve UCC2003 treated group.  158 

Over 90% of cadherins, proteins associated with the assembly of adherens junctions (Fig. 4e) 159 

were up-regulated; including Pcdhb14 (LFC 2.8), Pcdhgb4 (LFC 2.7), Pcdh8 (LFC 1.3), Fat1 160 

(LFC 1.5) and Dsg2 (LFC 1.1). Interestingly, several genes (4/7; 57.1%) involved in mucus 161 

layer generation were significantly up-regulated in the UCC2003 experimental group 162 

including Muc2 (LFC 2.2), Muc6 (LFC 3.7), Muc5b (LFC 2.9), and Muc4 (LFC 1.24). Genes 163 

Gja1 (LFC 3.59) and Gjb8 (LFC 2.63) that encode gap junction proteins were also up-164 

regulated. In addition, we also investigated differential expression of genes associated with 165 

integrin assembly and downstream integrin signalling pathways (Fig. 4f). Over 70% (16/21) 166 

of these genes were up-regulated, with 52.3% (11/21) significantly increased in gene 167 

expression in the UCC2003 group (LFC >1.0). 168 

We observed increased expression of genes associated with IEC barrier development 169 

including cadherins, gap junctions, integrins, mucus layer-associated genes, and several key 170 

tight junction proteins. These strongly induced gene expression profiles suggest that B. breve 171 

UCC2003 is involved in enhancing epithelial barrier development in neonates. 172 

B. breve UCC2003 modulates cell maturation processes 173 

We next sought to understand the biological functions of up-regulated DEGs by employing 174 

PANTHER GO-Slim functional assignment, and process/pathway enrichment analysis (Fig. 175 

S1; Table S5-S9). DEGs were predominantly involved in general biological processes 176 

including cellular process (901 genes) and metabolic process (597 genes; Table S5). At the 177 

molecular function level, DEGs were primarily assigned to binding (868 genes) and catalytic 178 

activity (671 genes; Table S6), with Olfactory Signalling Pathway and Cell Cycle (biological) 179 

pathways also found to be enriched (Table S7). 180 

To delve further into the data, we constructed a signaling network based on up-regulated 181 

DEGs (n=3,996) with the aim of identifying specific gene networks involved in important 182 

signalling pathways (Fig. 5a). Overall, 1,491 DEGs were successfully mapped (37.3%) to a 183 

signalling network that comprised 8,180 genes. Four individual clusters of genes were 184 

detected, with functional assignment and pathway analysis implemented on these clusters 185 
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(Fig. 5a). All gene clusters were associated with cell differentiation and maturation, with 186 

cluster 1 (68 genes) linked specifically with DNA replication and transcription, cluster 2 (26 187 

genes) with cell growth and immunity, cluster 3 (11 genes) with cell replication, and cluster 4 188 

(72 genes) related to cell cycle and cell division (Table S10). 189 

Intestinal cell type analysis on DEGs identifies significant enrichment of epithelial stem 190 

cells 191 

IECs include several absorptive and secretory cell types, namely enterocytes, Paneth cells, 192 

goblet cells, enteroendocrine cells, tuft cells and stem cells. As these cells perform different 193 

functions in the gut, it was important to understand whether B. breve UCC2003 had a cell 194 

type specific effect on the intestinal epithelium. Using known cell type specific gene markers 195 

[24], we identified cell type gene signatures modulated within the UCC2003 group (Fig. 5b-196 

c). Importantly, all cell type markers were well represented in the expressed genes of the 197 

whole IEC transcriptomics data from both groups (control + UCC2003), thus validating the 198 

presence of all IEC types in our study data (Fig. 5b). Cell type analysis of genes differentially 199 

expressed after B. breve UCC2003 supplementation, revealed that stem cell marker genes 200 

were significantly enriched (30%; P < 0.05) among the six IEC types (Table S11). Signatures 201 

of other cell types were also present (linking to marker genes in the DEG list) but not 202 

significantly overrepresented: Tuft cells (22%), enteroendocrine cells (18%), goblet cells 203 

(15%), Paneth cells (15%) and enterocytes (13%; Fig. 5c). These data indicated that intestinal 204 

epithelial stem cells, cells primarily involved in cell differentiation, were the primary cell 205 

type whose numbers and transcriptomic programme were regulated by B. breve UCC2003. 206 

Further investigation of this stem cell signature revealed that of the 37 differentially 207 

expressed marker genes, 35 are up-regulated in the presence of B. breve UCC2003. This 208 

indicates an increase in the quantity of stem cells or semi-differentiated cells in the 209 

epithelium, consistent with the overrepresentation of cell cycle and DNA replication 210 

associated genes observed in the whole differential expression dataset. Functional analysis of 211 

the 37 stem cell signature genes revealed only one overrepresented process – Regulation of 212 

Frizzled by ubiquitination (P < 0.05), which is a subprocess of WNT signalling. WNT 213 

signalling is important in maintaining the undifferentiated state of stem cells [25]. 214 

Finally, we employed a network approach to predict key transcription factor (TF) regulators 215 

of the differentially expressed stem cell marker genes, through which B. breve UCC2003 may 216 

be acting (Fig. 5d). Using the TF-target gene database, DoRothEA, we identified expressed 217 
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TFs known to regulate these genes [26, 27]. Five genes had no known and expressed 218 

regulator, thus were excluded. Hypergeometric significance testing was used to identify 219 

which of these TFs are the most influential (see Methods for details). This analysis identified 220 

32 TF regulators (Fig. 5d). Of these regulators, 12 were differentially expressed in the IEC 221 

dataset (all up-regulated): Fos, Gabpa, Rcor1, Arid2, Tead1, Mybl2, Mef2a, Ahr, Pgr, Kmt2a, 222 

Ncoa2 and Tcf12. Functional analysis of all the TF regulators and their targeted genes 223 

together, revealed overrepresented functions relating to WNT signalling, histone methylation 224 

for self-renewal and proliferation of hematopoietic stem cells and nuclear receptor (incl. 225 

estrogen) signalling (Table S12). These data provide evidence that B. breve UCC2003 226 

directly affects key transcriptomic programmes regulating drives specific signalling 227 

processes, particularly within stem cells.  228 

Discussion 229 

The early life developmental window represents a crucial time for microbe-host interactions 230 

that impacts health both in the short- and longer-term. Understanding how specific 231 

microbiota members modulate host responses during these life stages is crucial if we are to 232 

develop next-stage targeted microbiota therapies. Here we investigated how B. breve 233 

UCC2003 induces genome-wide transcriptomic changes in small intestine IECs of neonatal 234 

mice. We observed that B. breve had a global impact on the IEC transcriptome, evidenced by 235 

the large number of significantly up-regulated genes and pathways related to cell 236 

differentiation and cell proliferation, including genes associated with epithelial barrier 237 

function. We propose that B. breve is a key early life microbiota member driving fundamental 238 

cellular responses in IECs, particularly within the stem cell compartment, and thus drives 239 

epithelial barrier development and maintenance during neonatal life stages. 240 

B. breve UCC2003 is a model strain that was previously isolated from the stool of a breast-241 

fed infant [28, 29]. Although human-associated, numerous previous studies have shown this 242 

strain can efficiently colonise (long-term) the mouse gastrointestinal tract, which we also 243 

observed in this study [30, 31]. Importantly, although at lower levels (~105 CFU/g), we 244 

observed B. breve UCC2003 within the small intestine, linking to our subsequent 245 

observations of significant impacts on the IEC transcriptome from this intestinal region. 246 

Furthermore, our microbiota profiling suggests minimal impacts on the wider microbiota (at 247 

genus level) after supplementation, suggesting that B. breve UCC2003 is principally driving 248 
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specific transcriptomic outcomes. However, we cannot discount that B. breve is driving more 249 

nuanced microbiota changes, which may also be contributing to downstream IEC responses. 250 

B. breve is known to confer beneficial effect on gut health, however our knowledge related to 251 

the mechanisms underlying these responses are limited. Most studies have focused on 252 

targeted immune cells or pathways (during disease and/or inflammation), and to our 253 

knowledge no studies have probed global transcriptomic changes within IECs - the frontline 254 

physical barrier between bacteria and host [32, 33]. Our presented findings: ~4,000 up-255 

regulated DEGs and ~450 down-regulated DEGs within the B. breve group indicate that this 256 

Bifidobacterium strain modulates whole-scale changes within this critical single cell layer. 257 

Notably, we also examined how B. breve modulates adult IEC responses, however, we did 258 

not observe any significantly differentially regulated genes when compared to control 259 

animals. The striking differences in DEGs between these two life points indicates that B. 260 

breve-modulation of IECs is limited to the neonatal window. Dominance of Bifidobacterium 261 

in early life (including strains of B. breve) overlaps with the development and maturation of 262 

many host responses, including epithelial barrier integrity. Therefore, presence of these 263 

strains would be expected to play an over-sized role in this initial homeostatic priming, that 264 

may afford protection against inflammatory insults in later-life, as has been shown previously 265 

in a mouse model of pathological epithelial cell shedding [17]. 266 

Exploring the transcriptional responses in more detail revealed that expressions of key genes 267 

associated with formation of epithelial barrier components were up-regulated, including 268 

major cell junction protein encoding genes (75%; 42/56 genes). More specifically, several 269 

integrin-associated genes were up-regulated in the presence of UCC2003. Integrins facilitates 270 

cell-cell and cell-extracellular matrix ECM adhesion and binding, and assembly of the 271 

fibronectin matrix that is pivotal for cell migration and cell differentiation [34-36]. Integrins 272 

also play an important role in downstream intracellular signalling that controls cell 273 

differentiation, proliferation and cell survival, including the Raf-MEK-ERK signalling 274 

pathway (we also observed enrichment of genes involved in this pathway) [37, 38]. Another 275 

key intestinal barrier component is represented by tight junctions; linking complexes between 276 

intercellular spaces, and comprise transmembrane proteins including occludins, claudins, 277 

zona occludens and junctional adhesion molecules [13, 39]. Dysfunctional tight junctions 278 

may lead to a ‘leaky’ gut, which is characteristic of numerous intestinal disorders including 279 

inflammatory bowel diseases [40]. Notably, previous work has suggested early life 280 

microbiota disruptions (via antibiotic usage) and reductions in Bifidobacterium are correlated 281 
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with increased risk and/or symptoms of ulcerative colitis and Crohn’s disease [41-45]. A 282 

wide range of TJ-related genes were up-regulated after UCC2003 supplementation, 283 

particularly Tjp1 (that encodes ZO-1), Jam2 and Claudin34c1, with a previous study 284 

indicating other Bifidobacterium species (i.e. B. bifidum) also modulate TJ expression via 285 

ZO-1 [46]. These data indicated that specific strains of Bifidobacterium may modulate key 286 

barrier integrity systems during the neonatal period, and therefore absence of this key initial 287 

bacterial-host crosstalk may correlate with increased risk of chronic intestinal disorders in 288 

later-life [44]. Intestinal mucus, encoded by Muc genes (up-regulated due to B. breve 289 

UCC2003 in this study), plays a crucial role in colonic protection via formation of a physical 290 

barrier between the gut lumen and IECs, and deficiencies in MUC-2 has been linked with 291 

experimental colitis and increased inflammation in IBD patients [47, 48]. We have also 292 

observed that B. breve UCC2003 significantly increases goblet cell numbers and mucus 293 

production (in gnotobiotic and SPF mice; data not shown). Although the mucus layer may 294 

impact direct Bifidobacterium-IEC interactions, previous studies have indicated that B. breve 295 

UCC2003 surface molecules, such as EPS and the Tad pilus may modulate IEC function via 296 

signaling through TLRs [17, 49].  Moreover, bifidobacterial metabolites, such as short-chain 297 

fatty acids may also act to modulate the IEC transcriptome, with previous studies indicating 298 

enhanced expression of TJs and cadherins via acetate [9, 14, 50, 51].  299 

Further network and functional analysis indicated clusters of up-regulated DEGs were 300 

associated with cell maturation and cell differentiation (as confirmed by cell type specific 301 

analysis), suggesting neonatal B. breve exposure positively modulates IEC cell 302 

differentiation, growth and maturation. Somewhat surprisingly, we did not observe the same 303 

type of striking responses in immune pathways, which may be masked by the sheer number 304 

of DEGs involved in cellular differentiation and processes. However, pathways such as Toll-305 

like Receptor TLR1 or TLR2 pathways do appear to be enriched (cluster 2 of signalling 306 

network analysis). This may link to previous work indicating that the UCC2003 EPS directly 307 

signals via TLR2 to induce MyD88 signalling cascades to protect IECs during intestinal 308 

inflammation [17]. B. breve M-16V was also shown to interact with TLR2 to up-regulate 309 

ubiquitin-editing enzyme A20 expression that correlated with increased tolerance to a TLR4 310 

cascade in porcine IECs, further supporting the involvement of B. breve in programming key 311 

host immunoregulation receptors [52]. 312 

Cell type specific analysis of DEGs revealed stem cells as the IEC type most affected by B. 313 

breve, with absorptive enterocytes least affected despite being most accessible to bacteria in 314 
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the gut. This implies that B. breve or their secreted metabolites can reach the crypts of the 315 

small intestinal epithelium. This has been previously suggested by in situ hybridisation 316 

histology in vivo and by Bifidobacterium-conditioned media altering the expression of 317 

hundreds of host epithelial genes linked to immune response, cell adhesion, cell cycle and 318 

development in IECs in vitro  [17, 53]. All but two of the 37 differentially expressed stem 319 

cell marker genes were up-regulated in the presence of B. breve UCC2003, indicating an 320 

activating effect resulting in increased pluripotency of stem cells, increased quantity of stem 321 

cells and/or an increased quantity of semi-differentiated cells. Single cell sequencing of IECs 322 

could be used to further investigate this finding. Thirty-two TFs were predicted to regulate 323 

these stem cell signature genes, providing possible targets for future investigation of the 324 

mechanisms underlying these responses. Functional analysis of the stem cell signature genes 325 

and their regulators suggests B. breve increases pluripotency of stem cells and/or semi-326 

differentiated epithelial cells through WNT signalling and nuclear hormone signalling [54]. 327 

Furthermore, the overrepresentation of the process “RUNX1 regulates transcription of genes 328 

involved in differentiation of HSCs” indicates a possible role for histone methylation in 329 

response to B. breve UCC2003 [55]. Further determination of host metabolome and proteome 330 

after B. breve exposure may allow identification of the specific underlying molecular 331 

mechanisms [53].  332 

In conclusion, B. breve UCC2003 plays a central role in orchestrating global neonatal IEC 333 

gene responses in a distinct manner; modulating genes involved in epithelial barrier 334 

development, and driving universal transcriptomic alteration that facilitates cell replication, 335 

differentiation and growth, particularly within the stem cell compartment. This study 336 

enhances our overall understanding of the benefits of specific early life microbiota members 337 

in intestinal epithelium development, with potential avenues to explore for subsequent 338 

development of novel live biotherapeutic products. Further work exploring time-dependent 339 

transcriptional responses, impact of other Bifidobacterium species and strains (and use of 340 

mutant strains), in tandem with metabolomic and proteomic approaches are required to fully 341 

understand the key host pathways and bifidobacterial molecules governing development and 342 

maturation of the intestinal barrier during early life. 343 

 344 

 345 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.27.011692doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.27.011692


 

 12 

Methods 346 

Animals 347 

All animal experiments and related protocols were performed in accordance with the Animals 348 

(Scientific Procedures) Act 1986 (ASPA) under project licence (PPL: 80/2545) and personal 349 

licence (PIL: I68D4DCCF), approved by UK Home Office and University of East Anglia 350 

(UEA) FMH Research Ethics Committee. C57BL6/J neonatal female mice (n=10) were 351 

housed within UEA Disease Modelling Unit and fed autoclaved chow diet ad libitum. Mice 352 

were euthanised via ASPA Schedule 1 protocol (CO2 and cervical dislocation).  353 

Bacterial culturing, inoculum preparation and CFU enumeration 354 

B. breve UCC2003 (also known as NCIMB 8807) was streaked from frozen glycerol stocks 355 

onto autoclaved Reinforced Clostridial Agar (RCA) plates (Oxoid, UK) and incubated in an 356 

anaerobic chamber (miniMACS, Don Whitley Scientific) at 37°C for 48 h prior to picking 357 

single colonies for inoculation in prewarmed sterilised Reinforced Clostridial Medium 358 

(Oxoid, UK). 359 

For preparation of gavage inoculums, 5 ml of inoculated broth was incubated overnight 360 

followed by sub-culturing into 5 ml De Man, Rogosa and Sharpe (MRS) medium (Oxoid). 361 

After an additional overnight incubation, another sub-culturing into 40 ml RCM was 362 

performed. Inoculums were prepared from cultures by 3 rounds of centrifugation at 3220 g 363 

for 10 min followed by three PBS washes before dilution in 4 ml (adult mice) or 2 ml 364 

(neonatal mice) sterile PBS. Bacterial concentration of inoculum was enumerated by plating 365 

serial dilutions in sterile PBS on RCA plates and enumerating colonies following two-day 366 

incubation to calculate CFU/ml. 367 

Bacterial treatment and gut colonisation 368 

Neonatal mice were colonised with B. breve UCC2003 by oral gavage with bacterial 369 

inoculations of 108 CFU/ml in 50 μl every 24 h for 3 consecutive days.  Control mice 370 

received oral gavages of sterile PBS. B. breve UCC2003 colonisation was confirmed by 371 

collection of fresh faeces or intestinal content homogenised with 1 ml sterile PBS followed 372 

by serial-dilution plating in sterile PBS on RCA supplemented with 50 mg/L mupirocin and 373 

counting of colonies following 2-day incubation to calculate CFU/mg.  374 
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Gut microbiota profiling by 16S rRNA amplicon sequencing and analysis 375 

Genomic DNA extraction of mouse caecal samples on day 4 was performed with FastDNA 376 

Spin Kit for Soil following manufacturer’s instructions and extending the bead-beating step 377 

to 3 min as described previously [56]. Extracted DNA was quantified, normalised and 378 

sequenced on Illumina MiSeq platform using a read length of 2 × 300 bp, sequencing reads 379 

were analysed using OTU clustering methods (QIIME v1.9.1) to assign bacterial taxonomy 380 

and visualised as described previously [57, 58]. PCA was performed via R package ggfotify 381 

function autoplot and prcomp, while diversity index was computed via package vegan [59-382 

61]. LDA was performed via LEfSe on Galaxy platform using default parameters [62]. All 383 

related graphs were otherwise plotted using R package ggplot2 [63].  384 

Tissue collection and isolation of small intestinal epithelial cells (IECs) 385 

Upon tissue harvesting, 0.5 cm sections of small intestines were collected and incubated in 386 

200 μl RNAlater™ (Thermo Fisher Scientific) at 4˚C for 24 h. Samples were removed from 387 

RNAlater™ following incubation, blotted dry on filter paper and stored at -80˚C until further 388 

analysis. An adapted Weisser method was applied for isolation of IECs [17]. Sections (10cm) 389 

of small intestines were collected in ice-cold PBS, dissected into 0.5 cm2 pieces and placed 390 

in 200 ml Duran bottles. Faecal matter was washed off by inverting 10 times in 0.154M NaCl 391 

and 1mM DTT. Liquid was drained and mucus layer removed through incubation of samples 392 

in 1.5mM KCl, 96mM NaCl, 27 mM Tri-sodium citrate, 8mM NaH2PO4 and 5.6mM 393 

Na2HPO4 for 15 min at 220 rpm and 37 ˚C. IECs were separated from basal membrane by 394 

incubation in 1.5 mM EDTA and 0.5 mM DTT for 15 min at 200 rpm and 37 °C followed by 395 

shaking vigorously 20 times. IECs were collected from solution by centrifugation at 500 g for 396 

10 min at 4 ˚C. Supernatant was then discarded and cell pellet resuspended in 3 ml of ice-cold 397 

PBS. Cell concentrations of isolated IEC samples calculated by labelling dead cell with 398 

trypan blue at a 1:1 v/v ratio and enumeration of viable cells using a Neubauer 399 

haemocytometer on an inverted microscope (ID03, Zeiss). 400 

RNA extraction and sequencing 401 

RNA was extracted from IEC isolations by adding a volume containing 2 x 106 cells in PBS 402 

to QIAshredder spin columns (QIAGEN) followed by centrifugation at 9,300 g for 1 min. 403 

Follow-through was mixed with 600 μl RLT lysis buffer and used for subsequent RNA 404 

isolation. Homogenised sample in RLT buffer from both tissue and IEC isolations were 405 

processed by adding 700 μl of 70% ethanol and mixing by pipetting. Sample was then added 406 

into RNeasy spin column and spun at 8,000 g for 15 sec. Flow through was discarded and 407 
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process repeated until all of sample was filtered through column. Then 700 μl of buffer RW1 408 

was added to column and centrifuge at 8,000 g for 30 s. Again, flow through was discarded 409 

and filter placed in a new collection tube. To the filter, 500 μl RPE was added and spun at 410 

8,000 g for 30 s followed by discarding of flow through. An additional 500 μl RPE was 411 

pipetted into column and centrifuged at 8,000 g for 2 min. Spin column was then placed in a 412 

new collection tube and centrifuged at 8,000 g for 2 min. Columns were transferred to a RNA 413 

low-bind Eppendorf tube and 30 μl of RNase free water added to directly to the filter. After 414 

an incubation of 1 min at RT, sample was centrifuged at 8,000 g for 1 min and flow through 415 

containing RNA stored at -80˚C.  416 

Purified RNA was quantified, and quality controlled using RNA 6000 Nano kit on a 2100 417 

Bioanalyser (Agilent). Only samples with RIN values above 8 were sequenced. RNA 418 

sequencing was performed at the Wellcome Trust Sanger Institute (Hinxton, UK) on paired-419 

end 75 bp inserts on an Illumina HiSeq 2000 platform. Isolated RNA was processed by poly-420 

A selection and/or Ribo-depletion. All samples were sequenced using non-stranded, paired-421 

end protocol. 422 

Sequence pre-processing and Differential Gene Expression (DGE) analysis 423 

Sequencing quality of raw FASTQ reads were assessed by FastQC software (v0.11.8). 424 

FASTQ reads were subsequently quality-filtered using fastp v0.20.0 with options -q 10 425 

(phred quality <10 was discarded) followed by merging reads into single read file for each 426 

sample (merge-paired-reads.sh) and rRNA sequence filtering via SortMeRNA v2.1 based on 427 

SILVA rRNA database optimised for SortMeRNA software [64, 65]. Filtered reads were then 428 

unmerged (unmerge-paired-reads.sh) and ready for DGE analysis.  429 

Transcript mapping and quantification were performed using Kallisto v0.44.0 [66]. Briefly, 430 

Mus musculus (C57BL/6 mouse) cDNA sequences (GRCm38.release-98_k31) were retrieved 431 

from Ensembl database and built into an index database with Kallisto utility index at default 432 

parameter that was used for following transcript mapping and abundance quantification via 433 

Kallisto utility quant at 100 bootstrap replicates (-b 100) [67].  434 

Differential Gene Expression (DGE) analysis was performed using R library Sleuth (v0.30.0) 435 

[68]. Gene transcripts were mapped to individual genes using Ensembl BioMart database 436 

with Sleuth function sleuth_prep with option gene_mode = TRUE. Genes with an absolute 437 

log2(fold change) >1.0 and q value <0.05 (or, False Discovery Rate; FDR) were considered 438 

to be differentially expressed (or, significantly regulated) [69]. 439 
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Functional annotation and enrichment analysis 440 

Functional assignment and enrichment analysis was performed using PANTHER 441 

Classification System [70]. Briefly, for functional assignment analysis, a list of genes of 442 

interest in Ensembl IDs were supplied to the webserver to be mapped to the Mouse Genome 443 

Database (MGD) to generate functional classification on those genes of interest [71]. For 444 

functional enrichment analysis, a gene list was supplied together with a background gene list 445 

in Ensembl IDs to Panther web server, then selected ‘functional overrepresentation test’ and 446 

chose a particular function class in the drop-down menu. Recommended by the database 447 

developers, Fisher’s exact test and False Discovery Rate (FDR) correction were used to 448 

perform enrichment analysis [72]. FDR <0.05 was used as the default cut-off for significant 449 

enrichment. Graphs were plotted in R using ggplot2 library [61]. Functional annotation of top 450 

20 up/down-regulated genes was assigned manually via Ensembl and/or MGI (Mouse 451 

Genome Informatics) databases [71, 73]. 452 

Network, cluster and signalling pathway analysis 453 

A signalling network of all up-regulated DEGs and their first neighbours was built using all 454 

available biological signalling databases in the Cytoscape (v3.7.2) OmniPath app (v1, Mus 455 

musculus) [74, 75]. Modules of highly connected genes within the signalling network were 456 

identified using the MCODE plug-in within Cytoscape [76]. Settings below were applied to 457 

obtain clusters in the network: degree cutoff = 3, haircut = true, fluff = false, node score 458 

cutoff = 0.5, k-core = 3 and max depth = 100.  459 

The nodes of each individual module were tested for functional enrichment based on both 460 

Reactome and PANTHER annotations using PANTHER Classification System as described 461 

in previous sub-section [70, 77, 78].  462 

Enrichment of cell type specific marker genes 463 

Cell type signature gene sets for murine intestinal epithelial cells were obtained from Haber 464 

et al. [24]. Both droplet and plate-based results were used. Gene symbols were converted to 465 

Ensembl IDs using db2db [79]. Hypergeometric significance calculations were applied to test 466 

the presence of cell type specific signatures in the list of differentially expressed genes using 467 

all expressed genes as the statistical background (normalised counts > 1 in ≥ 1 sample). 468 

Bonferroni multiple correction was applied and any corrected p < 0.05 was deemed 469 

significant. Genes with normalised counts > 1 in ≥ 1 sample per condition (B. breve 470 
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UCC2003 treated or control) were used to identify cell type signature genes expressed per 471 

condition. 472 

Key regulator analysis 473 

All mouse transcription factor - target gene interactions with quality scores A-D were 474 

obtained from DoRothEA v2 via the OmniPath Cytoscape app [26, 74, 75]. A subnetwork 475 

was generated consisting of differentially expressed stem cell signature genes and all their 476 

upstream TFs which were expressed in the transcriptomics dataset (normalised counts > 1 in 477 

≥ 1 sample). These TFs were further filtered for their relevance in the network. Here all 478 

expressed genes and their upstream expressed TFs were extracted from the DoRothEA 479 

network. A hypergeometric significance test was carried out on any node with degree ≥ 5 to 480 

determine if the proportion of connected nodes which are differentially expressed is higher 481 

than in the whole network. Any TF with P value < 0.05 following Benjamini-Hochberg 482 

correction were deemed significant and used to filter the stem cell signature gene subnetwork. 483 

Network visualisation was carried out in Cytoscape [75]. Functional enrichment carried out 484 

against Reactome pathways as described in previous sub-sections.  485 

 486 

Ethics Approval 487 

All experiments were performed under the UK Regulation of Animals (Scientific Procedures) 488 

Act of 1986. The project licence (PPL 80/2545) under which these studies were carried out 489 

was approved by the UK Home Office and the UEA Ethical Review Committee. Mice were 490 

sacrificed by CO2 and cervical dislocation. 491 

Data and Code Availability  492 

All raw sequencing reads (both RNA-Seq and 16S rRNA amplicon sequencing) have been 493 

uploaded to European Nucleotide Archive (ENA) with accession number PRJEB36661. R 494 

scripts for Differential Gene Expression analysis are available on 495 

https://github.com/raymondkiu/R_scripts/blob/master/sleuth.R while all other R scripts in 496 

data visualization will be available upon request. 497 
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Figure and Scheme Legends 763 

Fig. 1. Schematic representation of study design, experimental validation and in silico 764 

analysis workflow. 765 

Fig. 2. 16S rRNA amplicon sequencing analysis of murine intestinal microbiota. (a) 16S 766 

rRNA gene profiling of mice gut microbiota at genus level on Day 4. (b) Dynamics of B. 767 

breve UCC2003 load (CFU/g) from Day 1 (prior to B. breve administration) through Day 4. 768 

B. breve was present in intestines throughout (small intestines and colon; on Day 4). (c) 769 

Relative abundance of genus Bifidobacterium in UCC2003 group is significantly increased. 770 

(d) Principal Component Analysis on mice gut microbiota. (e) Shannon diversity index on 771 
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mice gut microbiota. Data are represented as mean ± SD. Significance test: t-test (*P<0.05; 772 

two-sided). (f) Linear Discriminant Analysis (LDA) showing enriched taxa in each group. (g) 773 

Relative abundance comparison in all genus. * P<0.05 in LDA. 774 

 Fig. 3. RNA-Seq analysis and statistics (a) Principal component analysis showing distinct 775 

overall gene expression profiles across all individual samples based on 12,965 highly-776 

expressed genes; (b) Clustering of individual RNA-seq samples based on Jensen-Shannon 777 

distance; (c) Total number of differentially expressed genes (DEG) when comparing two 778 

conditions (UCC2003 vs Control), DEG with Log2FC>1.0 (up-regulation) or Log2FC <-1.0 779 

(down-regulation) are considered as significantly regulated genes; (d) Volcano plot and (e) 780 

MA plot on global gene expression (UCC2003 vs Control). Genes that passed the 781 

significance filter (FDR <0.05) are labelled as red dots. 782 

Fig. 4. Gene expression analysis (a) Clustered normalised gene expression profiles on 4,461 783 

significantly regulated genes (up- and down-regulated; FDR<0.05) in mice induced by B. 784 

breve UCC2003; (b) Top 20 significantly regulated genes ranked by FDR (q-value); (c) Top 785 

20 significantly up-regulated genes ranked by log2FC values; (d) Top 20 significantly down-786 

regulated genes ranked by log2FC values. Gene expression of (e) Epithelial integrity-787 

associated DEG (FDR<0.05), and (f) Integrin-associated DEG in UCC2003 group were 788 

shown in the bar charts with dotted line indicating the threshold of significance (absolute 789 

Log2FC>1.0). Data are represented as Mean ± SE. 790 

Fig. 5. Signalling network analysis, IEC subtyping and key regulator analysis (a) Cluster 791 

analysis of signalling network for significantly up-regulated genes (n=3,996). Representative 792 

enriched pathways (Reactome) and GO terms (Biological Process) identified in each 793 

individual cluster were listed alongside. (b) Heat plot showing percentage of cell type 794 

signature genes in DEG and expressed genes (both control and UCC2003 groups). All 795 

expressed genes are well represented in IEC cell type signature genes. (c) Cell type analysis 796 

on IEC DEGs using known cell-specific signature genes. Stem cells were statistically over-797 

represented in DEGs. * P<0.05. (d) Key regulators of stem cell DEGs. 798 
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Fig. 2. 16S rRNA amplicon sequencing analysis of rodent intestinal microbiota. (a) 16S rRNA gene profiling of 
mice gut microbiota at genus level on Day 4. (b) Dynamics of B. breve UCC2003 load (CFU/g) from Day 1 (prior to B. 
breve administration) through Day 4. B. breve was present in intestines throughout (small intestines and colon; on 
Day 4). ND: Non-detectable. Data are represented as mean ± SD. (c) Relative abundance of genus Bifidobacterium
in UCC2003 group is significantly increased. (d) Principal Component Analysis on mice gut microbiota. (e) Shannon 
diversity index on mice gut microbiota. Data are represented as mean ± SD. Significance test: t-test (*P<0.05; two-
sided). (f) Linear Discriminant Analysis (LDA) showing enriched taxa in each group. (g) Relative abundance 
comparison in all genus. * P<0.05 in LDA.
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Fig. 3. RNA-Seq analysis and statistics (a) Principal component analysis showing distinct overall gene expression profiles across 
all individual samples based on 12,965 highly-expressed genes; (b) Clustering of individual RNA-seq samples based on Jensen-
Shannon distance; (c) Total number of differentially expressed genes (DEG) when comparing two conditions (UCC2003 vs 
Control), DEG with Log2FC>1.0 (up-regulation) or Log2FC <-1.0 (down-regulation) are considered as significantly regulated 
genes; (d) Volcano plot and (e) MA plot on global gene expression (UCC2003 vs Control). Genes that passed the significance 
filter (FDR <0.05) are labelled as red dots.
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Fig. 4. Gene expression analysis (a) Clustered normalised gene expression profiles on 4,461 significantly regulated genes (up-
and down-regulated; FDR<0.05) in mice induced by B. breve UCC2003; (b) Top 20 significantly regulated genes ranked by FDR 
(q-value); (c) Top 20 significantly up-regulated genes ranked by log2FC values; (d) Top 20 significantly down-regulated genes 
ranked by log2FC values. Gene expression of (e) Epithelial integrity-associated DEG (FDR<0.05), and (f) Integrin-associated 
DEG in UCC2003 group were shown in the bar charts with dotted line indicating the threshold of significance (absolute 
Log2FC>1.0). Data are represented as Mean ± SE.
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Fig. 5. Signalling network analysis, IEC subtyping and key regulator analysis (a) Cluster analysis of signaling network 
for significantly up-regulated genes (n=3,996). Representative enriched pathways (Reactome) and GO terms 
(Biological Process) identified in each individual cluster were listed alongside. (b) Heat plot showing percentage of cell 
type signature genes in DEG and expressed genes (both control and UCC2003 groups). All expressed genes are well 
represented in IEC cell type signature genes. (c) Cell type analysis on IEC DEGs using known cell-specific signature 
genes. Stem cells were statistically over-represented in DEGs. * P<0.05. (d) Key regulators of stem cell DEGs.
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Fig. S1. Functional analysis on differentially expressed genes (a) Panther Slim GO-term major categories of significantly 
up-regulated genes (n=3,996). (b) Functional and pathway enrichment analysis on significantly up-regulated genes 
(Panther Slim GO-term). Only top 20 FDR-ranked enriched pathways (Reactome pathways) are shown. Statistical 
significance cut-offs: FDR<0.05. Statistical significance: Fisher’s Exact Test. Fold Enrichment was calculated against all 
expressed genes in IECs as the background (n=21,537).
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