
 1 

De novo reconstruction of microbial haplotypes by integrating statistical 
and physical linkage 
Chen Cao†,1, Jingni He†,1, Lauren Mak†,1,2, Deshan Perera1, Devin Kwok3, Jia Wang4, Minghao Li1, Tobias 
Mourier5, Stefan Gavriliuc1, Matthew Greenberg3, A. Sorana Morrissy1, Laura K. Sycuro1,6, Guang Yang1,7, Daniel 
C. Jeffares8, Quan Long1,3,7,9* 

1Department of Biochemistry & Molecular Biology, Alberta Children’s Hospital Research Institute, University of 
Calgary, Calgary, Canada 

2Tri-Institutional Computational Biology & Medicine Program, Weill Cornell Medicine of Cornell University, NY, 
USA 

3Department of Mathematics & Statistics, University of Calgary, Calgary, Canada 

4Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, USA 

5Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King 
Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia 

6Department of Microbiology, Immunology, and Infectious Diseases, Snyder Institute for Chronic Diseases, 
University of Calgary, Calgary, Canada 

7Department of Medical Genetics, University of Calgary, Calgary, Canada 

8York Biomedical Research Institute, Department of Biology, University of York. Wentworth Way, York, United 
Kingdom 

9Hotchkiss Brain Institute, O’Brien Institute for Public Health, University of Calgary, Calgary, Canada 

†These authors contributed equally to this work. 

*Corresponding author: quan.long@ucalgary.ca 

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2020. ; https://doi.org/10.1101/2020.03.29.014704doi: bioRxiv preprint 

mailto:quan.long@ucalgary.ca
https://doi.org/10.1101/2020.03.29.014704
http://creativecommons.org/licenses/by/4.0/


 2 

ABSTRACT 

DNA sequencing technologies provide unprecedented opportunities to analyze within-host evolution of 
microorganism populations. Often, within-host populations are analyzed via pooled sequencing of the population, 
which contains multiple individuals or ‘haplotypes’. However, current next-generation sequencing instruments, in 
conjunction with single-molecule barcoded linked-reads, cannot distinguish long haplotypes directly. 
Computational reconstruction of haplotypes from pooled sequencing has been attempted in virology, bacterial 
genomics, metagenomics and human genetics, using algorithms based on either cross-host genetic sharing or 
within-host genomic reads. Here we describe PoolHapX, a flexible computational approach that integrates 
information from both genetic sharing and genomic sequencing. We demonstrated that PoolHapX outperforms 
state-of-the-art tools tailored to specific organismal systems, and is robust to within-host evolution. Importantly, 
together with barcoded linked-reads, PoolHapX can infer whole-chromosome-scale haplotypes from 50 pools 
each containing 12 different haplotypes. By analyzing real data, we uncovered dynamic variations in the 
evolutionary processes of within-patient HIV populations previously unobserved in single position-based analysis.  

 

INTRODUCTION  

Microorganisms are in a constant state of genetic flux in response to their environments. High-resolution analyses 
of these systems may lead to translational applications, such as clinical monitoring of antimicrobial resistance 
trends (Hofer 2019). However, analyzing within-host dynamics and evolution is challenging due to the difficulty of 
separating samples into genetically homogeneous isolates/clones, either by experimental procedures such as 
culturing individual strains, or current computational tools, which are unable to distinguish between many clones 
when haplotypes are unknown. As a pragmatic alternative, uncultured mixtures of the heterogeneous population 
are sequenced and analyzed based on aggregated frequencies at each segregating sites in individual hosts. This 
procedure ignores the fact that long-range linkage information is crucial in to many different analyses towards 
evolution (Sabeti, et al. 2002; Voight, et al. 2006) and association mapping (Datta and Biswas 2016). Recent 
advances in DNA sequencing technology led to increases in the sequencing depth per run and the length of 
reads, allowing us to assess genetic variants in greater detail, providing an unprecedented opportunity to 
understand the dynamics and evolution of these systems. Emergent single-molecule sequencing approaches that 
barcode short reads derived from long DNA fragments up to 50 Kb (i.e. linked-reads) (Zheng, et al. 2016; Chen, 
et al. 2019; Wang, et al. 2019), allow in-depth evolutionary studies into complex populations that were 
unresolvable from short fragment libraries (250 bp).  

However, even with barcode-based linking, full resolution of short reads into long-range haplotypes is not feasible 
with current approaches. While third-generation technologies such as Pacific Biosciences and Oxford Nanopore 
Technology (Weirather, et al. 2017), produce very long reads that represent local haplotypes, computational 
analysis will still be essential for resolving haplotypes and estimating their relative proportions in the pool. Without 
this haplotype-level resolution, within-host dynamics cannot be analyzed as if the haplotypes were separated and 
sequenced individually. Even with barcoded linked-reads designed for single-molecule sequencing, the current 
tools are only applicable in a two-haplotype system, as it was designed for analyzing paternal and maternal 
chromosome (Mostovoy, et al. 2016) and structural variants (Elyanow, et al. 2018). Therefore, microorganism-
based studies resort to computational tools to make single-cell-like analyses possible (Danko, et al. 2019).  

Many tools have been developed to reconstruct haplotypes using algorithms that target data from viruses, 
bacteria, metagenomic data, and historically, artificially pooled human genomes. Conceptually they can be split 
into two categories. The first contains statistical models utilizing haplotype-block sharing between individuals 
(“statistical linkage disequilibrium” or “statistical LD” hereafter), mostly developed in human genetics (Long, et al. 
2011; Long 2017). The second contains computational algorithms that leverage minor allele frequency and 
sequence reads exposing the co-occurrence of multiple alleles on the same haplotype (referred to as “physical 
linkage disequilibrium” or “physical LD” hereafter), mostly tailored to uncultured sequencing of viruses or bacteria 
(Huang, et al. 2011; Prabhakaran, et al. 2013; Pulido-Tamayo, et al. 2015; Albanese and Donati 2017; 
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Artyomenko, et al. 2017; Posada-Cespedes, et al. 2017; Ahn, et al. 2018; Knyazev, et al. 2018; Li, et al. 2019; 
Nicholls, et al. 2019; Knyazev, et al. 2020). A more detailed overview of these methods is available in the 
Supplementary Notes.  

There is a disconnect between these two approaches, and both have limitations. Methods based on genetic 
sharing do not consider pool-specific dynamics that can be captured by sequencing reads, and are ineffective 
when there is strong within-host evolution that changes allele distributions. Also, the underlying population genetic 
models developed in human genetics may not fit in microorganisms well. For instance, many microorganisms 
exchange genetic materials through gene conversions (Santoyo and Romero 2005), instead of meiotic 
recombination as assumed by many phasing tools (Browning and Browning 2011). On the other hand, methods 
based on genomic reads only work on one pool a time, without taking advantage of genetic sharing caused by 
transmission between hosts (Cudini, et al. 2019) and common developmental trajectories in different hosts 
(Toprak, et al. 2011). Additionally, organisms with differing properties such as mutation rates generate data that 
require field-specific assumptions to process. The result is that each haplotyping tool may be ineffective when 
applied to another data type. 

The two current methodologies utilize disparate sources of genetic information. We expected considerable 
improvements by integrating them into a reconstructive model that accurately represents the composition of 
genetically related populations. In this work, we present a novel tool, PoolHapX, which utilizes a multi-step 
framework that balances cross-host shared information and host-specific information to jointly and simultaneously 
reconstruct haplotypes for multiple samples.  

The remainder of this paper is organized as follows. PoolHapX’s design philosophy, an overview of its algorithmic 
framework, and examples of large-scale microorganism studies that PoolHapX facilitates are outlined in New 
Approaches. Thorough comparisons to other tools with both simulated and real data validating our design 
philosophy are presented in Results. As a practical demonstration of experimental applicability, PoolHapX is 
applied to a time-series of HIV samples to elucidate within-host evolutionary dynamics. More extensive 
descriptions of software and simulation design, including implementation details and analysis procedures, can be 
found in the Materials & Methods.     

NEW APPROACHES 

Applications empowered by PoolHapX 

Assumptions. PoolHapX is designed for studies where researchers have sequenced microbial genomes in 
multiple samples and there is known to be genetic sharing across the samples. For example, an archetypal 
dataset may be several samples from patients known to be infected by the same pathogen. In that case, 
transmission facilitates pathogen genetic sharing. Another dataset could consist of multiple samples from the 
same individual at multiple timepoints during tissue development or disease progression. In this case, genetic 
sharing is caused by the developmental trajectory. We assume that the investigators are interested in within-host 
evolution at the haplotype scale, as opposed to single-nucleotide polymorphism (SNP) studies. Unlike previous 
tools that assume the availability of the identities of haplotypes and only estimate frequencies (Long, et al. 2011; 
Albanese and Donati 2017), PoolHapX can infer haplotype identities (out of the potential 2n candidates, where n is 
the number of segregating sites). That is why we claim a de novo haplotype reconstruction. At the moment, 
PoolHapX does not aim to assemble reference genomes de novo such as SPAdes (Bankevich, et al. 2012).  

Applicable organism and sequencing protocols. PoolHapX is applicable to any microorganism with a reference 
genome, including viruses, bacteria and protozoans. PoolHapX is also applicable to the analysis of within-species 
haplotypes from metagenomics data, after the sequencing reads of the focal species are mapped to the 
corresponding references. PoolHapX is applicable to NGS data, including standard short reads as well as 
barcoded linked-reads, which was popularized by 10x-Genomics (Zheng, et al. 2016; Wang, et al. 2019), and is 
supported by several other vendors after 10x-Genomics’ suspension of the service (Chen, et al. 2019; Wang, et 
al. 2019).  
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Design Philosophy of PoolHapX 

PoolHapX integrates cross-host shared information (i.e., statistical LD estimated from population genetic models) 
and host-specific information (i.e., physical LD of alleles on the same genomic reads) in a flexible framework. 
Here, “pool” and “host” are both used synonymously, since “host” emphasizes the biological source of data and 
“pool” the experimental source. Briefly, statistical LD in a population is equivalent to non-zero correlation between 
the occurrences of alleles at different locations, regardless of the biological mechanism (e.g., recombination, gene 
conversion, or natural selection). We use hierarchical multivariate normal distributions to model and resolve the 
statistical LD across sub-genomic regions to generate intermediary haplotype fragments. Physical LD can be 
observed in paired-end reads or linked-reads, constraining the combinations of haplotypes that can occur in 
specific pools. We utilize this information in two ways: (1) to generate initial draft haplotypes and (2) to statistically 
infer final haplotypes using a regularized regression model. Below, we describe the 4-step algorithm and, 
intuitively, the innovation and benefit of each step, leaving more details in Materials and Methods as well as 
Supplementary Notes.  

Overview of the PoolHapX algorithm 

PoolHapX uses variant calls and read alignments to identify global haplotypes in each host, and estimate their 
within-host frequencies (Supplementary Fig. 8). The PoolHapX algorithm is comprised of four steps embedded 
in a divide-and-conquer framework. In Step 1, graph-coloring (Matula, et al. 1972) is employed to roughly cluster 
sequencing reads into initial draft haplotypes. This draft set serves as the first step of the divide-and-conquer 
process (Fig. 1a, Supplementary Fig. 1). In Step 2, our hierarchical Approximate Expectation-Maximization 
(AEM) algorithm is applied to infer haplotypes in local regions by incorporating information from multiple hosts. 
The algorithm starts with the smallest local haplotypes as the lowest hierarchy (Fig. 1b), and then gradually 
combines them into successively longer local haplotypes covering larger spans of variant positions (Fig. 1b, 
Supplementary Fig. 3). This process iterates through several rounds until reaching the top level (representing 
the largest local region that AEM can analyze with the available computation memory). In Step 3, the refined set 
of local haplotypes from the final iteration of AEM will be stitched to form candidate global haplotypes using a 
Breadth-First Search (BFS) algorithm (Fig. 1c, Supplementary Fig. 6). Finally, in Step 4, the long-range linkage 
implied in allele frequencies aggregated across all hosts and the short-range linkage sequencing reads from each 
pool are innovatively integrated in a regression model (Fig. 1d, Supplementary Fig. 7). This regression model is 
solved using a regularized objective function (Hazimeh and Mazumder 2018). The input candidate global 
haplotypes are from all the pools (stitched in Step 3), and the regression is conducted in individual pools 
sequentially. Then aggregating in-pool frequencies will lead to the cross-pool global frequencies. This step 
finalizes the identity and frequency of the global haplotypes.  

The innovation and benefit of each step 

The above four steps incorporate physical and statistical linkage into a coherent model. Since the techniques 
were pioneered in multiple organismal fields to address their specific challenges, the integrated PoolHapX model 
might be difficult to understand as a whole. We have summarized the innovations and benefits of jointly using 
these techniques together below.  

The innovation of Step 1 lies in its adoption of a greedy strategy to form many haplotypes (including potential 
false positives) for the downstream analysis, instead of the parsimony principle utilized by most tools based on 
graph algorithms in viral genomics (Zagordi, et al. 2011; Prosperi and Salemi 2012; Topfer, et al. 2014; Baaijens, 
et al. 2017). Due to its multi-step framework, PoolHapX relies on downstream steps to remove implausible 
haplotypes. The innovation of Step 2 is the hierarchical iteration of AEM, an established technique in human 
genetics (Kuk, et al. 2009). The original AEM calculated the likelihoods for all 2n haplotypes (Kuk, et al. 2009), and 
is therefore is not scalable for genome-scale analysis. Step 3 is a standard divide-and-conquer algorithm, which 
links sub-genomic fragments from hierarchical iterative AEM (Step 2) into full-length candidate haplotypes for 
Step 4. The innovation of Step 4 lies in both its design and implementation. Traditional methods based on 
regressions in haplotype reconstructions for viruses (Leviyang, et al. 2017), plants (Long, et al. 2011), and 
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metagenomics (Albanese and Donati 2017) only utilize allele frequencies at individual segregating sites. In 
contrast, the PoolHapX regularization model integrates both allele frequencies and physical LD between alleles 
co-occurring on sequencing reads. To constrain the number of reconstructed haplotypes, traditional methods 
solve regressions using L1 regularization, which do not distinguish between the correct solution with few 
haplotypes, and incorrect solutions with many haplotypes. L1-based regression models assign the same penalty 
to any reconstructed population as long as the sum of the allele frequencies is 1.0. To parsimoniously narrow 
down the set of haplotypes comprising a sample, PoolHapX uses a combination of L0 and L1 regression penalties 
based on a cutting-edge L0 solver (Hazimeh and Mazumder 2018).  

In summary, Steps 1 and 4 utilize host-specific information (physical linkage), whereas Step 2 iteratively 
leverages cross-host linkage-sharing information. Step 3 stitches the sub-genomic haplotype fragments into full-
length haplotype candidates. By building on existing innovations drawn from multiple fields, PoolHapX aggregates 
the benefits of multiple statistical models, and is thus applicable to many datasets. 

 

RESULTS 

Using simulated and real data containing tens of haplotypes in multiple pools, we demonstrate that PoolHapX 
possesses the desired properties for being a universally applicable tool robust to various factors: (1) it is 
applicable to many fields, and in particular outperforms state-of-the-art haplotype-reconstruction tools targeting 
different domains, i.e., virus, bacteria, and metagenomics in their respective settings; (2) it is robust to various 
scenarios of within-host evolution; (3) it can reconstruct many whole-chromosome long-range haplotypes when 
applied to barcoded linked-reads and (4) haplotypes inferred by PoolHapX reveal novel evolutionary insights 
unseen in SNP-based analyses. 

Benchmarking PoolHapX with simulated data 

To test the accuracy and flexibility of PoolHapX in comparison to state-of-the-art haplotyping tools (Kuk, et al. 
2009; Pirinen 2009; Prabhakaran, et al. 2013; Pulido-Tamayo, et al. 2015; Albanese and Donati 2017; Ahn, et al. 
2018; Knyazev, et al. 2018; Li, et al. 2019; Nicholls, et al. 2019), we simulated artificial pools of haplotypes and 
the sequencing reads generated from these pools. We then examined PoolHapX against tools developed for 
virology (Prabhakaran, et al. 2013; Ahn, et al. 2018; Knyazev, et al. 2018), bacteriology (Pulido-Tamayo, et al. 
2015; Li, et al. 2019), metagenomics (Albanese and Donati 2017; Nicholls, et al. 2019), and human genetics (Kuk, 
et al. 2009; Pirinen 2009) (flowchart in Supplementary Fig. 8). As each discipline has a specific method for 
simulating benchmarking data, we follow their corresponding conventions. However, we use standardized 
assessment criteria to consistently compare reconstruction accuracy (Supplementary Notes). We used 
Matthews Correlation Coefficient (MCC) to measure the similarity between the identities of simulated ‘gold 
standard’ and reconstructed haplotypes, where two identical haplotypes have their MCC = 1 (the larger, the 
better) (Albanese and Donati 2017), we calculated the MCC of each gold-standard haplotype and the closest 
reconstructed haplotype (by Hamming distance), and averaged the haplotype-MCCs across all of the samples. 
The gold-standard haplotype and reconstructed haplotype were considered as vectors composed of 0s and 1s, 
and pairs of matched and mismatched alleles were counted as true-positives, false-negatives, etc. (Luo, et al. 
2015; Albanese and Donati 2017; Ahn, et al. 2018). We used Jensen–Shannon Divergence (JSD) to measure the 
difference between frequencies of simulated and reconstructed haplotype distributions for each host in the 
simulated dataset, where two identical distributions have JSD = 0 (the smaller, the better). Fig. 2 shows the 
results of this comparison, and a brief description of each domain is provided below. Details of the simulations are 
presented in the Supplementary Notes and Online Methods, and outcomes with more parameters, showing 
similar trends, are presented in Supplementary Figs. 12-14).  

Viruses & Bacteria. In the field of viral/bacterial haplotype reconstruction, cross-host linkage sharing was not used 
as a source of information, despite literature evidence demonstrating extensive conservation in some genomic 
regions even after transmission takes place (Mak, et al. 2020). As a result, when conducting comparisons, the 
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authors of other tools usually formed only one pool of gold standard haplotypes in each round of simulation. A 
reference genome is used as a template, and variants are randomly simulated with pre-specified density of SNPs 
to form the gold standard haplotypes. Multiple densities are used to benchmark performance with diverse 
configurations of data, reflecting variable mutation rates in different environments (Metzgar and Wills 2000). In 
general, high SNP density (between 0.5% and 2.0%) for viruses (Prabhakaran, et al. 2013), and a lower range for 
bacteria (between 0.005% and 0.02%) (Li, et al. 2019) are used. Our procedure is similar, except that we 
simulated multiple pools with some haplotype sharing between them, and reconstructed haplotypes across the 
pools simultaneously. We did not use a commonly cited real dataset with a single pool containing only 5 HIV 
strains (Giallonardo, et al. 2014) because PoolHapX is designed to utilize genetic sharing among multiple pools. 
In a concurrent study, we used this 5-strain dataset to compare our single-host tool, WgLink, that only uses single 
host sequencing to existing tools (Cao, et al. 2020). We showed that our strategy of divide-and-conquer and 
L0+L1-regularization with cross-host information is capable of outperforming alternative tools by a large margin 
(Cao, et al. 2020).  

It should be noted that our approach explicitly models haplotype sharing between hosts, which PoolHapX is 
naturally designed for. This led to relatively better performance than other tools designed for single pools of data. 
To accurately simulate linkage sharing between pools, we used SLiM (Haller and Messer 2019) to simulate 
haplotypes under standard island models, where genomes mutate, recombine, and replicate in their own island 
and occasionally migrate to other islands. We embedded the simulated variants into a viral reference genome.  

For viruses, we chose the human immunodeficiency virus (HIV), which is well known for its ability to form large 
and genetically heterogeneous within-host viral populations (Lauring and Andino 2010). Multiple haplotypes were 
pooled and the simulated sequencing reads were processed using a modified version of the GATK best practice 
pipeline (DePristo, et al. 2011) to discover variants. Details can be found in Supplementary Notes. We chose 
three representative viral sequencing tools for comparison: TenSQR (Ahn, et al. 2018), PredictHaplo 
(Prabhakaran, et al. 2013) and CliqueSNV (Knyazev, et al. 2018). The details of how we run these tools are 
presented in Supplementary Notes. Evidently, PoolHapX outperformed these alternatives not only in the mean 
of the MCC and JSD values, but also their variances (Fig. 2a and Supplementary Fig. 12). When sequencing 
coverage was high (=5000X), as well as the SNP density, PoolHapX performed similarly to other tools in terms of 
the mean MCC, but with much smaller variance of MCC and also significantly better JSD that represents the 
abundance of haplotypes (Fig. 2a). When sequencing coverage was low, the performance of other tools 
decreased rapidly relative to PoolHapX (Supplementary Fig. 12). 

For bacteria, we used a chromosome of Vibrio cholerae O1 biovar El Tor str. N16961 (Chr-2, length = 1.07Mb), a 
strain of the bacterium Vibrio cholerae and the causative agent of cholera (Cvjetanovic and Barua 1972) as the 
template reference genome. We used a lower SNP density (=0.005% to 0.02%) to match the bacterial genomes 
(Pulido-Tamayo, et al. 2015) and to be comparable to the simulation procedures of competing tools, i.e., Bhap (Li, 
et al. 2019) and EVORhA (Pulido-Tamayo, et al. 2015). Despite the very different simulation parameters and 
reference genome in the simulations of viruses and bacteria, we observed similarly good performance in contrast 
to other tools (Fig. 2b and Supplementary Fig. 12).  

In the field of metagenomics there is no established tool to infer haplotypes de novo without utilizing template 
references of known strain sequences. Note that we still rely on reference genome for the species, instead of 
assembling genomes of novel species completely de novo. Gretel, a recently developed tool (Nicholls, et al. 
2019), requires high SNP density so that each SNP is within a sequencing read length of the next adjacent SNP. 
We simulated data to facilitate the requirements of Gretel to ensure it is runnable (although this is not a 
requirement of PoolHapX). We also selected StrainEst (Albanese and Donati 2017), a representative tool for 
strain-identification, to demonstrate whether tools that utilize templates of known strains may work for fine-scale 
haplotype identification. This was likely an unfair comparison, due to the lack of template references for known 
strains in our simulations. We used sequences from Escherichia coli, a typical bacterium for meta-genomics 
studies. In these two cases, the sequencing coverage was substantially lower than dedicated single-species 
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sequencing (=25X). Evidently, PoolHapX outperformed Gretel, and StrainEst did not work well when templates 
were unavailable (Fig. 2c; Supplementary Fig. 12).  

PoolHapX performance in evolutionary scenarios and linked reads 

The above simulations in four domains show that PoolHapX is universally applicable across species and is robust 
to sequencing data with varying properties. However, except in the domain of human GWAS, existing tools do not 
explicitly utilize sharing across hosts. Since hosts of microbes can exert different evolutionary pressures to 
generate host-specific haplotypes, this can cause a biased outcome from models that use cross-host sharing. To 
test whether the PoolHapX module utilizing within-host physical LD can correct for this bias, we used SLiM to 
simulate data under three common evolutionary scenarios in population genetic analyses: positive selection, 
negative selection, and selective sweeps (Supplementary Notes). Our analysis of these data indicated that 
PoolHapX is robust to host-specific haplotype patterns caused by evolution (Fig. 3; Supplementary Fig. 13). 

Single-molecule linked-reads. We further tested PoolHapX’s capabilities on single- molecule linked-reads. Based 
on a template of chromosome 1 of the unicellular green algae Ostreococcus lucimarinus (genome length of 1.15 
Mb), we simulated approximately 20 gold standard haplotypes with 570 SNP positions. Using the 10X Genomics 
linked-read simulator LRSim (Luo, et al. 2017), with default settings of fragment length (=50Kb) in each droplet 
and number of linked-reads per fragment (on average 67), we simulated 10X Genomics linked-reads at various 
sequencing depths and numbers of pools. On average, PoolHapX achieved MCC ≥ 0.75 and JSD ≤ 0.25 (Fig. 4), 
which is comparable to other PoolHapX results when inferring shorter haplotypes using standard Illumina paired-
end reads based on short-fragment DNA molecules. This outcome turns the promise of “single-cell” DNA 
sequencing into reality, enabling pathogen biologists to study within-host evolutionary changes at the individual 
molecule level. 

Applications to real data 

Infections with the haploid malaria parasite Plasmodium vixax (Genome size =22 Mb) are known to contain 
multiple genotypes, which influence disease severity (Pacheco, et al. 2016). These ‘multi-clonal infections’ may 
derive from infection by a single mosquito bite carrying multiple strains, with meiotic recombination in the vector. 
Alternatively, they may be due to multiple infections from different mosquitos carrying different strains. Accurate 
whole-genome haplotype reconstruction will distinguish between these alternatives. We challenged PoolHapX 
with a collection of 49 P. vivax genome sequences (Supplementary Notes) to demonstrate its applicability on 
many pools of eukaryotic organisms with mid-sized genomes (Carlton 2003). To achieve this, we split the P. vivax 
genome into windows of 150 SNPs. PoolHapX took on average 54.79 CPU-hours per chromosome to conduct all 
computations. On average we found 3.3 inferred haplotypes per region per individual (Supplementary Table 3), 
consistent to expectations of existence of multiplicity of infections (Pacheco, et al. 2016), although our inferred 
numbers of haplotypes are larger. It should be noted that the original study only counted a sample as multiply 
infected if more than one allele peak was called from PCR-based fluorescent signals. Since we are considering 
the entire P. vivax genome instead of a set of microsatellite loci, our approach will naturally find more haplotypes. 
Whether the whole-genome haplotypes originated from a single or multiple infection is dependent on the genetic 
and transmission properties of P. vivax itself, and indeed, for any pathogen. The distribution of haplotype 
frequencies along the chromosomes is shown in Supplementary Fig. 9. 

To compare the de novo reconstructed haplotypes with strains inferred by a template-based method in 
metagenomics, we reanalyzed a meta-genomics dataset collected from a gastrointestinal microbiome undergoing 
shifts in species and strain abundance (Sharon, et al. 2013). The original publication suggested that the 
abundance of Staphylococcus epidermidis is primarily controlled by phages 13, 14 and 46 through the mecA 
gene. Based on StrainEst (Albanese and Donati 2017) (supported by templates of known strains), other 
researchers analyzed the same data and inferred the identities and frequencies of the three strains in question 
(Albanese and Donati 2017), which we were able to replicate (Fig. 5a). We have re-analyzed the same data by 
reconstructing fine-scale haplotypes. The Staphylococcus epidermidis genome was divided into 110 fragments 
(100 SNPs per fragment). The average number of haplotypes for each fragment was 9.3, although this 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2020. ; https://doi.org/10.1101/2020.03.29.014704doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.29.014704
http://creativecommons.org/licenses/by/4.0/


 8 

value changed at different time points (Supplementary Table 4). All fragmentary haplotypes are aligned back to 
the three main strains (Supplementary Notes) to examine the aggregated haplotype frequencies of each strain. 
By averaging all 110 regions, the aggregated frequencies (from PoolHapX) were found to follow the same pattern 
of changes as these three strains (Fig. 5b). This demonstrates that PoolHapX correctly identified haplotypes 
through de novo inference, without the use of reference templates from known strains, as required by StrainEst. 

To demonstrate how PoolHapX can be used to discover novel evolutionary events, we tested PoolHapX on bulk-
sequencing data from a recent intra-patient HIV study (Zanini, et al. 2015). This dataset contains longitudinal 
samples from multiple time points for 10 patients. We analyzed patient #1, which contains the most time points 
(12). We inferred haplotypes using PoolHapX, and observed 2 main haplotypes at time point 1, and 10 -13 main 
haplotypes at the rest time points (Supplementary Table 5). We then calculated several extended haplotype 
homozygosity-related (EHH) summary statistics (Sabeti, et al. 2002), which measure linkage disequilibrium 
across a population by quantifying the probability that two randomly chosen particles are identical by descent in a 
certain region (see rationale in Supplementary Notes). Outlier values of the area under the EHH curve indicate 
that selective sweeps may have occurred (Supplementary Notes). While the size of linkage blocks decayed 
extremely rapidly post-infection in all genes (Fig. 6a, b, Supplementary Fig. 10), it did not decrease 
monotonically as the HIV population adapted to the within-patient environment. To further quantify the rate and 
dynamics of selection within each gene, we plotted the size of windows with EHHS ≥ 0.5 at all time points and for 
multiple genes in the reconstructed haplotypes. The genes gag, responsible for assembly and structure, and pol, 
responsible for genetic reproduction (Konnyu, et al. 2013), are pictured in Fig. 6c,d, (other genes in 
Supplementary Fig. 11). Within gag and pol, there was substantial heterogeneity in average window size over 
time, with the downstream regions of gag and pol largely fluctuating between 0 and 250 bp (Fig. 6c, d). These 
regions were highly conserved due to their respective roles in the HIV life cycle (Mayrose, et al. 2013).  

We have conducted a search for regions of positive selection between reconstructed haplotypes at adjacent time-
points, where selective sweeps could have taken place. There are regions that are recurrently swept, most 
notably in the region of the gag polyprotein gene that encodes the p24 protein (Supplementary Table 7). The 
occurrence of sporadic but re-occurring selective sweeps in gag, specifically p24, can be attributed to the 
appearance of cytotoxic T-lymphocytes (CTL) escape mutations, which reduce the ability of CTL to target virus-
infected cells (Prince, et al. 2012). However, these escape mutations also decrease the replicative capacity of the 
virus, and a larger mutational burden corresponds to a greater decrease in capacity (Chopera, et al. 2008; Wright, 
et al. 2012). As such, episodic periods of positive selection at the same location would allow successful escape 
mutations to rise to fixation occasionally, while still allowing for genetic diversity to accumulate between selective 
sweeps.    

 

DISCUSSION 

PoolHapX seamlessly integrates statistical and physical linkage information into a flexible but powerful framework 
for haplotype reconstruction. We have shown that PoolHapX produces more accurate haplotype reconstructions 
and frequencies than any other tool to date, and is robust to dynamics generated by within-host evolution. From 
the analysis of Plasmodium vivax, Staphylococcus epidermidis and HIV data, we show that PoolHapX is scalable, 
accurate, and infers haplotype data that is valuable for understanding the within-patient diversity of pathogens. 

One of our main algorithms, AEM is borrowed from human genetics. In early genome-wide association studies 
(GWAS) for humans, DNA from multiple individuals was artificially pooled to save on genotyping costs. 
Subsequently, in silico methods were applied to the pooled sequencing data to reconstruct haplotypes (Kuk, et al. 
2009; Pirinen 2009) for association mapping. Though technological advancements have made this cost-saving 
practice unnecessary, as a theoretical assessment, we compared PoolHapX against the GWAS-based haplotype 
reconstruction tools Hippo (Pirinen 2009) and AEM (Kuk, et al. 2009). Since there are many publicly available 
human genomes we did not simulate haplotypes, instead making artificial pools using phased haplotypes from the 
1000 Genomes Project (Consortium 2015) (Supplementary Notes). Supplementary Fig. 14 show that 
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PoolHapX slightly outperformed alternative tools when there were relatively few SNPs. When there were many 
SNPs (>=25) in a region, however, the other tools did not finish in two weeks (using an HPC node with 48Gb 
memory), while PoolHapX could still produce reliable results with a large region containing as many as 200 SNPs 
in a few hours.   

 

This implementation of PoolHapX has some limitations. We found that the method is sensitive to the inferred 
within-host allele frequency, and therefore high variance in allele frequency caused by very low sequencing 
coverage will result in high error rates. The performance of PoolHapX is also variable when we attempt to infer 
frequencies of more than 50 haplotypes in the pools. However, if we aim only to assess a smaller number of more 
abundant haplotypes (e.g. 10-20), it is robust to noise caused by rare haplotypes (Fig. 2 and Fig. 3). Another 
limitation is that PoolHapX is not able to handle very large structural variants for the moment, while small indels 
can be handled in the same way as point mutations (SNPs). PoolHapX does not take the quality score of variant 
calls into account when reconstructing haplotypes, though several tools do (Prabhakaran, et al. 2013; Ahn, et al. 
2018; Ahn and Vikalo 2018)   

At present, PoolHapX is in continuing development, with ongoing work to integrate third-generation sequencing 
data (Check Hayden 2009) into PoolHapX, as well as algorithms using genomic assembly (Bankevich, et al. 
2012) to improve haplotypes.  

 
MATERIAL AND METHODS 

Graph coloring algorithm  

If two sequencing reads cover the same genetic segregating site but carry different alleles, it is certain that they 
do not belong to the same haplotype. Based on this observation, we build a graph <V, E> in which every read is a 
node v. For two nodes v1 and v2, we put an edge e1,2 between them if and only if we have information to claim 
they are not on the same haplotype. Then, the haplotyping problem becomes a graph-coloring problem: where 
each node (i.e. each read) is assigned a color, such that nodes linked by edges are colored differently. This 
ensures that reads belonging to different haplotypes are colored differently. After conducting this graph-coloring 
problem, we effectively estimate haplotypes by collecting reads of the same colors. As the standard parsimony 
algorithm is too slow when the number of reads is large, we have implemented a greedy algorithm to color this 
graph (Supplementary Notes). The spatial complexity of our graph coloring is O(n2) and the time complexity is 
O(n2).  The outcome of graph-coloring forms starting states for the whole pipeline in two respects. First, by 
collecting all reads of the same color, PoolHapX can generate segments of local haplotypes as the initial input to 
the next step, the Hierarchical AEM algorithm. Second, the gaps between local haplotypes naturally inform the 
initial divide & conquer plan for subsequent steps (Supplementary Notes).   

Hierarchical AEM algorithm 

The basic version of AEM algorithm, as described in (Kuk, et al. 2009), builds upon the multivariate normal (MVN) 
distribution. The LD between all pairs of n segregating sites is modeled as the variance-covariance matrix of an 
MVN distribution. Initially, all 2n possible haplotypes will be assigned to the same frequency (1/2n). Then in an 
iterative procedure, the likelihood ratio of observing the data with or without the presence of each haplotype is 
estimated using the MVN densities. These ratios are called “Importance factors” (Kuk, et al. 2009), indicating the 
importance of the individual haplotypes, and will be used to adjust their haplotype frequencies. This adjustment is 
conducted iteratively until the haplotype frequencies converge (Supplementary Notes).   

In our adaptation of AEM we have made the following three modifications. First, the initial haplotype configuration 
is no longer a uniform distribution of all 2n haplotypes. Instead, using the haplotypes gained from graph coloring, 
haplotypes with higher sequence coverage start with a higher initial frequency. As a consequence, many potential 
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haplotypes that are not observed in graph coloring will have zero frequency. While the spatial complexity of AEM 
remains O(n2) and the theoretical time complexity remains O(n3 x 2n), the number of required iterations are 
substantially reduced in practice due to the initial configuration being closer to the truth. Second, we use a divide 
& conquer algorithm to scale up the original AEM algorithm to larger regions, so that we run AEM in a hierarchical 
manner. The shorter haplotypes inferred from the previous AEM iteration are used in the next round of AEM to 
form longer haplotypes (Supplementary Fig. 3 and Fig. 1a). In each round, local regions are designed to have 
half of their segregating sites overlap with the next region (Supplementary Fig. 5), in order to form tiling windows 
that can be stitched together at the next hierarchical level. Third, the original AEM is not robust to numerical 
instability if the denominator in the likelihood ratio is close to zero. However, this problem occurs more frequently 
in larger regions with sparse non-zero LDs in the covariance matrix. We have fixed this by adjusting the 
calculation of the likelihood (Supplementary Notes).    

Breadth-First Search (BFS) 

The iterative AEM algorithm generates successively larger regional haplotypes until an upper limit is reached, 
which is 96 segregating sites by default. PoolHapX will then attempt to resolve global haplotypes. The outcome of 
the last AEM iteration is a set of local haplotypes that span tiling windows, with many potential combinations that 
form global haplotypes. To resolve global haplotypes, we model the local regions as a tree, with each local 
haplotype as a node. Haplotypes from the first region of the genome form the first level of the tree, while 
haplotypes from the next tiling region form the nodes of the next level. If two haplotypes in adjacent regions have 
the same alleles in their overlapping segments, we add an edge linking these two nodes. Traversing the resulting 
tree generates an exhaustive set of all plausible combinations of local haplotypes, which forms the set of 
candidate global haplotypes. We implement a standard Breadth-First Search (BFS) algorithm (Cormen, et al. 
2009) to conduct this traversal. Finally, we filter out some global haplotypes that are inconsistent with the 
sequencing reads (Supplementary Notes).    

Global Regularization model  

Given all candidate global haplotypes from the BFS step, we use an innovative regression model to estimate the 
within-host global haplotype frequencies in each pool:  

𝑌𝑌 ~ �𝛽𝛽𝑖𝑖 𝑋𝑋𝑖𝑖  

Where 𝛽𝛽𝑖𝑖 is the frequency of the i-th global haplotype in the host (pool). Here 𝑌𝑌 and 𝑋𝑋𝑖𝑖 are the independent and 
predictor variables in a standard regression model. We use two types of samples to train 𝑌𝑌 from 𝑋𝑋𝑖𝑖, which 
represent two different sources of data: minor allele frequency and physical LD. Mathematically, the dimension of 
𝑌𝑌 is n + n(n-1)/2 (where n is the number of sites), representing the alternate frequency at n sites and their n(n-1)/2 
physical LD across pairs of sites observed in the reads. First, at each site, the sum of frequencies of haplotypes 
containing the alternate allele should be statistically similar to the observed alternate allele frequency based on 
reads from the pool. This is the same information utilized by several other tools (Pulido-Tamayo, et al. 2015; 
Albanese and Donati 2017). An innovation of our design is the use of a second type of sample: for each pair of 
sites, the sum of frequencies of haplotypes containing both alternate alleles should be equal to the frequency 
observed in the number of reads that cover both alternate alleles in the pool, which includes read-pairs and many 
barcoded reads in 10x linked-reads (Supplementary Fig. 7). A full description is in (Supplementary Notes). The 
set of 𝛽𝛽𝑖𝑖 that best fits these two sets of constraints is our solution.  

To reduce overfitting, the objective function for training the above regression is designed as a combination of L0 
and L1: 

𝑂𝑂𝑂𝑂𝑂𝑂�𝜷𝜷��⃗ � =  �𝑌𝑌 − 𝑌𝑌��
2

+ 𝛼𝛼||𝜷𝜷��⃗ ||0 +  𝛾𝛾||𝜷𝜷��⃗ ||1   
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where  ||𝜷𝜷��⃗ ||1 is the L1-norm, which is the sum of absolute values of all 𝛽𝛽𝑖𝑖; and  ||𝜷𝜷��⃗ ||0 is the L0-norm, which is the 
number of non-zero 𝛽𝛽𝑖𝑖.  

Several existing papers use L1 regularization alone (Albanese and Donati 2017; Leviyang, et al. 2017) This 
strategy does not work for many haplotypes with small differences. This is because L1 penalizes the sum of 
absolute values of all regression coefficients, i.e., the haplotype frequencies in each pool. If the inference method 
is reasonably designed, however, the sum of haplotype frequencies in a host will always be near 1.0. This is 
because convex optimization-based penalties only prevent outcomes with negative frequencies, and do not 
distinguish between outcomes containing few haplotypes with large frequencies and outcomes containing many 
haplotypes with small frequencies. In essence, L1 does not produce sparse solutions when the difference 
between haplotypes are small, such as samples that arise when within-host recombination generates many 
similar haplotypes with small regions of genetic differences. To further enforce parsimony, adding a layer of L0 
regularization further regularizes the number of haplotypes. This is why L0 regularization is necessary for our 
method, although it is much slower. Fortunately, The L0Learn package (Hazimeh and Mazumder 2018) a 
breakthrough in the field of computer science to solve L0-based optimization is available recently, which 
empowered PoolHapX to conduct this inference. Indeed, our preliminary development towards viral haplotype 
reconstruction in a single host (that does not utilize cross-host sharing as PoolHapX does) show that such L0+L1-
regularization is very fast (Cao, et al. 2020). Finally, the cross-host (i.e., population) frequencies of each 
haplotype can be formed by combining the within-host frequencies.  

HIV evolutionary data analysis 

For a description of Patient 1 data, the SNP position-calling pipeline, and haplotype reconstruction, see 
Supplementary Notes.  

The R package rehh (version 3.0) was applied to survey linkage patterns within a single time-point, and changes 
to linkage patterns across the duration of infection monitoring (Gautier and Vitalis 2012). Several long-range 
haplotype-based evolutionary statistics related to extended haplotype homozygosity (EHH) (Sabeti, et al. 2002) 
were used to quantify the type and magnitude of selection. To search for regions of positive selection within the 
reconstructed genome, integrated haplotype score (iHS) (Voight, et al. 2006) and cross-population EHH scores 
(XP-EHH) were calculated for each time-point and between each time-point, respectively.  

For more details about the rationale behind each layer of analysis, see Supplementary Notes. The scripts that 
generate ms (Ewing and Hermisson 2010) output format from PoolHapX output files and apply EHH-based 
statistics to the reconstructed haplotypes are available at 
(https://github.com/theLongLab/PoolHapX/tree/master/Simulation_And_Analysis/HIV_analysis_code). Parameters 
and settings are described in further detail within the scripts. 

Other data analyses 

Processing and analyses of Plasmodium and other metagenomic data (E. Coli) can be found in Supplementary 
Notes. Details of simulations and comparisons (including how other tools are executed) are also included in 
Supplementary Notes.   

 
 
AVAILABILITY 
PoolHapX is an open source collaborative initiative available in the GitHub repository 
(https://github.com/theLongLab/PoolHapX) 

 
SUPPLEMENTARY DATA 
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Supplementary Data are available at NAR Online. 
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TABLE AND FIGURES LEGENDS 
 

 

Figure 1. The PoolHapX algorithm. An example of the PoolHapX algorithm applied to a dataset containing reads 
from 3 haplotypes 0110, 1010, and 1001 with proportions 1/2, 1/3, and 1/6 respectively. Input consists of 
sequence reads (horizontal grey rectangles above) and allele frequencies of individual (square) and paired 
(diamond) sites (below). Vertical (dark grey) bars denote the locations of polymorphic sites, and white squares 
indicate the presence of alternate alleles. Colored rectangles represent haplotype information inferred by 
PoolHapX. (a) A graph is formed where nodes (coloured rectangles) are unique reads, and edges (black lines) 
are drawn between nodes with differing alleles at any polymorphic site. Graph coloring is applied to differentiate 
nodes with conflicting alleles (joined by edges), forming initial haplotypes for the next step in the algorithm (AEM). 
(b) Hierarchical Approximate Expectation Maximization (AEM) is applied to the initial covariance information 
derived from graph coloring. AEM is applied to a variance-covariance matrix representing overlapping local 
regions (containing 4 variants in this example). The result is then extended to a larger region (8 variants) by tiling 
the local regions (bottom). Here, blue squares indicate positive statistical LD between pairs of variants, and red 
indicates negative LD. (c) Haplotype segments from the final iteration of AEM are combined into a tree (top), 
whose branches represent when two adjacent segments have identical alleles in their overlapping regions 
(multicolored rectangles at bottom). Breadth-first tree search (BFS) is used to exhaustively search all possible 
branches to form global haplotypes. (d) A regularized (L0+L1) regression is used to estimate haplotype 
frequencies (height of rectangles above) from the individual (square) and paired (diamond) allele frequency 
information (below). More detailed illustrations of the algorithms are in Supplementary Figures 1-7. 
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Figure 2. Comparison between PoolHapX and existing tools. For all panels, the upper half shows the accuracy 
for haplotype identity (MCC) and the lower half shows the accuracy for haplotype frequency (JSD). The x-axis 
denotes number of segregating sites in the haplotype. Boxes extend to the first and third quartile; whiskers extend 
to the upper and lower value. (a-c) Number of pools = 50. (a) tools to reconstruct viral haplotypes, TenSQR, 
PredictHaplo and CliqueSNV. Sequencing coverage per pool = 5000X. Number of haplotypes for 50 loci, 100 loci 
and 200 loci are 41, 73 and 42, respectively. (b) tools to reconstruct bacterial haplotypes, Bhap and EVORhA. 
Coverage = 250X. Number of haplotypes for 50 loci, 100 loci and 200 loci are 42, 43 and 43, respectively. (c) 
tools to reconstruct haplotypes for metagenomics, Gretel and StrainEst. Coverage = 25X. Number of haplotypes 
for 50 loci, 100 loci and 200 loci are 39, 37 and 36, respectively.  
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Figure 3. PoolHapX is robust to the within-host changes due to selective forces. The three evolutionary forces are: 
(a) Negative selection, number of haplotypes for 50 loci, 100 loci and 200 loci are 36, 36 and 45, respectively, (b) 
Positive selection, number of haplotypes for 50 loci, 100 loci and 200 loci are 41, 50 and 104, respectively, and (c) 
Selective Sweep, number of haplotypes for 50 loci, 100 loci and 200 loci are 23, 36 and 27, respectively. All three 
panels are comparing with viral tools, i.e., TenSQR, PredictHaplo and CliqueSNV. All data are simulated under 
coverage of 5000X, and 50 pools. The y-axis is the same as Fig. 2.  
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Figure 4. PoolHapX + single-cell linked-reads. MCC and JSD of PoolHapX applying to simulated 10x linked-reads 
using based on combinations of different number of pools (25,50) and sequencing coverage (100, 250).  
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Figure 5. Staphylococcus epidermidis strain abundance calculated de novo by PoolHapX (a) and StrainEst based 
on templates of known strain (b) for early stages of infant gut colonization. All haplotypes predicted by PoolHapX 
are aligned to the three strains and we observe the same pattern of the changes of these three strains.  
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Figure 6. (a-b) The decay of EHHS around each SNP position in reconstructed HIV-1 haplotypes occurs rapidly 
during the acute phase of infection. The dashed red line indicates the location of the focal SNP position. (a) Position 
1377 (Gag gene, found in p2 protein). (b) Position 3530 (Pol gene, found in p15). (c-d) The size of windows of 
EHHS ³ 0.5 fluctuate around gene-specific averages. The solid red line indicates a weighted mean across the 
positions in the gene. DPI refers to estimated days post-infection. Each dot represents the window size around at 
least one position. (c) Gag. (d) Pol. The legend (right) indicating the color corresponding to each time-point is 
common to panels a-d. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2020. ; https://doi.org/10.1101/2020.03.29.014704doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.29.014704
http://creativecommons.org/licenses/by/4.0/

	Many tools have been developed to reconstruct haplotypes using algorithms that target data from viruses, bacteria, metagenomic data, and historically, artificially pooled human genomes. Conceptually they can be split into two categories. The first con...

