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Abstract: The cost of next-generation sequencing technologies is rapidly declining, making RNA-19 
seq-based gene expression profiling (GEP) an affordable technique for predicting receptor 20 
expression status and intrinsic subtypes in breast cancer (BRCA) patients. Based on the expression 21 
levels of co-expressed genes, GEP-based receptor-status prediction can classify clinical subtypes 22 
more accurately than can immunohistochemistry (IHC). Using data from the cancer genome atlas 23 
TCGA BRCA and METABRIC datasets, we identified common predictor genes found in both 24 
datasets and performed receptor-status prediction based on these genes. By assessing the survival 25 
outcomes of patients classified using GEP- or IHC-based receptor status, we compared the 26 
prognostic value of the two methods. We found that GEP-based HR prediction provided higher 27 
concordance with the intrinsic subtypes and a stronger association with treatment outcomes than 28 
did IHC-based hormone receptor (HR) status. GEP-based prediction improved the identification of 29 
patients who could benefit from hormone therapy, even in patients with non-luminal BRCA. We 30 
also confirmed that non-matching subgroup classification affected the survival of BRCA patients 31 
and that this could be largely overcome by GEP-based receptor-status prediction. In conclusion, 32 
GEP-based prediction provides more reliable classification of HR status, improving therapeutic 33 
decision making for breast cancer patients. 34 

Keywords: breast cancer; intrinsic subtype; hormone receptor-status prediction; gene expression 35 
profile; LASSO regression 36 

1. Introduction 37 

Breast cancer (BRCA) is a highly heterogeneous disease that involves several complex molecular 38 
networks [1-7]. BRCA can be classified into different subtypes that have distinct clinical behaviors 39 
and prognoses and that require different treatment strategies, including targeted therapy and 40 
hormone therapy. Therefore, accurate classification of BRCA subtypes is crucial for personalized 41 
disease management and for improving patient outcomes [8,9]. Currently, therapeutic decision 42 
making in BRCA is based on the expression status of three receptors: estrogen receptor (ER), 43 
progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) [10, 11]. Although 44 
ER, PR, and HER2 status is traditionally determined by immunohistochemistry (IHC), with the 45 
advent of high-throughput technologies for gene expression analysis, new molecular subtypes of 46 
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BRCA have been described. These include luminal A, luminal B, HER2-enriched, basal-like, and 47 
normal-like breast tumors [12-14]. The clinical significance of these intrinsic BRCA subtypes has been 48 
highlighted by their ability to predict treatment response and prognosis [4-7, 15-21]; hence their use 49 
in clinical practice has increased over recent years. Currently, several gene-signature tests based on 50 
microarray or quantitative real-time PCR (qRT-PCR) are commercially available [9, 22, 23].  51 

The clinicopathological surrogate definitions of the intrinsic BRCA subtypes were endorsed by 52 
the 2013 St. Gallen Consensus Recommendations [24]. Luminal A BRCA is hormone receptor (HR) 53 
positive, HER2 negative, and expresses low levels of the protein Ki-67. Luminal B BRCA is HR 54 
positive and either HER2 positive or HER2 negative, with high levels of Ki-67. The HER2-enriched 55 
subtype is HR negative and HER2 positive, and the basal-like subtype is HR negative and HER2 56 
negative (triple-negative BRCA) [25 - 27]. Although the expression profiles and clinical features of 57 
the four intrinsic BRCA subtypes have been extensively studied in the last few years, discordance has 58 
been reported between IHC-based clinical subtypes and intrinsic subtypes in approximately 20–50% 59 
of cases [18, 28, 29]. This discordance might be due to intratumoral heterogeneity, the coexistence of 60 
cells with different subtypes in the same tumor, as well as measurement inaccuracies in subtype 61 
profilers, IHC analysis for ER/PR status, and fluorescence in situ hybridization (FISH) analysis for 62 
HER2 status. These inconsistencies could result in administration of the wrong treatment, 63 
subsequently leading to poor survival [30]. Therefore, accurate identification of receptor status or the 64 
intrinsic BRCA subtype is of high clinical importance.  65 

Recently, multi-omics technologies [31], miRNA profiling [32] and principle component 66 
analysis-based iterative PAM50 subtyping [33] have helped to improve the accuracy of BRCA 67 
subtype classification. However, inconsistencies due to measurement noise remain a challenge in this 68 
classification, especially for tumors with receptor expression levels at the boundary between positive 69 
and negative [33]. With the development of next-generation sequencing (NGS) technologies, the cost 70 
of gene expression profiling (GEP) based on RNA-seq is rapidly decreasing, making it possible to 71 
characterize several clinical and molecular features concurrently using RNA-seq-based GEP at a very 72 
low cost [34, 35]. Prediction of the intrinsic subtype and receptor status (ER, PR, or HER2) in BRCA 73 
using RNA-seq-based GEP would increase the clinical usefulness of RNA-seq technologies in BRCA. 74 
In this study, we assessed whether variations in gene expression are reflected in the expression of 75 
related genes and whether these changes can be identified by GEP to provide more reliable prediction 76 
of the status of the three receptors, thereby improving therapeutic decision making. 77 

 78 

2. Results 79 

2.1. Identification of predictor genes 80 

In this study, IHC-based characterization of receptor status in BRCA was refined by using co-81 
expressed predictor genes. First, predictor genes were identified; seven genes were selected for ER 82 
status prediction, six for PR, and four for HER2 (Table 1). As expected, the ESR1, PGR, and ERBB2 83 
genes, which encode the ER, PR, and HER2 proteins, respectively, were among the predictor genes. 84 
Model training and receptor-status prediction were then performed using the selected genes. The 85 
mismatch rate reported in Table 1 is the percentage of cases in which the IHC-based status differed 86 
from the predicted status. Among the predictor genes, TFF1 and NAT1 were included in an eighteen-87 
gene set previously reported to predict sensitivity to hormone therapy [36]. 88 

Table 1. Summary of mismatch rates and predictor genes for ER, PR, and HER2 status prediction. 

Item 
Mismatch rate [%]* 

Predictor genes 
TCGA METABRIC 

ER 6.28 6.26 ESR1, AGR3, C1orf64, C4orf7, CLEC3A, SOX11, TFF1 
PR 11.43 5.54 PGR, AGR3, ESR1, NAT1, PVALB, S100A7 

HER2 11.85 5.17 ERBB2, CPB1, GSTT1, PROM1 
* Between the IHC-based and the predicted receptor status 
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2.2. Macroscopic landscape 89 

Figure 1 shows uniform manifold approximation and projection (UMAP) plots [38] for receptor 90 
status in the TCGA BRCA cohort. Each point represents a sample; the color of the spots corresponds 91 
to the (a) subtype (PAM50 class), (b) ER status, (c) PR status, and (d) HER2 status of the sample. 92 
Receptor status (ER, PR, or HER2) was provided in the original clinical data based on IHC. The 93 
expression of 100 genes selected by LASSO was used to obtain the two-dimensional UMAP projection. 94 
The luminal A and B subtypes were mostly HER2- and either ER+ or PR+. However, a small 95 
percentage of the luminal A and B subtypes exhibited ER-, PR-, and HER2+. Some patients with 96 
HER2-enriched or basal-like subtype BRCA also showed some level of discordance, as some HER2-97 
enriched and basal-like subtype samples were ER+ or PR+. Although most HER2+ and HER2-98 
enriched subtype samples overlapped, some HER2-enriched subtype samples were found to be 99 
HER2- BRCA that exhibited basal-like subtype features. As only eight patients exhibited normal-like 100 
subtype BRCA in the TCGA dataset, they were not considered in our analyses. 101 

On the other hand, the HER2-enriched subtype samples were ER+ and/or PR+, representing a 102 
luminal subtype. The UMAP plot of the METABRIC dataset revealed a similar macroscopic 103 
landscape (Supplementary Figure 1). Considering that the distance between samples (points) in the 104 
UMAP projection is only an approximation of the relative distance in their gene expression profiles 105 
and that the receptor status was not clearly defined for all samples, Figure 1 implies that IHC/FISH-106 
based characterization of receptor status might result in inaccuracies in BRCA subtype classification. 107 

Figure 2 shows the same UMAP plot based on the predicted values obtained by the linear 108 
classifiers. Compared with IHC-based receptor-status characterization, the predicted status was more 109 
consistent with the intrinsic BRCA subtype classification, especially for the basal-like and luminal 110 
subtypes. Most of the luminal subtypes were ER+ and PR+, and the numbers of ER+ or PR+ samples 111 
in the basal-like subtype were much smaller than after IHC-based status characterization. The UMAP 112 
plot for the METABRIC dataset based on the predicted receptor status (Supplemental Figure 2) led 113 
to the same conclusions, except for PR status, which was not IHC-based in the METABRIC dataset. 114 

2.3. GEP-based receptor-status prediction is reliable for the luminal and basal-like subtypes 115 

To quantify discordance between the intrinsic subtype and the clinical subtype defined by HR 116 
and HER2 status, for each intrinsic subtype, we compared the numbers of positive and negative 117 
instances of HR and HER2 status based on IHC with the numbers obtained using GEP-based 118 
prediction in the TCGA and METABRIC datasets (Table 2). The rates of discordance for the basal-119 
like, luminal A, and luminal B subtypes were lower using GEP-based prediction than using IHC-120 
based status characterization. Specifically, most samples of the luminal A and B subtypes were 121 
characterized as HR+ by GEP-based prediction (except for two samples in the TCGA BRCA cohort), 122 
while some luminal A and luminal B BRCA samples were characterized as HR- based on IHC. In 123 
BRCA patients with the basal-like subtype, a smaller percentage of tumors was determined to be HR+ 124 
using GEP-based prediction (10% in TCGA and 13% in METABRIC) than when using IHC-based 125 
characterization (17% in TCGA and 20% in METABRIC).  126 

On the other hand, considerable discordance was observed in the receptor status of HER2-127 
enriched subtype BRCA patients using both IHC-based characterization and GEP-based prediction. 128 
Only 37% and 23% of patients with HER2-enriched subtype BRCA were HR-/HER2+ in the 129 
METABRIC and TCGA datasets, respectively. Furthermore, 17% and 18% of tumors were triple 130 
negative, and 25% and 9% were luminal-like (HR+ and HER2-) in the METABRIC and TCGA datasets, 131 
respectively. Similar findings were obtained for IHC-based characterization of HR and HER2 status.  132 

In summary, GEP-based prediction was more concordant with the typical receptor-status pattern 133 
of the intrinsic subtypes of patients with the basal-like, luminal A, and luminal B subtypes. However, 134 
this does not necessarily mean that receptor-status prediction based on GEP is more accurate than 135 
IHC-based characterization. The only way to verify the accuracy of the status predictions is to assess 136 
the differences in clinical outcomes among the different clinical subtypes defined by the status of the 137 
three receptors.  138 
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Figure 1. UMAP plot showing the receptor status in the TCGA BRCA cohort. The tumor subtype, as well as 
the status of ER, PR, and HER2, were based on the available clinical data. Gray points are samples with no 
available clinical information. A small percentage of the luminal A and B subtypes were ER-/PR- and HER2+. 
Such discordances were also observed in some BRCA patients with the HER2-enriched and basal-like 
subtypes. Although most HER2+ and HER2-enriched subtype samples overlapped, some HER2-enriched 
subtype samples were found to be HER2- BRCA and to exhibit basal-like subtype features. Some samples 
were ER+ and/or PR+, representing a luminal subtype. 

 

 
Figure 2. UMAP plot showing GEP-based receptor status in the TCGA BRCA cohort. GEP-based prediction 
was used to determine the subtype, as well as the status of ER, PR, and HER2. Compared to the case with 
IHC-based approaches, the predicted status of ER, PR, and HER2 was mostly in accordance with the 
corresponding pattern of receptor status for basal-like, luminal A, and luminal B. In contrast, HER2-enriched 
subtype tumors were highly heterogeneous. 
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Table 2. HR and HER2 status for each intrinsic subtype as determined by (a) IHC- and (b) GEP-based 
prediction. Patients with no available IHC-based receptor status were excluded. 

Dataset Subtype 
(a) IHC-based characterization (b) GEP-based prediction 

HR+/- HER2+/- HR+/- HER2+/- 

TCGA 

Luminal A 222 / 4 24 / 130 229 / 2 4 / 227 
Luminal B 126 / 1 22 / 69 127 / 0 8 / 119 
Basal-like 16 / 78 6 / 59 10 / 87 2 / 95 

HER2-enriched 32 / 24 40 / 10 44 / 14 39 / 19 

METABRIC 

Luminal A 680 / 6 19 / 283 696 / 0 19 / 677 
Luminal B 465 / 1 23 / 171 474 / 0 29 / 445 
Basal-like 61 / 243 14 / 118 40 / 268 24 / 284 

HER2-enriched 119 / 111 50 / 34 125 / 111 119 / 117 
Normal-like 161 / 21 11 / 51 165 / 19 11 / 173 

2.4. GEP-based receptor-status prediction is reliable for the luminal and basal-like subtypes 139 

To verify the accuracy of the receptor-status predictions, survival outcomes for various 140 
combinations of HR and HER2 status were compared. The significance of the prognostic value of 141 
the predicted and IHC-characterized HR and HER2 status was compared. Separate survival 142 
analyses were performed in the following four patient groups: 143 

 144 
(a) HR+ (either ER+ or PR+) group: This group benefited from hormone therapy. According to 145 
the stage and clinical characteristics, these patients often received a combination of hormone 146 
therapy and chemotherapy. For survival analysis, the patients in this group were stratified based 147 
on administration of hormone therapy.   148 

(b) Hormone therapy group: To confirm the benefit of hormone therapy for HR+ patients, only 149 
those who received hormone therapy, with or without chemotherapy, were selected, and the 150 
survival of HR+ patients was compared to that of HR– patients.  151 

(c) HR+/non-luminal subtype group: As shown in Table 2, there were small percentages of HR+ 152 
patients among patients with the HER2-enriched and basal-like subtypes. Hence, we assessed 153 
whether BRCA patients with the HR+ non-luminal subtype benefited from hormone therapy.  154 

(d) HER2+ group: BRCA patients with the HER2+ subtype benefited from anti-HER2 targeted 155 
molecular therapy (TMT). We assessed the survival of HER2+ BRCA patients based on TMT. As 156 
no information regarding TMT was available in the METABRIC dataset, this analysis was 157 
performed only for the TCGA BRCA cohort.  158 

Among patients in the TCGA BRCA cohort, GEP-based receptor-status prediction provided a 159 
higher hazard ratio with higher significance in HR– patients (a), implying that GEP-based receptor-160 
status prediction had higher prognostic value than traditional IHC-based HR status characterization. 161 
On the other hand, in the hormone-therapy group (b), IHC-based receptor-status characterization 162 
was found to be more accurate than GEP-based receptor-status prediction. However, the numbers of 163 
samples in the test group (HR- patients) were only 11 and 19 for receptor-status characterization 164 
based on IHC and GEP, respectively. Among patients with HR+ non-luminal subtype BRCA (c), IHC-165 
based receptor status had no significant prognostic value, in contrast to GEP-based receptor-status 166 
prediction. This finding highlighted that HR+ BRCA patients benefited from hormone therapy, even 167 
if they were diagnosed with non-luminal subtype tumors. Among HER2+ patients (d), IHC-based 168 
receptor-status characterization exhibited higher prognostic value when considering only the p-value. 169 
However, the numbers of patients with IHC-based receptor-status data in the test group (HER2+ 170 
patients with TMT) were only 22 and 18 based on IHC and GEP, respectively, and all patients that 171 
received TMT survived; hence, the hazard ratio could not be precisely determined (Figure 3 and Table 172 
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3). Survival analyses in the METABRIC cohort (excluding patients with a pathological stage of I) 173 
showed similar findings, implying that GEP-based receptor-status prediction had higher prognostic 174 
significance in terms of patient survival compared to traditional IHC-based receptor-status 175 
characterization (Figure 4 and Table 3). 176 

 177 

 178 
Figure 3. . Kaplan–Meier survival analysis of patients from the TCGA dataset using IHC-based (left panel) or 179 
GEP-based (right panel) receptor status. Patients were stratified to those who received hormone therapy (H) 180 
and those who did not (NH). (a) GEP-based receptor status prediction had higher prognostic significance in 181 
terms of patient survival compared to IHC-based HR status. (b) IHC-based receptor-status characterization 182 
was found to be more accurate that GEP-based receptor-status prediction. However, the numbers of samples 183 
in the test group (HR– patients) for receptor-status characterization based on IHC and GEP were only 11 and 184 
19, respectively. (c) IHC-based receptor status had no significant prognostic value, in contrast to GEP-based 185 
receptor-status prediction. (d) The statistical significance of IHC-based receptor-status characterization 186 
indicated higher prognostic value. However, the numbers of patients with IHC-based receptor-status data in 187 
the test group (HER2+ patients with TMT) were only 22 under IHC and 18 under GEP, and all patients who 188 
received TMT survived; hence, the hazard ratio could not be precisely determined.  189 
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 190 

 191 
Figure 4. Kaplan–Meier survival analysis in patients of the METABRIC dataset with a pathological stage of II or 192 
III (excluding pathological stage I). The analysis was performed using IHC-based receptor status (left panel) or 193 
GEP-based receptor status (right panel). GEP-based receptor-status prediction had higher prognostic 194 
significance in terms of patient survival compared to traditional IHC-based receptor-status characterization. 195 
 196 
Table 3. A summary of the hazard ratios and associated statistical significance obtained from survival analyses 
using IHC-based receptor status (IHC) or the predicted status (pred.). For the survival analysis, data from the 
TCGA and METABRIC datasets were used. 

Patient group 
Conditions 
compared 

# of samples p-value Hazard ratio  
IHC  Pred. IHC Pred. IHC Pred. 

TCGA 

(a) HR+ H vs. NH 727 (438, 289) 735 (430, 305) 0.00031 2.1110-05 0.89 1.0 

(b) Hormone therapy HR+ vs. HR- 449 (438, 11) 449 (430, 19) 3.1510-08 3.3810-07 2.23 2.0 

(c) HR+ in HER2e/Basal H vs. NH 44 (23, 21) 50 (21, 29) 0.48 0.045 0.65 1.88 

(d) HER2+ T vs. NT 150 (22, 128) 77 (18, 59) 0.021 0.042 19.4 19.6 

METABRIC 

(e) HR+ H vs. NH 564 (477, 87) 566 (470, 96) 0.76 0.12 0.06 0.28 

(f) Hormone therapy HR+ vs. HR- 511 (477, 34) 511 (470, 41) 0.18 0.047 0.36 0.49 

(g) HR+ in HER2e/Basal H vs. NH 73 (55, 18) 71 (48, 23) 0.66 0.022 0.18 0.77 

HR: hormone receptor; H: with hormone therapy regardless of chemotherapy; NH: without hormone therapy; T: 
with targeted molecular therapy regardless of hormone/chemotherapy; NT: without targeted molecular therapy 
 197 
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2.5. Patients with non-matching receptor status had significantly worse survival 198 

The type of adjuvant therapy is based mainly on the status of the three receptors. Hence, accurate 199 
characterization of receptor status is of high clinical importance. As shown in Figure 5, patients with 200 
matching receptor status had longer overall survival (OS) compared to those with non-matching 201 
status (hazard ratios 0.6 and 0.79 for the TCGA BRCA and METABRIC cohorts, respectively). 202 
Assuming higher accuracy for GEP-based receptor-status prediction, these results highlight the 203 
impact of inappropriate treatment due to errors in receptor-status characterization. Although it is 204 
unlikely that GEP-based receptor-status prediction is 100% accurate, it can identify patients who can 205 
benefit from hormone therapy more reliably than the traditional IHC-based method. 206 
 207 

 208 
Figure 5. Kaplan–Meier survival analysis of patients in the (a) TCGA BRCA cohort and (b) METABRIC dataset 209 
with matching and non-matching receptor status. The hazard ratios of patients with non-matching status were 210 
0.6 for the TCGA BRCA cohort and 0.79 for the METABRIC dataset. 211 

3. Discussion 212 

IHC-based assessment of the expression of a specific protein is undoubtedly an important tool for 213 
detecting biomarkers in clinical practice. However, this procedure entails severe limitations, 214 
including variations in the IHC procedure that can influence the results and their interpretation. As 215 
an alternative, biomarker characterization could be performed at the mRNA level; unfortunately, 216 
high mRNA levels do not necessarily translate into high levels of the corresponding protein. 217 
Additionally, characterization based solely on the expression levels of a single gene or protein 218 
inevitably entails the risk of noise. To overcome these limitations, we considered the potential use of 219 
GEP-based receptor-status prediction for molecular characterization of BRCA subtypes. Changes in 220 
the expression of a gene should be reflected in those of co-expressed genes; therefore, prediction 221 
based on the expression of correlated genes may outperform molecular characterization based on a 222 
single gene. 223 

In the era of biomarker-assisted targeted therapy, the method used to assess biomarker expression 224 
is crucial, as it can improve the prognosis for patients with BRCA and other malignancies. Several 225 
challenges remain to be overcome in biomarker-assisted targeted therapies, such as IHC-determined 226 
borderline HR-positivity, equivocal HER2 amplification, and discordance between IHC-based 227 
subtypes and intrinsic subtypes. Previous studies have shown significant discordance between 228 
clinical subtypes and intrinsic subtypes, which affects the prognosis of BRCA patients. Kim et al. 229 
reported that discrepancies between the IHC-based subtype and the intrinsic subtype were associated 230 
with poor survival, highlighting the limitations of current IHC-based classification methods [30]. 231 
Consistent with previous results, we confirmed the poor survival of patients with non-matching 232 
subgroup classifications in both the TCGA and METABRIC datasets. These results emphasize the 233 
clinical importance of establishing more accurate classification methods. Herein, we evaluated the 234 
concordance between the intrinsic subtype and the predicted status of ER, PR, and HER2 using GEP. 235 
We found a higher concordance rate between the intrinsic subtype and GEP-based receptor-status 236 
prediction compared to receptor status as characterized by IHC. This was consistent in all BRCA 237 
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subtypes except for the HER2-enriched subtype. These findings imply that GEP-based HR status 238 
prediction could be a promising alternative approach to IHC. 239 

Both IHC-based receptor-status characterization and GEP-based status prediction resulted in 240 
considerable discordance between HER2-positivity and the HER2-enriched subtype. Although the 241 
HER2-enriched subtype is the predominant type of HER2-positive BRCA, three other subtypes exist. 242 
A recent study analyzing data from four prospective neoadjuvant trials reported that the percentages 243 
of the luminal A, luminal B, HER2-enriched, and basal-like subtypes among HER2-positive BRCA 244 
patients were 24%, 20%, 47%, and 9%, respectively [39]. This finding may be partly explained by high 245 
intratumoral heterogeneity. Previous genomic analyses have revealed that HER2-positive BRCA is 246 
extremely clinically and biologically heterogeneous [40, 41]. The HER2-enriched subtype is also 247 
highly heterogeneous, rendering IHC/FISH- and PAM50-based subtyping challenging.  248 

Furthermore, the HER2-enriched subtype can have a distinctive transcriptional landscape 249 
independent of HER2 amplification. Analyses in TCGA showed that the HER2-enriched subtype was 250 
characterized by the highest number of DNA mutations, including in TP53 and PIK3CA [26]. 251 
Recently, Daemen A et al. performed genomic and transcriptomic profiling of HER2-enriched tumors; 252 
they concluded that HER2 was not a cancer subtype but rather a pan-cancer phenomenon and that 253 
HER2-positive tumors are hormonally driven [42]. Even though further stratification of HER2-254 
enriched BRCA might be beneficial, it might be difficult to achieve further characterization based on 255 
GEP. To overcome the limitations of macroscopic GEP, different microscopic prediction approaches 256 
could be used, including precise reconstruction of transcriptome data and use of single-cell RNA-seq. 257 
These approaches might achieve more in-depth characterization of the molecular subtypes. 258 

To investigate the clinical relevance of GEP-based prediction of ER, PR, and HER2 receptor status, 259 
we performed survival analysis of HR+ patients who did or did not receive hormone therapy, as well 260 
as of HR+ and HR– patients treated with hormone therapy. GEP-based receptor-status prediction 261 
showed a more significant association between treatment outcomes and HR status compared to IHC-262 
based receptor-status characterization. Of note, some benefit was achieved from hormone therapy by 263 
patients who were identified as HR+ non-luminal BRCA using GEP-based prediction, in contrast to 264 
when IHC-based HR status characterization was performed. These results imply that GEP-based 265 
receptor-status prediction can better identify patients who can benefit from hormone therapy, even 266 
in patients with non-luminal subtype BRCA. Some studies have shown that adjuvant or palliative 267 
hormone therapy is less effective in patients with HR+ BRCA of the non-luminal subtype [43, 44]. 268 
However, there is limited evidence regarding which HR+ non-luminal BRCA patients will benefit 269 
from hormone therapy. Future studies are needed to determine whether GEP-based receptor-status 270 
prediction can address these clinically important questions. In contrast to the HR status, we did not 271 
observe improvement in HER2 status prediction; this may be attributed partially to the small number 272 
of patients who received targeted molecular therapy for HER2. 273 

4. Materials and Methods  274 

The workflow of this study is shown in Figure 6. Our analyses were performed in three steps. First, 275 
we identified common predictor genes from two different gene-expression datasets. Second, we 276 
predicted ER, PR, and HER2 status based on the shared predictor genes. Finally, we compared 277 
survival outcomes according to IHC-based and GEP-based predictions of receptor status. 278 

4.1. Datasets 279 

For this study, we used BRCA patients’ gene-expression-profile and clinical data acquired from 280 
the cancer genome atlas (TCGA) [http://firebrowse.org/] and the Molecular Taxonomy of Breast 281 
Cancer International Consortium (METABRIC) databases [https://www.cbioportal.org/] [27]. Both 282 
datasets include information on the history of adjuvant treatment, which was a critical element in the 283 
survival analyses performed in this study. A summary of the data contained in the two datasets is 284 
shown in Table 4. 285 

 286 
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Figure 6. Workflow of gene selection, model training, receptor-status prediction, and survival analysis. 

 
 287 
The TCGA BRCA dataset contained data from tumor samples (n = 1,092 patients) and adjacent 288 

normal tissues (n = 112 patients). The METABRIC dataset contained data from 2,506 tumor samples, 289 
including GEP data from 1,904 patients. The TCGA and METABRIC datasets also contained clinical 290 
data, including ER, PR, and HER2 status, as well as histories of surgery, radiation-therapy, and drug 291 
treatments; however, clinical data were not available for all of the patients. Information regarding the 292 
tumor subtype was available for some samples in the TCGA BRCA dataset; PAM50 mRNA profile 293 
information was available for 523 of 1,092 patients [26]. To ensure consistency between the two 294 
datasets, information on ER and HER2 status as determined by IHC was used for patients in the 295 
METABRIC dataset. Non-IHC-based PR status was used for the METABRIC cohort because the PR 296 
status was not assessed by IHC in these patients. 297 

 298 
Table 4. A summary of data availability in the TCGA BRCA cohort and METABRIC dataset. 

Item TCGA BRCA cohort METABRIC Comment 
Gene expression profile Yes Yes  
PAM50-based subtype Yes (partially) Yes  
ER status Yes (IHC) Yes (IHC, non-IHC) Used IHC-based status 
PR status Yes (IHC) Yes (non-IHC) Used for receptor status 
HER2 status Yes (IHC) Yes (IHC, non-IHC) Used IHC-based status 
RPPA measurements Yes No  

Types of drug treatment 
Chemo, hormone and 

targeted molecular therapy 
Chemo and hormone 

therapy Used for survival analysis 

Age at initial diagnosis Yes Yes Used for sample selection 
Pathological stage Yes Yes Used for sample selection 

4.2. Prediction model and gene selection 299 

Based on GEP and the status of the three receptors, logistic regression with LASSO penalty was 300 
performed in a supervised mode to identify predictor genes for each of the two datasets. This analysis 301 
was performed using the R package glmnet [45-47]. In the TCGA BRCA dataset, the expression levels 302 
of 17,202 genes were log2-transformed and normalized. In the METABRIC dataset, already 303 
normalized mRNA expression data were used. To identify the common predictor genes and 304 
minimize overfitting-related errors, LASSO penalty weights were selected for a set of predefined 305 
genes (e.g., 10, 20, 40, and 60), and for each number, the penalty weight that led to the closest number 306 
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of selected genes was chosen. This approach was conducted separately for the TCGA and METABRIC 307 
datasets. Common predictor genes between TCGA and METABRIC were then identified to avoid 308 
dataset-related dependencies. After inspecting the overall number of shared genes, 40 genes were 309 
selected; these contained 7, 6, and 4 common predictor genes for ER, PR, and HER2, respectively, as 310 
summarized in Table 1. Subsequently, logistic regression was performed again to train the models 311 
for ER, PR, and HER2 status prediction for both TCGA and METABRIC. The mismatch rate was 312 
obtained by fivefold cross-validation. 313 

Pairwise correlations of gene-expression levels between the selected genes are shown in 314 
Supplementary Figures 4, 5, and 6. Of note, PR predictor genes included ESR1 and AGR3, which were 315 
also ER predictor genes. Furthermore, among the four HER2 predictor genes, CPB1, GSTT1, and 316 
PROM1 showed only small correlations with ERBB2, implying that HER2 status prediction was 317 
determined predominantly by ERBB2. 318 

4.3. Survival analysis for accuracy evaluation and sample selection  319 

The survival analyses were performed for various group/condition pairs; significance (p-value) 320 
was used as an accuracy criterion. Cox’s proportional hazard model was used to determine overall 321 
survival [48]; the analysis was repeated using the IHC-based status and the predicted status. For the 322 
survival analysis based on IHC-based receptor status, we used those samples for which IHC-based 323 
receptor status was available. For the survival analysis based on predicted-receptor status, we used 324 
the same set of samples without considering discrepancies between the predicted status and the IHC-325 
based status. As shown in Table 1, in 5–12% of cases, the predicted status differed from the IHC-326 
based status.     327 

Additionally, for the survival analyses, patients were selected according to the following criteria: 328 
(1) pathological cancer stage I, II, or III and (2) age <80 years at initial diagnosis. Subsequently, 329 
patients were stratified according to adjuvant drug treatments. The characteristics of the patients 330 
included in the survival analyses are summarized in Table 5.  331 

 332 
Table 5. A summary of the samples available in the TCGA and METABRIC datasets. 

Variable Conditions 
The number of available samples 
In TCGA In METABRIC 

Age  80 years 1,039 1,783 

Pathologic stage:  

I 170 464 
II 598 736 
III 232 105 

Therapy applied: 

Chemotherapy 578 393 
Hormone therapy 495 1,084 
Both chemo- and hormone therapy 324 181 
Targeted molecular therapy 30 NA 

ER status: 

Positive 760 1,339 

Negative 230 418  

NA 2 0 

PR status: 

Positive 663 946 

Negative 324 837 

NA 4 0 

HER2 status: 

Positive 159 114 

Negative 524 647 

NA 182 27 
* For ER, PR, and HER2 status; ‘indeterminate’ and ‘equivocal’ were reported as NA. 
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5. Conclusions 333 

Therapeutic decision making in BRCA is heavily based on the clinical subtype defined by HR and 334 
HER2 expression status. NGS-based approaches could allow more accurate characterization of the 335 
various molecular and clinical features of BRCA. GEP-based receptor-status prediction could provide 336 
a better understanding of BRCA pathology and guide physicians in decision making. To improve the 337 
performance of GEP-based prediction models, data from larger cohorts are required for 338 
standardization of the procedure. In addition, a more comprehensive analysis of receptor status 339 
should be performed to identify the characteristics that affect the positivity or negativity of the status 340 
of the three receptors, as well as the mechanisms responsible for the discordance between intrinsic 341 
subtype and clinical subtype. 342 

Supplementary Materials: The following materials contain some of TCGA and METABRIC clinical data and the 343 
new predictions on the 3-receptor status, which were used for the survival analyses in this work.  344 

1. TCGA_BRAC_clinical_data_n_pred_status.csv:   345 
2. METABRIC_clinical_data_n_pred_status.csv 346 
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Supplemental Figures 463 

 464 

 465 
Supplemental Figure 1. UMAP plot showing receptor status of patients in the METABRIC dataset. The tumor 466 
subtype and ER, PR, and HER2 status were based on the available clinical data. Gray points are samples with 467 
no available clinical information. The UMAP plot of the METABRIC dataset revealed a similar macroscopic 468 
landscape to that for TCGA. 469 

 470 

 471 
Supplemental Figure 2. UMAP plot showing receptor status of patients in the METABRIC dataset. GEP-based 472 
prediction was used to determine the subtype, as well as the status of ER, PR, and HER2. Similar to TCGA, the 473 
predicted ER and HER2 status (but not PR) was mostly in accordance with the corresponding pattern of receptor 474 
status for the basal-like, luminal A, and luminal B subtypes. 475 
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 476 

Supplemental Figure 3. Scatter plots and Pearson’s correlation coefficients of seven predictor genes for ER 477 
status prediction. Blue: ER+; red: ER–; empty circle: NA. ER status characterization was based on IHC. 478 

 479 
 (a) TCGA                                   (b) METABRIC 480 

Supplemental Figure 4. Scatter plots and Pearson’s correlation coefficients of seven predictor genes for ER status 481 
prediction. Blue: ER+; red: ER–; empty circle: NA. ER status characterization was based on IHC. 482 

 483 
 (a) TCGA                                   (b) METABRIC 484 

Supplemental Figure 5. Scatter plots and Pearson’s correlation coefficients of six predictor genes for PR status 485 
prediction. Blue: PR+; red: PR–; empty circle: NA. The PR status of TCGA samples was based on IHC, whereas 486 
that of METABRIC samples was not based on IHC. The PR-status predictor genes included ESR1 and AGR3, 487 
which were also predictor genes for ER status. 488 
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 489 
 (a) TCGA                      (b) METABRIC 490 

Supplemental Figure 6. Scatter plots and Pearson’s correlation coefficients of four predictor genes for HER2 491 
status prediction. Blue: HER2+; red: HER2–; empty circle: NA. CPB1, GSTT1, and PROM1 showed weak 492 
correlations with ERBB2, implying that HER2 status prediction was determined predominantly by ERBB2. 493 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 30, 2020. ; https://doi.org/10.1101/2020.03.29.014050doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.29.014050
http://creativecommons.org/licenses/by/4.0/

