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ABSTRACT 13 

The dorsal striatum plays a central role in motor and decision programs, such as the selection 14 

and execution of particular actions and the evaluation of their outcomes. A standard model 15 

has emerged where distinct output pathways encode separate motor-action signals, including 16 

selection-evaluation division in the matrix versus patch compartments. We used large-scale 17 

cell-type specific calcium imaging during motor and decision behaviors to determine and 18 

contrast the activity of individual striatal projection neurons (SPNs) belonging to one of the 19 

three major output pathways in the dorsomedial striatum – patch Oprm1+ SPNs versus the 20 

D1+ direct and A2A+ indirect pathway. We found that Oprm1+ SPNs were tuned to a number 21 

of different behavioral categories, such as to different movements, or to discrete actions and 22 

decisions in a two-choice task, and these complex representations were found to the same 23 

extent in all three striatal output pathways. The sharp tuning of individual SPNs was highly 24 

stereotyped over time while performing a specific task, but the tuning profile remapped 25 

between different behavioral contexts. In addition to action representations, SPNs showed 26 

pathway-independent representation of decision-variables such as the trial strategy and the 27 

action value. We propose that all three major output pathways in the dorsomedial striatum 28 

share a similarly complete representation of the entire action space, including task- and 29 

phase-specific signals of action value and choice. 30 
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INTRODUCTION 32 

The selection of specific actions is based on computations that produce prediction and 33 

evaluation of the action outcome, and proper action selection in each situation, is essential 34 

for the survival of all species. Action selection computations have been associated with 35 

neuron activity in basal ganglia circuits, where the striatum plays a central role in integrating 36 

information from cortical and subcortical circuits, which is then propagated to downstream 37 

targets for action execution (Cox and Witten, 2019; Gurney et al., 2001; Hikosaka et al., 38 

2014). The striatum has been neuroanatomically divided into two major output pathways: the 39 

direct pathway targeting the globus pallidus interna (GPi) and the substantia nigra (SN), and 40 

the indirect pathway targeting the globus pallidus externa (GPe) (Kreitzer, 2009; Tepper et 41 

al., 2007). A circuit model has emerged based on the dichotomous organization of the 42 

striatum, where the direct and indirect pathway differentially control motor programs and 43 

explain the pathophysiology of movement disorders (Albin et al., 1989; Alexander and 44 

Crutcher, 1990; Nelson and Kreitzer, 2014). In this model, the striatal pathways regulate 45 

motor behaviors through antagonistic signals. The striatum has been shown to also encode 46 

key variables in decision-making such as action value (Lau and Glimcher, 2008; Samejima 47 

et al., 2005; Wang et al., 2013). In addition to the direct and indirect pathway, the striatum 48 

can be divided into compartments using neurochemical definitions (Graybiel and Ragsdale, 49 

1978; Olson et al., 1972), notably the patch (also known as striosome) and matrix 50 

compartments, where the striatal patches exhibit high levels of mu opioid receptor (MOR) 51 

expression (Märtin et al., 2019; Pert et al., 1976). The striatal patches form a distinct pathway 52 

that projects to the GPi and SN (Fujiyama et al., 2011; Jiménez-Castellanos and Graybiel, 53 

1989), and the function of patches has been primarily linked to the evaluation of actions 54 

(Friedman et al., 2015; White and Hiroi, 1998).  55 

Distinct gene expression patterns have been used to genetically target, visualize, and 56 

manipulate the direct, indirect, and patch pathway (Gerfen and Surmeier, 2011; Gerfen et al., 57 

1990; Gong et al., 2003). In support of a circuit model emphasizing the opposing function of 58 

the direct and indirect pathways, optogenetic manipulation has shown their differential role in 59 

reinforcement as well as action (Geddes et al., 2018; Kravitz et al., 2012; Tai et al., 2012). In 60 

contrast, concomitant activation of both direct and indirect pathways during movements 61 

suggests a possibly mixed motor representation (Cui et al., 2013), and the direct and indirect 62 

pathways show complementary roles in action sequences (Tecuapetla et al., 2016). Imaging 63 

of neuron activity in the direct and indirect pathway (Klaus et al., 2017), in striatal patches 64 

(Bloem et al., 2017; Yoshizawa et al., 2018), and in mouse models of movement disorders 65 
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(Parker et al., 2018), has together provided some supporting evidence for the opposing role 66 

of striatal pathways for simple motor and action behaviors, but has also challenged the unitary 67 

representation of behavioral events.  68 

To address the role of the striatal patches as well as the other two major output pathways of 69 

the dorsomedial striatum in the representation of motion, actions, and decision-making 70 

variables, we recorded the activity of single SPNs belonging to the patch (Oprm1+) pathway 71 

as well as the direct (D1+) and indirect (A2A+) pathway using transgenic mice performing 72 

specific behaviors. Our findings on the activity of Oprm1+ SPNs during locomotion versus 73 

decision-making reveal a context or task-specific encoding of the discrete movements during 74 

exploration, the discrete actions and task strategy (action space and value) in a two-choice 75 

task, that form a complete representation of the action space and value that is shared with 76 

the major direct and indirect striatal output pathways. 77 

  78 
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RESULTS 79 

The activity of dorsomedial D1+, A2A+, and Oprm1+ SPNs during locomotion. 80 

To define the role of the patch Oprm1+ SPNs during locomotion versus action selection and 81 

evaluation and to compare with the two other major output pathways of the dorsal striatum, 82 

we imaged the genetically-encoded calcium sensor GCaMP6s in SPNs through implanted 83 

GRIN lenses targeting the anterior part of the dorsomedial striatum in the right hemisphere 84 

of freely moving mice (Fig. 1A and Fig. S1). To map the activity of Oprm1+ SPNs, we used 85 

an Oprm1-Cre mouse line that specifically labels Oprm1+ cells (Märtin et al., 2019). We 86 

imaged the calcium signal in individual SPNs belonging to the three major output pathways, 87 

defined genetically by the expression of D1 (i.e. D1-Cre for direct pathway), A2A (i.e. A2A-88 

Cre for indirect pathway), or Oprm1 (i.e. Oprm1-Cre for patches) (Fig. 1B). We applied the 89 

CNMF-E algorithm to extract regions-of-interest (ROIs) and deconvolved the calcium traces 90 

for single neurons (Giovannucci et al., 2019) to better capture the physiological range 91 

dynamics of the neuron activity (Fig. 1C). 92 

To first map the activity of individual SPNs during basic motor programs, we exposed mice 93 

to an open field arena and recorded the activity of SPNs during exploration and self-paced 94 

locomotion. We found on the population level that the Oprm1+ pathway as well as the D1+ 95 

and A2a+ pathway showed on average a bias for encoding contralateral turns, and an 96 

increase in activity upon movement initiation and a decrease after stopping (Fig. 1D-E and 97 

Fig. S2). To map in more detail the SPN activity during specific behavioral events, such as 98 

turning, acceleration, start-stop, we extracted a set of discrete behaviors in the open field 99 

arena (e.g. left turn, right turn), and plotted first the activity of selected Oprm1+ SPNs to map 100 

their tuned responses. We found many examples of Oprm1+ SPNs that showed 101 

representation of simple movement categories, such as left versus right turning or forward 102 

acceleration (Fig. 1F-H and Fig. S2). To directly compare the activity features for SPNs 103 

belonging to the three output pathways, we computed tuning scores for the main behavioral 104 

categories for all recorded SPNs. The distribution of tunings was unimodal for all behavioral 105 

categories, but wider than expected by chance (Fig. S2). Based on these distributions, we 106 

defined the significantly tuned neurons (Fig. 1I-J). Overall, we found significantly tuned 107 

neurons that represented for example left turns (contralateral to the recording side) or running 108 

speed. Importantly, we found a surprising similarity between the D1+, A2A+, as well as 109 

Oprm1+ pathways in term of the proportion of tuned neurons for each of the different 110 

behavioral categories as well as in the dynamics of the event-related calcium signal (Fig. 1K-111 

L, Fig. S2). Similar to a previous study on the activity of D1+ and D2+ SPNs in dorsolateral 112 
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striatum during locomotion(Klaus et al., 2017), we found that neurons of a specific tuning type 113 

were slightly closer in space than expected by chance for all three pathways but they did not 114 

form clear spatial clusters (Fig. 1M-N). To further assess to what extent the recorded neuron 115 

activity in each striatal pathway contained information to encode the different behavioral 116 

categories in the open field, we trained support-vector machines (SVMs) on the neuron 117 

activity data in order to decode the different behaviors. We found high decoding accuracy for 118 

the mouse behavior using neuron activity data from SPNs belonging to either the D1+, A2A+, 119 

or the Oprm1+ pathway, and decoding was not significantly different for data from the three 120 

pathways (Fig. 1O-P and Fig. S7B). This supports that Orpm1+ SPNs in dorsomedial striatum 121 

can encode the various parameters of the motor program, and that the three major striatal 122 

output pathways all contain a similarly complete representation of the different behavioral 123 

categories, formed by the wide range of tuning profiles of individual SPNs found in each of 124 

the direct, indirect, and patch pathway. 125 

 126 
The D1+, A2A+, and Oprm1+ SPNs represent the action space of a two-alternative 127 

choice task. 128 

Since striatal patches have been proposed to primarily guide reward-based behavior and the 129 

evaluation of actions, we investigated the tuning profile of SPNs in a behavioral context of 130 

decision-making and action value. We imaged SPN activity in a behavioral task that requires 131 

evaluation of actions and updating of predictions regarding action outcome, based on a 132 

modified two-alternative choice task (Tai et al., 2012). In this task, mice were trained to freely 133 

initiate a trial by nose-poking into a center port, which allowed them to then choose to nose-134 

poke on the right or left side port to receive a liquid reward (Fig. 2A). The probability of reward 135 

delivery in the one of the side ports (i.e. the correct port) was set to 75%. After a reward was 136 

delivered, there was a 5% chance that the reward port switched side. Importantly, mice were 137 

not given any cue to indicate the rewarded port, forcing them to keep track of their actions 138 

and update their choices based on recent trial outcome history. We trained mice in the task 139 

for at least 3 weeks, resulting in correct port choice in 67% of the trials, indicating that the 140 

mice learned to dynamically adapt their choices to trial outcome (Fig. 2B-C). Mice showed 141 

appropriate switching behavior, by updating their choice based on the reward history, 142 

showing a win-stay (Fig. 2D) and lose-switch strategy (Fig. 2E). 143 

To define whether neuron activity reflected the strategy employed in the different trial types, 144 

we first focused our analysis on win-stay trials (e.g. reward in the right port followed by choice 145 

for the right port) versus lose-switch trials (e.g. no reward in the right port followed by choice 146 

for the left port) (Fig. 2F). We plotted the activity of individual SPNs from D1+, A2A+, and 147 
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Oprm1+ pathways in the five discrete phases of the win-stay trial. We found that the peak 148 

activity of all recorded neurons across all win-stay trials tiled the entire task structure, 149 

suggesting that SPN activity did not show a clear bias or structure towards certain phases of 150 

the trial regardless of pathway identity (Fig. 2G). 151 

To further explore the relation between neuron activity, trial structure and behavioral strategy, 152 

we pooled single-trial recording data of all trials following a right choice from several recording 153 

sessions to construct one pseudosession, which comprised approximately 20-30 154 

pseudotrials of each trial type. We then analyzed the single-pseudotrial activity data by 155 

performing a dimensionality reduction to extract task-relevant principal components (principal 156 

component analysis, PCA), and we found that neuron activity contained structured 157 

information to describe the entire task trajectory, but also to discriminate the trial type (win-158 

stay, lose-stay, lose-switch; Fig. 2H). The neuron activity therefore encodes two critical 159 

aspects for proper task performance: the sequential representation of phases in the trial as 160 

well as the decision variables differentiating the main trial type strategies.  161 

 162 

The D1+, A2A+, and Oprm1+ SPNs share a similar representation of the trial phases. 163 

The widely distributed activities of SPNs over many trial phases lead us to investigate the 164 

SPN activity during the different phases of the trial, and we focused on how individual neurons 165 

in the D1+, A2A+, and Oprm1+ pathways were modulated by discrete trial phases. We found 166 

that some Oprm1+ neurons were highly tuned to discrete phases in the task, representing 167 

specific movements (e.g. center to right turns) as well as outcome and choice signals (Fig. 168 

3A-B). Furthermore, we found examples of Oprm1+ SPNs with sharp tuning for all the other 169 

trial phases (Fig. S3). To investigate and compare the tuning profile of all the striatal 170 

pathways, we calculated tuning scores for neurons in each output pathway for all twelve 171 

discrete task phases (Fig. 3C-D and Fig. S4). We found that D1+, A2A+, and Oprm1+ 172 

pathways showed a similar proportion of tuned neurons for each trial phase, and that all 173 

pathways showed a tuning bias for trial phases representing contralateral movements (Fig. 174 

3E). We selected the significantly tuned neurons for the four different movements in the task 175 

and visualized their average activity during each phase. We found that the average amplitude 176 

was similar and phase-specific for all pathways (Fig. 3F). SPNs tuned to the reward phase 177 

were not modulated by reward magnitude (Fig. S5). Importantly, the tuning of single neurons 178 

was often not limited to a single trial phase, and the tuning profiles did not form well-separated 179 

clusters, suggesting a rich representation of the trial (Fig. 3G and Fig. S6). We calculated the 180 

spatial organization of neurons that share a significant tuning and found that these neurons 181 
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were closer than expected by chance but did not form distinct clusters, further supporting the 182 

absence of clear functional segregation of SPNs in space (Fig. 3H-I). 183 

The rich tuning profile found in the D1+, A2A+, and Oprm1+ pathways suggested that neuron 184 

activity should include enough information to categorize the trial phase on a single trial basis. 185 

To test this, we trained SVMs to predict trial phases based exclusively on the neuron activity. 186 

We found that activity from even a relatively small fraction of the neurons was sufficient to 187 

decode any of the twelve task phases with high accuracy, and that the decoding accuracy 188 

was similar for neuron activity from the D1+, A2A+, and Oprm1+ pathways (Fig. 3J-K and 189 

Fig. S7). The high accuracy of these predictions demonstrates that all three pathways form 190 

trial or action space representations that are conserved on a trial-by-trial basis. Furthermore, 191 

we found clear examples where the peak neuron activity tiled the subparts of a single phase, 192 

exemplified by the peak activity of Oprm1+ SPNs during a right port to center port turn, which 193 

suggested that SPN activity contained information on the phase substructure in a trial (Fig. 194 

3L). To determine whether neuron activity could represent the detailed temporal organization 195 

of phase progression, we trained SVMs on the activity of D1+, A2A+, and Oprm1+ pathways 196 

and found that we could accurately predict the temporal substructure of the turning behavior 197 

(right-center port turn) over the entire phase for all three pathways (Fig. 3M-N and Fig. S7). 198 

 199 

The phase tuning of D1+, A2A+, and Oprm1+ SPNs is task-specific and highly 200 

conserved across sessions and days. 201 

We next investigated whether the tuning profile of individual SPNs representing discrete 202 

behaviors in the open field was conserved in the choice task during similar actions (e.g. 203 

turning, stopping). We therefore defined whether SPNs showed comparable tuning during 204 

similar movements across the two different contexts and environments. To track individual 205 

SPNs across different behavioral contexts, we recorded the activity of single neurons from 206 

the D1+, A2A+, and Oprm1+ pathways first in the open field and immediately after in the two-207 

choice task, without removing the miniscopes to ensure accurate tracking of neuron identity. 208 

We found that Oprm1+ SPNs with significant and highly stereotyped tuning for example to a 209 

left turn in the open field remapped their tuning profile in the choice task and instead 210 

represented the right-center port movement (Fig. 4A-C and S8). Similarly, a sharply left-211 

center port tuned Orpm1+ SPN in the choice task showed no significant tuning in the open 212 

field (Fig. 4D-F and S8).  When we compared the tuning of neurons for left or right turns 213 

between the open field and the two-choice task, we found that tuning preference between 214 

the two behavioral contexts were largely independent (Fig. 4G). Supporting the non-215 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 28, 2020. ; https://doi.org/10.1101/2020.03.29.983825doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.29.983825
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

conserved tuning profile of SPNs between the two behavioral contexts, when comparing the 216 

primary tunings of all SPNs between the open field and the two-choice task we found that the 217 

tuning identity of SPNs was not conserved across the two contexts (Fig. 4H and Fig. S8). 218 

Since remapping of SPN tuning was evident between behavioral contexts within a single day, 219 

we further investigated whether the tuning profile within a single behavioral context was 220 

stable across sessions (i.e. over several days), we tracked the activity of single neurons in 221 

the choice task over days to weeks (Fig. 4I). We found that the significantly phase-tuned 222 

neurons maintained their tuning profile across several recording sessions, even for very 223 

sharp phase tunings (Fig. 4J and Fig. S8). Importantly, the conservation of SPN tunings 224 

across days was confirmed as we could use SVMs trained on neuron activity from one 225 

session to predict the trial phase in sessions from subsequent days (Fig. 4K). In summary, 226 

we found that the tuning profile of SPNs remapped in a context-specific fashion, thereby 227 

forming complex action representations that are stable and unique for each behavioral 228 

context. 229 

 230 

D1+, A2A+, and Oprm1+ pathways represent the task strategy and the action value. 231 

The tuning of neurons in the D1+, A2A+, and Oprm1+ pathway to specific trial phases 232 

revealed a structured activity pattern that represented the entire trial structure. In addition to 233 

the representation of the trial phases, mice in the choice task also needed to keep track of 234 

more abstract task variables, such as the value and outcome of actions. To map the neuron 235 

activity that differentially represents the variables that match value and decision aspects of 236 

the task, we first identified neurons with activity patterns that showed modulation by the trial 237 

outcome and subsequent choice, which define the win-stay versus lose-switch strategy. We 238 

found examples of Oprm1+ SPNs that showed modulation by trial type, either increasing their 239 

activity during lose-switch decisions or increasing activity in win-stay strategies (Fig. 5A and 240 

Fig. S9). These examples of Oprm1+ SPNs with strong tuning to action value and trial type 241 

were rare, and to better characterize their prevalence we calculated the win-stay versus lose-242 

switch selectivity score for neurons in each trial phase. We found that the D1+, A2A+, and 243 

Oprm1+ pathway selectivity scores were similarly distributed (Fig. 5B). In addition, all three 244 

pathways showed a similar proportion of neurons significantly tuned to the win-stay and to 245 

lose-switch trial type, further supporting a pathway-independent representation of the task 246 

(Fig. 5C). The value modulation was often phase-specific and not persistent throughout the 247 

trial, and it was common for SPNs to show some value modulation in more than one phase. 248 
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The proportion of SPNs with win-stay or lose-switch selectivity in each trial phase was similar 249 

in all three pathways (Fig. 5D-F). 250 

To extract the decision variables that accounted for win-stay versus lose-switch, and 251 

specifically the impact of reward history on the behavior, we estimated the trial by trial action 252 

value using logistic regression (Fig. 5G). The action value estimates accurately reflected the 253 

choices and decisions made by the mice (Fig. 5H). To visualize the neuron activity showing 254 

trial type selectivity, we focused on a single decision-relevant phase following the outcome in 255 

the right port (the right port to center port turn) and the representation of action value in that 256 

phase (Fig. 5I-N). We first selected neurons with a significant lose-switch selectivity score in 257 

this phase, and plotted the average activity of each neuron during the three main trial types 258 

(win-stay, lose-stay, lose-switch).  259 

The lose-switch selective neurons were as expected more active in the lose-switch trial type 260 

compared to the win-stay trial type (Fig. 5I). During the lose-stay trial types, these neurons 261 

instead showed an intermediary activity profile, suggesting that the population is encoding 262 

value rather than trial type identity. We found that the activity of the lose-switch selective 263 

neurons was negatively correlated with action value (Fig. 5J). Importantly, since vigor of 264 

behavioral response as a metric of motivation could confound the activity signals, we verified 265 

that the activity and action value negative correlation could not be explained by a correlation 266 

with the action duration (Fig. 5K). We repeated the same analysis for neurons with a 267 

significant win-stay selectivity score. The win-stay selective neurons showed increased 268 

activity in win-stay trials compared to lose-stay trial in the center to right turn phase, and 269 

showed an intermediate activity level in lose-stay trials (Fig. 5L). Correspondingly, the activity 270 

of win-stay selective neurons showed positive correlation with the action value, which was 271 

not explained by the action duration (Fig. 5M-N).  272 

The action value signal during the return from the right port to center port phase prompted us 273 

to determine whether the value and decision variables could be found in other task phases 274 

as well. We therefore trained SVMs to predict win-stay versus loses-switch trial types for each 275 

of the eight discrete phases of the task. We found that the single neuron activity in the D1+, 276 

A2A+, or Oprm1+ pathway contained information to accurately decode the trial type in every 277 

trial phase within a session and across sessions (Fig. 5O and Fig. S9). To exclude that the 278 

prediction accuracy depended on differences in the structure of the behavior between trial 279 

types (e.g. turning speed), we trained SVMs on the action duration and found that they could 280 

not accurately predict the trial type, demonstrating that the win-stay or lose-switch activity 281 

signals were not reflecting the vigor of the action (Fig. 5O). 282 
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The representation of win-stay versus lose-switch we have described could reflect the choice 283 

or most recent outcome, rather than the action value. To disentangle these possibilities, we 284 

applied the SVM model to the three trials types (win-stay, lose-stay, lose-switch) separately. 285 

The SVMs were trained to distinguish lose-switch from win-stay trial types, based on choice 286 

or outcome, but not the action value per se. We specifically investigated whether the SVMs 287 

would be more confident of the win-stay/lose-switch classification depending on the action 288 

value. We found that within each trial type the action value was separately correlated with the 289 

confidence in the prediction (Fig 5P-Q). Importantly, this correlation was also found in the 290 

lose-stay trial type that was never used for SVM training. This suggests that in addition to 291 

choice and outcome, information about the action value is also present in the activity and is 292 

used by the SVMs to classify the trial types. 293 

Supporting the evidence for pathway-independent representation of action value and trial 294 

type, the SVM decoding of the trial type was similarly dependent on the action value in the 295 

D1+, A2A+, and Oprm1+ pathway (Fig. 5P-Q and Fig. S9). To verify that these results were 296 

not contingent on the definition of the action value, we calculated action values based on Q-297 

learning and found this model replicated the correlation between SVM confidence and action 298 

value (Fig S10).  In summary, the action value representation by SPNs was phase-specific 299 

during the trial, independent of action duration or motivation, and importantly was evident in 300 

all striatal output pathways. 301 

 302 

DISCUSSION  303 

The dorsomedial striatum, and in particular the Oprm1+ striatal patches, are suggested to 304 

carry signals on the value of actions, the chosen behavioral strategies, and underlie goal-305 

directed behaviors. We found that the Oprm1+ pathway shows a surprisingly broad tuning to 306 

all the investigated behavioral variables, with individual SPNs showing sharp tuning to 307 

specific movements, and tuning to discrete actions in a choice task, and therefore do not 308 

encode a single decision-making variable such as the type or value of the ongoing trial, and 309 

as a population form a continuous representation of the motor and action program that is very 310 

similar to the representation in the direct and indirect pathway.  311 

We have shown how the activity of SPNs can describe the entire action space including key 312 

variables related to trial type and decision-making (e.g. win-stay strategy, value of the 313 

selected action), and importantly that this representation is found in all three major striatal 314 

output pathways. We found that the activity did not simply reflect the individual actions as 315 

unitary and discrete motions (e.g. left turns) but instead captured the complexity of the task 316 
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structure, by integrating value and trial phase information for the execution of a specific 317 

action. Individual SPN activity tiled the entire task space, forming a continuous representation 318 

of all the actions required to perform the task. Supporting the role of these representations 319 

for the proper task execution is the conserved and highly stereotypical tuning of individual 320 

SPNs to specific actions in a single trial phase over many behavioral sessions and days. 321 

Interestingly, the remapping of SPN tuning between the open field and the choice task point 322 

to a context-dependent representation of discrete motor-action variables by individual SPNs 323 

and further supports that the SPN activity does not represent one dimension of the action 324 

(i.e. the concept of a left turn). 325 

It was surprising to find the extent of similarity in the tuning profile between the three 326 

molecularly and neuroanatomically distinct output pathways of the striatum, considering the 327 

suggested specialization of each pathway in motor programs. The standard basal ganglia 328 

model of antagonistic signals in the direct versus indirect pathways is supported by 329 

optogenetic manipulations, demonstrating their opposing or differential effects on 330 

reinforcement, choice, and action sequences (Geddes et al., 2018; Kravitz et al., 2012; Tai 331 

et al., 2012). In contrast, recording of the striatal pathway activities during motor behavior 332 

does not reveal a clear distinction between the pathway activities (Cui et al., 2013; Tecuapetla 333 

et al., 2016). Interestingly, the encoding of action value has been found in dorsomedial as 334 

well as the more motor-related dorsolateral striatum (Stalnaker et al., 2010), including  a 335 

pathway bias in value encoding (Shin et al., 2018),  supporting a complex and rich 336 

representation of motor and decision-making variables across striatal regions. 337 

The temporally organized activation of SPN subtypes has been proposed to be a key 338 

mechanism in representing the motor program either as start-stop signals (Jin and Costa, 339 

2010) and action chunking (Graybiel, 1998) or as continuous sequence representations 340 

(Akhlaghpour et al., 2016; Geddes et al., 2018; Sales-Carbonell et al., 2018), while other 341 

studies have emphasized role of SPNs in categorical coding of value (Samejima et al., 2005; 342 

Wang et al., 2013). The activity in dorsolateral striatum during a simple locomotion task could 343 

not be clustered (Sales-Carbonell et al., 2018), suggesting that the motor-related activity of 344 

SPNs is high-dimensional and instead contains mixed representations of several variables. 345 

Studies have shown that the dorsal striatum contains neurons that encode spatial information 346 

(Hinman et al., 2019; van der Meer et al., 2010), visual and tactile information (Reig and 347 

Silberberg, 2014), delay periods (Akhlaghpour et al., 2016) and time(Mello et al., 2015), 348 

signals that together can shape the representation of behaviorally relevant information. The 349 

diverse representation of for example space, time and trajectory that previously have been 350 
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found in striatal neurons suggest a complex integration of various behaviorally relevant 351 

signals in individual SPNs. Our findings support a model where the encoding of action 352 

sequences, strategy and value are simultaneously represented during action selection, by 353 

integrating motor and decision signals that are uniquely representing a behavioral context, to 354 

ultimately form a continuous representation that is relevant for proper task learning and 355 

performance. Models of the basal ganglia as an actor-critic system suggest that the patch 356 

compartment plays the role of the critic while the actor is implemented in the matrix 357 

compartment (Barto, 1995; Doya, 1999). Even if our findings on the clear overlap between 358 

representations found in Oprm1+ as well as D1+ and A2A+ pathways is challenging this view, 359 

it is interesting to note that recent work in deep reinforcement learning has proposed that it 360 

could be beneficial to share parameters between actor and critic in early layers of artificial 361 

neural networks (Mnih et al., 2016). Therefore, a similar neural representation in patch and 362 

matrix pathways might analogously form a basis for both evaluative and selective processing 363 

in the downstream targets. 364 

It will be valuable to determine the role of the different input pathways and to what extent they 365 

shape the rich representation found in the striatal pathways. The dorsomedial striatum 366 

receives prominent inputs from the frontal cortex, which contains key decision signals (Hwang 367 

et al., 2019; Padoa-Schioppa and Assad, 2006). The multi-tuning and multiplexing of task-368 

relevant signals has been observed in a number of cortical circuits (Musall et al., 2019; 369 

Steinmetz et al., 2019; Stringer et al., 2019), and some of these circuit calculations are likely 370 

to be transmitted and represented in the striatal circuitry (Peters et al., 2019). Even if the 371 

corticostriatal functional connectivity has not been comprehensively defined at the detail of 372 

single SPNs, the corticostriatal organization has been proposed to generally be pathway-373 

specific (Gerfen, 1989; Lei et al., 2004; Wall et al., 2013), although evidence also points to 374 

converging organization (Smith et al., 2016; Zheng and Wilson, 2002). This organization of 375 

corticostriatal inputs carrying signals that are distributed to all types of SPNs could underlie 376 

the broad tuning we have observed. 377 

The technical limitations in terms of the dynamics captured by calcium imaging could obscure 378 

some aspects of differential activity in the three output pathways, such as pathway-specific 379 

tonic firing rate changes or differences in event-locked latency, and our conclusions therefore 380 

are based on a general description of how the observed SPN activity reflects the main 381 

aspects of behavior. In addition, more detailed analysis of the kinematics and recording of an 382 

even larger number of SPNs or simultaneous recording of SPNs in different striatal regions 383 
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can provide an even better description of the differences and similarities in the signals 384 

represented by different striatal outputs. 385 

We found that Oprm1+ SPNs integrate detailed aspects of motor-action signals, carrying 386 

signals about the movement, behavioral context, trial phase, and strategy, to produce a rich 387 

representation of the progression through the task as well as action value and choice 388 

variables, and that this complete representation is found in the D1+ direct and A2A+ indirect 389 

striatal pathways as well. The high-dimensional representation of the entire task and the 390 

context-dependent tuning of individual SPNs must be considered when developing circuit 391 

models of the basal ganglia to understand motor and action behavior. We therefore propose 392 

that the dorsomedial striatum broadcasts an ergocentric (greek [έργον]: work, task) 393 

representation of the entire task to all downstream targets: the neuron activity is a merged 394 

representation of the phase-specific action together with abstract representation of key 395 

decision-making variables of the task space including upcoming choices and the value of 396 

specific actions. 397 

 398 
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FIGURE 1. The activity of dorsomedial D1+, A2A+, and Oprm1+ SPNs during 427 
locomotion. 428 

A) Illustration of experimental approach to image neuron activity in SPNs of the dorsomedial 429 
striatum (DMS). A Cre-dependent AAV vector was injected into D1-Cre (direct pathway), 430 
A2A-Cre (indirect pathway), or Oprm1-Cre (patch pathway) mice (top). Mice were implanted 431 
with a GRIN lens. Calcium signals were recorded with head-mounted miniscopes (bottom). 432 

B) Images show Cre-dependent GCaMP6s expression (green) in caudate putamen (CPu), 433 
globus pallidus externa (GPe), globus pallidus interna (GPi), and substantia nigra (pars 434 
reticulata and compacta, SNr/SNc). Scale bars: 1 mm in the first column, 200μm in the other 435 
panels. 436 

C) Example of neurons detected in the field-of-view of a single recording session by the 437 
CNMF-E algorithm (left map). Calcium signals from the five neurons color-coded in the map. 438 
Transparent lines show denoised fluorescence and opaque bars the deconvolved signal. 439 
Scale bar: 200μm. 440 

D) Population average activity aligned to movement onset. Lines show mean, shaded areas 441 
±SEM; n=632 D1-neurons from 7 sessions, 1604 A2A-neurons from 6 sessions and 1465 442 
Oprm1-neurons from 10 sessions. 443 

E) Population average activity aligned to movement offset. Lines show mean, shaded areas 444 
±SEM; n=632 D1-neurons from 7 sessions, 1604 A2A-neurons from 6 sessions and 1465 445 
Oprm1-neurons from 10 sessions. 446 

F) Example showing the behaviors detected in the open field arena (2 minutes, Oprm1+ 447 
mouse). The behavior was segmented into left turns, right turns, running bouts and 448 
quiescence. Color-code same as in panel G. 449 

G) Deconvolved signals for three selected neurons in the patch pathway (Oprm1+ mouse, 450 
behavior shown in F). 451 

H) Heatmaps of the average responses of the three neurons in G during the four segmented 452 
behaviors. Arrows represent the three movements, the triangle quiescence. 453 

I) Open field task schematic indicating the color coding of the segmented behaviors. Same 454 
color code used in panels K, M and P. 455 

J) Histogram of the left turn tuning scores of all Oprm1+ neurons (n=1465 from 10 sessions). 456 

K) The proportion of neurons of each primary tuning for all three Cre lines. Color code follows 457 
I. n=632 D1-neurons from 7 sessions, 1604 A2A-neurons from 6 sessions and 1465 Oprm1-458 
neurons from 10 sessions 459 

L) Average activity of left turn and running-tuned populations around the onset of the 460 
respective behavior. n(left turn) = 514 tuned D1-neurons from 7 sessions, 1324 tuned A2A-461 
neurons from 6 sessions, 1210 tuned Oprm1-neurons from 10 sessions. n(running) = 330 462 
tuned D1-neurons from 7 sessions, 1032 tuned A2A-neurons from 6 sessions, 737 tuned 463 
Oprm1-neurons from 10 sessions. 464 

M) Example field of view illustrating the spatial distribution of individual neurons color-coded 465 
according to their primary tuning. Oprm1+ mouse, color code follows I. 466 
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N) The observed average distance of each neuron significantly tuned to a behavior to its 467 
closest neighbor tuned to the same in comparison to the average minimum distance expected 468 
by chance (computed based on repeated shuffles of neuron identity). Circles: single session 469 
averages, radii proportional to the number of recorded neurons. Squares: average value for 470 
each Cre-line, sessions weighted by the number of neurons. Error bars: ±SEM 471 
(bootstrapped). N=7 sessions from D1-Cre mice, 6 sessions from A2A-Cre mice, 10 sessions 472 
from Oprm1-Cre mice. 473 

O) Decoding accuracy of support vector machines (SVMs) trained to predict the current 474 
behavior from neuron activity. Thin lines: single sessions; thick lines: average for each Cre-475 
line. Black lines: behavior labels segment-wise shuffled. N=7 sessions from D1-Cre mice, 6 476 
sessions from A2A-Cre mice, 10 sessions from Oprm1-Cre mice. 477 

P) Average confusion matrix of SVM predictions. All of a session’s neurons were used to train 478 
the SVM; confusion matrices were averaged with the population size as weights. Behaviors 479 
are color coded following I. N=7 sessions from D1-Cre mice, 6 sessions from A2A-Cre mice, 480 
10 sessions from Oprm1-Cre mice. 481 

 482 
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FIGURE 2. The D1+, A2A+, and Oprm1+ SPNs represent the action space of a choice 484 
task. 485 

A) Illustration of the 2-choice switching task. Mice initiated a trial by poking the central port, 486 
followed by a choice for one of the side ports. Only one side port delivered sucrose rewards 487 
(reward probability of 75%). 5% of reward deliveries were followed by a covert switch of 488 
reward delivery side. To initiate trials or receive rewards, mice had to stay a minimum of 350 489 
ms in the respective ports. 490 

B) Mice successfully shifted their port preference after covert switches of the rewarded port. 491 
A switch of the reward from the right to the left port was followed by a gradual increase in the 492 
fraction of left port entries on subsequent trials (red line), a left to right switch vice versa (blue 493 
line). Reward port switches only occurred after rewarded choices. n = 3167 switches. Thin 494 
transparent lines: individual mice. 495 

C) Key statistics of the behavior. Correct port: entry into the port currently assigned the 496 
reward. Delay error: failure to trigger a choice port due to premature withdrawal (<350ms) 497 
from same or the initiation port. Switch: choice of the port not selected last. n=299083 trials 498 
from 271 sessions from 19 mice. Transparent dots: individual mice. 499 

D) Win-stay behavior: The probability of a choice switch was lowest immediately after a 500 
rewarded choice (side port entry 0). Horizontal line: overall average fraction of switch choice 501 
port entries. Thin transparent lines: individual mice. 502 

E) Lose-switch behavior: Mice were least likely to obtain rewards (i.e. were most likely to 503 
lose) on choice port entries preceding a switch choice (side port entry 0). Horizontal line: 504 
overall fraction of rewarded choice port entries. Thin transparent lines: individual mice. 505 

F) Illustration of "win-stay" (top) and "lose-switch" (bottom) trials after right side port 506 
outcomes. The outcome phase was treated as the start of the trial to reflect the dependence 507 
of a stay or switch choice on the outcome obtained last; a win-stay trial starts with a win 508 
(reward), a lose-switch trial with a loss (no reward). The task space was defined by twelve 509 
trial phases. Rectangles correspond to time spent in the center or outcome ports (left, right). 510 
Arrows represent movements between the ports. The center port is split into two phases 511 
according to the direction of the upcoming choice. Side ports are subdivided into the delay 512 
period (clock in upper rectangle), and reward (drop, inner part) and omission (x, outer part) 513 
phases. 514 

G) The average response of neurons to the phases of left and right port win-stay trials, 515 
centered on the phase onset times (time 0, window: ±350 ms). Neurons were peak-sorted. 516 
The bar charts indicate the percentage of neurons of each pathway (color-coded) with a 517 
positive peak falling within the 350 ms time window in the raster below. Pooled data from all 518 
recordings. 519 

H) Pseudo-trial activity trajectories based on single trial data pooled over all neurons 520 
recorded. The trajectories separate by trial type (color-coded), appearing ordered according 521 
to value implicit in the strategic choice made (win-stay > lose-stay > lose-switch). Trials were 522 
binned in scaled time (4 bins per phase). Trials were drawn in random order for every neuron. 523 
D1+ n=376; A2A+ n=1663; Oprm1+ n=1864 neurons; from 5, 5, 16 sessions, respectively. 524 
Mean trajectories of the pseudo-trial data used for dimensionality reduction (PCA; thick lines) 525 
and resampled pseudo-trials (thin lines). 526 
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Error bars and shading: ±SEM. Boxplot whisker range: upper (lower) quartile to highest 527 
(lowest) value within 1.5 IQR 528 
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FIGURE 3. The D1+, A2A+, and Oprm1+ SPNs share a similar representation of the trial 531 
phases. 532 

A) Deconvolved traces from three example neurons, respectively tuned to the center-to-left 533 
turn (red), the center port delay phase which precedes a left turn (purple), and left port reward 534 
delivery. Shading indicates port occupancy. Black dashed lines and drop pictograms mark 535 
reward delivery. 536 

B) The average activity of three example neurons in every trial phase over the entire recording 537 
session plotted as heatmaps structured according to the 2-choice task schematic. The 538 
neurons are the same as in panel A; color bars indicate correspondence. Trial-level phase 539 
activity scaled to uniform length. 540 

C) Illustration of the 2-choice task schematic divided into twelve phases. Rectangles 541 
correspond to time spent in the center or outcome ports (left, right). Arrows represent 542 
movements between the ports. The center port is split into two phases according to the 543 
direction of the upcoming choice. Side ports are subdivided into the delay period (upper part), 544 
and reward (drop, lower inner part) and omission (x, lower outer part) phases. Reference for 545 
phase color-coding in panels E, F and H. 546 

D) Histogram of the center-to-left movement tuning scores of all Oprm1+ neurons (n=2793). 547 
The tuning scores were computed by z-scoring neurons' mean activity with the mean and 548 
standard deviation of a sampling distribution obtained using block-wise shuffled behavior 549 
data. Significance: mean activity above the 99.5th percentile. 550 

E) Pie charts proportioned according to neurons’ primary phase-tuning, per Cre-line. Colors 551 
follow C. n=1943 D1-neurons, 6566 A2A-neurons, 2793 Oprm1-neurons. 552 

F) Average activity of 4 of the 12 populations defined by phase-tuning (the movements) during 553 
the phase they are tuned to. n(center-to-left neurons) = 413/1517/751; n(center-to-right 554 
neurons) = 279/928/426; n(left-to-center neurons)=228/883/424; n(right-to-center 555 
neurons)=581/1785/996 (D1/A2A/Oprm1). 556 

G) Bar plots of the weighted mean percentage of neurons significantly tuned to several counts 557 
of phases, by Cre-line. Sessions were weighted by the number of neurons. Circles: single 558 
sessions, radii proportional to number of neurons. Error bars: ±SEM (bootstrapped). 559 

H) Oprm1+ single-cell ROIs for an example session, color-coded by primary tuning. Black: 560 
no significant tuning. Circles mark ROIs whose activity is shown in A and B. 561 

I) Similarly tuned neurons are marginally closer in space than expected by chance (N=16 D1-562 
sessions, 19 A2A-sessions, 30 Oprm1-sessions). 563 

J) Decoding accuracy (fraction correctly predicted phases) for randomly sampled SPN sub-564 
populations of increasing size. Thin lines: single sessions. Thick lines: average per Cre-line. 565 
N=16 D1-sessions, 19 A2A-sessions, 30 Oprm1-sessions. 566 

K) The SVM decoding recall by phase when trained on the full population of each session. 567 
The average recall was weighted by the number of neurons in each session. 568 

L) Sequential neuron activity through a task phase. Raster plot of the average activity for all 569 
neurons recorded in an example session (Oprm1+, right port to center port movement). 570 
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Neurons sorted by the peak of the activity (left panel). Heatmaps show three example 571 
neurons across the entire task space in the same session (right panel). 572 

M) The trial phase substructure can be decoded from neuron activity. Top panel: the actual 573 
versus the decoded time progression through the phase (right port to center port turn) for the 574 
session shown in L. Bottom panel: the actual versus decoded progress through the phase 575 
averaged over all sessions. Individual sessions weighted by the number of recorded neurons; 576 
Cre lines color coded as in N. Black line: decoder trained on shuffled data. Shaded area: 577 
±SEM (bootstrapped). 578 

N) The correlation between true and predicted progress through right-to-center turns for all 579 
sessions (thin lines), compared to the correlation from shuffled data. Thick lines indicate 580 
averages, weighted by the number of recorded neurons in each session. Error bars: ±SEM 581 
(bootstrapped). 582 
  583 
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FIGURE 4. The phase tuning of D1+, A2A+, and Oprm1+ SPNs is task-specific and 584 
highly conserved across days. 585 

A) Example of Oprm1+ neuron with remapped tuning in the open field and the 2-choice task. 586 
The neuron is tuned to left turns in the open field and to right turns (left-center port). Imaging 587 
was performed in the two tasks without detaching the miniscope. 588 

B) Spatial heatmaps of the activity of the neuron shown in A in the open field arena (top) and 589 
the 2-choice operant chamber (bottom). Crosses mark the top 10 most prominent 590 
deconvolved calcium events in the respective recordings; events shown in the lower left 591 
corners of the maps. Scale bars: 10 std,  250 ms. 592 

C) Movement trajectories of the animal during the top 10 most prominent calcium events 593 
shown in B. Rotated such that the animal initially faces upwards. The animal’s posture is 594 
represented frame-for-frame by lines connecting the base of the tail, the center of the body, 595 
and the point between the ears. Scale bars: 5 cm, 5cm. 596 

D) Example of Oprm1+ neuron recorded in the same session as neuron in A-C. Neuron does 597 
not show tuning to any of the tracked movements in the open field, but responds sharply 598 
during left turns (right-center port) in the 2-choice task. 599 

E) Spatial heatmaps of the activity and the top 10 most prominent calcium events of the 600 
neuron shown in D in the open field arena (top) and the 2-choice operant chamber (bottom). 601 

F) Movement trajectories of the animal during the top 10 most prominent calcium events. 602 

G) Top left: Percentage of neurons significantly positively tuned to left turns in the open field 603 
and 2-choice tasks (tuned to either the center port to left or the right port to center turns), 604 
respectively. Bottom left: Comparison of the observed and randomly expected percentage of 605 
neurons tuned to left turns in both tasks. Panels in the right column show the same 606 
quantifications for right turn-tuned neurons. Sessions weighted by the number of recorded 607 
neurons (N=4 D1-sessions, 4 A2A-sessions, 6 Oprm1-sessions). Error bars: ±SEM 608 
(bootstrapped). 609 

H) Alluvial plot showing how the primary tunings in the open field (left side) change in the 2-610 
choice task (right side). n=406 D1-neurons, 1111 A2A-neurons and 985 Oprm1-neurons 611 
were followed. 612 

I) Spatial filter map of an example recording session (Oprm1-Cre) and aligned filters from a 613 
session recorded 12 days later. The depicted filters were transformed by the registration 614 
process. Colors are chosen arbitrarily, but consistent for aligned neurons. Gray filters are 615 
without a match. 616 

J) Trial heatmap of 3 neurons matched across 3 sessions, including those shown in C. The 617 
colored bars match the color of the respective, circled filters in C. 618 

K) SVMs decode the trial phase across sessions (color code shows pathway). Each pair of 619 
sessions (training session + test session) is shown with a transparent line, indicating the 620 
cross-validated accuracy in the training session (left) and the test session (right). The 621 
thickness of transparent lines is proportional to the number of aligned neurons for that pair. 622 
Opaque lines correspond to the average decoding accuracy across pairs of sessions, 623 
weighted by the number of aligned neurons. SVM decoding accuracy on shuffled data (black). 624 
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N(1-3 days) = 65/55/85 session pairs; N(4-13 days) = 25/60/85 session pairs; N(14+ days) = 625 
25/30/25 session pairs (D1/A2A/Oprm1). Error bars: ±SEM (bootstrapped). 626 

 627 
  628 
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FIGURE 5. The D1+, A2A+, and Oprm1+ pathways represent all aspects of the choice 629 
task structure. 630 

A) Example of SPNs with phase-specific evaluation for stay or switch choice. Example 631 
Oprm1+ neuron (left side) shows elevated activity in the center port preceding right port 632 
choices, as well as during the choice action, only in the context of left-to-right lose-switch 633 
trials when the value of the left choice is low. Example Oprm1+ neuron (right side) shows 634 
increased activity when returning from the choice port to the center in win-stay trials, when 635 
the value of the previous choice is high. Note that it also responds, to a lesser degree, during 636 
return movements in lose-stay trials, when the last choice is of intermediate value due to 637 
rewards received on trials prior to the recent loss (see G). 638 

B) Distributions of the right port to center port turn-specific lose-switch versus win-stay 639 
selectivity scores (color code shows pathway). A positive score indicates a neuron's 640 
preferential activation on win-stay, a negative score on lose-switch trials. Selectivity scores: 641 
area under the ROC curve, scaled from -1 to 1. For comparison, selectivity scores were 642 
calculated using shuffled behavior data (black). (n=1943 D1+ neurons, 6566 A2A+ neurons, 643 
2793 Oprm1+ neurons). 644 

C) The weighted mean percentage of neurons significantly selective for lose-switch (left) and 645 
win-stay (right) trials during the right port to center port phase (circles: single sessions, radii 646 
proportional to the number of neurons, error bars: ±SEM bootstrapped). 647 

D) Bar plots of the weighted mean percentage of neurons significantly win-stay or lose-switch 648 
selective to several counts of phases. Sessions were weighted by the number of neurons 649 
(circles: single sessions, radii proportional to the number of neurons, error bars: ±SEM 650 
bootstrapped). 651 

E) Illustration of the choice task with phase color-coding used in panels F and O. 652 

F) The primary phase-specific win-stay or lose-switch selectivity of SPNs. (n=1943 D1-653 
neurons, 6566 A2A-neurons, 2793 Oprm1-neurons). 654 

G) Logistic regression models the impact of the outcomes of the previous seven trials on the 655 
current port choice. Mice repeated recently rewarded choices (blue), and were likely to repeat 656 
the previous choice even after one reward omission (red). Bias coefficient (black): positive 657 
values indicate right port bias. Logistic regression coefficients for individual mice (thin lines) 658 
and the mean coefficients (thick lines). 659 

H) Average fraction of right port choices (grey dots) and choice switches (red bar plots) as a 660 
function of relative action value (binned). Grey curve: logistic regression prediction (data 661 
pooled over all mice). Positive (negative) action values predict right (left) port choices. Action 662 
values are the sum of coefficients shown in G. Outcome history dictates the coefficient 663 
(reward or no reward) used for each of the previous seven trials, side choice its sign (right: 664 
positive, left: negative). Dots and bars: mouse average (N=19 mice). Error bars: ±SEM. 665 

I) Scaled time raster plots of the average activity of the lose-switch selective neurons in lose-666 
switch, lose-stay and win-stay trials. The dotted lines mark the start and the end of the right 667 
port to center port motion. The line plots above the rasters show the population mean activity. 668 

J) The mean trial activity of lose-switch selective neurons at various action values (average 669 
neuron activity, binned). 670 
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K) The session-averaged Pearson correlations for lose-switch selective neurons to 671 
movement duration versus to action value. Radii reflect the number of selective neurons in 672 
the session. 673 

L) Scaled time raster plots of the average activity of the lose-switch selective neurons in lose-674 
switch, lose-stay and win-stay trials. The dotted lines mark the start and the end of the right 675 
port to center port motion. The line plots above the rasters show the population mean activity. 676 

M) The mean trial activity of win-stay selective neurons at various action values (average 677 
neuron activity, binned). 678 

N) The session-averaged Pearson correlations for win-stay selective neurons. 679 

O) Phase-specific decoding accuracy of predicting win-stay versus lose-switch trial type from 680 
neuron activity using cross-validated linear SVMs. For each trial phase SVMs were trained 681 
on data with the behavior labels shuffled (circles), on the neuron activity data (triangles), or 682 
only on phase duration (squares). Accuracy for individual sessions (thin lines) and mean 683 
accuracy (thick lines). Sessions weighted by the number of neurons (N=16 D1-sessions, 19 684 
A2A-sessions, 30 Oprm1-sessions). 685 

P) The SVMs probability estimates for outcome port (left or right side) to center port turns 686 
being win-stay rather than lose-switch as a function of action value. Action value correlates 687 
with the SVM prediction confidence. Win-stay trial turns are more confidently predicted in 688 
high action value trials. (blue). Lose-switch trial turns are more confidently predicted in low 689 
action value trials (red). Lose-stay trial turns with low action value (magenta) appear 690 
increasingly like lose-switch turns. Correlation scores are quantified in Q. Binning by quartiles 691 
of the pooled action value distributions. Triangles: mean probability estimate of sessions 692 
weighted by number of neurons. Shading and error bars: ±SEM (bootstrapped). Top panel: 693 
density of each trial type by action value; average of sessions ±SEM. 694 

Q) Correlation between action value and the estimated probability of choice port to center 695 
turns being win-stay rather than lose-switch (action value sign reversed for left choice trials). 696 
Correlation of individual sessions (thin lines) and average correlation of sessions weighted 697 
by the number of neurons (thick lines). Color-coding as in P. 698 

 699 
 700 
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METHODS 702 

RESOURCE AVAILABILITY 703 

Further information and requests for resources and reagents should be directed to and will 704 
be fulfilled by Konstantinos Meletis (dinos.meletis@ki.se). 705 

Materials Availability 706 

No unique materials were produced in this study. 707 

Data and Code Availability 708 

Data and Python code to reproduce all figures in this work will be made freely available online 709 
upon publication. 710 
 711 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 712 

The 19 adult female and male transgenic mice (25–35 g) used in experiments were kept on 713 
a 12-hour light/dark cycle. We used D1-Cre (Drd1-cre EY262Gsat), A2A-Cre (Adora2a-cre 714 
KG139Gsat), and Oprm1-Cre mice (Märtin et al., 2019). Mice were single-housed after the 715 
surgeries and placed on food restriction during behavioral training and recording in the 2-716 
choice task (maintained at min. 85% of their free-feeding body weight). All procedures were 717 
approved by the Swedish local ethics committee for animal experiments (Stockholms 718 
djurförsöksetiska nämnd, approval N166/15). 719 
 720 

METHOD DETAILS 721 

Surgeries 722 

For stereotactic surgery, the mice were anesthetized with isoflurane (2% in air) and 723 
administered buprenorphine (0.03 mg/kg, subcutaneous) for analgesia. Buprenorphine was 724 
also administered for post-surgery pain-relief. A feedback-controlled heating pad maintained 725 
body temperatures at 36°C throughout the surgical procedures. All animals were unilaterally 726 
microinjected with 400 nl of AAV5-CAG-Flex-GCaMP6s into the dorsomedial striatum in the 727 
right hemisphere (AP: 1.0, ML: 1.25, DV: -2.3; rate of 100 nl/min). The pipette was retracted 728 
5 minutes after the injection finished. Two weeks after the viral injection, gradient-index 729 
(GRIN) endoscope lenses (Inscopix) of a 1 mm diameter were implanted 100-200 μm above 730 
the viral injection site. Prior to lowering the lens, portions of the overlaying cortex were 731 
aspirated using a 0.5 mm-diameter, blunt-point needle with sharpened edges which was 732 
attached to a vacuum pump. The GRIN lens was fixed in place using dental cement. 4-6 733 
weeks after GRIN lens implantation, the baseplate was anchored to the skull with dental 734 
cement to support the detachable miniscope (Inscopix) during imaging. To determine the 735 
optimal placement of the baseplate, the field of view was monitored live throughout the 736 
procedure using the baseplate-attached miniscope. The miniscope was not refocused over 737 
the course of the experiments in order to improve tracking of individual neurons across days. 738 
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Histology 739 

At the end of the experimental procedure mice were deeply anaesthetized with pentobarbital 740 
and then transcardially perfused with 0.1 M PBS followed by 4% paraformaldehyde in 0.1 M 741 
PBS. Brains were removed and post-fixed in 4% paraformaldehyde overnight at 4°C and then 742 
washed and stored in 0.1 M PBS. Coronal 80μm sections were cut using a vibratome (Leica 743 
VT1000, Leica Microsystems, Nussloch GmbH, Germany). Immunostaining was performed 744 
on free-floating sections in glass wells. Sections were incubated for 1 hour in 0.3% TritonX-745 
100 in Tris–buffered saline (38mM Tris-HCl, 8mM Trizma base, 120mM NaCl in extra pure 746 
water) and treated with a preheated (40°C) antigen retrieval solution (10mM sodium citrate, 747 
0.05% Tween20, pH:6) for 1-2 minutes. In order to block non-specific antibody binding, 748 
sections were incubated in 5% Normal Donkey Serum in TBST (0.3% TritonX-100 in Tris–749 
buffered saline) for 1 hour at room temperature. Sections were subsequently incubated 750 
overnight with primary antibodies at room temperature. The day after, sections were washed 751 
twice for 10 minutes in TBST, then incubated with secondary antibodies for 4 hours at room 752 
temperature, and finally imaged. Primary antibodies used: goat anti-GFP (1:1000 dilution, 753 
abcam: ab5450); rabbit anti-Tyrosine Hydroxylase (1:100 dilution, abcam: ab112). 754 
Fluorophores of secondary antibodies: Alexa Fluor-488 and Cy3 from Jackson 755 
ImmunoResearch Laboratories. Assessment of GRIN lens placement was based on the 756 
lesion from the lens in the tissue. Animals with misplacement of GRIN lens were excluded 757 
from the study. 758 

Open field task 759 

We tracked the mice in the open field (49×49 cm) using DeepLabCut (DLC) (Mathis et al., 760 
2018). We manually labeled the base of the tail, the center of the body and the left and right 761 
ears in 1000 frames, sampled from all sessions. After running DLC on every open field video, 762 
we transformed the video coordinates (in pixels) to world coordinates (in cm) using a 763 
perspective transform matching the four corners of the box. 764 
 765 
We based our movement analysis on two markers tracked by DLC: the base of the tail and 766 
the center of the body. We used a custom particle filter (2000 particles; diagonal gaussian 767 
observation noise with σ=1 cm; diagonal gaussian innovation noise with σ=1 cm/frame; 768 
gaussian likelihood penalty on distance between tail base and center of body with μ=3 cm 769 
and σ=1 cm; systematic resampling as defined in (Doucet and Johansen, 2011) to estimate 770 
smoothed x- and y-position as well as running speed, allocentric body direction, angular 771 
speed and body elongation.  772 
 773 
We then developed a custom optimization algorithm to classify each video frame as either 774 
left turn, right turn, running or stationary. First, we chose a scoring function Pb(s,e) that 775 
defined how well a segment starting at frame s and ending at frame e would fit behavior b. In 776 
particular, we chose: 777 
 778 

 779 
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 780 

 781 
 782 

 783 
where a(s, e) is the signed angle difference between the animal in frame s and frame e 784 
measured in degrees, and d(s, e) is the distance in cm between the animal’s position in frame 785 
s and frame e. Note that both a(s, e) and d(s, e) can be computed in constant time. The 786 
negative terms acted as a cost on the number of segments to encourage the segments to be 787 
as long as possible. Having this definition, we wanted to find segments of behaviors such 788 
that the total score was maximized, i.e. 789 
 790 

 791 
 792 
where Nseg is the number of segments, ai is the start of segment i and bi is the behavior of 793 
segment i (a1=1, ai<ai+1, aN=number of frames). The optimal {Nseg,ai,bi} can be found very 794 
efficiently with dynamic programming on the recurrence relation: 795 
 796 

 797 
To improve running time further, we constrained k<2000 so that the algorithm ran in linear 798 
time. 799 

2-choice task 800 

We trained the food-restricted mice to perform a self-paced, probabilistic 2-choice task inside 801 
custom-built operant chambers which contained three nose poke ports. The mice initiated a 802 
choice in the center port, and were then free to choose one of the two side ports. One side 803 
port yielded sucrose solution with 75% probability upon entry (15% sucrose, 3.75 μl), while 804 
the other yielded nothing. After a reward, there was a 5% probability of a reward port switch. 805 
When no reward was delivered (due to failed trial initiation, incorrect port choice or reward 806 
omission) the rewarded side remained the same. There were no cues to indicate the correct 807 
port choice nor the occurrence of a reward port switch. The volume of the sucrose reward 808 
was doubled in a random 10% of the rewarded trials. LEDs located in the ports indicated 809 
whether a trial was in the initiation phase (center LED on) or in the choice phase (side LEDs 810 
on). A 350 ms infrared beam break was required to trigger any port. The task was controlled 811 
and task events recorded using a pyboard microcontroller. 812 
 813 
Animals failed to trigger the reward ports in almost half of their attempts, predominantly due 814 
to having failed to wait out the delay in the center port first, exiting it early (<350ms; see 815 
Figure 2C, delay error). This suggests they disregarded the LED cues indicating whether the 816 
initiation nose poke was successful and remained unaware of their error. Thus, we included 817 
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every side port entry in the analysis, irrespective of whether or not the choice was properly 818 
initiated in the center port.  819 
 820 
The effect of trial outcome history on port choice, used to compute trial-by-trial relative action 821 
value, was estimated by logistic regressions, as reported previously (Tai et al., 2012). The 822 
following regression model was fitted for each animal separately: 823 
 824 

 825 
 826 
PR(i) represents the probability of choosing the right side port on the current side port entry, 827 
indexed i. YR(i−j) ∈ {0,1} and NR(i−j) ∈ {0,1} denote whether or not a right port choice was 828 
rewarded or unrewarded j entries back, respectively. PL(i), YL(i), and NL(i) code the equivalent 829 
variables for left port choices. The coefficients βj

Reward
 and βj

No Reward
 hence capture the effects 830 

of obtaining or not obtaining a reward j trials ago on the current choice. The intercept term β0 831 
subsumes any static bias towards one port or the other. n, the number of past trials included 832 
in the regression, was set to 7. The coefficients were fit using maximum likelihood. The 833 
model-predicted trial-by-trial log-odds of side-port choice, negative values favoring left 834 
choice, positive right choice, served as relative action values. 835 
 836 
To verify that our results were not dependent on calculating action values using logistic 837 
regression we also calculated action values based on Q-learning (Figure S10). We let QR(t) 838 
denote the value of choosing the right port and QL(t) the value of choosing the left port. 839 
Assuming the animal enters port p ∈ {L,R} at time t, we update the corresponding value 840 

 841 
where α the learning rate and R(t) ∈ {0, 1} is the outcome. Given QR and QL, we used a 842 
logistic function to estimate the probability of the animal choosing the right port 843 

 844 
where β is controlling slope of the function, and therefore the explore-exploit trade-off, and b 845 
is capturing any static bias towards either side. We fitted the three parameters α, β and b 846 
separately for each animal by maximizing the likelihood (equivalent to minimizing the 847 
negative log-likelihood) 848 

 849 
where p ∈ {L,R} is the choice at time t and PL = 1 - PR. We used the downhill simplex algorithm 850 
(scipy.optimize.fmin) to minimize the negative log-likelihood. 851 

Imaging data acquisition and preprocessing 852 

Raw calcium imaging videos (1440×1080, 20 fps) were acquired using miniscopes and the 853 
nVista Acquisition Software (2.0.4, Inscopix). To accurately align calcium transients and 854 
behavior, we recorded the sync pulses provided by the miniscope's data acquisition box in 855 
the output of the microcontroller controlling the operant task. The sync pulses also served to 856 
trigger a Blackfly USB3 video camera (FLIR) used to record both the operant and the open 857 
field experiments. 2-choice task imaging sessions lasted approximately 1 hour, open field 858 
sessions 20 min (see Supplementary tables S1-S3). Calcium imaging videos were spatially 859 
downsampled (2×2 pixel bins), cropped, and motion corrected using the Inscopix Data 860 
Processing Software (1.2.0) and exported as Neurodata Without Borders (NWB) files. We 861 
used the CaImAn (1.4.2) (Giovannucci et al., 2019) implementation of the CNMF-E algorithm 862 
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(Zhou et al., 2018) to extract spatial filters (i.e. ROIs) and deconvolved fluorescence traces 863 
of individual neurons. Imaging frames were downsampled (2×2 pixel bins) once more prior to 864 
running the algorithm. To adjust for bleaching, the rolling z-score (±5 min window) of the 865 
deconvolved activity traces was computed and used in all subsequent analysis. To match 866 
individual neurons across recording sessions, we used CaImAn's ROI-registration function. 867 
Prior to analysis, we excluded sessions with data alignment issues (dropped imaging frames) 868 
or during which the mouse did not engage in the task.  869 

Definition of trial phases 870 

Each calcium imaging frame was assigned to a trial phase solely based on the infrared beam 871 
brakes detected around that frame. Frames recorded while a particular port’s beam was 872 
broken were registered as occupations of that port (i.e. nose pokes). When no beam was 873 
broken, frames were classified as movements between the port occupied last and the port 874 
entered next. We excluded thus labeled movements bypassing the center port (side port to 875 
side port), movements lasting longer than 1.5s (animal unengaged), as well as movements 876 
starting and ending in the same port (reentries), from further analysis. Nose pokes preceding 877 
unengaged periods or reentries were also excluded. We divided center port nose pokes into 878 
two different phases, depending on which side port was entered next (upcoming left or right 879 
choice). Side port nose pokes were split into three phases: the delay phase preceding the 880 
outcome presentation (<350ms in port) and the two mutually exclusive outcome phases 881 
(>350ms in port), omission and reward. Note that this classification approach disregards 882 
whether ports were triggered or not, i.e. nose pokes shorter than 350 ms and nose pokes 883 
addressing inactive ports (due to a delay error in the previous nose poke) are included in the 884 
analysis. 885 
 886 
For drawing trial heatmaps (e.g. Figure 3B) and for sub-phase decoding (Figure 3L-N), we 887 
assigned a progress score to each frame, defined as the count of consecutive previous 888 
frames spent in the current phase, divided by the total number of frames in the current phase. 889 
Note that this scaling of the progress was therefore based on time between beam breaks, not 890 
on physical space.    891 

Pooled-population activity trajectories 892 

The activity trajectories in figure 2H are based on single-trial activity pooled over neurons of 893 
all Cre lines and recording sessions (without matching neurons across sessions). Individual 894 
trials in which an animal did not follow the task structure perfectly, e.g. by reentering a port 895 
or disengaging from the task mid-way, were excluded from this analysis, as were trials in 896 
which any phase lasted fewer than 250 ms (5 frames). Whole sessions were excluded if there 897 
were fewer than 20 trials left of any of the three trial types visualized (right win-stay, right 898 
lose-stay and right lose-switch). To pool the single trial data from different sessions into 899 
pooled-population pseudo-trials, we contracted all trials to uniform length by binning the trial 900 
phases in scaled time (4 bins per phase, resulting in a total of 20 data points per trial). For 901 
every trial type, we then randomly sampled trials of that type from every neuron in every 902 
session, combining them into pseudo-trials of pooled-population activity. Trials were drawn 903 
without replacement; the total number of pseudo trials of a specific type was therefore 904 
determined by the minimum number of trials of that type performed in any session. We 905 
applied PCA to one pooled data set obtained in this way, treating the neurons as features to 906 
be reduced and the time points of the concatenated pseudo-trials as samples. We then 907 
plotted the average trial trajectory using the first 3 principal component scores (thick lines in 908 
2H). To evaluate the reproducibility of this approach, we resampled the pooled-population 909 
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data set several times, obtaining different subsets and combinations of single-trial data, and 910 
projected these pseudo-trials into the same PCA space (thin lines). 911 
 912 
Note that the random drawing of trials forced the neurons in the pseudo-session to be 913 
conditionally independent given the trial phase and type, and therefore effectively canceled 914 
out any principal components that were not aligned to our parameterization of the task. This 915 
was done on purpose to enhance the task-relevant structure in the neural activity and we 916 
term the principal components calculated this way “task-related principal components”. 917 
 918 
To test whether the activity in general was low-dimensional, we furthermore applied PCA 919 
directly to the deconvolved and z-scored traces of each session separately (Supplementary 920 
Figure S5B-D). Additionally, to estimate whether the activity was confined to a non-linear 921 
manifold, we calculated the internal dimensionality (Rubin et al., 2019): for a manifold of (non-922 
linear) dimension d, we expect the average number of neighbours within a small L2-distance 923 
r to be proportional to rd

 (volume of a hypersphere). To estimate d, for each point in time in 924 
each session, we found the 500 other timepoints with most similar activity (L2 distance). 925 
Using these 500 points, we first discarded the 3 closest ones, and then linearly regressed the 926 
logarithm of the L2-distance to the logarithm of the number of points within that distance. We 927 
performed one such regression for each point in time (50ms) in each session. Our estimate 928 
of the dimensionality of the activity during a session was the averaged linear coefficients from 929 
all the regressions (Supplementary Figure S5E). 930 

Visualization of trial heatmap 931 

To create the trial heatmaps we first assigned a trial phase and a phase progress (0 to 1) to 932 
each calcium imaging frame. Next, we used these to calculate a pixel coordinate in the 933 
schematic (full image was 501×251 pixels). For the center port, the y-coordinate increased 934 
with increased phase progress, such that 0 was at the bottom and 1 was at the top of the 935 
rectangle. Two separate x-coordinates were used depending on the upcoming choice. For 936 
the side ports, the y-axis was reversed compared to the center port so that increasing phase 937 
progress was going downwards. The scaling was such that the beginning of the delay phase 938 
always was at the top and the end of the delay phase was at the indicated line. The reward 939 
and omission phases similarly progress downwards. The omission phase is usually shorter 940 
than the reward phase (i.e. the animal exits the port earlier), but scaled to have the same 941 
length in the visualization. 942 
 943 
For leftwards movements, i.e. center-to-left and right-to-center, the x-coordinate was linearly 944 
decreasing with phase progress. For rightward movements, i.e. center-to-right and left-to-945 
center, it was linearly increasing with phase progress. The y-coordinate of the four 946 
movements was the square of the progress, followed by a translation and scaling. The phase 947 
progress therefore does not follow the tangent of the parabola between the respective ports 948 
but rather the x-coordinate. 949 
 950 
We then calculated the average deconvolved z-scored activity for each pixel and smoothed 951 
the averages with a gaussian kernel (σ = 7 pixels). Finally, we applied the colormap to the 952 
smoothed value at each pixel. We set the color according to the mean activity and the 953 
transparency according to how many times the (smoothed) pixel was visited. 954 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 28, 2020. ; https://doi.org/10.1101/2020.03.29.983825doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.29.983825
http://creativecommons.org/licenses/by-nc-nd/4.0/


 31 

Calculation of neuron tuning scores 955 

We created surrogate data by first dividing the session into blocks of consecutive left and 956 
right trials and then shuffling these blocks. This procedure meant most of the behavioral 957 
statistics of the session were preserved (number of left and right trials, stay and switch 958 
probabilities, time between trials and between phases within a trial, etc), while the connection 959 
to the neural activity was broken. 960 
 961 
To calculate the tuning score, we calculated the average z-scored fluorescence during each 962 
of the 12 trial phases. As a comparison, we did the same for 1000 iterations of blocks shuffled 963 
as described above. We classified a neuron as positively tuned to a trial phase if the average 964 
activity using the real data was larger than in 99.5% of the shuffled iterations or, reversely, 965 
as negatively tuned if it was less than 99.5% of the shuffled iterations. In addition to these 966 
discrete classifications, we also defined a tuning score as the real average minus the grand 967 
average of the shuffled iterations and divided by the standard deviation of the averages of 968 
the shuffled iterations. We call the 12 tuning scores for a given neuron the tuning profile of 969 
that neuron. 970 
 971 
For the open field, we used a similar procedure to define positively and negatively tuned 972 
neurons, as well as tuning scores, to the four behaviors. The shuffle was taken over the 973 
behavioral segments (left turn, right turn, running, stationary) without consideration of 974 
transition probabilities.  975 
 976 
To determine how well a neuron’s activity discriminated win-stay from lose-switch trials in the 977 
choice task, we computed a selectivity score based on receiver operating characteristic 978 
(ROC) analysis. The selectivity score was defined as the area under the ROC curve (AUC), 979 
scaled from -1 to 1, i.e. equaled 2 x (AUC - 0.5). To establish whether a neuron’s selectivity 980 
score was statistically significant, we opted for a similar approach as described for the phase 981 
tuning scores above. For every neuron, we computed 1000 selectivity scores based on 982 
shuffled behavior data for comparison with the actual selectivity score. If the actual score was 983 
higher than 99.5% of the shuffled data scores, we classified the neuron as significantly win-984 
stay tuned, if instead it was lower than 99.5% of the latter, we designated it significantly lose-985 
switch tuned.  986 
 987 
To visualize any functional clustering of the tuning to the twelve phases, we stacked the 12-988 
dimensional tuning profiles of all neurons from all pathways. We reduced the dimensionality 989 
to two using tSNE (perplexity 30; 10000 iterations; PCA initiation) (Supplementary Figure 990 
S5F). To quantify the clusteredness of the tuning profiles, we calculated the silhouette 991 
coefficient (Rousseeuw, 1987) assuming clustering by pathway (Supplementary Figure 992 
S5G), by the index of the strongest tuning (primary tuning; Supplementary Figure S5H), or 993 
by k-means clustering (Supplementary Figure S5I). 994 
 995 
To see how trial type (value) influenced the clusteredness of the tuning profiles, we calculated 996 
the mean activity for each neuron to each trial phase in each trial type (12*3 = 36 dimensions), 997 
and ran agglomerative clustering on this combined data (Supplementary Figure S5I). 998 

Support vector machines to decode behavior from neuron activity 999 

We z-scored the deconvolved fluorescence traces for each neuron. Then, for every phase of 1000 
each individual trial, we calculated the average z-scored deconvolved fluorescence for all the 1001 
neurons. Using the trial phase as the label with the vector of average fluorescences as 1002 
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corresponding features, we trained support vector machines (SVMs) with linear kernels and 1003 
slack C=1. To handle multiclass labels (12 different trial phases), we employed the one-1004 
versus-one strategy. 1005 
 1006 
In Figure 3J, we randomly selected a subset of neurons and randomly divided 80% of the 1007 
trial phases into a training set and 20% into a test set. We repeated this procedure 10 times 1008 
for each session and number of selected neurons (steps of 5 neurons) and reported the 1009 
average accuracy of these 10 iterations. Accuracy was measured as the fraction of trial 1010 
phases correctly predicted without accounting for the frequency of each label. Note that this 1011 
is not traditional 5-fold cross-validation because the train and test split (as well as the 1012 
selection of neurons) is redrawn in each iteration. In the open field (Figure 1O) we used a 1013 
similar procedure, but with segments of behavior rather than trial phases. 1014 
 1015 
In Figure 3K, we did five iterations of 80%-20% train-test splits for each session and used all 1016 
the available neurons in each iteration. We calculated the fraction of each phase type 1017 
correctly recalled for each session and averaged these values weighted by the number of 1018 
neurons in the respective session. In Figure 1P we used the same principle to calculate 1019 
confusion matrices. 1020 
 1021 
When decoding across days (Figure 4E) we only included matched neurons. For all pairs of 1022 
sessions from the same animal, we trained five iterations of support vector machines on 80% 1023 
of the trial phases from the session with the earliest recording date. We tested the SVM from 1024 
each iteration on the remaining 20% of the same session (same-day-decoding) as well as on 1025 
all the trial phases from the other session (across-days-decoding). We calculated the average 1026 
accuracy for each pair of sessions. In Figure 4E, each line corresponds to one such pair. 1027 
Note that this implies the same session is included multiple times. For each genotype and 1028 
bin of days, the thick lines indicate the average accuracy over all pairs, weighted by the 1029 
number of matched neurons. 1030 
 1031 
For decoding lose-switch versus win-stay, we averaged the deconvolved and z-scored traces 1032 
for each phase in each trial, as described above. We then discarded side-port phases and 1033 
analyzed the remaining six trial phases separately. For each type of trial phase, we discarded 1034 
all win-switch or lose-stay trials and trained separate SVMs to predict whether the individual 1035 
phases belonged to a win-stay or a lose-switch trial. Accuracies are reported as the fraction 1036 
of trial phases that were correctly predicted in a 5-fold cross-validation schema. For 1037 
comparison, for each decoding we also repeated the respective procedure with one instance 1038 
of shuffled data created with the same algorithm as when calculating the tuning scores. For 1039 
Figure 5O, we also compared each SVM trained on neural data to an SVM trained on a single 1040 
feature, namely the duration of the trial phase that is to be predicted. If the difference in neural 1041 
activity was only due to different vigor of the movements, these SVMs would reach the same 1042 
or better performance as the ones trained on neural data. 1043 
 1044 
To see how the SVM decoding varied with the action value, we took the SVMs trained on 1045 
lose-switch and win-stay trials applied them to all three types of trials. Note that these SVMs 1046 
never saw any lose-stay trials in the training phase and therefore can never predict lose-stay. 1047 
Instead of using the binary classification labels, we used the probability they assigned to win-stay 1048 
over lose-switch for each trial. In Fig. 5P, we binned trials by trial type and action value (quartile 1049 
bins) and showed the mean probability outputted by all SVMs for the respective bin. We also 1050 
correlated this probability (without binning) with the action value of each trial separately for 1051 
each trial type. For comparison, we calculated the same correlation on data where the action 1052 
value was either shifted forward or backward 10-30 trials (with wrap-around). This preserved 1053 
the trial-by-trial structure in the action value but dissociated it with the actual neural activity. 1054 
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QUANTIFICATION AND STATISTICAL ANALYSIS 1055 

Statistically, this work was exploratory rather than confirmatory; there were no formal a-priori 1056 
hypotheses. Therefore, no statistical methods could be used to determine sample size. For 1057 
the same reason, we have also promoted descriptive over inferential statistics and in 1058 
particular refrained from reporting p-values between groups. 1059 
 1060 
All animals were recorded in multiple sessions. Unless stated otherwise, we did not match 1061 
ROIs across sessions, treating neural traces recorded in different sessions as originating 1062 
from independent units/neurons. Thus, in figures where the units of measure are neurons 1063 
(e.g. tuning distributions), the same neuron may be included multiple times. In figures where 1064 
the units of measure are sessions (e.g. decoding), we calculated averages weighing sessions 1065 
by the number of recorded neurons, thereby emphasizing sessions with many neurons over 1066 
those with few. We used the same weighing when bootstrapping SEMs. Supplementary 1067 
Tables S1-S3 show all the sessions included in the analysis, as well as the number of 1068 
detected neurons and performed trials. 1069 

Analysis software 1070 

In addition to the explicitly mentioned tools, we used Python 3.7, with numpy 1.17.3  (Walt et 1071 
al., 2011), scipy 1.3.0 (Virtanen et al., 2020), pandas 0.25.3 (McKinney, 2010) throughout. 1072 
The support vector machines and other machine learning tools were from scikit-learn 0.21.3  1073 
(Pedregosa et al., 2011). Some computationally heavy operations were implemented in 1074 
Cython  (Behnel et al., 2011). Plots were rendered with the matplotlib 3.1.1 (Hunter, 2007), 1075 
seaborn 0.9.0 and figurefirst 0.0.6 (Lindsay et al., 2017) plotting libraries. Figures were edited 1076 
in Inkscape (0.92.4). 1077 
 1078 
 1079 
 1080 
 1081 
 1082 
 1083 
Supplemental Video titles and legends 1084 
 1085 
Supplementary video 1. Supplementary to Figure 1. Video shows two minutes of open 1086 
field behavior overlayed with DeepLabCut tracking markers and segmentation labels. 1087 
 1088 
Supplementary video 2. Supplementary to Figure 3. Video illustrates phase tuning of the 1089 
example neurons. 1090 
 1091 
Supplementary video 3. Supplementary to Figure 5. Video example showing phase-by-1092 
phase, cross-validated SVM 1093 
predictions of trial phase and trial type. 1094 
 1095 
  1096 
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RESOURCES TABLE 1097 

 1098 
REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

 Goat anti-GFP  Abcam ab5450 

 Rabbit anti-Tyrosine Hydroxylase Abcam ab112 

Donkey anti-rabbit Cy3 Jackson ImmunoResearch 

Laboratories 

711-165-152 

Donkey anti-goat Alexa Fluor-488 Jackson ImmunoResearch 

Laboratories 

705-545-003 

Bacterial and Virus Strains 

 AAV5-CAG-Flex-GCaMP6s  Addgene  100842-

AAV5 

Experimental Models: Organisms/Strains 

 Mouse: D1-Cre (Drd1-cre EY262Gsat) Jackson Laboratories  EY262Gsat 

 Mouse: A2A-Cre (Adora2a-cre KG139Gsat) Jackson Laboratories  KG139Gsat 

 Mouse: Oprm1-Cre Meletis Lab Oprm1-Cre 

Software and Algorithms 

Python  www.python.org 3.7 

Numpy (Walt et al., 2011) 1.17.3  

Scipy (Virtanen et al., 2020) 1.3.0  

Pandas (McKinney, 2010) 0.25.3 

Scikit-learn (Pedregosa et al., 2011) 0.21.3 

Cython (Behnel et al., 2011)  

Matplotlib (Hunter, 2007) 3.1.1 
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Seaborn www.seaborn.pydata.org 0.9.0 

Statsmodels (Seabold and Perktold, 2010)  

FigureFirst (Lindsay et al., 2017) 0.0.6 

CaImAn (Giovannucci et al., 2019) 1.4.2 

Inscopix Data Processing Software Inscopix 1.2.0 

Inkscape www.inkscape.org 0.92.4 

Custom python and cython scripts  This paper  

 1099 
 1100 
 1101 
 1102 
 1103 
 1104 
 1105 
 1106 

  1107 
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