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Abstract

The local field potential (LFP) is usually calculated from current sources arising
from transmembrane currents, in particular in asymmetric cellular morphologies
such as pyramidal neurons. Here, we adopt a different point of view and relate the
spiking of neurons to the LFP through efferent synaptic connections and provide
a method to calculate LFPs. We show that the so-called unitary LFPs (uLFP)
provide the key to such a calculation. We show experimental measurements and
simulations of uLFPs in neocortex and hippocampus, for both excitatory and
inhibitory neurons. We fit a “kernel” function to measurements of uLFPs, and we
estimate its spatial and temporal spread by using simulations of morphologically
detailed reconstructions of hippocampal pyramidal neurons. Assuming that
LFPs are the sum of uLFPs generated by every neuron in the network, the LFP
generated by excitatory and inhibitory neurons can be calculated by convolving
the trains of action potentials with the kernels estimated from uLFPs. This
provides a method to calculate the LFP from networks of spiking neurons, even
for point neurons for which the LFP is not easily defined. We show examples of
LFPs calculated from networks of point neurons.
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1 Introduction 1

The local field potential (LFP) is the extracellular electric potential recorded using 2

electrodes inserted in brain tissue. The LFP is thought to reflect mostly synaptic 3

activity forming electric dipoles (Niedermeyer & Lopes da Silva, 1998; Nunez 4

& Srinivasan, 2006), and can be well simulated using detailed morphologies 5

(Bedard & Destexhe, 2012; Destexhe & Bedard, 2013; Lindén et al., 2014). 6

However, it is not clear how to simulate LFPs from point neurons. In the 7

present paper, we propose a method to calculate LFPs from point neurons, using 8

experimentally-recorded LFP waveforms. 9

We focus on the unitary LFP (uLFP) which is the LFP generated by a single 10

axon. The first investigations of uLFPs were done in hippocampal slices (Bazelot, 11

Dinocourt, Cohen, & Miles, 2010; Glickfeld, Roberts, Somogyi, & Scanziani, 12

2009) and later in neocortex in vivo (B. Teleńczuk et al., 2017). In hippocampus, 13

unitary LFPs were characterized in particular for inhibitory basket cells (Bazelot 14

et al., 2010), which was convenient because the axon of a basket cell does not 15

extend very far from the cell body (soma) and targets mostly the bodies and 16

proximal dendrites of nearby pyramidal cells, and thus evokes postsynaptic 17

currents clustered in space. In pyramidal neurons, however, efferent synapses 18

target both basal and apical dendrites, and can extend far away from the cell, 19

so in this case, the postsynaptic currents are rather scattered in space. This 20

may be one of the reasons why the uLFP of pyramidal cells is much smaller in 21

amplitude compared to that of inhibitory cells, as first suggested by Bazelot et 22

al. (Bazelot et al., 2010). 23

This was taken one step further by Telenczuk et al. (B. Teleńczuk et al., 24

2017), who showed that uLFP can also be isolated from the neocortex in vivo, 25

in human and monkey, where uLFPs could be extracted for both excitatory 26

and inhibitory cells. Surprisingly, the two signals were of the same polarity 27

despite being generated in principle by currents of opposite sign. Moreover, the 28

excitatory uLFP was lagging behind the inhibitory uLFP. These properties let the 29

authors to suggest that excitatory uLFPs may in fact be di-synaptic inhibitory 30

uLFPs, which explains their polarity and timing relations. These properties were 31

modeled by morphologically-detailed reconstructions of hippocampal neurons 32

(M. Teleńczuk, Teleńczuk, & Destexhe, 2019), where it was shown that the weak 33

uLFP of pyramidal cells is due to the scattering of their afferent synapses. Apical 34

and basal excitatory synaptic currents produce LFPs of opposite sign, and there 35

is therefore a significant amount of cancelling. However, inhibitory synapses in 36

the somatic region always produce the same extracellular field, which explains 37

why inhibitory uLFPs are of higher amplitude compared to excitatory uLFPs. 38

Computational models fully support this explanation (M. Teleńczuk et al., 2019). 39

In the present paper, we take this another step further by showing that one 40

can use the uLFPs as a powerful method to calculate LFPs. We show that this 41

can be done by using templates from experimentally-recorded uLFPs, or from 42

uLFPs calculated theoretically to estimate their spatial spread. The method 43

consists of calculating the LFP of the network as a convolution of spiking activity 44

with these uLFPs waveforms. The uLFPs thus constitute the “kernels” of such a 45

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.29.014654doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.29.014654
http://creativecommons.org/licenses/by-nc-nd/4.0/


convolution, hence the name “kernel-based method”. We illustrate this method 46

by calculating LFPs from networks of spiking neurons. 47

2 Materials and Methods 48

In the numerical test of the kernel-based method, we used network simulations of 49

spiking neurons as described in previous papers (Brunel & Wang, 2003; Destexhe, 50

2009; Zerlaut, Chemla, Chavane, & Destexhe, 2018). 51

A first network (Brunel & Wang, 2003) consisted of 5,000 neurons, divided 52

into 4,000 excitatory and 1,000 inhibitory cells, all described with the leaky 53

integrate-and-fire model. The membrane time constant was of 20 ms and 10 ms 54

for excitatory and inhibitory neurons, respectively, and the leak reversal potential 55

was of -70 mV, the spike threshold was of -52 mV with a reset potential of -59 mV 56

and an absolute refractory period of 2 ms for excitatory cells (1 ms for inhibitory 57

cells). All cells were randomly connected with a connection probability p = 20%. 58

Synaptic currents were described as Isyn(t) = Gsyn(V )(V −Esyn)s(t), where
gsyn is the synaptic conductance, Esyn its reversal potential, and s(t) is a
function describing the time course of synaptic currents and is described by the
bi-exponential function

s(t) = exp [−(t− tk)/τd]− exp [−(t− tk)/τr],

where τr is the rise time and τd the decay time of the postsynaptic conductance, 59

and tk is the time of the presynaptic spike. The reversal potential of excitatory 60

(inhibitory) synaptic currents is 0 mV (-70 mV). The peak conductances were 61

of 1 nS for excitatory synapses and 6 nS for inhibitory synapses. This network 62

displayed gamma-frequency (∼ 40 Hz) oscillations with sparse firing of all cell 63

types (see ref. (Brunel & Wang, 2003) for details). 64

In a second example, based on two previous papers (Destexhe, 2009; Zerlaut 65

et al., 2018), we used networks of more complex integrate-and-fire models 66

displaying spike-frequency adaptation, modeled by the Adaptive Exponential 67

(AdEx) integrate-and-fire model (Brette & Gerstner, n.d.). We considered 68

a population of N = 104 neurons randomly connected with a probability of 69

connection between two neurons of p = 5%. We considered excitatory and 70

inhibitory neurons, with the 20% inhibitory neurons. The AdEx model permits 71

to define two cell types, “regular-spiking” (RS) excitatory cells, displaying 72

spike-frequency adaptation, and “fast spiking” (FS) inhibitory cells, with no 73

adaptation. The dynamics of these neurons is given by the following equations: 74

cm
dvk
dt

= gL(EL − vk) + ∆e
vk−vthr

∆ − wk + Isyn (1)

dwk

dt
= −wk

τw
+ b

∑
tsp(k)

δ(t− tsp(k)) + a(vk − EL), (2)

where cm = 200 pF is the membrane capacitance, vk is the voltage of neuron k 75

and, whenever vk > vthr = −50 mV at time tsp(k) , vk is reset to the resting 76

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.29.014654doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.29.014654
http://creativecommons.org/licenses/by-nc-nd/4.0/


voltage vrest = −65 mV and fixed to that value for a refractory time Trefr = 5 ms. 77

The leak term gL has a fixed conductance of gL = 10 nS and the leakage reversal 78

EL is of -65mV. The exponential term has a different strength for RS and FS cells, 79

i.e. ∆ = 2mV (∆ = 0.5mV) for excitatory (inhibitory) cells. Inhibitory neurons 80

are modeled according to physiological insights as fast spiking FS neurons with 81

no adaptation (a = b = 0 for all inhibitory neurons) while excitatory regular 82

spiking RS neurons have a lower level of excitability due to the presence of 83

adaptation (while b varies in our simulations we fix a = 4 nS and τw = 500 ms if 84

not stated otherwise). 85

The synaptic current Isyn received by neuron i is the result of the spiking 86

activity of all pre-synaptic neurons j ∈ pre(i) of neuron i. This current can be 87

decomposed in the synaptic conductances evoked by excitatory E and inhibitory I 88

pre-synaptic spikes Isyn = (Ee−vk)Ge
syn+(Ei−vk)Gi

syn , where Ee = 0mV (Ei = 89

−80mV) is the excitatory (inhibitory) reversal potential. Excitatory synaptic 90

conductances are modeled by a decaying exponential function that sharply 91

increases by a fixed amount QE at each pre-synaptic spike, i.e.: Ge
syn(t) = 92

Qe

∑
exc.pre Θ(t − tesp(k))e−

t−tesp(k)

τe , where Θ is the heaviside function, τe = 93

τi = 5ms is the decay time scale of excitatory and inhibitory synapses and 94

Qe = 1nS (Qi = 5nS) the excitatory (inhibitory) quantal conductance. Inhibitory 95

synaptic conductance are modeled identically, with the same equation with e→ i. 96

This network displays two different states according to the level of adaptation, 97

b = 0.005 nA for asynchronous-irregular states, and b = 0.02 nA for Up/Down 98

states (see ref. (Zerlaut et al., 2018) for details). 99

All simulations were done using the NEURON Simulation environment (Hines 100

& Carnevale, 1997) or the BRIAN simulator (Goodman & Brette, 2009). Program 101

codes for the network models are available from the original papers (Brunel & 102

Wang, 2003; Destexhe, 2009; Zerlaut et al., 2018). 103

3 Results 104

We start by showing the essential properties of uLFPs as recorded experimentally, 105

and then consider a method to generate LFPs based on those measurements. 106

We also show the results from a detailed biophysical model of uLFPs, which we 107

use to infer the depth-dependence of the model of uLFPs. Finally, we illustrate 108

the method by calculating LFPs from networks of spiking point neurons. 109

3.1 Unitary local field potentials 110

Figure 1 illustrates the properties of uLFPs. The uLFP is generated by a single 111

axon, where all efferent synapses of the axon collateral (schematized in Fig. 1A) 112

will generate a small field due to the postsynaptic current, and the ensemble 113

of these small fields constitutes the uLFP. One property of the uLFP is that 114

recordings made at different distances from the soma will peak at different 115

times, because of the speed of action potential propagation along the axon 116

(Fig. 1B). Thus, the peak time of the uLFP as a function of distance is expected 117
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to show a linear increase, as schematized in Fig. 1C, where the slope is the axon 118

propagation speed. In addition, the uLFP should also display a peak decreasing 119

with distance, as expected for electrodes located at increasing distances from 120

the soma (Fig. 1D). 121

These properties were found in human recordings by a previous study (B. Teleńczuk122
et al., 2017), as summarized in Fig. 2. Recordings were made using Utah arrays 123

inserted in temporal cortex, leading to LFP and unit recordings (Fig. 1A). Te- 124

lenczuk et al. (B. Teleńczuk et al., 2017) used a whitening method to extract the 125

relation between unit spikes and the LFP. The properties of this relation reminds 126

those of the uLFP. First, the presumed uLFP peak amplitude decreases with 127

distance, with an exponentially decaying function with a space constant around 128

200 µm, consistent with other estimates (Katzner et al., 2009). Second, the 129

uLFP peak scaled linearly with distance, with an estimated speed of 200 mm/sec 130

(Fig. 2C), which is consistent with the action potential speed along axon un- 131

myelinated fibers. These properties were also found for a second human subject 132

recorded similarly (Fig. 2D). Very similar uLFP waveforms were obtained from 133

monkey motor cortex, which was recorded with similar Utah arrays. The details 134

of this analysis can be found in ref. (B. Teleńczuk et al., 2017). 135

Another important information is the respective excitatory and inhibitory 136

contributions to LFPs. It can be seen from Fig. 2 that the uLFP from excitatory 137

or inhibitory cells are of the same polarity (negative in this case). However, the 138

synaptic currents generating these uLFPs are of opposite sign, so they should lead 139

to opposite polarities. It was proposed (B. Teleńczuk et al., 2017) that this is due 140

to the fact that excitatory uLFPs are of low amplitude compared to inhibitory 141

uLFPs, and the field evoked by excitatory cells is actually dominated by inhibitory 142

currents, occurring di-synaptically through the recrutment of interneurons. This 143

explanation was consistent with hippocampal recordings, where the excitatory 144

uLFPs were of very small amplitude and blocked by GABAA antagonists (Bazelot 145

et al., 2010). This issue was tested in a recent biophysical model (M. Teleńczuk 146

et al., 2019), which reconstructed uLFPs in the hippocampus for excitatory and 147

inhibitory synapses. By using 1000 morphologically-reconstructed hippocampal 148

pyramidal neurons (Fig. 3A), and locating synapses in different regions of the 149

cells (Fig. 3B-C), the model generated uLFPs that were recorded at different 150

positions around the cell (Fig. 3D-E). As suggested before, the model confirmed 151

that inhibitory uLFPs (Fig. 3D) were of larger amplitude compared to excitatory 152

uLFPs (Fig. 3E; see Overlay). 153

For this reason, in the following, we will fit kernel templates only to inhibitory 154

uLFPs measured experimentally, and use the model to estimate kernels for 155

excitatory uLFPs. 156

3.2 Fitting kernels to inhibitory uLFPs 157

In this section, we fit a template kernel function to inhibitory uLFPs extracted 158

from experimental data. To do this, we note that the uLFPs always have an 159

approximately symmetric shape with similar rise and decay phases, which we 160
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can fit by the following Gaussian kernel at position x and time t: 161

uLFP (x, t) = A(x) exp[−(t− tp)2/(2σ2)], (3)

where A is an amplitude constant (which can be negative), σ is the standard 162

deviation in time, and tp is the peak time of the uLFP. The latter is given by 163

tp = t0 + d+ |x− x0|/va, (4)

where t0 is the time of the spike of the cell, |x− x0| is the distance between cell 164

and electrode, d is a constant delay, and va is the axonal speed. We use the 165

value of va = 200 mm/s, estimated from human uLFP recordings (B. Teleńczuk 166

et al., 2017). 167

To model the observed near-exponential amplitude decay with distance 168

(Fig. 2B,D, rightmost graphs), the following expression can be used for A(x): 169

A(x) = A0 exp[−|x− x0|/λ], (5)

where A0 is the maximal amplitude, and |x − x0| is the distance between the 170

electrode (x) and the position of the cell (x0), and λ is the space constant of the 171

decay. From human uLFP data, λ was consistently found around 200-250 µm 172

(B. Teleńczuk et al., 2017). 173

The template function given by Eq. 3 can be fit simultaneously to sets of 174

recorded LFPs, such as that of Fig. 2B. Figure 4 shows the result of such a fitting, 175

for inhibitory uLFPs. The Gaussian kernel function with a negative amplitude, 176

and constant standard deviation, could simultaneously fit all measured uLFPs 177

(Fig. 3A). Note that we did not attempt to capture the slow positive component 178

which is present in some of the uLFPs. Better fits can be obtained by letting 179

the amplitudes and standard deviation as free parameters (Fig. 3B), but this 180

type of parametrization is unconstrained, and will not be used in the following. 181

3.3 Calculating excitatory uLFPs 182

The fitting of the kernels provided in the previous section is enough to calculate 183

the uLFP contribution of a given inhibitory cell at any point in space and time 184

in the vicinity of the cell. However, as mentioned above, it is difficult to directly 185

observe the uLFP of excitatory cells because of its low amplitude (Bazelot et 186

al., 2010). In this section, we provide an estimate of the excitatory uLFP, 187

based on numerical simulations. We use a biophysical model proposed previ- 188

ously (M. Teleńczuk et al., 2019), summarized in Fig. 3. This biophysical model 189

confirmed that the simulated excitatory uLFP is indeed smaller compared to 190

the inhibitory uLFP (compare Fig. 3D-E), although the number of synapses 191

involved in calculating excitatory uLFPs was much larger compared to inhibitory 192

synapses. The low amplitude of excitatory uLFP resulted from a partial cancel- 193

lation of apical and basal synaptic currents, which produce dipoles of opposite 194

sign (M. Teleńczuk et al., 2019). In the Overlay of Fig. 3 (from stratum radiatum), 195

it can be seen that the excitatory uLFP is not only of smaller amplitude, but 196
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Depth i-uLFP amplitude e-uLFP amplitude Relative amplitude
(µV) (µV) (i/e)

Deep layers -0.2 -0.16 1.25
Soma 3 0.48 6.25

Superficial layers -1.2 0.24 5
Surface 0.3 -0.08 3.75

Table 1: Absolute and relative model uLFP amplitudes at different depth in
hippocampus. The uLFP amplitudes are indicated for a position near the soma
in X,Y, and for different depths in Z direction. The different depths indicated
correspond to -400 µm (Deep layers), 0 (Soma), 400 µm (Superficial layers) and
800 µm (Surface).

also generally has slower kinetics, presumably because of the distal dendritic 197

contributions and associated dendritic filtering (Pettersen & Einevoll, 2008). 198

Thus, for the kernel, we assumed a slower decay time for excitatory uLFP, which 199

we estimated as about 1.5 times the decay of inhibitory uLFPs. More precise 200

measurements, when available, should be used to adjust this number. 201

To estimate the relative amplitudes of excitatory and inhibitory uLFPs, we 202

use the depth profile of uLFP, as shown in Fig. 5. It is apparent that the major 203

contribution of inhibitory uLFPs will be around the soma (stratum pyramidale), 204

with the two main poles reversing around 200 µm depth (stratum radiatum), 205

reversing again around 600 µm. Excitatory uLFPs are also maximal around 206

the soma, reverse around -100 µm, but stay of low amplitude all through the 207

layers. To simplify, we have reported the absolute and relative uLFP amplitudes 208

at different depth in Table 1. 209

With respect to the fitting of inhibitory uLFPs in the previous section, we 210

obtained an amplitude of about -3.4 µV and a width of 2.1 ms (Fig. 4A). Given 211

that the corresponding recordings (B. Teleńczuk et al., 2017) were obtained 212

in superficial layers, we can assume that it corresponds to superficial layers 213

in Table 1. Accordingly, we estimate that excitatory uLFPs would have an 214

amplitude of about 0.7 µV and a width of 3.15 ms. We consider a practical 215

application of these kernel templates to calculate LFPs in the next section. 216

3.4 Examples of LFPs calculated from network simula- 217

tions 218

To calculate LFPs from network simulations, we will convolve the spikes of the 219

network with the uLFP kernels, according to the formula: 220

Ve(~x, t) =

∫
Ke(~x, t−τ)

∑
j

δ(τ − te,j)

 dτ+

∫
Ki(~x, t−τ)

∑
j

δ(τ − ti,j)

 dτ ,

(6)
where Ke(~x, t − τ) and Ki(~x, t − τ) are the excitatory and inhibitory uLFP 221

kernels derived above, respectively, while {te,j} and {ti,j} are the spike times of 222
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excitatory and inhibitory neurons. This can also be expressed as a direct sum of 223

the kernels: 224

Ve(~x, t) =
∑
k

Ke(~x, t− te,k) +
∑
l

Ki(~x, t− ti,l) . (7)

For convenience, we will use the LFP kernels estimated from human recordings 225

using the Gaussian template (Eq. 3), as in Fig. 4. 226

Figure 6 shows an example of LFP generated using this kernel method applied 227

to a network of spiking point neurons. The network was taken from a previous 228

study, modeling gamma oscillations in networks of excitatory and inhibitory 229

integrate-and-fire neurons (Brunel & Wang, 2003). As seen from the raters of 230

spiking activity (Fig. 6A, top), the network displayed mostly irregular behavior, 231

but at closer scrutiny (Fig. 6B, top), signs of loosely synchronized oscillatory 232

activity can be seen. When calculating the LFP from this network (Fig. 6, 233

bottom traces) clearly reveals the gamma oscillation in the LFP. The LFP was 234

calculated using the templates estimated above, and using amplitudes as in 235

Table 1 to simulate the LFP in different layers. One can see that the LFP is 236

largest at the level of the soma, while surface and deep layers display lower 237

amplitudes. The gamma oscillation also reverses in polarity above and below 238

the soma layer. Figure 7 shows the LFP calculated at the level of the soma, but 239

at different lateral distances from the center of the network plane. Note that 240

these different traces are not scaled versions of the same trace, because each 241

neuron contributes individually according to its distance to the electrode (see 242

Eqs. 3-5). This shows that the kernel method reproduces the typical attenuation 243

with distance as expected. 244

In a second example, we used network models capable of generating asynchro- 245

nous-irregular (AI) or Up/Down state dynamics, which required neurons with 246

spike-frequency adaptation. Fig. 8 illustrates such dynamics as modeled by 247

networks of Adaptive Exponential (AdEx) point neurons (Destexhe, 2009; Zerlaut 248

et al., 2018) (see Methods), as shown in with the associated LFP calculated with 249

the kernel method. A first regime is the asynchronous-irregular state (Fig. 8A), 250

which displays typical LFPs of low-amplitude and noisy aspect, typical of the 251

so-called “desynchronized” dynamics. A second regime is the alternating Up 252

and Down states (Fig. 8B), in which the network produces slow-wave oscillations 253

with higher amplitude LFPs, which was obtained here with strong level of 254

adaptation and additive noise (see Methods). In both cases, the kernel method 255

could simulate the LFP in different cortical depths. 256

Finally, we illustrate that the kernel method can be used to calculate the LFPs 257

from multi-layer networks (Fig. 9). As illustrated by the scheme of Fig. 9A, the 258

same network as in Fig. 8B was distributed in three different layers, representing 259

the Supragranular, Granular and Infragranular cortical layers. Taking the same 260

four vertical layers as in Fig. 6, combined for the three networks, leads to six 261

different layers (Surface, Superficial, Supragranular, Granular, Infragranular and 262

Depth). The corresponding LFP calculated in each layer is shown in Fig. 9B. 263

The LFP inverted in superficial and deep layers, as typically found for slow 264

waves between superficial and infragranular layers (Fiáth et al., 2016). It is also 265
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consistent with the inversion of the slow wave induced by sensory stimulation (Di, 266

Baumgartner, & Barth, 1990), which also shows this superficial inversion, but in 267

addition a further inversion below infragranular layers, which was also present 268

here (Fig. 8B, Deep). 269

4 Discussion 270

In this paper, we have proposed a simple method to calculate LFPs from networks 271

of point neurons. We discuss below different aspects of this method, its drawbacks 272

and advantages, and perspectives for future work. 273

The kernel-based method illustrated here is based on experimentally-measured 274

uLFPs, and is thus dependent on the availability of such measurements. We 275

have used here uLFPs measured in human cerebral cortex, which were obtained 276

in superficial layers (Layer 2-3) (B. Teleńczuk et al., 2017). To complete this 277

dataset, we have used the results from uLFPs calculated from detailed biophysi- 278

cal models (M. Teleńczuk et al., 2019), resulting in the estimated amplitudes 279

displayed in Table 1. As we have illustrated in Fig. 6, this procedure can be 280

used to calculate the LFP in different layers, from network simulations of point 281

neurons. 282

A first drawback of such a procedure is that we had to use a mix of experi- 283

mental and computational model data to capture the kernel in different layers. 284

This was done because there is presently no measurement of uLFP in different 285

cortical (or hippocampal) layers, but we anticipate that such data should become 286

available soon given the progress in multielectrode recording techniques, which 287

should release us from using the computational model. When the full data set 288

of uLFPs from all layers, and all cell types will be available, the exact same 289

approach of fitting templates can be followed, and applied to network simula- 290

tions. Similarly, it may be that the uLFP differs in different cortical regions, 291

due to differences of local connectivity, differences of conductivity, or axonal 292

propagation speed, among other factors. Here again, when the experimental 293

recordings will become available, the method will be refined accordingly. 294

Another drawback is that the kernel method best applies to (on-going) re- 295

current activity, because the LFP is exclusively calculated from superthreshold 296

spiking activity. The method does not include contributions such as subthreshold 297

synaptic events (which could be recurrent or evoked), nor the possible contribu- 298

tion of dendritic voltage-dependent ion channels. These different contributions 299

should be estimated by network models of detailed morphologically-reconstructed 300

neurons, where both recurrent and evoked synaptic activity are present. 301

An important advantage of the present method is the fact that it only relies 302

on the knowledge of cell positions and spike times, which represents a relatively 303

small dataset compared to the knowledge of all membrane currents required 304

by methods to calculate LFPs from biophysical models (Lindén et al., 2014; 305

Telenczuk & Telenczuk, 2016). As a consequence, the kernel-based method could 306

be applied a posteriori to datasets of spike times, this to be from models or from 307

experiments. When the spiking activity will be available from large ensembles 308
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of simultaneously-recorded neurons, the kernel-based method could be used to 309

calculate the LFP from spikes, and compare to the recorded LFP, which would 310

constitute a possible test of the consistency of the method. 311

Another advantage of the kernel-based method is that it does not make any 312

a priori assumption about the conductive or capacitive nature of extracellular 313

media, which is a subject highly discussed in the literature (see (Bedard & Des- 314

texhe, 2012; Destexhe & Bedard, 2013) for reviews). Most of today’s procedures 315

to calculate LFPs assume that the extracellular medium is resistive (see for 316

example (Lindén et al., 2014; Telenczuk & Telenczuk, 2016)), which may result 317

in large errors if it appears that the medium has diffusive or capacitive properties. 318

For example, non-resistive media can exert strong frequency filtering properties 319

which may affect the shape and propagation of LFPs (Bedard & Destexhe, 2012). 320

Another source of frequency filtering is due to the cable properties of the neurons 321

(Pettersen & Einevoll, 2008). In the present method, there is no need to integrate 322

such complex effects, as the method is based on direct recordings of the LFP, so 323

the frequency-filtering, if present, is already taken into account. 324

The kernel-based method of course does not replace biophysical simulations, 325

which still represent the most accurate way of modeling LFPs. However, such 326

calculations require to have access to the details of the morphology of dendrites, 327

details about the conductivity and other properties of media (as discussed above), 328

and details of all the ionic currents that could influence the LFP. None of such 329

details are needed in the kernel-based method, which calculates LFPs solely 330

from the spiking activity of the neurons. Thus, the kernel method could also be 331

applied to biophysical models, and compared to the LFP generated by standard 332

biophysical methods (Lindén et al., 2014). Such a comparison should be done in 333

future work. 334

It is important to note that an alternative method to calculate LFPs from 335

point neurons consists of replaying the membrane currents of the point neurons 336

inside morphologically-accurate models (Hagen et al., 2016). This so-called 337

“hybrid” method can also be used to estimate LFP kernels and use a similar 338

convolution as we used here. However, this approach focuses mostly on the 339

pre-synaptic contributions to the LFP, whereas in the present method, we 340

estimate the LFP from the post-synaptic consequences of axon-propagating 341

action potentials. 342

Finally, another promising application of the kernel-based method is that it 343

could be applied to population or mean-field models. Since the LFP is obtained 344

by a convolution of the kernel with spiking activity (see Eq. 6), the same approach 345

can be used to convolve the kernel with the density of spiking activity, which 346

is given by mean-field models. This would yield an estimated LFP from mean- 347

field models, which is presently lacking. This also constitutes a very promising 348

direction for future work. 349
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D., & Ulbert, I. (2016). Laminar analysis of the slow wave activity 379

in the somatosensory cortex of anesthetized rats. European Journal of 380

Neuroscience, 44 , 1935-1951. 381

Glickfeld, L. L., Roberts, J. D., Somogyi, P., & Scanziani, M. (2009). Interneu- 382

rons hyperpolarize pyramidal cells along their entire somatodendritic axis. 383

Nature neuroscience, 12 (1), 21–3. doi: 10.1038/nn.2230 384

Goodman, D. F. M., & Brette, R. (2009). The brian simulator. Frontiers in 385

Neuroscience, 3 (SEP), 192–197. doi: 10.3389/neuro.01.026.2009 386

Hagen, E., Dahmen, D., Stavrinou, M. L., Lindén, H., Tetzlaff, T., Van Albada, 387

S. J., . . . Einevoll, G. T. (2016). Hybrid scheme for modeling local field 388

potentials from point-neuron networks. Cerebral Cortex , 26 (12), 4461–4496. 389

doi: 10.1093/cercor/bhw237 390

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.29.014654doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.29.014654
http://creativecommons.org/licenses/by-nc-nd/4.0/


Hines, M. L., & Carnevale, N. T. (1997). The neuron simulation environment. 391

Neural computation, 9 (6), 1179–1209. 392

Katzner, S., Nauhaus, I., Benucci, A., Bonin, V., Ringach, D. L., & Carandini, 393

M. (2009). Local origin of field potentials in visual cortex. Neuron, 61 , 394

35-41. 395

Lindén, H., Hagen, E., Leski, S., Norheim, E. S., Pettersen, K. H., & Einevoll, 396

G. T. (2014). Lfpy: a tool for biophysical simulation of extracellular poten- 397

tials generated by detailed model neurons. Frontiers in Neuroinformatics, 398

7 , 41. 399

Niedermeyer, E., & Lopes da Silva, F. (1998). Electroencephalography (4th 400

edition). Williams and Wilkins, Baltimore. 401

Nunez, P. L., & Srinivasan, R. (2006). Electric fields of the brain: the neuro- 402

physics of eeg. Oxford university press. 403

Pettersen, K. H., & Einevoll, G. T. (2008). Amplitude variability and extracellular 404

low-pass filtering of neuronal spikes. Biophysical Journal , 94 , 784-802. 405
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Figure 1: Scheme of the genesis of unitary LFPs. A. Scheme of the axonal
arborization of a pyramidal cell, where the axon collaterals extend laterally and
contact other neurons in the vicinity of the cell. Black dots indicate excitatory
synapses made my the axon on different neurons. B. Scheme of 3 LFP electrodes
(violet) located at different distances from the soma. The uLFP recorded by
each electrode is progressively delayed (red arrows), due to the limited speed
propagation along the axon (blue arrow). The amplitude is also progressively
lower due to increasing distances from the sources. C. Scheme of the peak time
of the uLFP as a function of distance, which reflects axonal propagation. D.
Scheme of the decrease of uLFP amplitude as a function of distance.
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Figure 2: Experimental measurements of unitary LFPs in human. A. Utah-
array (top left) recording in human temporal cortex (bottom left), of LFPs and
units (right traces). 10 example LFP traces are shown, along with spike-sorted
units, which are represented from top to bottom as a decreasing function of
their mean firing rate. Presumed excitatory (RS, blue) and inhibitory (FS, red)
cells are indicated. B. Unitary LFPs for RS (blue) and FS (red) neurons at
different electrode distances. The rightmost graph shows the uLFP amplitude
as a function of distance. C. Traveling of uLFPs (left graphs). The uLFP
peak travels at a speed close to 200 mm/sec (right), consistent with axonal
propagation. D. Results obtained from a second subject, in agreement with B.
Modified from Telenczuk et al., 2017 (B. Teleńczuk et al., 2017).
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Figure 3: Detailed biophysical model of uLFPs in the hippocampus. A. Relative
position of 1000 morphologically-reconstructed hippocampal CA3 pyramidal
cells. B. Distribution of inhibitory synapses from basket cells, mainly targeting
the somatic region of pyramidal cells. C. Distribution of excitatory synapses,
mainly targeting apical and basal dendrites. D. Simulated uLFP from inhibitory
neurons at different distances from the cell (resp. 0, 100, 200, 300 µm, from
left to right). E. Simulated uLFPs from excitatory neurons. There was a lot of
cancelling for excitatory uLFPs, resulting in lower uLFP amplitudes compared to
inhibitory uLFPs (Overlay, uLFPs indicated for stratum radiatum; 10x amplitude
magnification). Modified from Telenczuk et al., 2020 (M. Teleńczuk et al., 2019).
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Figure 4: Fitting of Gaussian kernels to inhibitory uLFPs. A. Simultaneous fit of
the same Gaussian template to inhibitory uLFPs measured experimentally (dots)
at three different distances x. The template had constant standard deviation σ,
and the amplitude was given by an exponentially-decaying function of distance
(continuous curves; parameters: va=166 mm/s, d=10.4 ms, A0=-3.4 µV, λ= 0.34
mm, σ=2.1 ms). B. Similar fit using Gaussian templates with unconstrained
parameters (amplitudes of -11, -2.5 and -1.4 µV, and standard deviations of 1.99,
3.95 and 2.7 ms, respectively from top to bottom).
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Figure 5: Depth profile of model uLFP peak amplitude in hippocampus. A.
Peak uLFP amplitude as a function of depth (with zero in stratum pyramidale,
as in Fig. 3B). B. Depth profile of peak amplitudes for inhibitory uLFPs. Open
and filled circles indicate the position of 0 and 200 µm (same scale in Fig. 3B).

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.29.014654doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.29.014654
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

1000

2000

3000

4000

5000

A

Surface

Superf.

Soma

Deep

LFP

Cells

50 ms200 ms
 50 µV

Surface

Superficial

Soma

Depth 200 µm

B C

Figure 6: Example of LFP calculated from networks of point neurons exhibiting
gamma oscillations. A. Scheme of the placement of cells and electrodes. Neurons
were distributed randomly in a plane of 200 µm size, and the electrodes were
placed perpendicular to the plane, as indicated. B. Simulations of gamma
oscillations in randomly-connected networks of excitatory and inhibitory neurons.
The top graphs display the raster of spiking activity in the network. The network
had 5,000 neurons, 4,000 excitatory (blue) and 1,000 inhibitory (red). The
network models the genesis of gamma oscillations by recurrent excitatory and
inhibitory interactions among integrate-and-fire neurons (Brunel & Wang, 2003).
The bottom curves show the LFP calculated using the kernel method. From top
to bottom: surface LFP, LFP from superficial layers, LFP at the level of the
soma, and LFP in deep layers as schematized in A. The corresponding uLFP
amplitudes were taken from Table 1, and the kernel were estimated as in Fig. 4.
C. Same simulation at higher temporal resolution.

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.29.014654doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.29.014654
http://creativecommons.org/licenses/by-nc-nd/4.0/


 100 µm

 200 µm

 300 µm

400 µm

200 ms

 100 µV

 100 µm

200 µm

300 µm

400 µm

500 µm

A

B

Figure 7: Horizontal distance-dependence of LFP calculated using the kernel
method. A. Scheme of the network and the placement of recording sites at
different distances from the center of the network. B. LFP calculated (same
simulation as in Fig.6) at different distances, as indicated.
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Figure 8: Example of LFP calculated from networks of point neurons in asyn-
chronous or Up/Down states. A. Model of asynchronous-irregular activity in
a network of adaptive exponential (AdEx) neurons. The corresponding LFP
is calculated and shown identically as in Fig. 6A. The network had 10,000
neurons, 8,000 excitatory (blue) and 2,000 inhibitory (red). B. Same network
but for increased adaptation, displaying alternating Up and Down states. The
corresponding LFP showed slow wave activity.
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Figure 9: LFP calculated from multilayer networks. A. Three networks similar
to Fig. 8B, exhibiting Up/Down state dynamics. The networks are arranged
according to three neuronal layers, Supragranular, Granular and Infragranular,
as indicated. B. Slow-wave LFPs generated from these networks using the Kernel
method. The LFP in 4 layers are generated as in Fig. 8B for each network, and
combined, to yield 6 layers, as indicated.
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