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Many genetic studies collect structured multivariate traits containing rich information across10

traits. We present a flexible multivariate linear mixed model for quantitative trait loci map-11

ping (FlxQTL) for multiple correlated traits that adjusts for genetic relatedness and that12

models information on multiple environments or multiple timepoints using trait covariates.13

FlxQTL handles genetic mapping of multivariate traits faster with greater flexibility com-14

pared to previous implementations.15

Multivariate traits are increasingly common in genetic studies. A trait may be measured in16

multiple environments, at multiple timepoints (e.g. repeated measures), or under different treat-17

ments. Such a trait can be considered as a multivariate trait with spatial, temporal 1, 2 or more com-18
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plex structures. For instance, body weight might be measured weekly, plant crop yield or biomass19

could be measured in multiple geographic locations for years, (in multi-environment trials, MET),20

and gene expression may be measured in different brain regions of the same rat. In humans it is21

common to study genotype-phenotype associations in population-based samples for genome-wide22

association studies (GWAS); in model organisms complex breeding designs are often used. Linear23

mixed models (LMMs) 3–6 are employed for controlling confounding due to genetic relatedness24

among individuals and are used to identify genetic loci contributing to quantitative traits of inter-25

est (QTL) 7–13. Multivariate LMMs (MLMMs) further enhance statistical power over univariate26

LMMs 14 because they can accumulate signals across traits 8, 15 with a common genetic locus.27

While recognized as advantageous, fitting MLMMs is generally avoided because it is com-28

putationally challenging. Parameter estimation involves multidimensional optimization, there is29

a risk of reaching suboptimal solutions, and it is computationally expensive 9, 14. Existing algo-30

rithms (GCTA 16, 17, ASReml 18, WOMBAT 19, GEMMA 14) use the expectation-maximization31

(EM) method followed by second order schemes such as Newton-Rapson (NR), Average Informa-32

tion (AI), etc. to provide stable, fast convergence 5, 14. The computational complexity is O(n3m3)33

for EM and O(n3m7) for NR, AI (m traits, n individuals). This suggests that using GCTA, WOM-34

BAT, and ASReml is not practical for GWAS with a large number of SNPs and a moderate number35

of individuals 14. GCTA can fit only up to 2 traits; ASReml and WOMBAT offer some flexibility36

in choosing some covariance structures and including modeling fixed effects of covariates. All37

have limitations in the number of traits they can handle and are much slower than GEMMA. None38

of these methods offer the ability to model spatial or temporal structure in the trait using trait39
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covariates.40

Here, we introduce FlxQTL, which can test associations between genetic markers and mul-41

tiple correlated traits (Supplementary Software and https://github.com/senresearch/FlxQTL.jl ).42

Our method is a MLMM that models the mean using a bilinear model of individual and trait co-43

variates (Fig. 1). The error term is the sum of a genetic random effect and a pure error component.44

The pure error term is correlated across traits but is independent across individuals. The genetic45

variance component is assumed to be proportional to the Kronecker product of a genetic kinship46

matrix and a trait kernel. In the case of MET, that can be interpreted as a random effect term47

comprised of the sum of many small random GxE effects (Supplementary Note). We assume48

Y = XBZ ′ +R + E, (1)

where Yn×m is the response matrix for a trait measured in n individuals across m environments (or49

over m time points) or phenotypes of n individuals for m traits, Xn×p is a matrix of p genotype50

probabilities (or genotypes including the intercept) of a marker to be tested, and Zm×q is a matrix51

of q trait covariates such as environment contrasts in MET, spline basis functions for modeling52

smooth temporal traits. B is a coeffcient matrix to be estimated, R is the matrix of genetic random53

effects, and E is the residual error matrix. The likelihood ratio test (LRT) to test the association54

between a marker and a multivariate trait of interest is expressed as a LOD score (− log10(LRT )).55

Genomewide thresholds for significance may be obtained from the null distribution of maximum56

LOD scores using a permutation scheme (Online Methods).57

FlxQTL simplifies parameter estimation using its model structure (Fig. 1) and the choice of58
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numerical methods. The trait covariates reduce the fixed effects matrix dimension from p×m for59

existing MLMMs 8, 14, to p × q, which is substantial when m/q is large. The trait kernel reduces60

a m×m random effects covariance matrix to a scalar parameter. With an unstructured pure error61

matrix, only pq+1+m(m+1)
2

parameters are estimated, instead of pm+m(m+1) (q << m) for other62

MLMMs. FlxQTL has been tested with up to a 36-dimensional quantitative trait. Unlike NR and63

AI, a Speed restarting Nesterov’s accelerated gradient method requires no second derivative and64

provides stable linear convergence 20. We use an expectation-conditional maximization (ECM) 21
65

step, followed by the acceleration step using a tuned momentum coefficient, which behaves like66

the second derivative, to update parameters (Supplementary Note). These simplifications offer67

improved complexity compared to existing algorithms (Online Methods).68

FlxQTL offers flexibility in handling varied trait structures and can analyze complex crosses69

if genotype probability data is available. The user can choose contrasts between trait covariates70

to influence how structured traits are analyzed. For example, GxE interactions can be analyzed71

using a contrast between sites in the Z matrix. One can use B-spline, wavelet, or Fourier basis72

functions in the Z matrix to model an environmental gradient or a time trend. By judiciously73

choosing the Z (trait covariate design) matrix, the user can model high-dimensional structured74

traits in MET, multiple related traits, and time-valued traits for a variety of model organisms as75

well as humans. Unlike some programs designed only for human genetics (maximum of three76

genotype states possible at a locus), if genotype probabilities are available, they can be used for77

QTL analysis in FlxQTL. This opens up the possibility of using 4-way crosses and multi-parental78

crosses such as heterogeneous stocks and the Collaborative Cross.79
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We compared the performance of FlxQTL with that of GEMMA on the Mouse HS194080

data distributed with GEMMA. The trait kernel and trait covariate matrices were set to be identity81

matrices in FlxQTL since they are not supported by GEMMA. We measured computation times82

for analyzing 3 traits and then increased the number of traits and the number of SNPs analyzed83

for both algorithms (Data processing and analysis in Online Methods). The difference in P values84

between the algorithms was negligible (Fig. 2b and 2c). GEMMA was faster for a smaller number85

of traits (3 traits), whereas FlxQTL was 1.5-21 times faster than GEMMA when more traits were86

analyzed (6-12 traits) (Fig. 2a). These results show that FlxQTL offers fast implementation for87

high-dimensional traits.88

We evaluated the statistical performance of FlxQTL simulating 6-dimensional quantitative89

trait datasets using genotypes from Arabidopsis thaliana 22 studied in two sites for three years (On-90

line Methods). We carried out two simulation studies on the contributions of a climatic relatedness91

matrix as a trait kernel and trait covariates, respectively. A comparison of power with, and with-92

out the climatic relatedness was made when including the same trait contrasts (Supplementary93

Figs. 3-5). We next compared power with and without trait covariates, allowing main effect QTL94

and QTL×site interactions, keeping those climatic relatedness matrices the same (Supplementary95

Fig. 6). The thresholds for the type I error rate were calibrated by the distribution of maximum96

LOD scores under the null model of only multivariate gene and environment random effects. The97

power was measured under the alternative model of existing large effects of QTL based on the98

thresholds. The overall result of assessing the trait kernel showed that including climatic related-99

ness as a trait kernel yielded only subtle differences in power. The result from the added value of100
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trait covariates varying the strength of the genetic variance component demonstrated that in each101

case, the power was the highest when including trait covariates (Supplementary Fig. 6).102

We applied FlxQTL on the data of recombinant inbred lines from A. thaliana by crossing103

populations, where the trait was the mean number of fruits per seedling planted in two distinct re-104

gions, Sweden and Italy, from July, 2009 to June, 2012. Due to the lack of formal statistical frame-105

works for QTL analysis in such reciprocal transplant experiments, Ågren et al. 22 performed six106

separate univariate QTL scans and dissected the effects post hoc. FlxQTL can directly test for the107

presence of genetic drivers of adaptation in replicated reciprocal transplants (the data processing108

and analysis is detailed in Online Methods, Supplementary Tables 1 and 2 and Supplementary109

Figs. 11-15).110

FlxQTL was applied to a more complex dataset, a four-way outbred mapping population in111

outcrossing switchgrass (Panicum virgatum). The trait was flowering time measured across 10112

sites spanning a latitudinal gradient for 4 years (2016-2019). We considered it as a 36-dimensional113

multivariate trait since 4 site-year combination had missing data. These traits are highly correlated114

due to shared genetic and environmental contributions. We scanned for loci showing multivari-115

ate effects and picked the top three QTL. For those QTL, we performed an environment scan, for116

monthly averaged photoperiod in different sites and years. We found that the photoperiod influ-117

ences one locus (QTL@6.6012 on Chromosome 5N) much more compared to the two other QTL118

(Supplementary Fig. 16 and Data processing and analysis in Online Methods). This suggests one119

locus is more responsive to photoperiod and has implications for breeding.120
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As an example of a longitudinal trait, we analyzed body weight measured weekly from birth121

to 16 weeks in 1212 F2 intercrosses between Gough Island mice and WSB/EiJ 2. We used cubic122

splines with 4 degrees of freedom as the trait covariates. FlxQTL captured the weight trend and123

corresponding weight growth rate simultaneously and yielded the result similar to R/qtl 23. For two124

chromosomes, we performed two-dimensional genome scan for further investigation and found125

several more QTL. (Online Methods and Supplementary Figs. 17- 21).126

Our results demonstrate that the model and estimation algorithm are effective in analyz-127

ing higher dimensional structured traits with fast parameter estimation. On the simulation study,128

FlxQTL increases power making use of information from trait covariates. Our method appears to129

be insensitive to a choice of trait kernel matrices in our studies so far, and this may be worth further130

investigation.131

The underlying trait model assumes a joint multivariate normal distribution and is not ideal132

for traits such as count data with lots of zeros, which do not fit this scenario. Some traits may133

need transformation to better fit the multivariate normal assumption. Our method assumes that134

the multivariate trait has no missing data and that genotypes are either completely observed or135

imputed, or genotype probabilities are used. If phenotype data contain missing values, one can use136

imputation 24. With the growth of more complex and high-throughput phenotyping, we expect the137

use of our models to help shed light on the genetic control of structured multivariate traits.138
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Figure 1: FlxQTL model components and their dimensions. The trait matrix (Yn×m) has infor-

mation for n individuals (row) and m traits (column). In each dimension (by row and column),

we have two paired components corresponding to fixed and random term respectively. The two

components by row are a matrix of p genotypes of a marker (Xn×p) to be tested and a kinship

matrix (KG). The two components by column are a matrix of q trait covariates Zm×q, and a trait

kernel KC . Bp×q is a matrix of fixed effects to be estimated. The two kernel matrices, KG and

KC contribute to the variance component, and the two design matrices, X and Z, contribute to the

mean components.
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a b

c

Figure 2: Comparison of FlxQTL and GEMMA using Mouse HS1940 data (n=1940 individuals,

p=10783 SNPs) and simulated data. (a) Computation times in seconds on logarithmic scale (base

2) for parameter estimation as a function of the number of traits and SNPs. (b,c) Comparison of P

values from the two algorithms using a quantile-quantile plot (b) and a genome scan plot (c) for 3

traits. The horizontal line is a Bonferroni adjusted threshold at the significance level of α = 0.05.

Computing platforms: Linux Debian 4.19.37-5 (OS), Intel(R) Xeon(R) CPU E5-2630 2.4GHz

(CPU), FlxQTL (Julia v.1.5.3 with 32 cores), GEMMA (v.0.98.3 with maximum 32 threads)
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METHODS139

Methods and any associated references are available in the Online Methods.140

ONLINE METHODS141

Code availability. A Julia software implementation of FlxQTL is available at142

https://github.com/senresearch/FlxQTL.jl.143

FlxQTL model. Let Yn×m be a trait measured in n individuals across m environments (or over m144

time points), or phenotypes of n individuals form correlated traits. Xn×p is a matrix of p genotypes145

including the intercept (or genotype probabilities) of a marker to be tested and can also optionally146

include individual level covariates such as sex for animals or cytoplasm origin for plants. Zm×q is147

a matrix of q trait covariates such as (site) contrasts, (orthonormal) basis functions, etc. Our model148

for the trait is:149

Y = XBZ ′ +R + E. (2)

The two independent random effects follow matrix variate normal distributions:150

R ∼MVN(0, τ 2KC , KG), E ∼MVN(0,Σ, In). (3)

One can easily see that compared to standard multivariate regression, where Z = Im, q = m, our151

model reduces the size of B from p×m to p×q. This dimension reduction is consequential when152

q�m, as is often the case when working with higher dimensional trait data.153

In the first variance component, KG is a genetic relatedness (kinship) matrix between in-154
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dividuals computed by background genetic markers, and KC is a trait kernel generated by extra155

information associated with the traits; in MET, the trait kernel can be a relatedness matrix derived156

from high-dimensional environment (or site) information such as daily minimum, or maximum157

temperature, precipitation, etc. We show that for MET, the variance component, Rv, composed of158

many infinitesimal G×E effects, has variance proportional to KC ⊗KG (Supplementary Note).159

τ 2 is a scalar parameter for reducing the dimension of a covariance matrix, which is unknown in160

other studies, by assuming it is proportional to KC . If no information is available on the multiple161

traits, then KC = I is advisable.162

The second variance component assumes correlations among traits but independent and iden-163

tically distributed (iid) noise between individuals. The common error covariance matrix is Σ which164

assumes to be unstructured (no constraints). The two kernel matrices are precomputed from a pri-165

ori information, so that only τ 2 and Σ are estimated. The MLMM in FlxQTL is then modeled (in166

vectorized form) by a multivariate normal distribution whose covariance matrix is the sum of two167

Kronecker products for the two independent random effects:168

Y v ∼ N
(
(Z⊗X)Bv, τ 2KC⊗KG + Σ⊗In

)
, (4)

where the superscript v denotes the vectorization of a matrix. LOD scores (− log10(LRT )) are169

calculated by log-likelihood difference between the full model and null. We use permutations (at170

least 1000) to calculate empirical genomewide LOD thresholds as follows: 1. The traits are rotated171

by the eigenvectors of KG (and KC(6= I)). 2. The rotated traits are divided by the square root of172

their variance-covariance matrix to make them iid. 3. They are shuffled by row and transformed173

back by multiplying by the square root of the covariance matrix. 4. A genome scan is performed174
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on this shuffled trait, and the maximum LOD for each permutation is stored. Note that LOD scores175

using trait covariates (Z) are lower than those implemented by conventional MLMMs (i.e. Z = I),176

but the genomewide significance threshold is also correspondingly lower.177

Computational costs. The eigen decomposition of the kernel matrices is done only once; this has178

computational complexity O(n3 + m3) ≈ O(n3) (m << n), the same as existing MLMMs. A179

LOCO (Leave One Chromosome Out) scheme 7, 9, 25 has complexity O(dn3) ≈ O(n3) (d�n) for180

d chromosomes and does not change complexity appreciably. In practice, genome scans with the181

LOCO scheme take longer depending on the data (about 30 % longer) than that without LOCO. For182

t0�t, where t0, t are the maximal number of iterations of ECM and ECM embedded in the Speed183

restarting Nesterov’s scheme, respectively, the computational complexity of two step implementa-184

tion, which runs ECM for finding ‘good’ initial values followed by ECM embedded in the Speed185

restarting Nesterov’s scheme, isO((c1qn
2+(m3+c1m

2)n)(t0+t)) per marker for n individuals, c1186

covariates. The whole computational complexity including the eigen decomposition and rotation187

by corresponding eigen vectors is now O(n3 + (m + c1)n
2 + s(c1qn

2 + (m3 + c1m
2)n)(t0 + t))188

with s markers.189

Julia implementation. FlxQTL is implemented in Julia 26, a relatively new programming lan-190

guage, well-suited for developing and implementing algorithms for large datasets. Julia has a191

just-in-time (JIT) compiler, which allowed us to prototype algorithms with an ease comparable192

to scripted languages like R, and with a speed approaching compiled languages. Julia has native193

support for distributed and parallel computing, and users can take advantage of multiple cores or194

a high-performance computing (HPC) system to achieve a significant speedup. Genome scan with195
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millions of markers involving moderately high-dimensional traits is possible.196

Data processing and analysis. Mouse HS1940 data. SNPs were filtered out by minor allele197

frequency (MAF) less than 2% since we found GEMMA automatically processed the data with198

that criterion. For a fair comparison, we used a centered genetic relatedness matrix computed by199

GEMMA, but it needed some adjustment by adding very small value (0.00001∗I) to make sure the200

matrix should be positive definite. The trait data consisted of 3 traits with missing values and was201

imputed using R package, mice, with a ‘pmm’ option (predicted mean method). To compare the202

computation time between FlxQTL and GEMMA as a function of the number of traits and SNPs,203

we created new trait (triplets) by shuffling the trait data by individual preserving the correlation204

among three traits and added them to the existing traits. This produced 6, 9, and 12 simulated205

traits. We also generated 19 cumulative genotype datasets from the mouse data, that is, starting206

from a chromosome 1 SNP dataset (950 SNPs), building up a new dataset with 4-chromosome207

increments and reaching the whole SNP dataset (10783 SNPs). The median time for the genome208

scan without LOCO was obtained from 64 runs on each simulated trait data.209

Gough Island mouse data. This is a F2 intercross between Gough Island mice and WSB/EiJ. We210

computed genotype probabilities, excluding sex chromosomes, from R/qtl adding pseudo markers211

in every 1cM between two markers. Traits were imputed using R-mice package with the ‘pmm’212

option and then were standardized by overall mean and standard deviation. We employed a 4213

degrees-of-freedom cubic spline from R-splines package to produce trait covariates (Z) to capture214

the trend of weekly body weights and corresponding weight growth rate simultaneously. Here,215

we set the trait kernel to be an identity matrix. A genetic relatedness matrix was computed from216
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genotype probabilities using a linear kernel. The thresholds at α = 0.1, 0.05 were estimated from217

1000 permutations. The results from the one-dimensional multivariate genome scan by FlxQTL218

was largely consistent with that 2 from R/qtl using univariate linear regression, except for Chromo-219

some 6 and 7 perhaps due to polygenic effects. Since one QTL in Chromosome 7 was known to be220

crucial, we implemented a two-dimensional genome scan for Chromosome 7, as well as 8 and 10221

for comparison. FlxQTL detected several more QTL than R/qtl without requiring further analysis222

such as multiple-QTL analysis.223

Arabidopsis thaliana data. We employed R/qtl to add pseudo markers in every 1cM between two224

markers and dropped one of two consecutive markers when they are identical. The trait data were225

imputed using the ‘pmm’ option in R-mice package and were standardized by column. A total of226

699 markers across 5 chromosomes were genotyped for 400 recombinant inbred lines, and a fit-227

ness trait was measured at two sites (Italy and Sweden) for three years (6-dimensional multivariate228

trait). The trait covariate matrix (Z) set to be a matrix with an intercept column, and a contrast229

between sites (1’s for Sweden and -1’s for Italy). We computed both a genetic and a climatic re-230

latedness matrix using Manhattan distance. The climatic relatedness matrix was computed using231

daily range soil or air temperature, precipitation, etc. However, the difference between with and232

without climatic relatedness matrix appears to be small in our simulation studies (Supplementary233

Fig. 7). We performed 1-, 2-dimensional QTL analyses with the LOCO option followed by mul-234

tiple QTL analysis, i.e. a stepwise model selection approach by forward selection and backward235

elimination adding or dropping one or two QTL for each scan, respectively. The 95% cutoff was236

estimated by permutation test and was used for a penalty term in the stepwise model selection237
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since the false positive rate is maintained at the rate of α in the case of no QTL and with the search238

restricted to models with no more than one QTL 27. Our result revealed one more significant QTL239

in three chromosomes each but one less in two chromosomes each, by and large, agreeing with240

the existing result, with improved interpretation and without requiring secondary analysis of QTL241

across chromosomes 22.242

Switchgrass (Panicum virgatum) data. Genotype probabilities were computed in every 1cM be-243

tween two markers via R/qtl. Traits and climate information data had no missing values, so that244

the whole dataset comprises 6118 genetic markers by 750 individuals for 36 quantitative traits of245

flowering time as a combination of 10 latitudinal sites and 4 years from 2016 to 2019, as well as a246

matrix of 12 by 36-monthly photoperiod. Three significant QTL (two in Chromosome 5N and one247

in Chromosome 4K) were selected by 1D-genome scan with the LOCO option. For each QTL, an248

environment scan was performed by regressing each monthly photoperiod factor under the alter-249

native of existing an environmental factor that affects a QTL after the null scan. For computational250

efficiency, traits and monthly photoperiod data were centered by column means and scaled by251

overall standard deviations of the centered data.252

Simulation study. We simulated data with the same overall structure and features of the Ara-253

bidopsis dataset 22. A 6-dimensional multivariate trait was simulated with random GxE effects254

based on genotype data and daily soil minimum and maximum temperature data from those sites255

and years. Soil daily range temperatures (the difference between maximum and minimum temper-256

atures) were rearranged into a 3 year by 2 location combination, i.e. 365 days by 6 environments,257

and were standardized by overall mean and standard deviation. To generate null trait datasets, we258
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selected at random about 3.5% of the genetic markers (about 25 markers of total 699 markers) and259

8.2% of 365 soil daily range temperatures (about 30 days) and gave their interaction effect sizes260

drawn from a normal distribution with zero mean and variance τ 2 that varies from small to large261

(Supplementary Note). An iid noise indicating random error was added to the null trait data; the262

covariance matrix of the error term was varied. Both random and error terms were respectively263

standardized. To generate a fixed effect QTL to the null data, we sampled one genetic marker264

not selected among the random effects above and multiplied it by fixed effect sizes varying from265

small to large and the orthonormal site contrast matrix (Z). For simplicity, we only considered one266

fixed effect QTL. We carried out 1000 simulations under the null to attain a threshold at α = 0.05267

from the distribution of maximum LOD scores and measured power under the alternative for each268

instance given the trait kernel. The first simulation study to assess power for the effect of climatic269

relatedness varied with values of τ 2 for each fixed effect size matrix (B), which in total resulted270

in 100,000 experiments. We then narrowed down to the feasible range of fixed effect sizes by271

excluding the effect sizes producing zeros and ones of power. Within that range, simulations were272

performed to establish a comparison between inclusion and exclusion of the climatic relatedness273

matrix (KC) changing τ 2. Since corresponding results showed slight distinctions in power, we274

tackled unusual scenarios in genome scan, where KC’s are an autocorrelated matrix, an extreme275

case of positive definite matrix, etc. The results revealed analogous power to those shown in prior276

experiments. The second simulation study to assess the effect of trait covariates (Z) was imple-277

mented in the similar manner. In the given range of fixed effect sizes, we compared three cases:278

non-identity contrasts (site contrasts in FlxQTL), an identity contrast (Z = I in FlxQTL), Julia ver-279
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sion MLMM. Note that the Julia version of MLMM was developed as an alternative of GEMMA280

for ease of comparison with our method.281
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27. Manichaikul, A., Moon, J.-Y., Sen, Ś., Yandell, B. S. & Broman, K. W. A model selection341

approach for the identification of quantitative trait loci in experimental crosses, allowing epis-342

tasis. Genetics 181, 1077–1086 (2009).343

28. Henderson, C. R. Applications of linear models in animal breeding. University of Guelph344

Press, Guelph 11, 652–653 (1984).345

29. Ledoit, O. & Wolf, M. A well-conditioned estimator for large-dimensional covariance matri-346

ces. Journal of multivariate analysis 88, 365–411 (2004).347
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1 Supplementary Figures363

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 22, 2021. ; https://doi.org/10.1101/2020.03.27.012690doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.27.012690
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3: Power varied by τ 2 on the simulated data from Arabidopsis thaliana. The climatic

relatedness matrix (KC) as a trait kernel was computed by 3 year by 2 site soil range temperature

data. True effect size matrices B’s varied by the following formula: (
√

2)j−1B0 (j = 1 · · · 10) for

B0=[0.25 -0.25;0.25 0.25], randomly selected from {±0.25}.
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Figure 4: Power comparison of a non-identity KC and an identity KC(= I) on the simulated data

from Arabidopsis thaliana depending on unstructured environment errors (Σ). KC was computed

by 3 year by 2 site soil daily range temperature data. 6 × 6 matrices of Σi for i = 1, 2, 3 are

selected using following 3 × 3 sub-matrices: A, C (1’s on the diagonal, a, c on off-diagonal

entries, respectively), B (b in all entries). Σ1 = [A B;B A], where a = 0.4, b = 0.07, Σ2 =[A B;B

A], where a = 0.3, b = 0.07, Σ3=[A B;B C], where a = 0.3, b = 0.0, c = 0.1. I is an identity

matrix. The result shows subtle differences in power depending on Σ’s
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Figure 5: Comparison of power between a non-identity KC(6= I) and an identity KC(= I) on the

simulated data from Arabidopsis thaliana. The non-identity KC was computed by 3 year by 2 site

soil daily range temperature data.
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Figure 6: Contribution of trait covariates (Z) to power on the simulated data from the Arabidopsis

thaliana. KC was computed by 3 year by 2 site soil daily range temperature data. 1. Z(6= I): a

6× 2 matrix of contrasts including the intercept and the site contrast of −1’s and 1’s for Italy and

Sweden, respectively. 2. Z = I: a 6 × 6 identity matrix. Both were run in FlxQTL. 3. MLMM:

the julia-version MLMM as an alternative for GEMMA.
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Figure 7: Multivariate genome scan for Arabidopsis thaliana: Comparison of LOD scores depend-

ing on various climatic relatedness matrices (KC). The trait was fitness (mean number of fruits per

seedling planted) considered as 6 sites (a 3 year by 2 site combination). KC’s were respectively

generated by using soil/air daily range temperatures, weekly drought indices in two sites (Sweden

and Italy) for 3 years. The trait covariates (Z) were contrasts containing 1’s for overall mean for 6

sites and -1’s (Italy), 1’s (Sweden) for mean difference between sites to measure GxE interactions.

The result appears to be insensitive to the choice of KC’s.
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Figure 8: Site-wise multivariate genome scan for Arabidopsis thaliana: Comparison of LOD scores

for Italy and Sweden, where KC = I due to the result in Supplementary Figure 7.
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Figure 9: Univariate genome scan for Arabidopsis thaliana in Italy from 2009 to 2011.
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Figure 10: Univariate genome scan for Arabidopsis thaliana in Sweden from 2009 to 2011.
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Figure 11: Effect plots for Arabidopsis thaliana with KC = I for 6 quantitative traits as described

in Supplementary Figure 7. Negative values in most main effects imply that the Swedish allele, on

average, underperforms. Positive values in most interaction effects indicates home allele advan-

tage; that is, the Swedish genotype in Sweden performs better than that in Italy.
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Figure 12: Main effects with 95% band for Arabidopsis thaliana. The band was obtained by 100

permutations
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Figure 13: Interaction effects with 95% band for Arabidopsis thaliana. The band was obtained by

100 permutations

Figure 14: 2-dimensional (2D) multivariate genome scan for Arabidopsis thaliana.
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(a) Foward selection

(b) Backward elimination

Figure 15: QTL selection for Arabidopsis thaliana (multiple QTL analysis). A model selection

approach by forward selection and backward elimination was performed to finalize significant

QTL from candidate QTL selected in Supplementary Figure 7, 14. A selection criterion is the

penalized LOD score for additive models equivalent to BIC 27.
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Figure 16: Switchgrass FL50. The environment scan (b) was done for the top 3 QTL selected from

the genome scan (a)
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Figure 17: Application to the longitudinal trait data (F2 intercrosses between Gough Island mice

and WSB/EiJ): LOD scores and thresholds at α = 0.1, 0.05

Figure 18: Application to the longitudinal trait data (F2 intercrosses between Gough Island mice

and WSB/EiJ): LOD scores by 2D genome scan
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Figure 19: Application to the longitudinal trait data (F2 intercrosses between Gough Island mice

and WSB/EiJ): Body weight effects by genotypes and corresponding deviations from weekly over-

all mean in Chromosome 7.
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Figure 20: Application to the longitudinal trait data (F2 intercrosses between Gough Island mice

and WSB/EiJ): Body weight effects by genotypes and corresponding deviations from weekly over-

all mean in Chromosome 8.
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Figure 21: Application to the longitudinal trait data (F2 intercrosses between Gough Island mice

and WSB/EiJ): Body weight effects by genotypes and corresponding deviations from weekly over-

all mean in Chromosome 10.
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2 Supplementary Tables364
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Adding 1 or 2 QTL ∆ pLOD pLOD Deleting 1 or 2 QTL ∆ pLOD

10 0.692 42.442 10 -2.872

11 0.028 42.471 8 -2.451

12 -0.480 41.991 6 -2.471

Table 1: QTL selection for Arabidopsis thaliana (multiple QTL analysis) as in Supplementary

Figure 15. 11 significant QTL were finalized since the largest decrease (∆ pLOD = -2.872) in the

backward elimination step when dropping one QTL from 11 QTL in the forward selection step

occurred.

Chromosome no. of QTL position (cM)

1 2 57, 77

2 2 133, 140

3 2 152, 199

4 2 259, 272

5 3 280,333,353

Table 2: Significant QTL for Arabidopsis thaliana as described in Supplementary Figure 15 and

Supplementary Table 1.
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3 Supplementary Note: Mulitivariate Linear Mixed Model for FlxQTL365

The Flexible multivariate linear mixed model for QTL mapping (FlxQTL) extended from a stan-366

dard multivariate linear mixed model (MLMM) 28 is defined as367

Y0 = X0BZ
′
0 +R0 + E0, (5)

or its vectorized form,368

Y v
0 = (Z0 ⊗X0)B

v +Rv
0 + Ev

0 ,

where369

Rv
0 ∼MVN(0, τ 2KC ⊗KG), Ev

0 ∼MVN(0,Σ0 ⊗ In). (6)

Y0 is a n×m matrix of multivariate responses (multiple traits or a trait in multiple environments),370

where n is the number of individuals (lines), m is the number of environments (or time points).371

X0 is a n× p matrix of genotypes including the intercept (or genotype probabilities) for a marker372

to be tested and optionally contains individual level covariates such as sex and age. Z0 is a m× q373

matrix of q trait covariates such as (site) contrasts, (orthonomal) basis functions and so on. Bp×q is374

then fixed effects to be estimated. R0 is a matrix of genetic random effects, and E0 is a matrix of375

residual errors. KG is a n×n genetic relatedness (kinship) matrix, and KC is a m×m trait kernel376

computed by information associated with the traits. In multi-environment trials (MET), the trait377

kernel can be a climatic relatedness matrix using high-dimensional environment information such378

as daily minimum or maximum temperature, precipitation, etc. τ 2 is a scalar by parameterizing a379

m×m convariance matrix proportional to KC for dimension reduction. Note that we confine KC380
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and KG to full-rank and symmetric positive definite matrices. If they are semi-positive definite,381

one can take advantage of a Shrinkage approach 29, 30 to force it to be positive definite. The eigen-382

decomposition to the matrices yields KG = UGΛGU
′
G and KC = UCΛCU

′
C . Multiplying U ′C ⊗U ′G383

to the model gives384

Y = XBZ ′ + R + E, (7)

Rv ∼MVN(0, τ 2ΛC ⊗ ΛG), Ev ∼MVN(0,Σ⊗ In), (8)

where Yn×m = [y′1,y
′
2, · · · ,y′n]′, Xn×p = [x′1,x

′
2, · · · ,x′n]′, Rn×m = [r′1, r

′
2, · · · , r′n]′, and En×m =385

[e′1, e
′
2, · · · , e′n]′.386

Or, this is simplified as a vectored form,387

yi = ZB′xi + ri + ei, ri ∼ N(0, τ 2λiΛC), ei ∼ N(0,Σ), (9)

and the variance is Vi = τ 2λiΛC + Σ (i = 1, . . . , n).388

Verification of multivariate random interactions Assume that a multivariate random interaction389

term has a form of R0 = GBrandC
′, where Cm×q1 is q1 background (or high-dimensional) trait (or390

environment) information, Gn×p1 is p1 background genetic markers such as genotypes and geno-391

type probabilities, and Bv
rand ∼ MVN(0, τ 2Iq1 ⊗ Ip1). Then, the distribution of the multivariate392

random interactions in (6) is obtained as follows.393

E(Rv
0R

v
0
′) = E((C ⊗G)Bv

randB
v
rand

′(C ′ ⊗G′))

= (C ⊗G)E(Bv
randB

v
rand

′)(C ′ ⊗G′)

= (C ⊗G)(τ 2Iq1 ⊗ Ip1)(C ′ ⊗G′)
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= τ 2(CC ′ ⊗GG′)

= τ 2KC ⊗KG,

where C and G are scaled by
√
m,
√
n, respectively.394

4 Supplementary Note: Expectation Conditional Maximization (ECM)395

Since R is unobservable, the joint log-likelihood function for the ECM 14, 21 is written as follows.396

l(Y,R|B, τ 2,Σ)

=
n∑

i=1

{−m log(2π)− m

2
log τ 2 − m

2
log(λi)−

1

2
log |ΛC | −

1

2
log |Σ|

−1

2
e′iΣ

−1ei −
1

2
r′i(τ

2λiΛC)−1ri}. (10)

In the expectation step, the conditional distribution of ri given yi (i = 1, · · · , n), B(t),τ 2(t), and397

Σ(t) at the current iteration t is 28
398

ri|yi, B
(t), τ 2(t),Σ(t) ∼MVN(r̂

(t)
i , Θ̂

(t)
i ), (11)

where399

V
(t)
i = τ 2(t)λiΛC + Σ(t), r̂i = τ 2(t)λiΛC(V

(t)
i )−1(yi − ZB(t)′xi),

Θ̂
(t)
i = τ 2(t)λiΛC − τ 2(t)λiΛC(V

(t)
i )−1τ 2(t)λiΛC . (12)

The expectation of the loglikelihood function in terms ofR given Y , B(t),τ 2(t), and Σ(t) is obtained400

as follows.401

E
(
l(Y,R|B, τ 2,Σ)|R|Y,B(t), τ 2(t),Σ(t)

)
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=
n∑

i=1

{−m log(2π)− m

2
log τ 2 − m

2
log(λi)−

1

2
log |ΛC | −

1

2
log |Σ|

−1

2
(yi − ZB′xi)

′Σ−1(yi − ZB′xi)−
1

2
r̂i

(t)′(τ−2λ−1i Λ−1C + Σ−1)r̂i
(t)

+r̂i
(t)′Σ−1(yi − ZB′xi)−

1

2
tr((τ−2λ−1i Λ−1C + Σ−1)Θ̂

(t)
i )}. (13)

In the conditional maximization step, one can update B(t+1) conditional on τ 2(t) and Σ(t), followed402

by updating {τ 2(t+1),Σ(t+1)} conditional on B(t+1), τ 2(t), and Σ(t) 14.403

B(t+1) = (X ′X)−1X ′(Y − R̂(t))Σ−1Z(Z ′Σ−1Z)−1, (14)

τ 2(t+1) =
1

nm

n∑
i=1

tr(λ−1i Λ−1C (r̂i
(t)r̂i

(t)′ + Θ̂
(t)
i )), (15)

Σ(t+1) =
1

n

n∑
i=1

(êi
(t)êi

(t)′ + Θ̂i

(t)
), (16)

where ê
(t)
i = yi − ZB(t+1)′xi − r̂i

(t). (17)

Log-likelihood function The joint log-likelihood function for the ECM is simplified in the fol-404

lowing way.405

l(Y,R|B, τ 2,Σ) = −nm log(2π)

−1

2
log |(UC ⊗ UG)(τ 2ΛC ⊗ ΛG)(U ′C ⊗ U ′G)| − 1

2
log |(UC ⊗ UG)(Σ⊗ In)(U ′C ⊗ U ′G)|

−1

2
(Y0 −X0BZ

′
0 −R0)

v ′((UC ⊗ UG)(Σ⊗ In)(U ′C ⊗ U ′G))−1(Y0 −X0BZ
′
0 −R0)

v

−1

2
Rv

0
′((UC ⊗ UG)(τ 2ΛC ⊗ ΛG)(U ′C ⊗ U ′G))−1Rv

0

= −nm log(2π)− nm

2
log(τ 2)− m

2
log |ΛG| −

n

2
log |ΛC | −

1

2
log |Σ⊗ In|

+2 log |(U ′C ⊗ U ′G)| − 1

2
(Y −XBZ ′ −R)v

′
(Σ⊗ In)−1(Y −XBZ ′ −R)v

−1

2
Rv ′(τ 2ΛC ⊗ ΛG)−1Rv
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=
n∑

i=1

{−m log(2π)− m

2
log τ 2 − m

2
log(λi)−

1

2
log |ΛC | −

1

2
log |Σ|

−1

2
e′iΣ

−1ei −
1

2
r′i(τ

2λiΛC)−1ri}. (18)

Derivation of conditional expected log-likelihood and the closed form solutions To obtain the406

closed-form solutions of B(t+1), τ 2(t+1), and Σ(t+1) to the conditional expected loglikelihood in407

(13), one differentiates (13) with respect to each parameter after integrating out ri (i = 1, . . . n) in408

the joint log-likelihood function, (10). In (10), taking expectation with respect to ri (i = 1, · · · , n)409

yields410

El = E
(
l(Y,R|B, τ 2,Σ)|R|Y,B(t), τ 2(t),Σ(t)

)
=

n∑
i=1

{−m log(2π)− m

2
log τ 2 − m

2
log(λi)−

1

2
log |ΛC | −

1

2
log |Σ|

−1

2
E
(
(yi − ZB′xi − ri)

′Σ−1((yi − ZB′xi − ri)|R
)
− 1

2
E
(
r′i(τ

2λiΛC)−1ri|R
)
}.

For simplicity, let E(·|R|Y,B(t), τ 2(t),Σ(t)) = E(·|R). The last two terms then can be simplified411

as follows:412

n∑
i=1

{E(−1

2
(yi − ZB′xi)

′Σ−1(yi − ZB′xi) + r′iΣ
−1(yi − ZB′xi)

−1

2
r′iΣ

−1ri −
1

2
r′i(τ

2λiΛC)−1ri|R)}

=
n∑

i=1

{−1

2
(yi − ZB′xi)

′Σ−1(yi − ZB′xi) + E(r′i|R)Σ−1(yi − ZB′xi)

−1

2
E(r′i(Σ

−1 + (τ 2λiΛC)−1)ri|R)}

=
n∑

i=1

{−1

2
(yi − ZB′xi)

′Σ−1(yi − ZB′xi) + r̂i
(t)′Σ−1(yi − ZB′xi)

−1

2
tr((Σ−1 + (τ 2λiΛC)−1)E(rr′|R))}.
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=
n∑

i=1

{−1

2
(yi − ZB′xi)

′Σ−1(yi − ZB′xi) + r̂i
(t)′Σ−1(yi − ZB′xi)

−1

2
tr((Σ−1 + (τ 2λiΛC)−1)(r̂i

(t)r̂i
(t)′ + Θ̂

(t)
i ))}

=
n∑

i=1

{−1

2
(yi − ZB′xi)

′Σ−1(yi − ZB′xi) + r̂i
(t)′Σ−1(yi − ZB′xi)

−1

2
tr((Σ−1 + (τ 2λiΛC)−1)Θ̂

(t)
i )− 1

2
r̂i

(t)′(Σ−1 + (τ 2λiΛC)−1)(r̂i
(t))}.

Now one can find the closed-form solutions ofB, τ 2, and Σ to the expected log-likelihood function413

using properties of the trace, calculus for matrices. For the solution for B,414

El =
n∑

i=1

{−1

2
(yi − ZB′xi)

′Σ−1(yi − ZB′xi) + r̂
(t)′

i Σ−1(yi − ZB′xi)}+ C,

=
n∑

i=1

{−1

2
(Σ−

1
2yi − Σ−

1
2ZB′xi)

′(Σ−
1
2yi − Σ−

1
2ZB′xi)

+(Σ−
1
2 r̂

(t)
i )′(Σ−

1
2yi − Σ−

1
2ZB′xi)}+ C,

where C is a constant.415

∂El

∂B′v
=

n∑
i=1

((x′i ⊗ Σ−
1
2Z)′(Σ−

1
2yi − (x′i ⊗ Σ−

1
2Z)B′

v
)− (x′i ⊗ Σ−

1
2Z)′Σ−

1
2 r̂

(t)
i ) = 0

416

n∑
i=1

(xix
′
i ⊗ Z ′Σ−1Z)B′

v
=

n∑
i=1

(xi ⊗ Z ′Σ−
1
2 )(Σ−

1
2yi − Σ−

1
2 r̂

(t)
i )

B′
v

= ((X ′X)−1X ′ ⊗ (Z ′Σ−1Z)−1Z ′Σ−
1
2 )(Σ−

1
2 (Y ′ − R̂(t)′))v

B′ = (Z ′Σ−1Z)−1Z ′Σ−1(Y ′ − R̂(t)′)X(X ′X)−1

∴ B = (X ′X)−1X ′(Y − R̂(t))Σ−1Z(Z ′Σ−1Z)−1

417

∂El

∂τ 2
=

n∑
i=1

{−m
2
τ−2 +

1

2
r̂i

(t)′(τ−4λ−1i Λ−1C )r̂i
(t) +

1

2
tr(τ−4λ−1i Λ−1C Θ̂

(t)
i )} = 0 (19)
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418

mn =
n∑

i=1

tr((τ−2λ−1i Λ−1C )r̂
(t)
i r̂

(t)′

i + (τ−2λ−1i Λ−1C )Θ̂
(t)
i )

mnτ 2 = tr(
n∑

i=1

λ−1i Λ−1C (r̂
(t)
i r̂

(t)′

i + Θ̂
(t)
i ))

∴ τ 2(t+1) =
1

nm

n∑
i=1

tr(λ−1i Λ−1C (r̂
(t)
i r̂

(t)′

i + Θ̂
(t)
i ))

419

∂El

∂Σv
=

n∑
i=1

{−1

2
tr(Σ−1

∂Σ

∂Σv
) +

1

2
(yi − ZB(t+1)′xi)

′(Σ−1
∂Σ

∂Σv
Σ−1)(yi − ZB(t+1)′xi)

+ r̂
(t)′

i (Σ−1
∂Σ

∂Σv
Σ−1)r̂

(t)
i +

1

2
tr(Σ−1

∂Σ

∂Σv
Σ−1Θ̂

(t)
i )

− r̂
(t)′

i (Σ−1
∂Σ

∂Σv
Σ−1)(yi − ZB(t+1)′xi)} = 0

420

n∑
i=1

{tr(−Im + Σ−1(yi − ZB(t+1)′xi)(yi − ZB(t+1)′xi)
′ + Σ−1r̂

(t)
i r̂

(t)′

i

+Σ−1Θ̂
(t)
i − 2Σ−1(yi − ZB(t+1)′xi)r̂

(t)′

i )} = 0
421

n · tr(Σ) =
n∑

i=1

tr(ê
(t)
i ê

(t)′

i + Θ̂
(t)
i )

∴ Σ(t+1) =
1

n

n∑
i=1

(ê
(t)
i ê

(t)′

i + Θ̂
(t)
i ),

where ê
(t)
i = yi − ZB(t+1)′xi − r̂

(t)
i .422

5 Supplementary Note: Nesterov’s Accelerated Gradient with Speed Restart423

Algorithm : ECM embedded in the speed restarting Nesterov’s scheme 20
424

input : B(0) ∈ Rq×p, τ 2(0) ∈ R, Σ(0) ∈ Rm×m, B(−1) = B(0), τ 2(−1) = τ 2(0), Σ(−1) = Σ(0),425

tmin ∈ N426
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j ← 1427

while t = 1, ‖ B(t) −B(t−1) ‖ + ‖ τ 2(t) − τ 2(t−1) ‖ + ‖ Σ(t) − Σ(t−1) ‖> ε428

for small enough ε429

E-step : Integrate out the unknown complete data loglikelihood by430

ri|yi, B
(t−1), τ 2(t−1),Σ(t−1) ∼MVN(r̂

(t−1)
i , Θ̂

(t−1)
i ) as in (11).431

CM-step : Update each parameter by maximization over the full parameter space as in (14), (15),432

and (16).433

Nesterov’s Acceleration :434

B(t) ← B(t) +
j − 1

j + 2
(B(t) −B(t−1))

τ 2(t) ← τ 2(t) +
j − 1

j + 2
(τ 2(t) − τ 2(t−1))

Σ(t) ← Σ(t) +
j − 1

j + 2
(Σ(t) − Σ(t−1))

if ‖ B(t) − B(t−1) ‖ + ‖ τ 2(t) − τ 2(t−1) ‖ + ‖ Σ(t) − Σ(t−1) ‖<‖ B(t−1) − B(t−2) ‖ + ‖435

τ 2(t−1) − τ 2(t−2) ‖ + ‖ Σ(t−1) − Σ(t−2) ‖ & t ≥ tmin436

then j ← 1437

else j ← j + 1438

end if439

end while440
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