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One sentence summary:  

The Elongator Protein (ELP) Complex masks TNBC oncogene “addiction” to EGFR signaling, 

by promoting expression of the anti-apoptotic protein MCL1. 
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ABSTRACT 

 

Targeted therapies for the treatment of cancer are generally thought to exploit oncogene 

addiction, a phenomenon in which a single oncogene controls both the growth and survival of 

the tumor cell. Many well-validated examples of oncogene addiction exist; however, the utility of 

oncogene targeted therapies varies substantially by cancer context, even among cancers in 

which the targeted oncogene is similarly dysregulated. For instance, epidermal growth factor 

receptor (EGFR) signaling can be effectively targeted in EGFR-mutant non-small cell lung 

cancer (NSCLC), but not in triple-negative breast cancer (TNBC), where EGFR is activated to a 

similar degree. We find that EGFR controls a similar signaling/transcriptional network in TNBC 

and EGFR-mutant NSCLC cells, but only NSCLC cells respond to EGFR inhibition by activating 

cell death. To address this paradox and identify mechanisms that contribute to insensitivity to 

EGFR inhibition in TNBC, we performed a genome-wide CRISPR-Cas9 genetic knockout 

screen. Our screen identifies the Elongator (ELP) complex as a mediator of insensitivity to 

EGFR inhibition in TNBC. Depleting ELP proteins caused high levels of apoptotic cell death, in 

an EGFR inhibition-dependent manner. We find that the tRNA-modifying function of the ELP 

complex promotes drug insensitivity, by facilitating expression of the anti-apoptotic protein 

MCL1. Furthermore, pharmacological inhibition of MCL1 synergizes with EGFR inhibition across 

a panel of genetically diverse TNBC cells. Taken together, we find that TNBC “addiction” to 

EGFR signaling is masked by the ELP complex, and our study provides an actionable 

therapeutic strategy to overcome this resistance mechanism by co-targeting EGFR and MCL1. 
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INTRODUCTION 

 

 Many modern therapies target signaling proteins that are mutated, amplified, or 

otherwise dysregulated in cancer cells. These targeted therapies are generally thought to exploit 

a phenomenon called “oncogene addiction”. This terminology was coined based on the 

observation that for many cancers, the regulation of growth and survival appears to be 

aberrantly coordinated through the activity of a single oncogene (1, 2). Oncogene addiction is 

generally thought to result from the disordered regulatory circuitry in cancer cells (2). Many 

notable examples exist in which selectively inhibiting an oncogenic kinase results in striking 

clinical responses. However, these responses are rarely durable and extremely variable (3). For 

instance, while ~50% of BRAF mutant melanomas respond to BRAF inhibition, response rates 

are less than 5% in BRAF mutant colorectal cancers (4). Factors that account for this variability 

between cancer types are generally not well understood, and the mechanisms underlying 

oncogene addiction remain unclear. 

 Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer, defined 

the lack of expression of the three receptors that are best characterized to drive breast cancer 

tumorigenesis: estrogen receptor (ER), progesterone receptor (PR), and the human epidermal 

growth factor receptor 2 (HER2). Due to the lack of these targetable oncogenes, TNBCs are 

generally treated only with genotoxic chemotherapies, and most patients fail to achieve a 

complete response (5). Some evidence does suggest that EGFR signaling may be aberrantly 

activated in TNBC. TNBCs generally have high levels of EGFR expression and activity (6, 7). 

Although EGFR is rarely mutated in TNBC, aberrant activity is caused by loss of downstream 

phosphatases or receptor amplification (8–10). In spite of the observed relationship between 

EGFR activity and TNBC growth, drugs that inhibit EGFR signaling are consistently inefficacious 
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in this setting (7). In contrast, non-small cell lung cancers (NSCLC) harboring activating 

mutations in EGFR often respond to EGFR inhibitors (11, 12). Clear differences exist in the 

mechanisms by which EGFR is activated in TNBC versus NSCLC; however, it remains unclear 

what accounts for the varied responses to EGFR inhibition in different disease settings.  

 In this study we explored mechanisms by which TNBC cells evade EGFR targeted 

therapies. We find that the degree of EGFR activity and EGFR-dependent gene expression is 

similar between TNBCs and bona fide EGFR-dependent NSCLC cells, such as PC9. In contrast 

to PC9, which die when exposed to EGFR inhibitors, TNBC cells fail to activate cell death 

following exposure to erlotinib, an EGFR-specific inhibitor. To identify genes involved in the non-

responsiveness of TNBC cells to EGFR targeted therapies, we performed a genome-wide 

genetic knockout screen using CRISPR-Cas9 mediated genome editing. Our screen revealed 

that the ELP complex promotes insensitivity to EGFR inhibitors in TNBC. We find that the ELP 

complex insulates TNBCs from erlotinib-mediated cell death, by promoting expression of the 

anti-apoptotic protein MCL1. Knocking down ELP complex genes promotes hyper-sensitivity to 

EGFR inhibitors through loss of MCL1 protein expression and activation of apoptotic cell death. 

Additionally, directly inhibiting MCL1 using the small molecule inhibitor S63845 synergistically 

enhances responses to EGFR inhibitors in TNBC cells. Taken together, this study establishes a 

new mechanism by which TNBC cells evade cell death following EGFR inhibition, and provides 

an actionable strategy for improving responses by directly targeting MCL1. 

 

RESULTS 

 

TNBC cells are insensitive to EGFR inhibition despite high-levels of EGFR signaling 

 NSCLC cells that harbor activating mutations in EGFR generally respond to EGFR 

inhibitors (11, 12). In contrast, TNBCs are generally insensitive to EGFR inhibition, despite 
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having high levels of EGFR expression (7, 13). To more closely investigate subtype-specific 

differences in responses to EGFR inhibitors, we profiled sensitivities to the EGFR inhibitor, 

erlotinib, in a panel of TNBC cell lines. Erlotinib was tested across an eight-point, log10 drug 

titration, and drug sensitivity was measured using a SYTOX green-based assay (14). Because 

these cell lines grow at different rates, we scored drug sensitivity using the normalized Growth 

Rate inhibition value (GR). GR values facilitate a more accurate comparison of drug responses 

across cell lines by removing artefactual differences in drug response that are due to differences 

in the growth rate between cells (15).  We compared erlotinib responses in TNBC cells to drug 

sensitivity observed in PC9, an EGFR-mutant NSCLC cell line that is known to be sensitive to 

EGFR inhibition (16). As expected, we found that erlotinib strongly inhibited growth in PC9 cells, 

with GR values near or below zero at high doses (Fig. 1A). Responses were more varied in 

TNBC cells. Complete resistance was observed at all doses for three of six TNBC cells profiled, 

whereas intermediate responses were observed for the other three TNBCs (Fig. 1A). In the 

TNBC cells with intermediate responses to erlotinib, the maximum responses observed were in 

the positive portion of the GR scale (0.3 – 0.7), indicating net population growth even at the 

highest concentrations of erlotinib tested.  

 The GR value reports drug response in terms of the net population growth rate, but for 

any given value, it is unclear to what extent the observed response is due to growth arrest, cell 

death, or both. Thus, we also measured drug-induced lethal fraction (e.g. dead cells divided by 

total cells), which more specifically reports drug-induced cell killing (14, 17). Evaluation of lethal 

fraction kinetics revealed significant drug-induced cell death in PC9, but not in any of the TNBCs 

tested (Fig. 1B). We also computed drug GRADE, a metric that precisely scores the degree to 

which cell death contributes to an observed drug response (18). The drug GRADE for erlotinib 

in PC9 cells was 45 (e.g. 45% of the decrease in population size is caused by cell death, Fig. 

S1) and erlotinib-induced cell death was observed at low doses. In contrast, GRADEs for 
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erlotinib in TNBC cells were much lower, ranging from 0 – 23% (Fig. S1). Furthermore, erlotinib-

induced death was not observed in any TNBC cells, except at high doses. Thus, erlotinib 

exposure results in high levels of cell death in EGFR-driven PC9 cells, but only partial growth 

inhibition in TNBCs.  

 Given that erlotinib-induced growth inhibition in TNBC was only partial, we suspected 

that higher concentrations of the drug may be required to fully inhibit EGFR signaling. To 

inspect this, we measured phosphorylation of ERK, a critical downstream kinase that drives 

growth factor induced proliferation (19). For TNBC cells that were completely unresponsive to 

erlotinib, we observed that ERK activity was also unchanged, even at the highest doses of 

erlotinib that we tested (Fig. 1C). Unexpectedly, however, for TNBCs that responded to erlotinib, 

we observed that ERK signaling was completely inhibited in spite of the observed partial 

response (Fig. 1C-D and Fig. S2). Furthermore, the degree, kinetics, and duration of ERK 

inhibition were similar in these TNBC cells to what we observed in PC9 (Fig. 1D). Thus, in many 

TNBC cells, erlotinib appears to be an effective EGFR inhibitor, but these cells continue to 

proliferate without EGFR/ERK signaling. 

 One possible explanation for these observations is that EGFR controls a different 

signaling/transcriptional network in EGFR-driven NSCLC cells when compared to TNBC or 

other cell types. Indeed, in the context of oncogene addiction, it is often suggested that the 

coordinated control of growth and death by a single protein is the result of aberrant network 

circuitry (2, 20). To test this, we performed RNA-seq in BT20 cells, a TNBC cell line with 

intermediate sensitivity to erlotinib. We compared these data to a previously published dataset 

of gene expression changes in PC9 following EGFR inhibition (21). In both cases, data were 

collected for untreated cells and following 24-hour exposure to erlotinib. We analyzed erlotinib-

induced changes in gene expression using gene set enrichment analysis (GSEA) (22). We 

focused on a previously annotated signature of gene expression changes that were observed in 
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EGFR-driven NSCLC cells when exposed to an EGFR inhibitor (23). For these genes that were 

previously shown to be induced or depleted in EGFR-mutant NSCLC cells treated with EGFR 

inhibitors, we observed similar changes in PC9 and BT20 cells (Fig. 1E-F). Thus, although 

these cells are derived from different types of cancer, with different EGFR aberrations, the 

signaling network controlled by EGFR in these two cell lines appears to be similar.  

  

Genome-wide screen using CRISPR-Cas9 mediated genome editing reveals that the ELP 

complex contributes to erlotinib insensitivity in TNBC 

 TNBC cells are consistently insensitive to EGFR inhibition, in spite of the similarities 

between TNBC and EGFR-mutant NSCLC cells in EGFR-dependent signaling and gene 

regulation. To identify genes that may be contributing to erlotinib insensitivity in TNBC we 

performed a genome-wide single gene knockout screen. We used the GeCKO v2 pooled 

sgRNA library, which has six sgRNAs targeting each gene in the genome, and 1000 non-

targeting sgRNA controls (24). We infected spCas9-expressing BT20 cells at low MOI, with a 

coverage of ~300x per sgRNA. Cells were either left untreated or treated with 10 µM erlotinib for 

roughly 3-4 population doublings. To identify genes that contribute to erlotinib insensitivity we 

focused on genes that drop out of the library in erlotinib treated cells compared to untreated 

cells. A consensus “best” method for analyzing this type of screen has not yet emerged. The 

best performing method in any given scenario likely depends on experiment-specific 

parameters, which affect the distributions of targeting/non-targeting sgRNAs and the magnitude 

of changes within the data being analyzed (25). Thus, rather than selecting an analysis method 

a priori, we tested several analysis strategies in parallel (26–30). Collectively, these strategies 

tested different methods for determining: sgRNA-level fold change, gene-level scores from the 

distribution of sgRNA fold changes, and statistical significance within the gene-level data. To 
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evaluate the quality of each analysis stream, we determined the ability of each method to score 

core essential genes in the comparison of untreated cells to the “T0” input library (Fig. S3) (31).  

Based on this evaluation, we selected a conservative and straight-forward approach that 

was similar to prior methods, such as drugZ (32) (Fig. 2A and Fig. S3). Briefly, we included all 

recovered sgRNAs (e.g. no trimming), and computed fold-changes at the sgRNA level using 

DESeq2 (26). We determined gene-level scores by computing the mean of the sgRNAs 

targeting each gene. These scores were then z-scored relative to the mean and standard 

deviation of the non-targeting controls. To determine statistical cut-offs, an empiric p-value was 

determined from z-scored fold-changes by bootstrapping based on the sgRNA data. Empiric p-

values were then FDR corrected for statistical robustness.  

Our analysis strategy identified 324 genes that were differentially recovered in cells 

exposed to erlotinib when compared to untreated cells, with 295 of these genes being depleted 

in erlotinib treated cells (Fig. 2B). Among the most depleted genes were four of the six 

components of the Elongator complex (ELP1-6, Fig. 2B-C). The ELP complex was first identified 

based on physical association with RNA polymerase II (33, 34). Although ELP proteins do play 

roles in histone acetylation and transcription, studies reveal that the central function for the ELP 

proteins is in modifying a subset of tRNAs in the U34 wobble base position. ELP-dependent 

modifications at this site are required for function of these tRNAs (35). Additionally, U34 

modifying enzymes have recently been found to contribute to drug resistance in BRAF mutant 

melanomas and ER+ breast cancers (36, 37).  

To distinguish between the transcriptional and U34-modifying functions of the ELP 

complex, we analyzed our gene knockout screen data using GSEA. Only 4 gene signatures 

within the molecular signatures database were significantly enriched or depleted within our data, 

with the top two signatures being the GO annotations “tRNA wobble uridine modification” and a 

similar signature “tRNA wobble base modification” (Fig. 2D-E). Enrichment for these signatures 
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was driven not only by the ELP genes, but also by depletion of the CTU1 and CTU2 enzymes. 

CTU1 and 2 are involved in the U34-modifying functions of the ELP complex, but not the 

transcriptional functions of ELP (38). Thus, these data further clarify that the U34 modifying 

functions of the ELP complex contribute to erlotinib insensitivity in BT20 cells.  

To verify the results of our screen, we knocked down expression of ELP3-6 using 

siRNAs. The population growth rate for each knockdown was quantified in the presence and 

absence of erlotinib using automated microscopy. Consistent with expectations, we found that 

erlotinib exposure caused a slowing of the population growth rate by roughly 20% (46 hours 

versus 55 hours for the doubling time, Fig. 2F-G). For all four ELP proteins tested, knocking 

down expression strongly enhanced population growth suppression in the erlotinib treated cells 

(Fig. 2F-G and Fig. S4). Notably, while knockdown of ELP3, ELP5, and ELP6 resulted in some 

growth slowing even in the absence of erlotinib, knockdown of ELP4 strongly suppressed 

growth in an erlotinib-dependent manner. These data further highlight the synergistic interaction 

between ELP knockdown and erlotinib exposure. 

 

ELP complex promotes survival of TNBC cells exposed to erlotinib by promoting 

expression of MCL1 

 Knocking down the ELP proteins enhanced responses to erlotinib; however, it was 

unclear if this was due to further inhibiting the growth rate of cells, increasing the death rate, or 

a combination of these phenotypes. In bona fide cases of EGFR “oncogene addiction”, EGFR 

inhibition causes robust cell death (Fig. 1C). Thus, we measured the drug-induced lethal fraction 

over time following erlotinib exposure, using a SYTOX-based cell death assay (14). As 

expected, erlotinib did not result in cell death in triple-negative BT20 cells, even when applied at 

high concentrations. For all four ELPs tested, however, ELP knockdown significantly increased 

erlotinib-induced cell killing (Fig. 3A and Fig. S4).  
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Drug-induced cell death is generally not mutually exclusive with drug-induced growth 

inhibition (18). To determine the degree to which growth inhibition is also contributing to the 

observed drug response, we also measured the proliferation rate of erlotinib-treated cells 

following ELP knockdown. We focused on ELP4 because, unlike the other ELP members, ELP4 

knockdown did not cause any population growth defects in the absence of erlotinib (Fig. 2F-G). 

To measure the growth rate of live cells, rather than the effective population growth rate, we 

calculated the rate of dilution of a cell tracking dye over time. As expected, these data reveal 

that the true growth rate of cells is somewhat faster than the effective population growth rate, 

due to baseline levels of cell death (i.e. true doubling time of 35 hours, compared to a 

population growth rate of 46 hours, Fig. 2G and 3B-C). These data also revealed that ELP4 

knockdown caused a selective increase in the death rate, without altering the cell proliferation 

rate (Fig. 3C). Our prior drug screening found that this is a somewhat rare phenotype that is 

generally only observed for direct activators of cell death, such as BH3 mimetics (18).  

 Having found that ELP4 knockdown facilitates erlotinib-induced cell death in TNBC cells, 

we next aimed to determine the mechanism by which the ELP complex was controlling death in 

these cells. The ELP complex facilitates modification of a subset of tRNAs at the U34 base. 

These modifications are required for decoding AAALys, GAAGlu, and CAAGln codons during 

mRNA translation (39). In yeast, depletion of ELP proteins causes protein misfolding and 

accumulation of protein aggregates (40). Additionally, in the context of cancer, inhibiting ELP 

function causes ribosome stalling and inefficient translation of transcripts that are enriched for 

U34 codons (37). To identify ELP target genes that may be mediating the erlotinib insensitivity 

in TNBC, we sought to identify negative regulators of apoptosis whose expression was 

dependent on ELP complex function. We noticed in our CRISPR screen that MCL1 was one of 

the most depleted genes, suggesting that erlotinib insensitivity depends on MCL1 expression 
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(12th most depleted gene; z-scored L2FC = -9.7, Fig. 2 and Table S1-2). Furthermore, no other 

apoptotic regulatory genes were found on our list of significantly depleted genes.  

MCL1 is a member of the BCL2 family, and a potent negative regulator of apoptosis 

(41). To determine if MCL1 expression is regulated by ELP complex activity, we measured 

erlotinib-induced changes in MCL1 protein levels, with and without ELP4 depletion. Using 

quantitative immunoblotting, we found that MCL1 protein expression is strongly depleted in 

ELP4 knockdown cells treated with erlotinib (Fig. 3D and Fig. S5). In cells in which ELP4 was 

not depleted, erlotinib did not significantly alter MCL1 levels. To determine if this was unique to 

MCL1, or if other apoptotic proteins were also regulated by the ELP complex, we profiled a 

panel of well-validated apoptotic regulatory proteins using the Proteome Prolifer Apoptotic 

Array. These data show that very few changes are observed following erlotinib exposure in wild-

type BT20 cells, consistent with our observations that erlotinib does not induce death in these 

cells in the presence of robust ELP activity (Fig. S6). In the context of ELP4 knockdown, 

however, several apoptotic proteins change in their expression (Fig. 3E-F). Notably, caspase-3 

cleavage is increased in ELP4 KD cells exposed to erlotinib, confirming that the death observed 

is likely due to an apoptotic mechanism. Other erlotinib-induced changes include decreased 

phosphorylation of p53 on multiple phosphorylation sites, and increased Bcl2 expression (Fig. 

3F and Fig. S6). Notably, these changes would be expected to inhibit apoptosis, and thus are 

not likely to promote the cell death that is observed.  

 

MCL1 inhibition synergistically enhances sensitivity to erlotinib in TNBC cells 

 Our data suggest that the ELP complex contributes to erlotinib insensitivity in TNBC cells 

by reinforcing expression of MCL1, a negative regulator of apoptosis. Thus, we next tested if 

direct inhibition of MCL1 would potentiate sensitivity to erlotinib in these TNBC cells. We tested 

all pairwise combinations of erlotinib and the MCL1 inhibitor, S63845 (42). In BT20 cells, both 
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drugs had very modest efficacy as single agents, killing less than 30% of all cells even at 

saturating high doses (Fig. 4A). When these drugs were added in combination, however, cell 

killing was substantially increased (Fig. 4A). To evaluate the combinatorial drug-drug interaction, 

we analyzed the data using the Loewe isobologram convention (43, 44). Under the Loewe dose 

additivity model, one would expect two drugs to produce linear isobols when added in 

combination (i.e. linear trajectory connecting similarly efficacious doses). Analysis of erlotinib-

S63845 combinations in BT20 cells revealed a strongly synergistic interaction between these 

drugs (Fig. 4B). For instance, 1 µM S63845, an inefficacious concentration of this drug, 

potentiated erlotinib sensitivity by roughly 100-fold (Fig. 4C).  

To determine if the observed drug effect was due to growth inhibition or cell killing, we 

also measured the drug-induced lethal fraction. As expected, erlotinib or S63845 did not result 

in significant cell death when added as single agents. Alternatively, combinations of erlotinib 

and S63845 induced high levels of cell death (Fig. 4D). Furthermore, the death onset time, 

death rate, and maximum lethal fraction observed were similar to what we previously observed 

for erlotinib sensitivity following ELP4 depletion. Additionally, these responses were also similar 

to the responses observed in EGFR-driven PC9 cells (Fig 1B, 3A). Thus, MCL1 inhibition, while 

not lethal to cells, promotes erlotinib sensitivity in a manner that is similar to that observed in the 

absence of robust ELP function, and similar to bona fide examples of EGFR oncogene 

addiction. 

 To determine if MCL1 potentiation of erlotinib sensitivity was generalizable to other 

TNBCs, we profiled combinations of erlotinib + S63845 in a panel of TNBC cell lines. Drugs 

were tested alone and in fixed dose-ratio combinations (1:1 equimolar dosing). In all TNBCs 

tested, sensitivity to erlotinib was improved by addition of S63845 (Fig. 4E and Fig. S7). 

However, the degree of improvement was variable across the six cell lines. To more formally 

score these drug-drug interactions, we used two well-validated conventions, the Chou-Talalay 
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Combination Index (CI) and Deviation from Bliss Independence (DBI) (43, 49). CI scores drug-

drug interactions relative to a dose additivity reference model, whereas DBI scores interactions 

relative to a response independence reference model (14, 44). These measures of drug-drug 

interaction can both be used to identify synergistic or antagonistic drug combinations; however, 

CI and DBI tend to vary due to the differences in how additivity or independence are defined 

(45). For interactions between MCL1 inhibition and EGFR inhibition in TNBC, scores were 

synergistic for all cell lines tested, by both CI and DBI measures, further highlighting the 

robustness of this drug-drug interaction (Fig. 4F and Fig. S7). Taken together, these data 

demonstrate that MCL1 promotes the insensitivity to EGFR inhibition that is commonly observed 

within the TNBC subtype. 

 

DISCUSSION 

 

In this study we explored differences between EGFR-driven NSCLC cells and TNBC, a 

cancer subtype that exhibits high levels of EGFR signaling, but does not respond to EGFR 

inhibitors. Our genetic screen identified that the ELP complex – in particular the tRNA modifying 

function of the ELP complex – is important for promoting insensitivity to EGFR inhibition. We 

found that ELP activity insulates the cells from activating apoptotic death, by promoting 

expression of the anti-apoptotic protein, MCL1. Finally, we find that direct targeting of MCL1 

synergistically potentiates erlotinib sensitivity in a panel of genetically-unrelated TNBC cells.  

These data complement two studies that have recently highlighted a role for ELP-

dependent translation in promoting cancer drug resistance. The ELP complex was found to 

promote resistance to BRAF inhibition in BRAF-driven melanoma, through specific stabilization 

of HIF1a (37). Additionally, the ELP tRNA-modifying activity was found to promote resistance to 

ER inhibition in ER+ breast cancer, through a broad-spectrum “translational offsetting”, which 
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stabilizes ER-dependent protein expression, despite the loss of ER-dependent mRNAs (36). 

Our finding that ELP activity also drives the characteristic EGFR-insensitivity of TNBCs further 

extends the reach of ELP-dependent drug resistance. Furthermore, at least for TNBC cells, our 

study highlights a targetable protein, MCL1, which can reverse ELP-dependent drug resistance.  

A question that remains unclear is why MCL1 protein levels are particularly sensitive to 

the tRNA modifying activity controlled by the ELP complex. MCL1 mRNA is a direct substrate of 

the U34 tRNAs that require ELP-dependent modifications. MCL1 has 18 ELP-sensitive codons 

and loss of U34 tRNAs may lead to difficulty translating these codons (37). However, 

considering the length of the MCL1 mRNA, 18 ELP-sensitive codons is roughly average for the 

human genome (~ 51 ELP sensitive codons per 1000 codons on average). Thus, it remains 

unclear why MCL1 protein expression was strongly dysregulated, but not the expression of 

many other apoptotic regulatory proteins. It is possible that in addition to MCL1, other key MCL1 

regulatory proteins are also direct ELP targets. MCL1 has a relatively short protein half-life, due 

to an amino-terminal PEST sequence that promotes protein degradation (46). Protein turnover 

is further regulated by phosphorylation of MCL1 by a variety of MAPKs, which slows the protein 

turnover rate (47). Additionally, MCL1 mRNA expression and protein stability are controlled by 

PI3K/mTOR signaling in a variety of different contexts (48). Thus, the ELP complex may be 

promoting MCL1 protein expression by regulating multiple substrates, including MCL1 itself, and 

potentially other proteins that contribute to MCL1 turnover, growth factor signaling, MAPK 

signaling, and/or PI3K/mTOR signaling. Thus, a major benefit of our finding is that regardless of 

which ELP substrate(s) are functionally coordinated by ELP activity to regulate MCL1 levels, 

direct targeting of MCL1 pheno-copies ELP deletion, leading to enhanced sensitivity to EGFR 

inhibition. This finding provides a strong rationale for the development of combination drug 

therapies involving co-inhibition of EGFR and MCL1 in TNBC, and potentially other subtypes of 

cancer. 
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More broadly, our study reveals an important new insight into the phenomenology of 

“oncogene addiction”. TNBC cells would not typically qualify as being “addicted” to EGFR, as 

these cells do not respond to loss of EGFR signaling. Our data show that when compared to 

NSCLC cells with EGFR-activating mutations, EGFR in TNBC signals at a similar level, 

activates a similar set of genes, and is equally inhibited by commonly used EGFR inhibiting 

drugs. Thus, EGFR plays the same role in many TNBC cells as in NSCLC cells that are 

“addicted” to EGFR. This reality is masked by the activity of the ELP complex. Oncogene 

addiction has been the conceptual motivation for the development and use of targeted therapies 

for more than twenty years. Despite considerable effort and focused research in this area, 

relatively few cancer subtypes respond in the striking manner observed in the best case 

examples (3). This study highlights a new mechanism by which phenotypes associated with 

oncogene addiction can be masked. In future studies it will be interesting to determine the 

degree to which the ELP complex contributes to drug resistance in other settings, and if MCL1 

inhibition is broadly useful for potentiating targeted therapies outside of the TNBC subtype. 
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MATERIALS AND METHODS 

 

Cell lines and general reagents 

BT20, MDA-MB-468, HCC1806, HCC1937, HCC38, and MDA-MB-231 cells were 

obtained from the American Type Culture Collection (ATCC). PC-9 (NSCLC) cells were a 

generous gift from J. Pritchard (Penn St.). All cells were maintained at low passage numbers 

(less than 20 passages from the original vial). BT20 cells were grown in Minimum Essential 

Medium (ThermoFisher Scientific, CAT# 11090081). MDA-MB-468 and MDA-MB-231 cells were 

grown in Dulbecco’s Modified Eagle Medium (DMEM, Fisher Scientific, CAT# MT10017CV). 

PC9, HCC1806, HCC1937, and HCC38 cells were grown in Roswell Park Memorial Institute 

(RPMI)-1640 medium (ThermoFisher Scientific CAT# 11875119). In all cases, base medium 

was supplemented with 10% FBS(ThermoFisher Scientific, CAT# SH30910.03, LOT# SH40014-

13), 2 mM glutamine (ThermoFisher Scientific CAT# MT25005CI), and penicillin/streptomycin 

(ThermoFisher Scientific, CAT# MT30002CI).  

Erlotinib hydrochloride salt was purchased from LC Laboratories (CAT# E-4007). 

S63845 (MCL-1 inhibitor) was purchased from Selleck Chemicals (CAT# S8383). Anti-Phospho-

p44/42 MAPK (ERK1/2—Thr202/Tyr204, CAT# 9101) and anti-MCL-1 (D35A5 rabbit anti-

human primary, CAT# 5453) antibodies were purchased from Cell Signaling Technology. Anti-

ELP4 (rabbit anti-human primary, CAT# NBP2-16322) antibody was purchased from Novus 

Biologicals. Monoclonal anti-b-actin (mouse anti-human primary, CAT# A2228) antibody was 

purchased from Sigma-Aldrich. Proteome Profiler Human Apoptosis Array kit (CAT# ARY009) 

and Pepstatin A aspartic protease inhibitor (#1190/10) were purchased from R&D Systems. The 

cOmplete protease inhibitor cocktail (CAT# 11697498001) and PhosSTOP phosphatase 

inhibitor tablets (CAT# 4906845001) were purchased from Millipore Sigma. The siGENOME 

non-targeting siRNA control pool was purchased from Horizon Discovery (CAT# D-001206-14-

05). Human ELP3 (ENTREZ# 55140, CAT# M-015940-01-005), human ELP4 (ENTREZ# 
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26610, CAT# M-016927-01-005), human ELP5 (ENTREZ# 23587, CAT# M-017992-02-005), 

and human ELP6 (ENTREZ# 54859, CAT# M-020705-01-005) siRNA were each purchased as 

a SMARTpool of 4 siGENOME siRNAs targeting different areas of the gene from Horizon 

Discovery.   

 

Lethal fraction kinetic analysis using a fluorescence plate reader 

Lethal fraction (LF) kinetics were determined as describe previously (14). SYTOX Green 

(ThermoFisher Scientific, CAT# S7020) is a nuclear marker that can only enter cells following 

death and loss of membrane integrity. Fluorescence of dead cells was monitored with a Tecan 

Spark microplate reader using an excitation/emission of 503/524. SYTOX was used at a final 

concentration of 5 µM, and a gain was selected for each cell line which achieved linearity below 

the saturation limit of the detector. SYTOX-based assays were performed in optical bottom 

black-walled plates (Corning, CAT# 3904), with 2500-5000 cells seeded in each well depending 

on each cell line’s growth rate. Cells were plated in an initial volume of 90 µL of media. Drugs 

and SYTOX were diluted to 10X final concentration in phosphate buffered saline (PBS), and 10 

µL of each drug/drug combination were added to each well at the start of the experiment. 

Fluorescence readings were taken at the indicated timepoints for each experiment, with 

measurement frequency optimized to capture the onset time, rate, and maximum death 

achieved by each drug. At the end of each experiment, cells were permeabilized with the 

addition of 0.15% Triton X-100 (Fisher, CAT# BP151-500) and incubation at 37oC for >1.5 

hours. Detergent induced cell permeabilization at the assay endpoint allows for the 

determination of total cell number, a crucial number for calculating LF. Additionally, for kinetic 

experiments, an untreated plate of cells was lysed at the time of drug addition. LF was then 

determined at each timepoint using pre- and post- permeabilization numbers for each plate.  
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Quantitative Immunoblotting 

For generation of protein lysates for immunoblotting, cells were seeded at 1 – 1.5 million 

cells in 10-cm dishes and allowed to adhere overnight. Erlotinib (ERL) was added at t = 0 hours 

at a final concentration of 10 µM, and cellular lysates were prepared at the indicated time points. 

Briefly, media was removed by aspiration, and plates were washed two times with 2 mL of ice-

cold PBS. Cells were lysed by adding 400 µL of Sodium dodecyl sulfate (SDS)-lysis buffer (50 

mM Tris-HCl, 2% SDS, 5% glycerol, 5 mM EDTA, 1 mM NaF, 10 mM b-GP, 1 mM PMSF, 1 mM 

Na3VO4, and a protease inhibitor and phosphatase inhibitor tablet each). Lysates were collected 

with cell scrapers and centrifuge spin-filtered through 0.2 µm multi-well filters to remove DNA 

(Pall, CAT# 5053). After filtration, each lysate concentration was determined by the Pierce BCA 

Protein assay kit, according to the manufacturer’s instructions (ThermoFisher Scientific, CAT# 

23225). Lysate concentrations were normalized to 0.5 mg/mL for SDS-PAGE loading. Samples 

were run either on pre-cast E-PAGE 8% 48-well gels (ThermoFisher Scientific, CAT# EP04808) 

or in hand-poured 8% SDS-PAGE gels. Gels were subsequently transferred using a semi-dry 

iBlot fast gel transfer system (ThermoFisher Scientific) on nitrocellulose membranes 

(ThermoFisher Scientific, CAT# IB301031). Membranes were then blocked in a 50% PBS and 

50% Odyssey Blocking Buffer (ThermoFisher Scientific, CAT# 927-40000) solution, on a rocking 

shaker for 1 hour at room temperature. Membranes were then incubated overnight on a rocking 

shaker at 4°C in primary antibody (diluted 1:1000 in a 50% PBS-0.1%Tween and Odyssey 

blocking buffer solution). The following morning, membranes were incubated in primary anti-b-

actin antibody (diluted 1:15000 in a 50% PBS-0.1%Tween and Odyssey blocking buffer 

solution) for 1 hour on a rocking shaker at room temperature. Following two, 5-minute washes 

with PBS-0.1%Tween, membranes were incubated in secondary antibodies (diluted 1:15000 in 

a 50% PBS-0.1%Tween and Odyssey blocking buffer solution) conjugated to infrared dyes 

(LICOR, IRDye 680RD, goat anti-mouse IgG secondary, CAT# 926-68070; IRDye 800CW, goat 
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anti-rabbit IgG secondary, CAT# 926-32211) for 1 hour at room temperature on a rocking 

shaker, washed 3 times, and stored in PBS. Blots were then visualized using a LICOR Odyssey 

CLx scanner. Protein expression signal levels were quantified with LICOR’s ImageStudio 

software. Expression levels were individually normalized to b-actin loading controls and all 

samples normalized to a BT-20 serum shock control.  

 

Knockdown using SMARTpool siRNAs 

Knockdown experiments were performed according to the manufacturer’s suggestions. 

Briefly, cells were seeded in full media at 350,000 cells per well in 6-well dishes and allowed to 

adhere overnight. Lipofectamine RNAiMAX (ThermoFisher Scientific, CAT# 13778075) was 

diluted 1:100 in Opti-MEM reduced serum medium (ThermoFisher Scientific, CAT# 31985088). 

The siGENOME non-targeting control siRNA pool or the ELP-complex gene siGENOME 

SMARTpools were stored at stock concentrations of 20 µM at -80°C. For transient transfections, 

each reagent was diluted 1:100 in Opti-MEM reduced serum medium. The diluted lipofectamine 

RNAiMAX and siGENOME pools were mixed 1:1 (250 µL of each) and incubated at room 

temperature for 15 minutes. The 500 µL mixture of RNAiMAX+siGENOME pools were then 

added drop-wise to the cells (1:5 dilution) for a final concentration of 20 nM for the siRNA pools 

(5 nM per each siRNA within the pool). Transiently transfected cells were incubated at 37°C 

(and 5% CO2) for 24 hours before being re-plated with fresh media for subsequent experiments. 

Drug treatment began 48 hours after the initiation of transfection, to ensure efficient knockdown. 

 

Gene Symbol GENE 
ID 

Gene Accession Sequence 

ELP3 55140 NM_018091 GGAAAGACAUCGAUCUAAA 
ELP3 55140 NM_018091 AAAGAUCGGCUACAGAUUA 
ELP3 55140 NM_018091 GUAAGGAGAGAUUAUGUUG 
ELP3 55140 NM_018091 GGCCAAAGAUUCCGGUUUU 
ELP4 26610 NM_019040 CAAGAUUUGGUCACUAUUA 
ELP4 26610 NM_019040 GAAAAUAGCUUGGCGUUAC 
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ELP4 26610 NM_019040 GGAGAUUGGACCAGUAUCA 
ELP4 26610 NM_019040 GCACCAUUACUUGAUGAUA 
ELP5 23587 NM_203415 CAACUCAUUUGACCUUUAA 
ELP5 23587 NM_203415 GAGGAAGAGUUUCGUGAAG 
ELP5 23587 NM_203415 CACCAUUGCUCUCGAUUCA 
ELP5 23587 NM_203415 AAGUGAGUGUGCUGGGCUU 
ELP6 54859 NM_001031703 GAAACUGACUCUACUCUGU 
ELP6 54859 NM_001031703 GGACGUACCCGGUGCUGUU 
ELP6 54859 NM_001031703 GAAACAUGGUGGUCCUUGU 
ELP6 54859 NM_001031703 CAAAGCUAAUUGUAAAGUC 

 

Quantitative-PCR and qPCR primers 

Following transient transfections of ELP genes and non-targeting controls, BT20 cells 

were seeded at 500,000 cells per 10cm plate and allowed to adhere overnight. The next day (48 

hours after transfection), cells were washed twice with 2 mL of PBS. Then, 250 µL of QIAzol 

(CAT# 79306, Qiagen) was added to the 10 cm plate and allowed to wash the full surface of the 

plate. Cell lysate was collected, vortexed for 1 minute, and incubated for 5 minutes at room 

temperature before being snap-frozen with liquid nitrogen and stored at -80°C. Total RNA was 

extracted using the manufacturer’s instructions in the QIAGEN RNeasy kit (CAT# 74104, 

Qiagen). Each sample was at least 100 ng/µL in baseline concentration, with 260/280 ratios 

between 2.03-2.04 and 260/230 ratios between 1.9-2. For the reverse transcription PCR, 1 µg of 

total RNA (per sample) was mixed with 1 µL of Oligo-DT (ThermoFisher Scientific, CAT# 

18418012), 1 µL of 10 mM dNTPs, and water for a total volume of 16.75 µL. The samples were 

exposed to 65°C for 5 minutes before cooled on ice quickly and spun down. Separately, a 

master mix of 1 µL of RNAse OUT (ThermoFisher Scientific, CAT# 10777019), 2 µL of 10x RT 

buffer, and 0.25 µL of reverse transcriptase (M-MuLV Reverse Transcriptase kit from New 

England Biolabs, CAT# M0253S) was prepared and 3.25 µL of this master mix was added to 

each of the samples for a total volume of 20 µL. The samples underwent the RT-PCR using the 

following thermocycling conditions: 90 minutes at 42°C, 5 minutes at 65°C, and then stored at - 

20°C. The cDNA was dilute 1:10 in water before proceeding with the quantitative PCR. Two 
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microliters of diluted cDNA was added to a master mix of 10 µL of SYBR Green (ThermoFisher 

Scientific, CAT# 4385612), 1 µL each of 10 µM forward and reverse primer, and 6 µL of water, 

for a total reaction volume of 20 µL. The thermocycling conditions were as follows: Initial 

denaturation (1 cycle—10 minutes at 95°C), cycling stages (40 cycles—15 seconds at 95°C 

then 1 minute at 60°C with fluorescence recording at the end of each cycle), followed by a melt 

curve (1 cycle—1 minute at 60°C then a 0.3°C/s ramp down from 95°C with continuous 

fluorescence recording). The primer sets (25 nanomole DNA Oligos purchased from Integrated 

DNA Technologies) for the quantitative PCR were designed to skip an intron and with amplicon 

sizes between 70-200 nucleotides. They are as follows: 

 

Target Forward Primer (5’-3’) Reverse Primer (5’-3’) 

GAPDH AATCCCATCACCATCTTCCA TGGACTCCACGACGTACTCA 

ELP3 GGCAGAAGCGGAAAGGAGAT GAGGGACGGCAGCAATGATA 

ELP4 TATTCACCATTGAGCGACTGCATTT TTCTTGCCTCCGGCCATCAT 

ELP5 CACTCAGCTGGCTGCTACTT AAGCCCAGCACACTCACTTT 

ELP6 GAGCTCGGAATGTTCGTGGA GTAGAGTCAGTTTCCCCTGCT 

 

Quantitative PCR was performed in technical triplicate. After the quantitative PCR, the delta-

delta CT (DDCT) method was used to determine the siRNA mediated on-target knockdown of 

the ELP complex mRNAs, relative to the mRNA levels of these genes in a non-targeting control 

genetic background. Briefly, 1) GAPDH sample CTs were subtracted from ELP gene or non-

targeting control CTs, and 2) the ELP gene CTs are then subtracted from the non-targeting 

control CTs to obtain the DDCT value per ELP gene target set. We then computed the 

knockdown percentage for each target ELP gene by 100*(1-(1/(2-DDCT)). 
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Gene expression analysis by RNA-seq 

For analysis of erlotinib-induced changes in gene expression, BT20 cells were seeded at 

300,000 cells per well in a 6-well plate and allowed to adhere overnight. The next day cells were 

treated with either DMSO (final concentration of 0.1%) or erlotinib (final concentration of 10 µM). 

After 24 hours, cells were washed twice with 1 mL of PBS. 150 µL of QIAzol was added to each 

well and allowed to cover the full surface of the plate. The cell lysate was collected, vortexed for 

1 minute, and incubated for 5 minutes at room temperature before being snap-frozen with liquid 

nitrogen and stored at -80°C. Total RNA was extracted using the manufacturer’s instructions in 

the QIAGEN RNeasy kit. Each sample was at least 50 ng/µL in baseline concentration, with 

260/280 ratios of 1.9-2.03 and 260/230 ratios between 1.9-2. RNA-seq library construction was 

prepared using the TruSeq RNA library preparation kit v2 (CAT# RS-122-2001, Illumina) and 

subsequently sequenced at a depth of at least 15 million reads per sample. The experiment was 

completed with biological triplicate samples per condition. For comparison to PC9 cells, publicly 

available RNA-seq data was used (GEO accession #GSM2692587) (21). Both sets of raw 

sequencing reads were processed using the UMass Medical School Biocore’s DolphinNext 

(v1.1.10) pipeline. First, the sequencing reads were de-multiplexed and assessed for sequence 

quality using the barcode splitter and trimmer functions of the FASTX toolkit (v0.0.14) as well as 

FastQC (v0.11.8). Bowtie2 was used to count and filter out RNAs that are not relevant for our 

analysis (i.e., rRNAs, miRNAs, tRNAs, piRNAs, etc.). RSEM (v1.3.1) was used to align RNA-

seq reads to reference transcripts and estimates gene expression levels. Hisat2 (v2.1.0) and 

Tophat2 (v2.1.1) align the reads to the human genome (GRCh38). DESeq2 uses a parametric 

fit to compute a log2(fold-change) and FDR-adjusted p-value from RSEM expected counts for 

each comparison (erlotinib versus DMSO-treated cells). 
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GSEA 

Gene-Set Enrichment Analysis (GSEA)(22) was performed using GSEA v4.0.3 [build: 

23].  For analysis of EGFR signaling signatures in BT20 and PC9 cells, we used ranked 

log2(fold-change) of mRNA expression levels in BT20 or PC9 cells, in comparisons of erlotinib 

versus DMSO-treatment. The GSEA pre-ranked tool was used to analyze signature enrichment 

or depletion. We analyzed enrichment for previously annotated gene signatures describing 

genes that change in expression upon EGFR inhibition in EGFR-driven NSCLC cells 

(Kobayashi_EGFR_signaling_24hr_UP and DOWN). Significance was determined using 1000 

gene set permutations. GSEA of Genome-Wide CRISPR-Cas9 screen hits was performed as 

described above using rank ordered gene-level fold change values. All gene expression 

signatures within msigdb were tested. 

 

Genome-wide CRISPR screen and analysis 

CRISPR screen was performed in BT20 cells using the GeCKO v2 two vector system 

(Addgene, CAT# 1000000049). Both A and B libraries were amplified according to the 

distributor, and virus was generated using 293T cells. The lentiCas9-Blast plasmid from the 

GeCKO system was used to generate BT20-Cas9 cells. Following blasticidin selection, Cas9-

expressing cells were transduced with the sgRNA library at a MOI of < 0.3. Cells were 

transduced to achieve a final library coverage of 750x after puromycin selection. A T0 sample 

was harvested prior to drug addition, and cells were then bifurcated into DMSO (vehicle) and 

Erlotinib (10 µM) treatment groups. Treatment was carried out for 6 days, sub-culturing as 

necessary while maintaining a library coverage >200x (approximately 3-4 population doublings). 

Two replicates were collected for each treatment group and frozen. gDNA was isolated from the 

cell pellets using a phenol-chloroform based extraction method, and sgRNA sequences were 
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amplified by PCR. A second round of PCR was used to add multiplexing barcodes, and each 

gel-purified library was sequenced.  

For analysis of sequenced libraries, reads were first de-multiplexed using the barcode 

splitter and trimmer functions of the FASTX toolkit. edgeR was used to map reads from each 

condition to the GeCKO library. Counts were split between guides with identical sequences, and 

highly duplicated sgRNA sequences (>6) were removed. The sequencing depth of each sample 

was normalized to the distribution of nontargeting guides. A log2(fold-change) was determined 

for each comparison of interest using a parametric fit in DESeq2. The 1000 nontargeting sgRNA 

controls were then randomly assigned to set of 6 “genes”. Guide-level scores were then 

consolidated to a single gene-level fold-change by taking the mean. Gene fold-change values 

were then z-scored based on the distribution of non-targeting guides. Empiric p-values were 

calculated by bootstrapping guide-level scores, and final FDR corrected scores were 

determined using the Benjamini-Hochberg procedure. The method described above was 

selected from a larger set of methods tested in parallel, featuring different methods of trimming 

guides prior to gene level fold-change calculation, and different methods to estimate gene-level 

scores from sgRNA level fold change values. In total, 15 unique analysis pipelines were tested 

in parallel (see also Supplementary Figure 3). The results from these pipelines were also 

compared to the outputs from other published analysis methods including MAGeCK, BAGEL, 

and drugZ(27–29). The default parameters were used for analysis in drugZ. In BAGEL, the lists 

of essential and non-essential genes generated by Hart et al. were used as training sets(31). 

MAGeCK was performed using nontargeting guides as a negative control.  

 

Growth rate measurement using live cell microscopy 

Following transient transfections with ELP and non-targeting controls siRNA (described 

above), BT-20 cells were seeded at 5000 cells per well in a 96-well optical-bottom plate and 
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allowed to adhere overnight. Forty-eight hours after transfection cells were treated in technical 

triplicate with DMSO (final concentration of 0.1%) or erlotinib (final concentration of 10 µM). 

While being incubated at 37°C in an IncuCyte automated microscope, wells were imaged every 

24 hours for 96 consecutive hours. Four quadrants were imaged per well at 10x magnification 

with phase-contrast live-cell microscopy. Phase-contrast masks for identifying cell bodies were 

analyzed using the IncuCyte analysis software to obtain well-confluence percentages for each 

well at each timepoint. Well-confluence percentages were normalized to timepoint 0 to obtain 

relative population sizes at each timepoint. These population sizes were then fit to obtain 

population growth curves (2b*x, with b signifying the growth rate and x signifying the timepoint). 

 

Growth rate measurement using cell dyes 

To determine the growth rate of live cells following drug exposure, BT-20 cells were 

washed once with 5 mL of PBS and, subsequently, stained at 37°C for 20 minutes with 1 µM 

(final concentration) of the CellTrace Far Red reagent (CAT# C34572, ThermoFisher Scientific). 

After incubation, 5 mL of complete culture medium was added, the solution was mixed and 

incubated at 37°C for 5 minutes. Cells were then seeded at 150,000 cells per well 6-well dishes 

and allowed to adhere overnight. 48 hours after transient transfection, the drug-treated plates 

were treated with either DMSO (final concentration of 0.1%) or erlotinib (final concentration of 

10 µM) and incubated at 37°C. At each timepoint samples were harvested after trypsinization, 

stained with 500 nM SYTOX green for 30 minutes, and placed in a solution of 1% BSA in PBS 

for flow cytometry analysis. At least 10,000 live cell events were collected (SYTOX green 

negative) per condition. After 72 hours, treated cells were harvested, stained, and analyzed by 

flow cytometry. The mean fluorescence intensity (MFI) of the cell population was quantified 

using FlowJo. The MFIs of each sample were then fit to obtain population growth curves (2b*x, 

with b signifying the growth rate and x signifying the timepoint) and growth rates.  
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Proteome Profiler based analysis of apoptotic proteins 

 Proteome Profiler Apoptosis Array was performed as suggested in the manufacturer’s 

instructions. 200,000 BT-20 cells were used per condition. Cells were collected and lysed 

according to instructions. Lysates were diluted to 400 ug/mL and 250 µL of the lysate was 

loaded per array. Blot arrays were visualized using a LICOR Odyssey CLx scanner and analyte 

expression was quantified with the LICOR ImageStudio software.  

 

Data analysis and statistics 

All data analysis was performed in MATLAB unless otherwise noted. Curve fitting for 

drug dose response and LF kinetics were performed as described previously, using custom 

MATLAB code(14). GSEA was performed using the GSEA 4.0.3 package, and associated 

graphs were generated in MATLAB. Immunoblot analysis was performed using ImageStudio 

v4.0.21. Drug-drug interaction scores were calculated using custom code as described 

previously(14). Drug GRADE calculations were performed as described previously(18). Flow 

cytometry analysis was performed using FlowJo v10.5.3. PCA was performed following z-

scoring, in MATLAB using the built-in function ‘pca’.  
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FIGURE LEGENDS 

 

Fig. 1: TNBC cells are insensitive to EGFR inhibition despite high-levels of EGFR 

dependent signaling (A-B) Erlotinib sensitivity in TNBC cells evaluated using a SYTOX green 

based death assay. (A) Normalized Growth Rate Inhibition value (GR) computed after 72-hour 

exposure to erlotinib. PC9 (red), is a NSCLC cell line with an activating mutation in EGFR. Other 

cells are TNBCs that did not respond to erlotinib (grey) or had partial responses (blue). Data are 

the mean +/- SD from 3 biological replicates. (B) Erlotinib-induced Lethal Fraction Kinetics. Data 

are mean +/- SD from 3 biological replicates. (C-D) ERK phosphorylation (p-ERK) following 10 

µM erlotinib exposure, monitored as a downstream EGFR dependent signal. Data in (C) are 

representative of 3 independent biological replicates. See also Fig. S1-2. (D) p-ERK quantified 

from western blots in (C). Data are mean +/- SD from 3 biological replicates. Data in (D) are 

colored as in panel (A). (E-F) Gene Set Enrichment Analysis (GSEA) of mRNA expression in 

PC9 or BT20 cells given erlotinib for 24 hours. Rank ordered log2 Fold Change (L2FC) for 

treated vs. untreated samples used to evaluate genes that are induced (E) or depleted (F) by 

EGFR inhibition in EGFR-driven NSCLC cells. Gene signatures used in comparison are from 

msigDB (‘Kobayashi EGFR Signaling 24-hr UP’ in (E) and ‘Kobayashi EGFR Signaling 24-hr 

DN’ in (F)).  

 

Fig. 2: Genome-wide screen using CRISPR-Cas9 mediated genome editing reveals that 

the ELP complex contributes to erlotinib insensitivity in TNBC (A) Schematic overview of 

CRISPR screen. See also Fig. S3. (B-C) Fold change in recovery of BT20 cells harboring gene 

knockouts when comparing erlotinib treated to untreated cells. (B) 324 genes were differentially 

recovered. Six ELP complex genes are highlighted (red), and non-targeting “genes” highlighted 

in black. Data are the z-scored log2 fold change (L2FC) of gene-level data. (C) sgRNA-level 

data for the six ELP genes. FDR corrected p-values shown. Grey curve is the distribution of all 
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sgRNAs; red lines are the six individual sgRNAs for a given ELP gene (non-z scored). (D-E) 

GSEA of the CRISPR screening data. (D) Ten most enriched signatures within msigDB. FDR 

cut-off for significance shown. (E) Example signature shown for the GO term: TRNA Wobble 

Uridine. FDR p-value shown. (F-G) ELP validation using quantitative microscopy. (F) Automated 

image analysis used to score population growth rate for BT20 cells with or without an ELP 

targeting siRNA. Grey: scrambled RNA untreated. Blue: scrambled RNA + 10 µM erlotinib. Red: 

ELP targeting siRNA pool. Purple: ELP targeting siRNA pool + 10 µM erlotinib. See Fig. S4 for 

knockdown validation. (G) Growth rates of curves in (f). Data are population growth per hour. 

The growth rate of untreated BT20 cells was ~ 43 hours (0.023 increase per hour, e.g. 23 x 10-

3). Data in (F) and (G) are mean +/- SD for 16 biological replicates in SCX and 3 biological 

replicates in ELP siRNA conditions. 

 

Fig. 3: ELP complex promotes survival of TNBC cells exposed to erlotinib by promoting 

expression of MCL1 (A) Lethal fraction kinetics following application of 10 µM erlotinib. Cells 

tested were BT20 + scrambled RNA (SCX), or BT20 + siRNA targeting ELP3, 4, 5, or 6 (ELP 

KD). Data are mean +/- s.d. from three biological replicates. (B) Cell proliferation dye dilution to 

determine growth rate of live cells. BT20 cells given a scrambled RNA (top) or ELP4 targeted 

siRNA (bottom) were labelled with CellTrace proliferation dye. Cells were either left untreated 

(Unt) or given 10 µM erlotinib (ERL). Samples collected prior to drug addition or following 72 

hours. Representative dye fluorescence distributions from flow cytometry shown. Data are 

representative of 3 independent biological replicates. (C) Quantification of cell growth rate from 

data in (b). Data are mean +/- s.d. of 3 independent biological replicates. (D) MCL1 protein 

expression in BT20 cells + SCX or + ELP4 siRNA, with or without 10 µM ERL. Data are 

representative of 3 independent biological replicates which all showed similar results. See also 

Fig. S6. (E) Proteome profiler apoptotic array featuring 39 apoptotic proteins. Data shown are 

representative of 2 independent biological replicate blots from ELP4 siRNA untreated or ELP4 
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siRNA + 10 µM ERL. Both blots showed similar data. See also Fig. S7. (F) Quantification of (d) 

and (e). Data are mean +/- s.d. of three (d) or two (e) replicates. 

 

Fig. 4: MCL1 inhibition synergistically enhances sensitivity to erlotinib in TNBC (A) Full 

dose titration of erlotinib (ERL) and S63845 (MCLi) in BT20 cells. Data are relative viability of 

drug treated cells compared to untreated cells at 72 hours. Heatmap is scaled according to 

mean values from 3 biological replicate experiments. (B) Isobologram analysis for data in (A). 

Data are arrayed in linear scale with linear interpolation. Dashed white line represents 

ERL+MCLi combinations that result in 50% response (i.e. 50% isobol). (C) ERL sensitivity at 72 

hours with or without 1 µM MCLi. As in (A), data are mean +/- s.d. from 3 independent biological 

replicates. (D) Lethal fraction kinetic responses in BT20 cells treated with 1µM ERL, 1µM 

MCL1i, or both. (E) ERL, MCL1i, or combination responses at varied doses in a panel of 

TNBCs. Drugs were tested as single agents or in 1:1 fixed ratio combinations across 7 doses. 

Data are mean +/- s.d. of area over the dose-response curve (AOC) for 3 biological replicates. 

(F) Combination Index (CI) and Deviation from Bliss Independence (DBI) computed for 

combinations of ERL and MCL1i in TNBC cells. 
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A

Fig. 1: TNBC cells are insensitive to EGFR inhibition despite high-levels of EGFR dependent
signaling (A-B) Erlotinib sensitivity in TNBC cells evaluated using a SYTOX green based death

assay. (A) Normalized Growth Rate Inhibition value (GR) computed after 72-hour exposure to

erlotinib. PC9 (red), is a NSCLC cell line with an activating mutation in EGFR. Other cells are

TNBCs that did not respond to erlotinib (grey) or had partial responses (blue). Data are the mean

+/- SD from 3 biological replicates. (B) Erlotinib-induced Lethal Fraction Kinetics. Data are mean +/-

SD from 3 biological replicates. (C-D) ERK phosphorylation (p-ERK) following 10 µM erlotinib

exposure, monitored as a downstream EGFR dependent signal. Data in (C) are representative of 3

independent biological replicates. See also Fig. S1-2. (D) p-ERK quantified from western blots in

(C). Data are mean +/- SD from 3 biological replicates. Data in (D) are colored as in panel (A). (E-F)
Gene Set Enrichment Analysis (GSEA) of mRNA expression in PC9 or BT20 cells given erlotinib

for 24 hours. Rank ordered log2 Fold Change (L2FC) for treated vs. untreated samples used to

evaluate genes that are induced (E) or depleted (F) by EGFR inhibition in EGFR-driven NSCLC

cells. Gene signatures used in comparison are from msigDB (‘Kobayashi EGFR Signaling 24-hr

UP’ in (E) and ‘Kobayashi EGFR Signaling 24-hr DN’ in (F)).
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Fig. 2: Genome-wide screen using CRISPR-Cas9 mediated genome editing reveals that the
ELP complex contributes to erlotinib insensitivity in TNBC (A) Schematic overview of CRISPR

screen. See also Fig. S3. (B-C) Fold change in recovery of BT20 cells harboring gene knockouts

when comparing erlotinib treated to untreated cells. (B) 324 genes were differentially recovered. Six

ELP complex genes are highlighted (red), and non-targeting “genes” highlighted in black. Data are

the z-scored log2 fold change (L2FC) of gene-level data. (C) sgRNA-level data for the six ELP

genes. FDR corrected p-values shown. Grey curve is the distribution of all sgRNAs; red lines are

the six individual sgRNAs for a given ELP gene (non-z scored). (D-E) GSEA of the CRISPR

screening data. (D) Ten most enriched signatures within msigDB. FDR cut-off for significance

shown. (E) Example signature shown for the GO term: TRNA Wobble Uridine. FDR p-value shown.

(F-G) ELP validation using quantitative microscopy. (F) Automated image analysis used to score

population growth rate for BT20 cells with or without an ELP targeting siRNA. Grey: scrambled

RNA untreated. Blue: scrambled RNA + 10 µM erlotinib. Red: ELP targeting siRNA pool. Purple:

ELP targeting siRNA pool + 10 µM erlotinib. See Fig. S4 for knockdown validation. (G) Growth

rates of curves in (f). Data are population growth per hour. The growth rate of untreated BT20 cells

was ~ 43 hours (0.023 increase per hour, e.g. 23 x 10-3). Data in (F) and (G) are mean +/- SD for 16

biological replicates in SCX and 3 biological replicates in ELP siRNA conditions.
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F

Fig. 3: ELP complex promotes survival of TNBC cells exposed to erlotinib by promoting
expression of MCL1 (A) Lethal fraction kinetics following application of 10 µM erlotinib. Cells

tested were BT20 + scrambled RNA (SCX), or BT20 + siRNA targeting ELP3, 4, 5, or 6 (ELP KD).

Data are mean +/- s.d. from three biological replicates. (B) Cell proliferation dye dilution to

determine growth rate of live cells. BT20 cells given a scrambled RNA (top) or ELP4 targeted

siRNA (bottom) were labelled with CellTrace proliferation dye. Cells were either left untreated (Unt)

or given 10 µM erlotinib (ERL). Samples collected prior to drug addition or following 72 hours.

Representative dye fluorescence distributions from flow cytometry shown. Data are representative

of 3 independent biological replicates. (C) Quantification of cell growth rate from data in (b). Data

are mean +/- s.d. of 3 independent biological replicates. (D) MCL1 protein expression in BT20 cells

+ SCX or + ELP4 siRNA, with or without 10 µM ERL. Data are representative of 3 independent

biological replicates which all showed similar results. See also Fig. S6. (E) Proteome profiler

apoptotic array featuring 39 apoptotic proteins. Data shown are representative of 2 independent

biological replicate blots from ELP4 siRNA untreated or ELP4 siRNA + 10 µM ERL. Both blots

showed similar data. See also Fig. S7. (F) Quantification of (d) and (e). Data are mean +/- s.d. of

three (d) or two (e) replicates.
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Fig. 4: MCL1 inhibition synergistically enhances sensitivity to erlotinib in TNBC (A) Full dose

titration of erlotinib (ERL) and S63845 (MCLi) in BT20 cells. Data are relative viability of drug

treated cells compared to untreated cells at 72 hours. Heatmap is scaled according to mean values

from 3 biological replicate experiments. (B) Isobologram analysis for data in (A). Data are arrayed

in linear scale with linear interpolation. Dashed white line represents ERL+MCLi combinations that

result in 50% response (i.e. 50% isobol). (C) ERL sensitivity at 72 hours with or without 1 µM MCLi.

As in (A), data are mean +/- s.d. from 3 independent biological replicates. (D) Lethal fraction kinetic

responses in BT20 cells treated with 1µM ERL, 1µM MCL1i, or both. (E) ERL, MCL1i, or

combination responses at varied doses in a panel of TNBCs. Drugs were tested as single agents or

in 1:1 fixed ratio combinations across 7 doses. Data are mean +/- s.d. of area over the dose-

response curve (AOC) for 3 biological replicates. (F) Combination Index (CI) and Deviation from

Bliss Independence (DBI) computed for combinations of ERL and MCL1i in TNBC cells.
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SUPPLEMENTARY MATERIALS 

 

Supplementary Table 1: Raw counts from genome-wide screen of erlotinib treated BT20 

cells. Raw counts from sequencing for the genome-wide CRISPR screen described in Fig. 2. 

GeCKO v2 library ID (lib), gene symbol (gene), and counts data for cells treated with erlotinib 

(ERL_rep1 and ERL_rep2), or vehicle control (DMSO_rep1 and DMSO_rep2). The counts prior 

to drug addition are also included (T0). 

 

Supplementary Table 2: Gene-level fold-change data from genome-wide screen of 

erlotinib treated BT20 cells. Fully analyzed data from the genome-wide CRISPR screen 

described in Fig. 2. Data provided for gene depletion rank (Rank), gene symbol (Gene), gene 

description (Description), FDR adjusted p-value (FDR), log2-Fold Change (L2FC), and mean 

counts (MeanCounts). See also Supplementary Fig. 3 and the Methods for detailed descriptions 

of the analysis strategy. 
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Fig. S1: Erlotinib Drug GRADE in TNBC compared to PC9 cells. For each cell line in this study,
drug GRADE (Growth Rate Adjusted DEath fraction) computed across 8 doses. Each dot
represents a different dose, with darker shades used for higher doses of erlotinib (8 half-log
dilutions from 0 – 10 µM). GRADE reports the fraction of the observed response that is due to cell
death. Data are mean +/- SD of three biological replicates.
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Fig. S2: ERK activation following erlotinib treatment in TNBC cells. ERK phosphorylation (p-
ERK) following 10 µM erlotinib exposure, monitored as a downstream EGFR dependent signal.
Three biological replicates per cell line shown. See also Fig. 1C.
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Fig. S3: Genome-wide screen to identify genes that contribute to erlotinib insensitivity in
TNBC cells. (A) Screen and analysis workflow. Critical steps highlighted, including methods to
compute sgRNA level fold change, which sgRNAs to include, gene-level scores from sgRNA
scores, statistical significance, and strategy to determine optimal analysis methods. (B) ROC
curves for evaluation of various analysis strategies described in (A). Untreated cells compared to
the T0 input control used, and data report recovery of core essential genes (True Positives)
compared to non-targeting genes (False Positives) at varied FDR cut-offs. Analysis strategy
selected for this study was to include all sgRNAs (no trimming, i.e. Raw), and collapse to gene level
by computing the mean of sgRNAs for a given gene (red curve). ROC curve used here as the
number of essential genes is approximately equivalent to the number of non-targeting “genes”. (C)
Histogram of z-scored gene level fold changes for all genes (grey) or core essential genes from
Hart et al. (purple). (D-F) sgRNA-level data for comparisons of erlotinib treated versus untreated
cells. (D) sgRNA level counts for biological replicates. Pearson’s correlation coefficient shown. (E)
sgRNA-level counts versus fold change observed in treated/untreated. (F) Scatter plot of sgRNA
level counts for treated and untreated samples. See also Fig. 2 for gene-level data.
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Cruz-Gordillo et al. Supplementary Figure 4

1

Fig. S4: Validation of ELP knockdown by pooled siRNAs qPCR performed to determine
transcript levels for ELP3-6 following knockdown by siRNA. Data are mean +/- s.d. of three
replicates. See also Fig. 3 and Fig. S5 for validation of ELP4 using Western blot.
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Cruz-Gordillo et al. Supplementary Figure 5

Fig. S5: ELP complex facilitates expression of MCL1 following erlotinib exposure. (A-C)
Western blots for MCL1 (A), ELP4 (B), and phosphorylated ERK (p-ERK, C). Beta-actin shown as a
loading control (b-actin). Three independent biological replicates shown. Data are 1: scrambled
RNA, untreated; 2: scrambled RNA + 10 µM erlotinib; 3: ELP4 KD, untreated; 4: ELP4 KD + 10 µM
erlotinib. In panel (B), white arrow marks the expected size/band for ELP4. See also Fig. 3.
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Cruz-Gordillo et al. Supplementary Figure 6
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Fig. S6: Protein level changes within key apoptotic regulatory proteins following erlotinib
exposure. (A-B) Proteome profiler human apoptosis array. Data shown for BT20 cells with
scrambled RNA (SCX) or ELP4 targeted siRNA (ELP4 KD), each with or without 10 µM erlotinib.
Two independent biological replicates of each shown. (B) Apoptosis array analysis key.
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Cruz-Gordillo et al. Supplementary Figure 7

Fig. S7: MCL1 inhibition synergistically enhances sensitivity to erlotinib in a panel TNBC
cells. Sensitivity of TNBC cells to erlotinib (ERL), S63845 (MCL1i), or a combination of these two
drugs (ERL + MCL1i). Drugs tested across 7 half-log dilutions. For drug combinations, ERL and
MCL1i were added at a fixed 1:1 equimolar drug ratio. Relative Viability measured 72 hours after
drug exposure using a SYTOX based death assay. Data are mean +/- s.d. of 3 independent
biological replicates. See also Fig. 4E and F.
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