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Abstract 

The inclusion of peptide retention time prediction promises to remove peptide identification 

ambiguity in complex LC-MS identification workflows. However, due to the way peptides are 

encoded in current prediction models, accurate retention times cannot be predicted for modified 

peptides. This is especially problematic for fledgling open modification searches, which will benefit 

from accurate retention time prediction for modified peptides to reduce identification ambiguity.  

We here therefore present DeepLC, a novel deep learning peptide retention time predictor 

utilizing a new peptide encoding based on atomic composition that allows the retention time of 

(previously unseen) modified peptides to be predicted accurately. We show that DeepLC performs 

similarly to current state-of-the-art approaches for unmodified peptides, and, more importantly, 

accurately predicts retention times for modifications not seen during training. DeepLC is available 

under the permissive Apache 2.0 open source license and comes with a user-friendly graphical 

user interface, as well as a Python package on PyPI, Bioconda, and BioContainers for effortless 

workflow integration. 
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Introduction 

Liquid Chromatography (LC) plays a critical role in Mass Spectrometry (MS) analysis of bottom-up 

proteomics1. By separating peptides based on their physicochemical properties in the LC step, the 

complexity of the sample presented to the MS instrument is greatly reduced. This reduction means 

that there is less ionization competition, improved sensitivity for data dependent/independent 

analysis, and reduced chimericity in fragmentation spectra (MS2) 2,3. In addition to these benefits, 

the retention time measurement itself provides an additional dimension of information to 

interpret the signals generated by a peptide4. In order to interpret these acquired signals, they 

need to be matched with earlier observations of the same peptides or with a prediction of the 

signal. 

However, the process by which a peptide is retained or eluted is not fully understood yet5, which 

means that libraries with previously observed retention times are often used to match to newly 

acquired signals6. However, these libraries are often incomplete and moreover are non-

transferable between experimental setups without calibration. In order to fill this knowledge gap, 

researchers have therefore used models to predict retention times for previously unobserved 

peptides4. 

Many of the first methods for peptide retention time prediction relied on simulation models based 

on physicochemical knowledge7. However, most modern approaches use data-driven methods 

such as machine learning (ML) or deep learning (DL) algorithms to train a predictive model8–12. In 

such models, the mapping between the peptide sequence (or features derived from this sequence) 

and the LC retention time apex is learned from empirical examples. After training, these models 

can be used to generate predictions for unobserved peptides. 

Such retention time prediction models have already been successfully applied for various tasks in 

proteomics analysis workflows, e.g. to improve identification confidence13,14, to design more 

efficient experiments15, and to identify chimeric fragmentation spectra16. Most recently, these 

retention time prediction models have been used in combination with fragment peak intensity 

prediction models to generate comprehensive, in silico chromatogram libraries for Data 

Independent Acquisition (DIA) identification, effectively replacing and surpassing more limited, 

empirically derived Data Dependent Acquisition (DDA) spectral libraries17–19. 
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In keeping with the general trend in ML, there has been a switch from classical ML to DL in newly 

developed retention time predictors. This switch was mainly driven by recent innovations in the 

field of DL and the large amount of peptide retention time data that has become available. The 

types of architectures proposed by state-of-the-art DL retention time models include capsule 

convolutional neural networks (CNNs) in DeepRT(+)11, NN with long short-term memory (LSTM) 

layers as used by Guan et al.9, and an encoder-decoder principle with gated recurrent units (GRU) 

in Prosit10. The architectures of these models either work with a CNN or recurrent architecture 

(e.g. LSTM or GRU units). CNN architectures slide a filter with a specified kernel size over the 

encoded peptide. In contrast, recurrent neural networks thread the sequence through a sequence 

of units.  

However, all these models share the same peptide encoding method, in which amino acids and 

their corresponding positions are transformed into a one-hot amino acid encoding. This encoding 

takes the form of a matrix in which the presence or absence of each amino acid for each position 

in the peptide is represented by a one or a zero, respectively. 

Unfortunately, this use of one-hot encoding of amino acids restricts the models’ applicability in 

some of the most interesting data analysis workflows, most notably in open modification searches 

(OMS), where the goal is to elucidate the modification landscape of the proteome20–23. These OMS 

workflows are gaining popularity in the field of proteomics as they make it possible to search for 

a large variety of peptide modifications simultaneously. 

Unfortunately, current retention time prediction methods cannot be directly applied in OMS 

because of the vast amount of potential modifications24. With one-hot amino acid encoding, each 

potential modification needs to be represented by a binary feature indicating the presence of this 

modification. Additionally, sufficient training examples are required for each modification for the 

ML algorithm to learn the hidden impact of every one of these modifications on the peptide 

retention time.  

We here solve this fundamental issue with DeepLC, our novel retention time predictor that is able 

to accurately predict the retention time for all peptides and their modifications, even when these 

modifications have not been seen during training. DeepLC achieves this by encoding peptides 

and modifications at the atomic composition level, allowing generalization of the patterns learned 

from the modifications seen during training.  
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Methods 

Architecture 

DeepLC uses a convolutional deep learning architecture with four different paths for a given 

encoded peptide. The same peptide acts as the input for the four paths, which have multiple 

separated layers, as shown in Figure 1. Three of the initial paths use a combination of 

convolutional25 and max pooling layers26. The remaining path, which propagates global features, 

consists of densely connected layers. The results of all initial four paths are flattened and 

concatenated to provide an input for the final combined path which consists of six connected 

dense layers. A detailed visualization of the architecture is available in Figure S-1. 

 

Figure 1: Visualization of DeepLC’s convolutional architecture with the four individual paths named: One-hot encoding, 

Global features, Diamino acids composition, and Amino acids composition. These individual paths are concatenated in 

the Combination of representations path. 

The input matrix for the Amino acids composition path has a dimension of 60 for the peptide 

sequence by 6 for the atom counts (C, H, N, O, P, and S). Not every peptide is 60 amino acids long, 

thus “X”-characters without atomic composition are padded to reach 60 amino acids.  This implies 

that encoding modified amino acids becomes straightforward, as computing their atomic 

composition is trivial. Note that for modified amino acids the atomic composition of the 

modification is added to the atomic composition of the unmodified residue. This encoding allows 

the model to learn patterns that generalize to unseen modifications. 
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The Diamino acid path was added to further improve the generalization capability of the model. 

In this layer the peptide is divided into diamino acids without overlap. This improves the 

generalization capability, as the input values for each position are more thoroughly represented. 

Otherwise there would only be 20 unmodified amino acid representations, combined with a 

limited amount of modifications. Besides interpreting the amino acids in pairs, the Diamino acid 

path uses the same logic as the Amino acids composition path, leading to an input matrix of 30 

paired positions by 6 atoms. 

Encoding amino acids and their modifications by strictly using the atomic composition does, 

however, not allow for comprehensively capturing all molecular information. Indeed, the structure 

of isomers can play an important role in the physicochemical properties of amino acids, as is 

exemplified by structural isomers isoleucine and leucine27. This is the reason that one-hot 

encoding of unmodified amino acids was still used in DeepLC as an input for the One-hot encoding 

path. However, to reduce the impact of this layer, the number of filters for this path were limited 

to a mere 2. The dimensions of this input matrix is 60 positions by 20 amino acids. 

In addition to all paths that encode position specific information, the Global features path takes 

global information of the peptide into account. These global features include the length and total 

atomic composition of the peptide. The dimension of this input vector is 7. 

Three versions of the model were trained, solely differing in kernel size (of 2, 4, and 8) for the 

Amino acids composition path. These three models were combined in an ensemble by averaging 

their predictions. 

Finally, the other hyperparameters of each layer in DeepLC are consistent for all versions with 

different kernel sizes. All layers, except the output layer and the One-hot encoding path, use L1 

regularization with 𝛼 = 2.5𝑒 − 7 and a leaky ReLU28 with a maximum activation value of 20. The 

One-hot encoding path uses the tanh activation function, as within this path we are only interested 

in the ability to separate unmodified amino acid isomers. 
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Data sets & evaluation 

To evaluate the generalization performance of DeepLC, we selected 20 data sets from a wide 

variety of organisms and experimental setups (Table S-1). We further selected three data sets 

(SWATH Library29, HeLa HF30, and DIA HF31) for detailed result reporting, with the results for the 

other 17 data sets described in the supplementary information. The data sets SWATH Library and 

DIA HF were selected based on their previous use by Ma et al. for DeepRT11 and by Guan et al.9, 

respectively. A third data set, HeLa HF was selected because of its use of short (compared to other 

used data sets) gradients of 15 minutes and the large number of training peptides. 

The variety in experimental setups and protocols means that the acquired and predicted retention 

times need to be calibrated. The ProteomeTools library32, SWATH Library, and DIA HF data sets 

were normalized to the iRT peptides33,34. DeepLC itself supports linear calibration which is further 

explained in the online DeepLC documentation. 

The data sets marked Custom workflow in Table S-1 were processed as follows. Raw mass 

spectrometry files were downloaded from PRIDE Archive35 and converted to MGF format with the 

ThermoRawFileParser36. These were then searched using the MS-GF+ search engine37 with a 

concatenated target-decoy sequence database containing the respective species’ UniProtKB 

proteome and the common Repository of Adventitious Proteins (cRAP: 

https://www.thegpm.org/crap/). The MS-GF+ search results were post-processed with 

Percolator38 to a false discovery rate of 0.01. Retention times were parsed from the MGF files for 

all confidently identified peptides. Within each LC-MS run, the median retention time for each 

peptidoform (peptide - modifications combination) was calculated. All median retention times 

were then linearly calibrated across all LC-MS runs for each data set, using the shared 

peptidoforms as anchor points. Finally, the median calibrated retention time was calculated for 

each peptidoform across all runs for each data set. These median calibrated retention times were 

then used to train, validate and test DeepLC. The steps comprising this calibration are available in 

a Snakemake workflow39.  

The data sets marked Custom workflow ProteomeTools in Table S-1 were processed as follows. 

MaxQuant40 identification files were filtered on posterior error probabilities < 0.01 and scores > 

90. The retention times were calibrated with the peptides in Table S-2. Within a run, the median 

retention time per peptidoform was used for further analysis. Then, across runs the median 

retention time per peptidoform was taken for the final retention time. 
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The data sets marked Custom workflow ProteomeTools PTM41 in Table S-1 were processed in the 

same way as the data sets Custom workflow ProteomeTools, with the only exception that the 

retention times were calibrated with the peptides in Table S-3. 

Each data set was split into a test set (10%), validation set (5%), and training set (85%). The 

validation set is used for model selection only, while all performance results presented here were 

computed from the test set. Prediction performance is measured using three commonly used 

metrics: Mean Absolute Error (MAE), Pearson correlation, and ∆𝑡95%. The latter describes the error 

for a retention time window that contains 95% of the peptides in the error distribution. To make 

the MAE and ∆𝑡95% comparable between experiments, we divided them by the retention time of 

the last detected peptide in the respective data set. These metrics are further referred to as relative 

MAE and relative ∆𝑡95%. 

Software and scripts 

The following Python libraries were used in DeepLC: Pandas42, TensorFlow43, Pyteomics44, SciPy45, 

and Numpy46. The code used to prepare the data sets, calibrate retention times, generate DeepLC 

models, make predictions, and generate the figures is available on Zenodo: 

https://doi.org/10.5281/zenodo.3706875. 

For the DeepLC tool (Figure S-2) itself, see Availability.  
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Results 

The results section is split in two main parts. We first evaluate the performance of DeepLC on 

retention time prediction for unmodified peptides, in comparison with state-of-the-art tools. We 

then proceed to evaluate DeepLC on retention time prediction for modified peptides, which is an 

ability that is unique to DeepLC. We therefore rely on two distinct ways of evaluating DeepLC’s 

performance on these modified peptides: (i) evaluate DeepLC performance on unseen 

modifications, and (ii) a novel type of evaluation which leaves out unmodified amino acids, and 

then has DeepLC treat these as modified glycines. Overall, we can show that DeepLC is competitive 

with the state-of-the-art for unmodified peptides, and achieves similar performance for unseen 

modified peptides. 

Evaluation of DeepLC against the state-of-the-art on unmodified peptides 

Our approach to model amino acids by their atomic composition provides accurate predictions 

of LC retention times for unmodified peptides, with similar performance to current state-of-the-

art retention time prediction models DeepRT11, Prosit10, and Guan et al.9 that model amino acids 

directly. Note that the definition used here for “unmodified” can include the two very common 

artefactual modifications of carbamidomethylation of cysteine and oxidation of methionine. 

DeepLC test set predictions for the three selected data sets are plotted in Figure 2. We observe 

very high prediction accuracy, with Pearson correlations larger than 0.99 for two of the data sets, 

and with the HeLa HF data set showing slightly worse performance (Pearson=0.984). For the latter, 

the LC gradient is significantly shorter than for the other two data sets, implying that retention 

times become less predictable, thus resulting in a slightly less performant model. Figure 2 also 

reveals a small but significant number of peptides with high prediction errors that do not follow 

the main trend. These are potentially wrong identifications or wrongly determined elution apexes. 

The same plots for the other seventeen data sets can be found in Figure S-3 and S-4 where we 

make very similar observations to those in Figure 2.  

Table S-4 summarizes the test set performance for all twenty data sets described in the data sets 

& evaluation section of the methods. The atomic composition encoding approach of DeepLC is 

able to learn accurate prediction models with high R values for all data sets. For most data sets 

DeepLC achieves an R above 0.98, with four data sets even achieving correlations above 0.995. 

This R value is highly comparable to the other models. Nearly all data sets were obtained with 

reverse phase columns, yet even though there are fewer data sets with HILIC and SCX, DeepLC 

also performs very well on these data sets with relative MAE errors below 1.5 %. 
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For the ∆𝑡95% metric the differences are somewhat more pronounced. Here we observe that 

DeepLC performs consistently worse than the other models. It is however unclear whether these 

differences should be accounted to the atomic composition encoding, a different DL architecture, 

a difference in train-validation-test split (note that for the other prediction models the manuscript 

did not mention the use of a validation set), or a combination of these. As we want to focus on 

the capability of DeepLC to predict retention times for modified peptides we leave this question 

open for further research. 

 

 

Figure 2: Scatter plot of predicted against observed on three of the largest data sets; SWATH Library, HeLa HF, and DIA 

HF. 

The trained models are also highly transferrable between different data sets. This transferability is 

especially useful when applying models trained on larger data sets to smaller ones and application 

of the models without retraining. Only a simple calibration is required to transfer the predictions 

between LC setups. Figure S-7 shows that models that achieve high performance on a given data 

set also show high Spearman correlation when applied to different data sets. 

DeepLC builds on a DL approach that greatly benefits from a large number of training peptides, 

and we can show that large data sets indeed do have a positive influence on the performance of 

DeepLC. The performance on each individual data set in relation to the number of training 

peptides is shown in Figure 3 and Table S-4. Data sets with a very small number of training 

peptides (< 10 000) tend to have a performance between 2 % and 4.5 % relative MAE. For medium 

sized data sets (> 10 000 and < 75 000 peptides), the performance can vary widely, with relative 

MAE’s ranging from 0.9 % to 4.5 %. For larger data sets (> 75 000 peptides) the performance tends 

to be below 2 % relative MAE.  
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Figure 3: For the twenty data sets the number of training peptides (y-axis) is plotted against the relative MAE (left), 

relative ∆𝑡95% (middle) and Pearson correlation (right).  

To further evaluate the relationship between the number of training peptides and prediction 

performance we computed learning curves for the three selected data sets (Figure 4). For each 

data set, learning curve evaluation was performed five times with different test set subsamples. 

These curves show a sharp improvement for the first four to five steps (comprising up to 50 

percent of the total number of training peptides). Beyond these steps, prediction performance 

improves only linearly for the SWATH library and HeLa HF, while showing smaller improvements 

in the last step for DIA HF. Importantly, for two of these data sets the performance continues to 

improve right to the last step of the learning curve. This ability to continuously improve 

performance suggests that DeepLC, like most other DL approaches, is capable of fitting even more 

complex relations than classical ML when provided with sufficient data. The same observation of 

increasing performance for larger training sets can be made for the remaining seventeen data sets 

(Figure S-4 and S-5), with fifteen data sets showing clear improvement for the last two steps of 

the learning curve. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.28.013003doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.28.013003
http://creativecommons.org/licenses/by/4.0/


   

 

12 

 

 

Figure 4: Learning curves for each of the three selected data sets. Prediction performances (R and MAE) for models 

trained on different training set sizes (x-axis) are computed for a fixed test set. 

Performance evaluation for modified peptides 

DeepLC is able to generalize effectively for unmodified peptides as well as extending its accurate 

retention time predictions to modifications that were not included in the training set. We can thus 

show that the DeepLC models have not just learned the general shift in retention time caused by 

modifications, but also how this shift depends on the context of the modification in the peptide. 

These claims are supported by two separate evaluations in this section. 

Prediction performance for modified peptides would ideally be evaluated on a large data set with 

a variety of modifications. Indeed, as shown in Figure 4, the full performance potential of DeepLC 

is achieved by the largest possible data set size. However, such large data sets with many 

modifications are currently not available in the public domain. 

Instead, we here show DeepLC’s prediction performance for modified peptides on a recently 

published smaller data set (ProteomeTools PTM41), after the custom preprocessing workflow 

described in the methods section, comprising fourteen different modifications with known 

location in 4099 synthetic peptides. Furthermore, we introduce an evaluation procedure that 

allows the use of larger data sets based on the fact that any amino acid (apart from glycine) can 

be considered as a modified glycine. 
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We first evaluate DeepLC on all fourteen modifications in the ProteomeTools PTM data set. We 

trained and optimized fourteen DeepLC models, where each model only sees peptides that don’t 

contain a specific modification M. Each model is named after the modification it was not provided 

with, so model M is trained and optimized only on those peptides that do not contain modification 

M. Each model is then evaluated on the remaining peptides, which all do contain the modification 

M that was excluded during training. We created two test sets from these remaining peptides to 

evaluate predictions: one where the excluded modification is encoded and one where it is not. 

Prediction performance for both test sets were then evaluated and compared. This comparison 

thus allows performance to be assessed on a modification that is not included in training, in terms 

of the improvement that DeepLC offers over a baseline of simply ignoring the presence of the 

modification.  

Figures 6 and S-8 show the prediction errors for each of the left-out modifications for training. In 

Figure 6, the boxplots show performance when a given modification was not present in the 

training set for the model, and is afterwards either not encoded (red boxplots; baseline) or 

encoded (blue boxplots) during the predictions. It should be noted that many modifications did 

not cause a substantial change in terms of predicted retention time, as was also observed in the 

original paper for this data set41 Examples of such modifications with limited impact are methyl, 

dimethyl, trimethyl, and deamidation. In contrast, the acyl modifications (including propionyl, 

succinyl, malonyl, crotonyl, and acetyl) show a clear performance increase when these 

modifications are encoded during the predictions. For instance, Figure S-8 shows that the MAE is 

improved by 700% (from 462 s to 66 s) for propionyl. These improvements are mainly due to the 

correct prediction by DeepLC of the shift in retention time caused by the modification, despite 

DeepLC never having encountered that specific modification before. Most importantly, besides a 

significantly decreased MAE, the correlation R also shows a substantial improvement. This is 

shown in Figure 6 through the substantially smaller variance for the blue box plots. For crotonyl, 

for instance, Figure S-8 presents an increase of R from 0.975 to 0.990 when encoding the 

modification in the test set. This means that the DeepLC models have not just learned the general 

shift in retention time caused by modifications, but also how this shift depends on the context of 

the modification in the peptide. 

Only nitrotyrosine and phosphorylation modifications show lower performance when encoded, 

but these modifications can be classified as physicochemically very different from the other 

modifications. This inability of DeepLC to accurately predict retention times for modifications that 

are chemically very different from anything encountered the training set indicates that even 

DeepLC requires some relevant training data for a given class of modifications.  
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Figure 6: The modification that was excluded for training is shown on the horizontal axis, and the vertical axis shows the 

retention time error (experimental - predicted) when the modification was either not encoded (red) or encoded during 

the predictions (blue). 

In the second evaluation procedure we used the larger DIA HF and the smaller HeLa HF data sets 

to train and optimize nineteen DeepLC models, where each model only sees peptides that do not 

contain a specific amino acid. The nomenclature is as above, in which model A is trained and 

optimized only on peptides that do not contain amino acid A. Next, each model is evaluated on 

all those peptides that do contain the excluded amino acid not seen during training. For this we 

again created two test sets from these remaining peptides: one where the excluded amino acid is 

encoded as the composition of glycine only and one with its actual composition.  

We show that encoding an amino acid as itself instead of as glycine improves the MAE for most 

amino acids (Figure 7). DeepLC performs very well when modelling large hydrophobic residues as 

modified glycines, and slightly less well when modelling polar uncharged and negatively charged 

residues as modified glycines. Finally, for the positively charged amino acids only arginine shows 

an improvement, while lysine and histidine decrease in performance when encoding the amino 

acid. The poor performance for lysine can be explained by the difference with the amino acid with 

the closest atomic composition. For lysine the closest atomic compositions are arginine and 

leucine (or isoleucine), which are significantly less hydrophobic or more hydrophobic, respectively. 

This is similar to our observations for modifications, where the best performance is obtained for 

unseen modifications which can be more readily extrapolated from already seen modifications. 

Between the larger and smaller data sets there is a consistent performance difference between 

the excluded amino acids. This consistency means that the observations made are likely to be 

independent of the specific data set the evaluation is run on. 
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This non-modified amino acid evaluation shows that performance is slightly worse in comparison 

to including the amino acid in the training set, with DIA HF and HeLa DeepRT having a MAE of 

2.37 and 3.2 minutes, respectively. The MAE errors shown in Figure 7 are about 1.5 to 2.5 times 

higher.  

It is important to note that this evaluation is not only hard because the trained model has never 

seen a given amino acid, it is also hard because peptides that are similar to each other are likely 

to all be excluded from training due to these peptides having a higher likelihood of also containing 

the removed amino acids. This can create biased training sets, especially for lysine and arginine 

as the majority of peptides are tryptic. Surprisingly, however, the model is still able to predict 

retention times very accurately for amino acids that were not used in training.   

 

Figure 7: Each amino acid that was excluded for training is shown as a circle, where the size of the circle and color 

indicates the remaining training peptides and chemical property, respectively. The amino acid is either encoded as 

glycine (vertical axis) or as its own atomic composition (horizontal axis) and its position depicts the MAE for all amino 

acid containing peptides. This means that everything above the diagonal line is predicted with a higher accuracy when 

the amino acid is encoded as itself, while the reverse is true if it is below the diagonal line.  
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Discussion & Conclusion 

The evaluations show that DeepLC performs similarly to current state-of-the-art models for 

unmodified peptides. DeepLC performance furthermore increases for larger data sets, where 

models trained on larger data sets can provide accurate predictions for smaller data sets. More 

importantly, DeepLC can accurately predict the retention time of modified peptides, even for 

modifications that were not included in the training set. This ability to predict for unseen 

modifications was evaluated with a two-pronged evaluation strategy using both unmodified 

peptides as well as synthetic, modified peptides. For both evaluations encoding modifications for 

prediction improves performance, only for modifications that are very different from any structure 

in the data set the performance is worse. 

Future development of models that can predict the retention time for unseen modifications could 

focus on structural aspects of modifications. DeepLC is currently limited in differentiating between 

isomeric structures that are physicochemically different. Indeed, the observation that structure, 

not only atomic composition, leads to the physicochemical properties of molecules has already 

been observed for small molecules. Here, the decision was made to work with atomic composition, 

because of the ready availability of the composition in databases like Unimod, and greater ease 

of integration when compared to more complex structural descriptors. 

DeepLC enables the field to generate predictions for a wide landscape of modification. In order 

to improve the availability to researchers and their use-cases, DeepLC is made freely available 

online and has a user-friendly GUI. Furthermore, the tool is available in code repositories that 

enable easy incorporation in workflows and pipelines for automatic predictions. 
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Availability 

DeepLC is available for download from the following repositories and package indexes: 

- Graphical user interface: https://github.com/compomics/DeepLC/releases/latest 

- Python package: https://pypi.org/project/deeplc/ 

- Bioconda package: https://bioconda.github.io/recipes/deeplc/README.html 

- Biocontainers docker image: https://quay.io/repository/biocontainers/deeplc 

- Source code: https://github.com/compomics/DeepLC 
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Supplemental information 

 

Figure S-1: Detailed view of the architecture of DeepLC. 
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Figure S-2: Java-based graphical user interface of DeepLC, which allows an easy to use interface to make predictions, 

with the option to calibrate for the user’s experimental setup. 
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Table S-1: Data sets used to train and evaluate DeepLC 

Name 
Data origin for 

fitting 
Training peptides Validation peptides Test peptides Repository identifier Column type 

HeLa hf30 
Custom 

workflow 
137821 7253 16119 PXD006932 RP 

ProteomeTools32 

Custom 

workflow 

ProteomeTools 

125331 6596 14658 PXD010595; PXD004732 RP 

SWATH library29 DeepRT11 96798 5094 11321 PXD000954 RP 

Plasma lumos 1h47 
Custom 

workflow 
49495 2604 5788 PXD013477 RP 

DIA HF31 Guan et al.9 43002 2263 5029 PXD005573 RP 

HeLa lumos 2h47 
Custom 

workflow 
34231 1801 4003 PXD013477 RP 

Pancreas48 
Custom 

workflow 
33421 1759 3909 PXD010154 RP 

Xbridge49 DeepRT11 31483 1656 3682  HILIC 

ATLANTIS SILICA49 DeepRT11 30848 1623 3607  HILIC 

LUNA SILICA49 DeepRT11 26051 1371 3047  HILIC 

LUNA HILIC49 DeepRT11 23512 1237 2750  HILIC 

SCX49 DeepRT11 21638 1138 2530  SCX 

Yeast 2h50 
Custom 

workflow 
15822 832 1850 PXD003472 RP 

HeLa lumos 1h47 
Custom 

workflow 
13310 700 1556 PXD013477 RP 

Yeast 1h50 
Custom 

workflow 
12197 641 1426 PXD003472 RP 

Arabidopsis51 
Custom 

workflow 
10132 533 1185 PXD008812 RP 

Yeast DeepRT52 DeepRT11 4867 256 569  RP 

ProteomeTools PTM41 

Custom 

workflow 

ProteomeTools 

PTM 

3659 192 428 PXD009449 RP 

Plasma lumos 2h47 
Custom 

workflow 
2997 157 350 PXD013477 RP 

HeLa DeepRT53 DeepRT11 2917 153 341  RP 
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Table S-2: Peptide used to calibrate retention time in the Custom workflow ProteomeTools 

Calibration peptides 

TFAHTESHISK 

ISLGEHEGGGK 

LSSGYDGTSYK 

LYSYYSSTESK 

GFLDYESTGAK 

HDTVFGSYLYK 

ASDLLSGYYIK 

GFVIDDGLITK 

GASDFLSFAVK 

 

 

Table S-3: Peptide used to calibrate retention time in the Custom workflow ProteomeTools PTM 

Calibration peptides 

TFAHTESHISK 

HLTGLTFDTYK 

YGFSSEDIFTK 

LYSYYSSTESK 

GFLDYESTGAK 

LSSGYDGTSYK 

FLFTGYDTSVK 

YFGYTSDTFGK 

FLASSEGGFTK 

TFTGTTDSFFK 

SYASDFGSSAK 

HDTVFGSYLYK 
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Figure S-3: Scatter plots for twelve data sets on the test data for each respective data set. 
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Figure S-4: Scatter plots for eight data sets on the test data for each respective data set. 
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Figure S-4: Learning curves for twelve data sets with the MAE and correlation between observed and predicted retention 

times. 
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Figure S-5: Learning curves for eight data sets with the MAE and correlation between observed and predicted retention 

times. 
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Table S-4: Overview of the 20 MS2 data sets used in this research. The first three columns report test performance for 

DeepLC. The performance for existing models is listed if available and as reported in the original manuscript (except for 

the Prosit model where the ∆𝑡95% was recalculated based on a digitized version of Figure 1c in the original manuscript). 

For Guan et al. the ∆𝑡95% was recalculated by taking the ∆𝑡95% of the absolute error and multiplying this value by two. 

This value was corrected to be consistent with DeepRT and DeepLC. 

Name 
Train 

peptides 

Validation 

peptides 

Test 

peptides 
R MAE ∆𝒕𝟗𝟓% DeepRT R 

DeepRT  

∆𝒕𝟗𝟓% 

Guan et 

al. R 

Guan et al.  

∆𝒕𝟗𝟓% 

Prosit 

R 

Prosit  

∆𝒕𝟗𝟓% 

SCX 21638 1138 2530 0.998 0.29 1.57 0.998 1.42 
    

SWATH library 96798 5094 11321 0.997 2.54 14.88 0.997 13.4 
    

Xbridge 31483 1656 3682 0.996 0.49 2.64 0.996 2.36 
    

ProteomeTools 125331 6596 14658 0.995 1.9 9.96 
    

1 8.5 

DIA HF 43002 2263 5029 0.994 2.37 13.28 
  

0.994 10.825 
  

LUNA HILIC 23512 1237 2750 0.994 0.54 2.82 0.994 2.55 
    

ATLANTIS SILICA 30848 1623 3607 0.993 0.48 2.56 0.995 2.1 
    

Yeast DeepRT 4867 256 569 0.993 5.26 32.18 0.993 25.88 
    

LUNA SILICA 26051 1371 3047 0.991 0.54 2.99 0.994 2.3 
    

HeLa Lumos 2h 34231 1801 4003 0.986 1.87 10.33 
      

HeLa HF 137821 7253 16119 0.984 0.31 97.04 
      

HeLa Lumos 1h 13310 700 1556 0.983 1.41 10.39 
      

ProteomeTools PTM 3659 192 428 0.975 1.54 8.51 
      

Yeast 2h 15822 832 1850 0.975 2.79 17.34 
      

Yeast 1h 12197 641 1426 0.971 1.41 8.19 
      

Plasma lumos 2h 2997 157 350 0.968 3.89 20.51 
      

HeLa DeepRT 2917 153 341 0.967 3.2 16.73 0.985 12.56 
    

Pancreas 33421 1759 3909 0.967 2.63 14.22 
      

Arabidopsis 10132 533 1185 0.951 5.05 27.74 
      

Plasma lumos 1h 49495 2604 5788 0.938 3.36 19.22 
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Figure S-7: Performance in terms of the Spearman correlation for each model applied to the other 19 data sets. 
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Figure S-8: Each panel shows the observed retention time against predicted retention time for models that were not 

trained for the specified modification. Dots show the retention times when modifications are either not encoded (red) 

or encoded (blue) by DeepLC. 
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