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Abstract 

Single-cell technology has opened the door for studying signal transduction in a 
complex tissue at unprecedented resolution. However, there is a lack of analytical 
methods for de novo construction of signal transduction pathways using single-cell 
omics data. Here we present CytoTalk, a computational method for de novo 
constructing cell type-specific signal transduction networks using single-cell RNA-
Seq data. CytoTalk first constructs intracellular and intercellular gene-gene interaction 
networks using an information-theoretic measure between two cell types. Candidate 
signal transduction pathways in the integrated network are identified using the prize-
collecting Steiner forest algorithm. We applied CytoTalk to a single-cell RNA-Seq 
data set on mouse visual cortex and evaluated predictions using high-throughput 
spatial transcriptomics data generated from the same tissue. Compared to published 
methods, genes in our inferred signaling pathways have significantly higher spatial 
expression correlation only in cells that are spatially closer to each other, suggesting 
improved accuracy of CytoTalk. Furthermore, using single-cell RNA-Seq data with 
receptor gene perturbation, we found that predicted pathways are enriched for 
differentially expressed genes between the receptor knockout and wild type cells, 
further validating the accuracy of CytoTalk. In summary, CytoTalk enables de novo 
construction of signal transduction pathways and facilitates comparative analysis of 
these pathways across tissues and conditions.  
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Introduction 

Single-cell RNA sequencing (scRNA-Seq) technologies are increasingly being used to 
characterize the heterogeneity of a complex tissue. Beyond cataloguing cell types and 
transcript abundance, it is critical to understand how different cell types interact with 
one another to give rise to the emergent tissue complexity. Signal transduction is the 
primary mechanism for cell-cell communication. scRNA-Seq technology holds great 
promise for studying cell-cell communication at much higher resolution. Using 
scRNA-Seq data, several methods have been developed to infer ligand-receptor pairs 
that are active between two cell types. Skelly et al. 1 and Kumar et al. 2 predict ligand-
receptor pairs if both genes are expressed in the cell types considered. Zhou et al. 3 
and Vento-Tormo et al. 4 identify ligand-receptor pairs whose expression is specific to 
the cell types considered. Signaling pathways are highly dynamic and crosstalk 
among them is prevalent. Due to these two features, simply examining expression 
levels of ligand and receptor genes cannot reliably capture the overall activities of  
signaling pathways and interactions among them 5,6. As a step forward, Wang et al. 7 
developed SoptSC and Browaeys et al. 8 developed NicheNet to identify both ligand-
receptor pairs and genes downstream of them. However, these methods are based on 
known annotations of signaling pathways. To our knowledge, currently no method 
exists to perform de novo prediction of the entire signal transduction pathways 
emanating from the ligand-receptor pairs.  

Here we describe the CytoTalk algorithm for de novo construction of signaling 
network (union of multiple signaling pathways) between two cell types using scRNA-
Seq data. The algorithm first constructs an integrated network consisting of intra-
cellular and inter-cellular functional gene interactions. It then identifies the signaling 
network by solving a prize-collecting Steiner forest problem. We demonstrate the 
performance of the algorithm using high throughput spatial transcriptomics data and 
scRNA-Seq data with perturbation to the receptor genes in a signaling pathway. A 
software package implementing the CytoTalk algorithm has been deposited at GitHub 
(https://github.com/tanlabcode/CytoTalk). 

 
Results 

Wiring of signaling pathways is highly cell type-dependent 

A hallmark of signal transduction pathways is their high level of cell-type specific 
wiring pattern. Single-cell transcriptome data allows us to examine the cell type-
specific activity of individual signaling pathways beyond just ligand and receptor 
genes. To this end, we examined the canonical fibroblast growth factor receptor 2 
(FGFR2) signaling pathway in two tissue types, mammary gland and skin. Four 
canonical downstream pathways are known to signal from FGFR2 9, including Janus 
kinase and signal transducer and activator transcription proteins (JAK-STAT), protein 
kinase C (PKC), mitogen-activated protein kinase (MAPK) and phosphoinositide 3-
kinase and protein kinase B (PI3K/AKT) pathways. For mammary gland, we studied 
FGFR2 signaling between fibroblasts and luminal epithelial cells. For skin, we 
studied FGFR2 signaling between keratinocyte stem cells and basal cells. Using 
published scRNA-Seq data 10 for each tissue type, we computed an expression 
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specificity score, preferential expression measure (PEM) 20,21, for each pathway gene 
in each involved cell type (Fig. 1a and 1b). We found that the four canonical sub-
pathways downstream of the same receptor (FGFR2) exhibit striking cell type-
specific activities, depending on the cell types involved. The PI3K/AKT pathway is 
most active for signaling between fibroblasts and luminal epithelial cells in the 
mammary gland. In contrast, The JAK-STAT pathway is most active for signaling 
between keratinocyte stem cells and basal cells in skin. To evaluate the extent of cell 
type-specific wiring of signaling pathways, we examined all manually annotated 
signaling pathways in the Reactome database 11. For each pathway, we computed its 
cell type-specific activity score using the same mammary gland and skin scRNA-Seq 
data sets 10. We found that the majority of pathways exhibit high degree of cell type-
specific activities (Fig. 1c and 1d). This is true even for the same cell types but 
located in different tissues, such as basal cells in mammary gland versus in skin (Fig. 
1e). In summary, these results highlight the need for analytical tools for de novo 
construction of complete signaling pathways (instead of ligand-receptor pairs) using 
single-cell transcriptome data.  
 
Overview of the CytoTalk algorithm 

CytoTalk is designed for de novo construction of a signal transduction network 
between two cell types (Fig. 2, Methods), which is defined as the union of multiple 
signal transduction pathways. It first constructs a weighted integrated gene network 
comprised of both intracellular and intercellular functional gene-gene interactions. 
Intracellular functional gene interactions are computed and weighted using mutual 
information between two genes. Two intracellular networks are connected via 
crosstalk edges (i.e. known ligand-receptor interactions). Ligand-receptor pairs with 
higher cell-type-specific gene expression but lower correlated expression within the 
same cell type (thus more likely to be involved in crosstalk instead of self talk) are 
assigned higher crosstalk weights. Nodes in the integrated network are weighted by a 
combination of their cell-type-specific gene expression and closeness to the 
ligand/receptor genes in the network. We use a network propagation procedure to 
determine the closeness of a gene to the ligand/receptor gene. With the integrated 
network as the input, we formulate the identification of signaling network as a prize-
collecting Steiner forest (PCSF) problem 12,13. The rationale for using the PCSF 
algorithm is to find an optimal subnetwork that includes genes with high level of cell-
type-specific expression and close connections to high-scoring ligand-receptor pairs. 
This optimal subnetwork is defined as the signaling network between the two cell 
types. The statistical significance of the candidate signaling network is computed 
using a null score distribution of signaling networks generated using degree-
preserving randomized networks. 
 
Performance evaluation using spatial transcriptomics data  

To evaluate the performance of CytoTalk, we applied it to a scRNA-Seq data set on 
mouse visual cortex 14. The data set covers the following cell types, glutamatergic 
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neurons, GABAergic neurons, astrocytes, microglia, endothelial cells, 
oligodendrocytes and oligodendrocyte precursor cells. On average, 6,358 genes were 
detected per cell. Among the covered cell types, endothelial cells are known to signal 
to microglia and astrocytes and astrocytes and glutamatergic neurons are known to 
signal to each other 15-19. We identified signaling networks between the three pairs of 
cell types, endothelial-microglia (EndoMicro), endothelial-astrocyte (EndoAstro) and 
astrocyte-neuron (AstroNeuro), respectively. The predicted cell-type-specific 
signaling networks consist of 481, 404, and 1051 genes and involves 51, 44, and 35 
ligand-receptor interactions (crosstalk edges), respectively. Compared to PCSFs 
identified using 1000 randomized input networks, all predicted signaling networks 
have significantly smaller objective function scores and larger fractions of crosstalk 
edges (empirical p-values < 0.001, Supplementary Fig. 3). Several predicted ligand-
receptor pairs are known to mediate signal transduction between the three cell types. 
For example, TGFB1 secreted by microglia is known to bind to ACVR11 that is 
expressed on neighboring endothelial cells in the mouse visual cortex 20. Astrocytes 
are known to express VEGFA that can signal to endothelial cells in the central 
nervous system (CNS) via KDR (or VEGFR2), which is important for CNS 
angiogenesis and the formation of the blood-brain barrier 16,21. N1GN1 expressed on 
astrocytes can interact with NRXN1 expressed on neurons to control astrocyte 
morphogenesis and synaptogenesis 19. 

To systematically evaluate the performance of CytoTalk, we used a matched  
sequential fluorescence in situ hybridization (SeqFISH+) data set 20, covering the 
same set of cell types as the scRNA-Seq data set. On average, this data set provides 
spatially resolved abundance of 5,826 transcripts (3,344 genes) per cell. For each pair 
of cell types under study, we divided cell pairs into three groups based on their 
physical distances determined using the seqFISH+ data (Supplementary Fig. 1a, 1b). 
We then calculated the seqFISH+ expression correlation among signaling pathway 
genes across the three groups of cell pairs (Fig. 3a, Methods). Our rationale is that 
cells that are close together are more likely to signal to each other. Therefore, bona 
fide signaling pathway genes are expected to have higher spatial expression 
correlation in these cells than cells that are further apart.  

We compared CytoTalk to six published algorithms, four designed for 
predicting ligand-receptor pairs 1-4 and two designed for predicting full signaling 
pathways based on known pathway annotations 7,8. Since a comprehensive list of true 
ligand-receptor pairs are not available for the three cell type pairs, we first asked what 
fractions of the predicted ligand-receptor pairs are shared among the six methods. We 
reason that a more accurate method will have on average a larger fraction of 
overlapped predictions with all other methods. Indeed, we found that CytoTalk has the 
largest average overlap with the rest of the methods (Supplementary Fig. 2), 
suggesting that CytoTalk has the highest accuracy among the seven methods. 

To further benchmark the performance, we next used SeqFISH+ data 20 to 
corroborate pathway predictions using scRNA-Seq data alone 14. For endothelial and 
microglia cells, there are 68, 201, and 291 cell pairs in the close, intermediate and 
distant groups (Supplementary Fig. 1c). We found that signaling pathways predicted 
by CytoTalk have significantly larger Pearson correlation coefficients (PCCs) across 
close endothelial-microglia cell pairs than expected by chance (one-sided 
Kolmogorov-Smirnov test p-value = 3.6E-7) whereas the PCCs among intermediate 
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and distant cell pairs are indistinguishable from the null distribution, thus providing 
support to our predictions (Fig. 3a, 3b). In comparison, predicted pathway genes by 
other methods show no or less significant difference in PCC compared to randomly 
selected gene pairs among close cell pairs, except for the signaling networks predicted 
by NicheNet and SoptSC (Fig. 3b). However, pathways predicted by NicheNet and 
SoptSC also show significantly larger PCCs compared to random gene pairs among 
intermediate and distant cell pairs, suggesting that those predictions are false positive 
predictions.  

For predicted EndoAstro and AstroNeuro signaling networks, we also found 
that CytoTalk predictions have significantly larger PCCs only among close cell pairs. 
In comparison, predictions by other methods do not show this trend, except the 
EndoAstro signaling network predicted by SoptSC (Fig. 3c, 3d). Taken together, these 
results demonstrate that CytoTalk has significant improvement over published 
methods.  

 
Performance evaluation using scRNA-Seq data without receptor gene expression  

To further evaluate the accuracy of CytoTalk, we applied it to a scRNA-Seq data set 
in which the transcriptomes of wild type and receptor gene knockout cells were 
compared 22 . The data set covers 13 cell types in the mouse lung, including T and B 
cells, neutrophils, basophils, monocytes, macrophages, endothelial cells, alveolar type 
I (AT1) and type II (AT2) cells, club cells, smooth muscle cells, fibroblasts and 
pericytes. On average, 2,627 transcripts (1,143 genes) were detected per cell. The 
authors discovered a novel signaling pathway involving interleukin 33 (IL33) secreted 
by AT2 cells and interleukin 1 receptor like 1 (IL1RL1) on basophils 22. Using this 
data set, we first asked whether the IL33-IL1RL1 interaction between AT2 cells and 
basophils can be predicted. We found that all three methods (CytoTalk, NicheNet, and 
SoptSC) can identify the IL33-IL1RL1 interaction. We then evaluated the prediction 
accuracy using receiver operating characteristic (ROC) curve. To this end, we used 
the differentially expressed genes (DEGs) between IL1RL1-knockout and wild type 
basophils as the ground truth. We found that predictions by CytoTalk have a higher 
area under the ROC curve (Fig. 4a). Furthermore, the downstream pathway genes 
predicted by CytoTalk tend to be more significantly differentially expressed compared 
to the genes predicted by the other two methods (one-sided Wilcoxon p-values < 
1.0E-26, Fig. 4b). Taken together, these results provide additional support for the 
improved performance of CytoTalk compared to existing methods. 
 
Discussion 

We introduce a computational method, CytoTalk, for the construction of cell-type-
specific signal transduction pathways using scRNA-Seq data. The input to CytoTalk 
are scRNA-Seq data and known ligand-receptor interactions. Unlike previous 
methods using known pathway annotations 7,8 , CytoTalk constructs full pathways de 
novo. 

Systematic evaluation of predicted signaling pathways represents another 
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major challenge due to the lack of gold standard pathway annotations. Here, we 
propose two benchmarking strategies using single-cell spatial transcriptomics data 
and perturbation-based scRNA-Seq data, respectively. Using spatial transcriptomics 
data, cells of two types can be stratified into groups of cell-pairs based on the physical 
distances between them. The predicted signaling pathways can be validated by 
computing the spatial expression correlation for pathway genes across cell pairs. 
Using perturbation-based scRNA-Seq data, especially data with ligand/receptor gene 
knockout, differentially expressed genes between the perturbed and wild type cells 
can be used to validate predicted pathways. Using these two benchmarking 
approaches, we demonstrated that CytoTalk significantly outperforms six existing 
methods that also use scRNA-Seq data to characterize cell-cell communication. 

In the current version of CytoTalk, the node prize is defined based on cell-
type-specificity of gene expression. Thus, CytoTalk may fail to identify signaling 
pathways whose genes have low expression specificity in the cell types under study. 
To address this issue, the node prize can be redefined by considering both absolute 
gene expression level and cell-type-specificity of gene expression. It is also well 
known that activity of a signaling pathway is regulated by post-translational 
modifications. With the rapid development of single-cell proteomics technologies 23, 
CytoTalk can be further improved by incorporating such data.  

In summary, CytoTalk provides a much-needed means for de novo 
construction of complete cell-type-specific signaling pathways. Comparative analysis 
of signaling pathways will lead to a better understanding of cell-cell communication 
in healthy and diseased tissues. 

 
Methods 

Construction of intracellular functional gene interaction network 

We construct an intracellular gene co-expression network for each cell type by 
calculating the mutual information between all pairs of genes using the infotheo R 
package 24. Edges representing indirect functional relationship between genes are 
removed using the data processing inequality criterion implemented in the parmigene 
package 25-27. Mutual information value is used as the edge weight in the two 
intracellular networks. 
 
Crosstalk score of a ligand-receptor pair between two cell types 

Cell-cell communication in multi-cellular organism can be mediated by autocrine 
signaling, paracrine signaling and juxtacrine signaling (contact-mediated signaling). 
There is a fundamental trade-off between autocrine and paracrine signaling 28. The 
former enables a single cell to talk to itself whereas the latter is designed to allow 
multiple cell types to talk to each other. Motivated by this observation, we define a 
crosstalk score between gene i in cell type A and gene j in cell type B as below. Genes 
i and j encode a ligand and a receptor or vice versa. 

𝐶𝑟𝑜𝑠𝑠𝑡𝑎𝑙𝑘	𝑠𝑐𝑜𝑟𝑒!",$% = 𝑁𝑜𝑟𝑚(𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	𝑠𝑐𝑜𝑟𝑒!",$%) × 𝑁𝑜𝑟𝑚(𝑁𝑜𝑛-𝑠𝑒𝑙𝑓-𝑡𝑎𝑙𝑘	𝑠𝑐𝑜𝑟𝑒!",$%) 
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𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	𝑠𝑐𝑜𝑟𝑒!",$% = (𝑃𝐸𝑀!" + 𝑃𝐸𝑀$%)/2 

𝑁𝑜𝑛-𝑠𝑒𝑙𝑓-𝑡𝑎𝑙𝑘	𝑠𝑐𝑜𝑟𝑒!",$% = [(−𝑙𝑜𝑔&'
()!";$"

*+,	{/!",/$"}
) + (−𝑙𝑜𝑔&'

()!%;$%
*+,	{/!%,/$%}

)]/2, 

where 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	𝑠𝑐𝑜𝑟𝑒!",$%  is defined as the average preferential expression 
measure 29,30 (PEM, defined below) values of gene i and j in cell types A and B, 
respectively. 𝑁𝑜𝑛-𝑠𝑒𝑙𝑓-𝑡𝑎𝑙𝑘	𝑠𝑐𝑜𝑟𝑒!",$% is defined based on information-theoretic 
measures. 𝑀𝐼!";$" (or 𝑀𝐼!%;$%) is the mutual information between genes i and j in 
cell type A (or cell type B). min{𝐻!∗, 𝐻$∗} is the upper bound of the mutual 
information and is used to normalize the mutual information values to [0, 1]. 𝐻!" and 
𝐻$" are Shannon entropy of genes i and j in cell type A, respectively. 𝐻!% and 𝐻$% 
are Shannon entropy of genes i and j in cell type B, respectively. The crosstalk score 
equals the product of the min-max normalized expression score and non-self-talk 
score. If genes i and j are specifically expressed in cell types A and B, respectively, 
but are not co-expressed in either cell type (likely involved in self-communication), 
the 𝐶𝑟𝑜𝑠𝑠𝑡𝑎𝑙𝑘	𝑠𝑐𝑜𝑟𝑒!",$% would be high, suggesting a high possibility of crosstalk 
between the two cell types.  

The PEM value for defining cell-type-specificity of gene i in cell type A is 
defined as following: 

𝑃𝐸𝑀!" = log10(𝐸𝑥𝑝𝑟!"/𝑒!") 

𝑒!" = E 𝐸𝑥𝑝𝑟!* ×
𝑠∗"

∑ 𝑠∗*+
*,-

+

*,-

 

where 𝐸𝑥𝑝𝑟!" is the observed expression of gene i in cell type A. 𝑒!" is the expected 
expression of gene i in cell type A under the null hypothesis of uniform expression 
across all M cell types in the scRNA-Seq data. 𝐸𝑥𝑝𝑟!* represents the expression of 
gene i in cell type m. 𝑠∗* is the sum of expression of all genes in cell type m. 𝑠∗" is 
the sum of expression of all genes in cell type A. Since we focus on genes that are 
expressed higher in a cell type rather than lower, 𝑃𝐸𝑀!" is set to zero if it is 
negative.  

 
Construction of an integrated network between two cell types 

We construct an integrated network consisting of two intracellular networks 
connected by known ligand-receptor interactions. We collected 1,941 manually 
annotated ligand-receptor interactions, including 1,894 interactions from 31 and 47 
interactions from 32-36 (Supplementary Table 2). Note that both secreted and cell-
surface proteins could be ligands. For each ligand-receptor pair, if the ligand gene and 
the receptor gene are present in the two intracellular networks, we connect them and 
denote the edge as a crosstalk edge. The crosstalk score is used as the edge weight as 
described above. Due to the difference in scale between mutual information value and 
crosstalk score, we separately normalize the edge weights of intracellular networks 
and crosstalk edges using z-score transformation.  
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De novo identification of signaling network between two cell types 

We formulate the identification of a signaling network between two cell types as a 
prize-collecting Steiner forest (PCSF) problem 12,37. Because the forest is a disjoint set 
of trees, PCSF problem is a generalization of the classical prize-collecting Steiner tree 
(PCST) problem 38,39. The individual signaling pathways are represented as trees, the 
collection of which (forest) represents the entire signaling network between two cell 
types.  

We define edge costs and node prizes in the integrated network as follows. 
The z-score normalized edge weights of the integrated network are first scaled to the 
range of [0, 1]. Edge cost is then defined as 1 − 𝑠𝑐𝑎𝑙𝑒𝑑_𝑒𝑑𝑔𝑒_𝑤𝑒𝑖𝑔ℎ𝑡. Node prize is 
defined based on both PEM value of a gene and its closeness to the ligand/receptor 
genes in the network in order to identify signaling networks centered around the 
crosstalk edges. To capture the closeness, we use a network propagation procedure to 
calculate a relevance coefficient for each gene in an intracellular network. 

𝑹𝒆𝒍𝒆𝒗𝒂𝒏𝒄𝒆𝒕 = 𝛼𝑾′𝑹𝒆𝒍𝒆𝒗𝒂𝒏𝒄𝒆𝒕/𝟏 + (1 − 𝛼)𝑹𝒆𝒍𝒆𝒗𝒂𝒏𝒄𝒆𝟎 

where 𝑹𝒆𝒍𝒆𝒗𝒂𝒏𝒄𝒆𝒕 is the relevance coefficient vector for all genes in the 
intracellular network at iteration t. 𝑹𝒆𝒍𝒆𝒗𝒂𝒏𝒄𝒆𝟎 is the initial value of the relevance 
coefficient vector such that 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒2(𝑖) = 1 if gene i is a ligand or receptor. 
Otherwise, 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒2(𝑖) = 0. 𝑾′ is a normalized edge weight matrix for an 
intracellular network, which is defined as 𝑾3 = 𝑫/𝟏/𝟐𝑾𝑫/𝟏/𝟐. Here, W is set to the 
original mutual information matrix and D is defined as a diagonal matrix such that 
𝐷(𝑖, 𝑖) is the sum of row i of the matrix W. This network propagation procedure is 
equivalent to a random walk with restart on the network. 𝛼 is a tuning parameter that 
controls the balance between prior information (known ligands or receptors) and 
network smoothing. Node prize of a gene is defined as the product of its PEM value 
and the relevance coefficient to capture both the cell-type-specificity and the 
closeness of this gene to the ligand or receptor gene in the network. To avoid 
extremely large node prizes for ligand or receptor genes, we used 𝛼 = 0.9 in this 
study. 

The PCSF algorithm identifies an optimal forest in a network that maximizes 
the total amount of node prizes and minimizes the total amount of edge costs in the 
forest. While PCSF problem is NP-hard and often needs a high computational cost 37, 
we employ a PCSF formulation established in 37,40 and use a highly efficient prize-
collecting Steiner tree (PCST) algorithm 41,42 to identify the PCSF. The objective 
function of the PCSF problem is defined as below. 

min
6
𝑐(𝐹) + 𝛽 × 𝑝(𝐹c) + 𝜔 × 𝑘 

where F represents a forest (i.e. multiple disconnected trees) in the integrated 
network. 𝑐(𝐹) denotes the sum of edge costs in the forest F and 𝑝(𝐹c) denotes the 
sum of node prizes of the remaining subnetwork excluding the forest F from the 
network. We modify the integrated network by introducing an artificial node and a 
number of artificial edges to the original network. The artificial edges connect the 
artificial node to all genes in the original network. The costs of all artificial edges are 
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the same and are defined as 𝜔, which influences the number of trees, k, in the 
resulting PCSF. 𝛽 is a parameter for balancing the edge costs and node prizes, which 
influences the size of the resulting PCSF. By tuning parameters 𝛽 and 𝜔, multiple 
PCSTs can be identified with the artificial node as the root node. For each identified 
PCST, a PCSF can be obtained by removing the artificial node and artificial edges 
from the PCST. 

We identify the signaling network between two cell types by searching for a 
robust PCSF across the full parameter space (Supplementary Fig. 4). For each 
identified PCSF, we compute the occurrence of each edge in all identified PCSFs to 
construct a background distribution of edge occurrence frequency. Next, we calculate 
a p-value for each PCSF by comparing the edge occurrence frequency distribution of 
this PCSF to the distribution of all other identified PCSFs using one-sided 
Kolmogorov-Smirnov test. The PCSF with the minimum p-value is considered as the 
most robust signaling network predicted by CytoTalk. 

To further evaluate the statistical significance of the identified PCSF, we 
construct null distributions for the objective function and for the fraction of crosstalk 
edges in a PCSF using 1000 null PCSFs identified from randomized integrated 
networks (Supplementary Fig. 3). To generated the randomized networks, we 
separately shuffle the edges of the two intracellular networks while preserving the 
node degree distribution, node prizes and crosstalk edges as the original integrated 
network.  

 
Parameter selection 

The main parameters of CytoTalk are 𝛽 and 𝜔 in the objective function of the 
PCSF problem. We first determined the optimal ranges of the two parameters based 
on the size and overlap of the resulting PCSFs. For the mouse visual cortex data set, 
𝛽 values were tested from 1 to 60 with a step size of 1. For the mouse lung tissue data 
set, 𝛽 values were tested from 5 to 300 with a step size of 5. We found using 𝛽 
values above these ranges resulting in very large PCSFs (> 2000 edges) 
(Supplementary Fig. 4a-4d). For both data sets, 𝜔 values were tested from 0.1 to 1.5 
with a step size of 0.1. We found using 𝜔 values above this range resulting in PCSFs 
with little difference compared to existing PCSFs (Supplementary Fig. 4e-4h). 
Subsequent optimal parameter selection was conducted using the above parameter 
ranges. For all PCSFs identified using the β and ω ranges determined above, the 
occurrence frequency of each edge in a PCSF was computed to construct a 
background distribution of edge occurrence frequency. A p-value for each PCSF was 
computed by comparing the edge occurrence frequency distribution of this PCSF to 
the distribution of all other PCSFs using one-sided Kolmogorov-Smirnov test. The 
PCSF with the minimum p-value (red dot) was considered as the most robust 
signaling network predicted by CytoTalk (Supplementary Fig. 4i-4l). 
 
Processing of scRNA-Seq data 

For all scRNA-Seq data sets used in this study (Supplementary Table 1), we only 
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retained protein-coding genes based on annotations from the GENCODE database 43. 
We removed genes expressed in less than 10% of all cells of a given type. 

For identifying differentially expressed genes between IL1RL1-knockout and 
wild type basophils, we first filtered out genes that have fewer than 5 sequencing 
counts in at least 5 cells. Then, we used the zinbwave function in the zinbwave R 
package 44 to model the zero inflation of the counts. The DESeq2 R package 45 was 
used to perform differential expression analysis. P-values were adjusted for multiple 
testing using the method of Benjamini-Hochberg 46. 619 differentially expressed 
genes with adjusted p-values < 0.05 were identified. 

 
Processing of SeqFISH+ data 

The SeqFISH+ data set was downloaded from a published study 20, including a cell  
by gene count matrix with 523 visual cortex cells as rows and 10,000 genes as 
columns, cell type annotation and cell spatial location (two-dimensional coordinates) 
data (Supplementary Table 3). Based on the authors’ preprocessing procedure 20, we 
first log2-transformed the count matrix followed by z-score transformation. 
 
Quantification of expression correlation of signaling pathway genes using 
SeqFISH+ data 

Cell pairs consisting of two types were categorized into three groups based on their 
physical distance measured by SeqFISH+, namely close, intermediate and distant 
groups (Supplementary Fig. 1a). The distance cutoffs for the three groups were 
determined using empirical p-values of 0.1, 0.5 and 1.0, respectively, based on a null 
distribution of distances between 10,000 randomly selected cell pairs from all cells 
profiled by SeqFISH+ (Supplementary Fig. 1b-e). Genes of predicted signaling 
pathways were intersected with the gene set detected by SeqFISH+. Among these 
genes, we computed a Pearson correlation coefficient of SeqFISH+ expression values 
between any gene pair (one from each cell type and are connected in the predicted 
signaling pathways) across individual cells of the two types.    
 
Running of published methods 

NicheNet 8 uses a prior ligand-target regulation model by integrating known signaling 
transduction and transcriptional regulatory interactions to predict a signaling network 
between two cell types. Given scRNA-Seq data of cell type A and B, we first defined 
two gene sets that are expressed in these two cell types, respectively. We used the 
same expression cutoff and only retained protein-coding genes for analysis as 
described above. NicheNet requires a pre-defined gene set of interest in cell type B as 
candidate target genes regulated by ligands in cell type A. This gene set was defined 
as the genes that are specifically expressed (i.e. PEM score > 0) in cell type B. Using 
these gene sets as the input, we predicted ligands, their signaling pathways, and target 
genes using predict_ligand_activities and get_ligand_signaling_path functions in the 
NicheNet R package. These identified signaling pathways are considered as a “cell 
type A to B” signaling subnetwork. Using another set of genes that are specifically 
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expressed in cell type A as input, we also predicted a “cell type B to A” signaling 
subnetwork. By combining the two subnetworks, we obtained a final predicted 
signaling network between the two cell types. 

SoptSC 7 also uses known pathway annotations to predict signaling pathways 
between two cell types. For comparison, we used mouse Reactome pathways and the 
same ligand-receptor pairs as used by CytoTalk. For each ligand-receptor pair, we 
computed a matrix of signaling probabilities between any two cells from cell types A 
and B using the LR_Interaction function in the SoptSC MATLAB package. Using this 
matrix, we computed two probabilities of signaling via the given ligand-receptor pair 
from each direction (𝐴 → 𝐵 and 𝐵 → 𝐴), respectively. Based on these signaling 
probabilities, we selected the top 10% of ligand-receptor pairs and their known 
downstream pathways for performance comparison. 

Different from NicheNet and SoptSC, the other four methods only predict 
active ligand-receptor pairs between two cell types. Among these four methods, 
Zhou’s and Skelly’s methods are similar, which consider the gene expression levels of 
a ligand and its receptor separately. Based on Zhou’s method 3, for each gene i, we 
calculated the mean 𝑥7h  and standard deviation 𝜎! of the gene expression values 
across all cell types. If the average expression values of the ligand gene in cell type A 
and the receptor gene in cell type B are both larger than 𝑥7h + 3𝜎!, this ligand-receptor 
pair is predicted to be active by Zhou’s method. Based on Skelly’s method 1, for each 
ligand-receptor pair, if the ligand and the receptor genes are expressed in more than 
20% of the cells of cell types A and B, respectively, this ligand-receptor pair is 
retained and considered to transmit a signal from cell type A to B. We considered all 
retained ligand-receptor pairs from both directions (𝐴 → 𝐵 and 𝐵 → 𝐴) as the final 
predictions by Skelly’s method. 

Kumar’s method 2 is different from the two methods above, which defines an 
interaction score for a given ligand-receptor pair as the product of the average 
expression of the ligand gene in cell type A and the average expression of the receptor 
gene in cell type B. We selected the top 10% of ligand-receptor pairs based on 
interaction scores as the final predictions by Kumar’s method. 

CellPhoneDB 4 is a repository of curated ligand-receptor pairs and can be used 
for predicting ligand-receptor interactions based on their cell-type specificity. Given a 
scRNA-Seq gene expression matrix and cell type annotation data as the input, we 
used the cellphonedb function in the CellPhoneDB Python package to compute a p-
value for the likelihood of cell-type specificity of each ligand-receptor pair. For two 
given cell types A and B, we selected the ligand-receptor pairs with p-values < 0.05 
from each direction (𝐴 → 𝐵 and 𝐵 → 𝐴) as the final predictions by CellPhoneDB. 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 30, 2020. ; https://doi.org/10.1101/2020.03.29.014464doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.29.014464
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

Figures 

Fig. 1. Wiring of signaling pathways is highly cell-type dependent. 
(a, b) Cell-type-specific activity of sub-pathways downstream of the fibroblast growth 
factor receptor 2 (FGFR2) between fibroblasts and luminal epithelial cells in mouse 
mammary gland (a) and between keratinocyte stem cells and basal cells in mouse skin 
(b). Cell-type-specific activities of four canonical sub-pathways downstream of 
FGFR2 are shown. PEM, cell-type-specific activity score. Color shade of each gene 
node is proportional to PEM score. Top, individual pathway activities. Down, 
quantification of average PEM score of sub-pathway genes. (c) Cell-type-specific 
activity of Reactome pathways across five cell types in mammary gland. Pathway 
cell-type-specific activities were calculated using single-cell RNA-Seq data. (d) Cell-
type-specific activity of Reactome pathways across four cell types in skin. (e) 
Differential pathway activity in basal cells from two different tissues, mammary gland 
and skin. 
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Fig. 2. Schematic overview of the CytoTalk algorithm. An integrated gene network 
is constructed de novo using single-cell RNA-Seq data alone. The integrated network 
consists of two intracellular networks that are connected by known ligand-receptor 
gene pairs. giA, gjB, genes i and j in cell type A and B, respectively; MIkA;pA, mutual 
information between genes k and p in cell type A; Crosstalk scoreiA;jB, crosstalk score 
between gene i in cell type A and gene j in cell type B. Node color is proportional to 
node prize and edge thickness is inversely proportional to edge cost. Node prize is 
computed based on both gene expression specificity and network distance to 
ligand/receptor gene. Edge cost is computed based on mutual information or crosstalk 
score. Directed arrows along each edge indicate network propagation procedure. An 
artificial node (root node) is included in the integrated network to enable search using 
the prize-collecting Steiner forest (PCSF) algorithm. Statistical significance of the 
predicted pathways is computed by comparing to null models of PCSFs identified 
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from 1000 randomized networks. 

 
 
Fig. 3. Performance evaluation of the CytoTalk algorithm using spatial 
transcriptomics data. (a) Schematic illustration of the procedure and rationale for 
using SeqFISH+ data to evaluate predicted signaling networks. (b-d) Spatial 
expression correlation of predicted pathway genes across cell pairs with close, 
intermediate and far distance. Cell pairs were categorized into three distance groups 
using SeqFISH+ data. Pearson correlation of pathway genes was computed using 
SeqFISH+ data and compared to that computed from randomly selected gene pairs. 
Statistical difference between two distributions of correlation values was computed 
using one-sided Kolmogorov-Smirnov test for predicted EndoMicro (b), EndoAstro 
(c) and AstroNeuro (d) signaling networks. 
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Fig. 4. Performance evaluation of the CytoTalk algorithm using scRNA-Seq data 
without receptor gene expression. Pathways predicted by CytoTalk, NicheNet and 
SoptSC were evaluated by comparing to differentially expressed genes (DEGs) 
between receptor gene knockout and wild type cells. DEGs were identified by 
DESeq2 using a Benjamini-Hochberg (BH) adjusted p-value cutoff of 0.05. (a) 
Receiver operating characteristics curve. DEGs between IL1RL1-knockout and wild 
type basophils are considered true positives. True positive rate and false positive rate 
were computed using the DEGs. Numbers at each point on the curve indicate the 
network distance of predicted genes to the receptor (IL1RL1). For instance, 1st means 
a predicted gene that is a first-order neighbor of the receptor. (b) Distribution of p-
values of differential expression for all genes in the predicted downstream pathways. 
Shown are violin plots of -log10(BH-adjusted p-value). P-values for comparing 
distributions were computed using one-sided Wilcoxon rank-sum test. 
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Supplementary Figures 

Supplementary Fig. 1. Stratification of cell pairs based on their physical distance 
in the SeqFISH+ data. (a) Each cell profiled by SeqFISH+ has a spatial coordinate 
(x, y). Cell pairs of two different types were grouped into three groups based on their 
Euclidean distances computed using their coordinates, namely close, intermediate and 
far distance groups. (b) The distance cutoffs for the three groups were determined 
using empirical p-values of 0.1, 0.5 and 1.0, respectively, based on a null distribution 
of distances between 10,000 randomly selected cell pairs in the SeqFISH+ data set. 
Using these distance cutoffs, 560, 1520 and 3420 cell pairs were divided into three 
groups for endothelial and microglial cells (EndoMicro) (c), endothelial and 
astrocytes (EndoAstro) (d) and astrocytes and neurons (AstroNeuro) (e), respectively. 
 

 
 
Supplementary Fig. 2. Comparison of ligand-receptor pairs predicted by seven 
methods. Ligand-receptor pairs were predicted by seven methods for EndoMicro (a), 
EndoAstro (b) and AstroNeuro (c). The overlap fractions of ligand-receptor pairs 
between any two methods are shown in the heatmap. Shade of magenta is 
proportional to the overlap fraction, which is defined as the number of overlapped 
ligand-receptor pairs divided by the minimum number of identified ligand-receptor 
pairs between two methods. The number of ligand-receptor pairs predicted by each 
method is shown in the bar plot above the heatmap. The average overlap fraction 
between a given method and the other methods is shown in the bar plot to the right of 
the heatmap. 
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Supplementary Fig. 3. Statistical significance of predicted signaling networks. 
Statistical significance of predicted signaling networks were evaluated based on the 
objective function of the prize-collecting Steiner forest (PCSF) algorithm (a) and the 
fraction of crosstalk edges in the PCSF (b). Empirical p-value was calculated by 
comparing the PCSF identified from the real network (dashed line) to PCSFs  
identified from 1000 randomized networks (solid line). To generate the randomized 
networks, given the real network, we separately shuffled the edges of the two 
intracellular networks keeping the node degree distribution, node prizes and crosstalk 
edges the same as the real network. Then, these randomized integrated networks 
together with the same β and ω values as the predicted signaling network were used 
as inputs for the PCSF algorithm to generate null models of PCSFs. 
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Supplementary Fig. 4. Parameter selection for the CytoTalk algorithm. The 
optimal ranges of two main parameters of the algorithm, β, ω, were determined first. 
Ranges of β and ω values were tested for the mouse visual cortex and lung data sets. 
The number of edges in these PCSFs (a-d) and the fraction of overlapped edges 
between PCSFs using adjacent omega values (e-h) are shown. (i-l) Determination of 
parameter settings that result in most robust PCSF. For all PCSFs identified using the 
β and ω ranges determined above, the occurrence frequency of each edge in a PCSF 
was computed to construct a background distribution of edge occurrence frequency. A 
p-value for each PCSF was computed by comparing the edge occurrence frequency 
distribution of this PCSF to the distribution of all other PCSFs using one-sided 
Kolmogorov-Smirnov test. The PCSF with the minimum p-value (red dot) was 
considered as the most robust signaling network predicted by CytoTalk. All 3-D mesh 
surface plots use z-axis values for both height and color. 
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Supplementary Tables 

Supplementary Table 1. Summary of data sets used in this study. 
 

Data set Accession number/URL PubMed ID 
Mouse visual cortex 

scRNA-Seq GSE71585 26727548 

Mouse visual cortex 
(SeqFISH+) https://github.com/CaiGroup/seqFISH-PLUS 30911168 

Mouse mammary 
gland GSE109774 30283141 

Mouse skin GSE109774 30283141 
Mouse lung GSE19228 30318149 
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Supplementary Table 2. List of known ligand-receptor interactions used in this 
study. 
 
Supplementary Table 3. SeqFISH+ data used in the performance evaluation. The 
table includes cell type annotation and spatial location (two-dimensional coordinates) 
data of 523 visual cortex cells. A 10,000 gene count matrix of these cells are also 
appended. 
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