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Abstract 14 

The noradrenergic locus coeruleus (LC) is crucial for controlling brain and behavioral states. 15 

While synchronous stimulation of LC neurons evokes a single activated cortical state with 16 

increased high-frequency power, little is known about how spontaneous patterns of LC population 17 

activity drive cortical states. Since LC neurons selectively project to specific forebrain regions, we 18 

hypothesized that individual LC ensembles produce different cortical states. We recorded up to 34 19 

single units simultaneously in the rat LC and used non-negative matrix factorization to identify 20 

spontaneously activated ensembles of co-active LC neurons. The ensembles were active mostly at 21 

different times and were simultaneously active only rarely. We assessed cortical state in area 24a 22 

by examining local field potential power spectrograms triggered on activations of individual LC 23 

ensembles. We observed four spectrotemporally-distinct cortical states associated with activation 24 

of specific LC ensembles. Thus, distinct spontaneously active LC ensembles contribute to 25 

unexpectedly diverse cortical states. 26 

27 
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Introduction 28 

Flexible behavior is associated with transitions across diverse cortical states. For example, various 29 

states of wakefulness, perceptual ability, and behavioral activity are associated with different 30 

cortical states each with its own clear pattern of neural oscillations and synchronization properties  31 

(Harris and Thiele, 2011; McGinley et al., 2015; McCormick et al., 2020). Moreover, behavioral 32 

state transitions, such as waking from sleep or entering a state of heightened stress and reacting 33 

more quickly to stimuli, are associated with cortical state transition. These changes are not 34 

necessarily driven by external stimuli. Instead, brain state can be controlled by factors internal to 35 

the organism (e.g., sleep need, perceived stress) and therefore arise from self-organized neuronal 36 

interactions. It remains unclear exactly which interactions among neurons control specific brain 37 

states. 38 

Maintenance of brain state and transitions between states are mediated, at least in part, by the 39 

noradrenergic brainstem nucleus, locus coeruleus (LC). The LC projects globally throughout the 40 

central nervous system and releases norepinephrine to modulate neuronal excitability (Swanson 41 

and Hartman, 1975; Waterhouse and Woodward, 1980; McCormick, 1992; Devilbiss and 42 

Waterhouse, 2004). Activating neurons in the LC synchronously by direct electrical (or 43 

optogenetic) stimulation in anesthetized or sleeping animals evokes a so-called “activated” brain 44 

state, with larger oscillation power at higher frequencies and reduced slow-wave power in the 45 

mean extracellular field potential, resembling that which occurs spontaneously during the 46 

emergence from anesthesia or sleep into wakefulness (Steriade et al., 1993; Carter et al., 2010; 47 

Marzo et al., 2014; Hayat et al., 2019). Moreover, increasing noradrenaline neurotransmission can 48 

lead to those behavioral transitions that are often associated with a brain state change, such as: 49 

awakening from sleep or anesthesia, altering locomotion patterns (increased generalized 50 

movements and decreased reaction times), and improving perceptual sensitivity and attentional 51 

focus (Aston-Jones and Bloom, 1981a; Aston-Jones et al., 1994; Rajkowski et al., 1994, 2004; 52 

Carter et al., 2010; Constantinople and Bruno, 2011; Navarra et al., 2013; Polack et al., 2013; 53 

Martins and Froemke, 2015; Totah et al., 2015; Lovett-Barron et al., 2017; Gelbard-Sagiv et al., 54 

2018; Hayat et al., 2020). 55 
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The LC has been traditionally thought to produce the activated state in the cortex via en masse and 56 

highly-synchronous collective firing of LC neurons (Aston-Jones and Bloom, 1981a, 1981b; 57 

Finlayson and Marshall, 1988; Ishimatsu and Williams, 1996; Alvarez et al., 2002; Chen and Sara, 58 

2007). However, recent findings suggest that this influential view might be incomplete. We 59 

recently studied the time-averaged cross-correlation properties of over 3,000 LC single unit pairs 60 

and found a surprisingly small percentage of correlated pairs. Graph-theoretical analyses of time-61 

average cross-correlograms suggested that the small number of correlated pairs are seemingly 62 

organized into sparse coactive ensembles. This prior work demonstrated that LC neurons clearly 63 

do not collectively fire en masse (Totah et al., 2018a). Furthermore, these data suggest the 64 

possibility that LC firing is organized into patterns of small ensembles of simultaneously active 65 

neurons that change from moment to moment. Given the neurochemical diversity of LC neurons, 66 

as well as diversity in their forebrain projection patterns (for review, see (Totah et al., 2018b; 67 

Chandler et al., 2019), this hypothesis raises the intriguing possibility that individual LC ensembles 68 

could have different effects on the self-organization of neuronal circuits that produce various brain 69 

states. As a result, various LC ensembles could potentially evoke distinct brain states beyond the 70 

activated state. 71 

Here, our objectives were, first, to test the hypothesis that LC population activity consists of 72 

multiple, discrete LC ensembles each with its own evolution of activity over time and, second, to 73 

examine the relationships between brain state and LC ensemble dynamics. We addressed these 74 

open questions using a mathematical methodology called non-negative matrix factorization 75 

(NMF), which allowed us to decompose the spiking of simultaneously recorded LC single units 76 

into individual patterns of coactive neurons at any given time. In line with the predictions of our 77 

prior work (Totah et al., 2018a), we found that LC activity at any given time is formed by a small 78 

number of simultaneously active cell type-specific ensembles. Using this new approach to access 79 

the moment-to-moment changes in ensemble activity, we were able to reveal that self-inhibition 80 

and lateral-inhibition (which are common among individual LC single units (Aghajanian et al., 81 

1977; Ennis and Aston-Jones, 1986)) also occur between LC ensembles. Although different 82 

ensembles activated primarily at different times, with evidence of some periodic structure of time-83 

delayed excitation and inhibition of different ensembles, we observed simultaneous activation of 84 

multiple LC ensembles only rarely. We studied what – if any – brain state diversity is associated 85 
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with activation of different LC ensembles. In contrast to the canonical view that LC activation 86 

evokes a unitary activated brain state, we observed heterogenous brain states with different spectral 87 

and temporal properties that depended on which LC ensemble was active. However, when different 88 

LC ensembles were spontaneously coactivated, the associated brain states were more homogenous, 89 

in line with the prototypical activated state resulting from whole-LC stimulation. In sum, we report 90 

moment-to-moment changes in LC ensemble activity and show that spontaneous activation of 91 

separate sets of ensembles are associated with diverse cortical states. 92 

Results 93 

In order to study the temporal dynamics of LC population activity, we recorded from many LC 94 

single units simultaneously (5 to 34 units and, on average, 19 units recorded from 15 male rats) 95 

using a silicon probe with 32 electrodes confined to the core of the LC nucleus. Probe location was 96 

verified histologically in coronal tissue sections. Neuronal identity was confirmed at the end of the 97 

experiments using intra-peritoneal injection of the alpha-2 agonist, clonidine, which inhibited 98 

spiking on all electrodes. Spikes recorded from outside the LC core would not have been inhibited 99 

due to the lack of alpha-2 adrenergic receptors in nearby brain structures (McCune et al., 1993). 100 

In order to assess brain state, a single tungsten electrode was placed in cortical area 24a (anterior 101 

cingulate cortex) (Paxinos and Watson, 2017) and the mean extracellular field potential (8 kHz 102 

lowpass filtered) was recorded in 9 of the 15 rats. Neuronal recordings were made under urethane 103 

anesthesia, a widely-used model for studying brain state transitions evoked by LC stimulation 104 

(Marzo et al., 2014; Neves et al., 2018). To date, recordings of many LC single units 105 

simultaneously in any awake organism with multi-electrode probes has been an intractable 106 

problem due to brainstem movement associated with body movement, thus necessitating the use 107 

of anesthesia to investigate the relationship between LC ensemble activity and brain state. 108 

Ensemble detection using non-negative matrix factorization 109 

We began by assessing if LC population activity consists of simultaneously coactive collections 110 

of single units (ensembles) and how those population activity patterns may spontaneously change 111 

from moment to moment. We detected LC ensembles with non-negative matrix factorization 112 

(NMF) on the spike counts of all simultaneously recorded single units for each animal. For this 113 
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analysis, we binned activity in sliding windows that were 100 msec long, which is the time scale 114 

capturing the majority of the synchrony among LC single unit pairs (Totah et al., 2018a). Figure 115 

1A sketches how NMF works on hypothetical single unit spiking data. NMF decomposes the 116 

population matrix containing the spike counts of each single unit in each time bin as a sum of K 117 

non-negative spatial modules, each multiplied by a non-negative activation coefficient. A spatial 118 

module may be thought of as a specific, often-recurring, population firing pattern. Formally, it is 119 

a vector specifying the relative strength of firing of each neuron within the population pattern 120 

(Onken et al., 2016; Williams et al., 2018). The activation coefficient of each module at any given 121 

time describes how strongly the specific population firing pattern (the module) is recruited during 122 

that time bin.   123 

The number of spatial modules in the data, K, is a free parameter whose choice must be informed 124 

empirically.  Following established procedures (Onken et al., 2016; Williams et al., 2018), we 125 

determined K for each rat, by choosing a value based on two criteria. First, the chosen K explained 126 

a high amount of variance in the data with few modules (i.e., the selected value of K was in the 127 

“elbow” region of the reconstruction error plotted as a function of the possible number of modules, 128 

which means that using higher K would have given diminishing returns in terms of data 129 

reconstruction accuracy). Second, that value for K yielded a stable recovery of the spatial modules 130 

from the data regardless of the random initialization of the decomposition optimization procedure 131 

(see Methods for additional details and Supplementary Figure 1).  132 

By thresholding each module to individuate which single units were significantly active within it, 133 

we could separate and define the ensemble of single units that are coactive within each module. 134 

An “ensemble” was thus defined as the set of single units that crossed the activation coefficient 135 

threshold for a specific spatial module. This way, we associated one and only one ensemble of 136 

coactive neurons to each of the K spatial modules. For simplicity, hereafter, we will thus refer to 137 

NMF decomposition into and detection of ensembles as a shorthand to indicate detection of firing 138 

patterns and ensembles of coactive single units.  139 

By thresholding the time course of activation coefficients to distinguish the times of significant 140 

recruitment of each spatial module, we defined the times of activation of each spatial module and, 141 
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thus, the activation times of each ensemble of single units (see Methods). For brevity, the activation 142 

times of spatial modules will be referred to as “ensemble activation times.” 143 

We found, across 15 rats, a total of 146 ensembles from 285 single units. Note that a single unit 144 

can potentially be active in more than one ensemble determined by NMF. Figure 1B shows two 145 

exemplar LC ensembles. The left panels depict the spike rasters of single units which belong to 146 

the ensemble and the right panels show spike rasters of single units outside the ensemble. Spike 147 

rasters are aligned to the ensemble activation times. These examples clearly show that single units 148 

assigned to the same ensemble increased their firing rate during ensemble activation. On the other 149 

hand, units not assigned to the ensemble maintain their ongoing pattern of activity without 150 

systematic variations. Figure 1C shows another example in which LC population activity was 151 

decomposed into K = 5 different ensembles. The left panel shows population activity (spiking of 152 

all simultaneously recorded single units combined) over an exemplar 2 second recording epoch. 153 

The right panel shows this population activity decomposed into the activity of the 5 coactive 154 

ensembles. The ensembles were active in most cases at different times, but in some cases (such as 155 

at time t = 0.5 s) more than one ensemble was active. This is apparent as the time of highest 156 

population activity in the left panel. Reconstructing the total population firing rate as function of 157 

time through the NMF decomposition (which essentially involves summing up the activation time 158 

courses across the 5 ensembles) returned a good approximation of the pooled population spike 159 

rate. This example is useful both to illustrate that the NMF decomposition captured the LC 160 

population firing well and that the total firing of LC populations cannot be conceptualized as a 161 

result of en masse firing but rather as a nuanced sequence of different ensembles activating at 162 

largely different times. 163 
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 164 

Figure 1. Ensemble detection using NMF decomposes LC population spiking into ensembles 165 

that have heterogeneous spatio-temporal properties. (A) An example of how NMF works on 166 

hypothetical data from 5 single units (N1 to N5, columns) whose spikes were binned into 8 time 167 

bins (t1 to t8, rows). The matrix of population spiking is decomposed as a sum of K non-negative 168 

spatial modules (in this example there are K= 2 spatial modules, which are plotted on the right and 169 

labeled rows E1 and E2, each representing a specific firing pattern recurring in the data and 170 

captured by the decomposition) multiplied by a non-negative activation coefficient (shown in the 171 

middle) representing the strength of recruitment of each of the two specific population spiking 172 

patterns (“modules”) over time. In this example, the population spike counts (left panel) shows 173 

that units N1, N2, and N5 tend to fire concurrently with N1 and N2 firing more strongly than N5 174 

(see time bins t2, t3, t4, t6, t7). Thus, the NMF finds a spatial module (indicated as E1) with 175 

neurons N1 and N2 firing strongly and N5 also somewhat active, but N3 and N4 not active at all. 176 

Thresholding the firing rate values of each module identifies the ensemble of units active within a 177 

module. In the case of module E1, such thresholding of the plot on the right shows that the 178 

ensemble is made of neurons N1, N2, and N5. Inspection of the plot in the middle shows that the 179 

activation coefficient of spatial module E1 is higher during those time bins (t2, t3, t4, t6, and t7) 180 

in which N1, N2 and N5 were more active (see spike times in left plot). Thresholding the activation 181 

coefficients in the middle plot detects when that module (i.e., a specific population spiking pattern) 182 

is occurring. (B) The spike rasters and peri-event time histograms (PETHs) are shown for two 183 

exemplar LC ensembles recorded from two rats. The left panels show spike rasters of the single 184 

units inside the ensemble aligned to the ensemble activation times (t = 0 sec). In these spike rasters, 185 

each ensemble activation event is a “trial.” The PETHs of trial-averaged spike rate across all units 186 
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in the ensemble are shown below the rasters. The right panels depict the ensemble activation-187 

triggered spiking of single units that were not assigned to that ensemble. The plots show that units 188 

inside the ensemble increased their firing rate at ensemble activation times, whereas units not 189 

assigned to the ensemble did not change their firing rate in any systematic way. (C) An example 190 

of 2 seconds of activity in a rat in which the NMF found K=5 ensembles among 9 single units (N1-191 

9). The upper right panel shows the time course of the activation coefficients of each ensemble. 192 

The upper left panel shows that summing the ensemble activations (dotted line) reconstructs well 193 

the true LC pooled population spiking (solid blue line). The bottom panel shows the activation 194 

coefficients of each spatial module. Single units that were significantly active in a spatial module 195 

(i.e., crossed threshold) and thus formed an ensemble (E1-5) are marked by a red asterisks. 196 

The spatio-temporal scale of LC ensemble activation is heterogeneous 197 

Our first objective was to test the hypothesis that LC population activity consists of many discrete 198 

LC ensembles each with its own evolution of activity over time. We began by assessing the 199 

durations over which different ensembles were either spontaneously active or inactive. Figure 2A 200 

presents evidence that most ensembles were only transiently active for the 100 msec time bin that 201 

we used to decompose the data. However, the duration of the inactive periods varied across 202 

ensembles, such that ensembles are quiet for a wide variety of durations before being briefly active 203 

for approximately 100 msec. These findings suggest that the activation time courses vary across 204 

LC ensembles such that different ensembles are likely independently active at different times. 205 

In order to characterize the physiological properties of LC ensembles, we next examined ensemble 206 

size and whether ensembles were spatially discrete in the LC. In Figure 2B, we report the relative 207 

number of single units in each ensemble relative to the total number of simultaneously recorded 208 

single units. On average, 27% of single units were active in ensembles (although some units could 209 

participate in more than one ensemble, as discussed in the next paragraph). Ensembles varied in 210 

size (range: 6% - 62% of the simultaneously recorded single units, see Supplementary Figure 211 

2A). Single units in an ensemble were spread throughout the LC with no topographical 212 

organization (Supplementary Figure 2B). We assessed single unit location as the electrode which 213 

recorded the largest average spike waveform. Among 146 ensembles, only 23 ensembles had a 214 

median distance between single unit pairs of less than 50 um. The diffuse spatial arrangement of 215 

single units within ensembles detected with NMF agrees with the predictions of prior work on LC 216 
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ensembles that used graph theoretic analysis of time-averaged pairwise spike count correlations to 217 

investigate the spatial structure of synchrony within the LC (Totah et al., 2018a). 218 

Given that NMF can identify neurons that fire in more than one ensemble (Onken et al., 2016), we 219 

also investigated how many of the single units were assigned to one ensemble, multiple ensembles, 220 

or no ensemble. Out of 285 single units, 115 single units fired as part of multiple ensembles 221 

(40.4%), 149 were active in only a single ensemble (52.3%), and the remaining 21 units did not 222 

participate in any ensemble with the other single units (Figure 2C). Although single units could 223 

and did take part in multiple ensembles, the probability that a neuron took part in only one 224 

ensemble was higher than the probability that a neuron took part on more than one ensemble 225 

(binomial test, p = 0.04).  226 

LC ensembles were unit type-specific 227 

Recent work has shown that two LC single unit types, termed “narrow” or “wide” type units, are 228 

distinguishable by their extracellular waveform shape (Totah et al., 2018a). We next examined 229 

whether LC single units of the same type tended to spike in the same ensemble. The recent work 230 

that first identified these LC unit types showed that units of the same type tended to form 231 

ensembles detected using graph theoretic analysis of time-averaged pairwise spike count 232 

correlations (Totah et al., 2018a). Figure 2D reports the percent of each unit type participating in 233 

each ensemble (after removing rats in which only a single unit type was recorded). Visual 234 

inspection of the plot clearly shows that ensembles are made, entirely or mostly, of units of the 235 

same type. We assessed (by random resampling) if these proportions were statistically different 236 

from what would be expected if ensembles were formed by units taken randomly regardless of 237 

their type (see Methods). Our results show that, for all rats, the hypothesis that ensembles are 238 

formed by combining units regardless of their type should be rejected (p<0.05), thus indicating 239 

that ensembles do not combine randomly units of different types but are instead preferentially 240 

made by units of the same type.  241 
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 242 

Figure 2. LC ensembles are spatio-temporally sparse and cell type-specific. (A) The box plots 243 

show the distributions of how long ensembles were consecutively active (top panel) and inactive 244 

(bottom panel). Each boxplot illustrates the distribution for one ensemble. Ensembles tend to be 245 

active for only 100 msec, but can be inactive for a wide variety of durations which yields 246 

heterogenous activation of different ensembles at different times. (B) The histogram shows the 247 

distribution of ensemble size, in terms of the percentage of simultaneously recorded single units 248 

that were assigned to an ensemble. On average, each ensemble consisted of 27% of the single units 249 

recorded in that experiment. (C) This histogram shows the number of single units that fall into a 250 

single ensemble or multiple ensembles. There was a preference for units to participate in only one 251 

ensemble. (D) The percent of each unit type (wide or narrow spike waveform) making up each 252 

ensemble is plotted across ensembles (x-axis). Ensembles are either only one type of single unit 253 

or consist of mostly a single type.  254 

LC ensemble activation is associated with burst firing 255 

Given our motivation to assess the association between cortical state and activation of discrete LC 256 

ensembles, it is important to determine if some ensembles fire more strongly than others or exhibit 257 

a tendency to fire in bursts, as these spiking properties might systematically vary with LC ensemble 258 

activation-associated cortical state changes. 259 
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We first characterized the firing strength of various LC ensembles. We calculated the average 260 

spike rate of all single units within the ensemble (when the ensemble was active) using peri-event 261 

time histograms (PETHs). Each event was an ensemble activation time. The PETHs were 262 

calculated from 100 msec before each ensemble activation event until 400 msec after it. In order 263 

to assess whether the spike rate differed across ensembles, we clustered the PETHs (one for each 264 

of the 146 ensembles) using Principal Component Analysis (PCA) and Gaussian Mixture Model 265 

(GMM) (see Methods). When visualizing the data in two dimensions, we observed 3 non-circular 266 

masses of data (Supplementary Figure 3A). Therefore, we divided the PETHs into 3 groups. 267 

These were associated with low, medium, and high changes in spike rate, but had similar activation 268 

durations (Figure 3A). Most ensembles (88%, green and purple in Figures 3A and 3B) were 269 

characterized by a low or medium change in single unit spike rate corresponding to an increase of 270 

1 to 3 spikes per sec (Figure 3A). In the maximal case, average spike rate increased by 7 spikes 271 

per sec (Figure 3A, magenta line), but this was the smallest group of ensembles (Figure 3B, 272 

magenta). Single unit spike rate for those units within the ensemble was higher when the ensemble 273 

was active than when it was inactive (Figure 3C, green, two-sided Wilcoxon rank sum test, Z = 274 

20.9, D = 0.8, power = 0.99, p < 0.001). We also assessed the average spike rate when all single 275 

units within an ensemble were merged into a single multi-unit spike train (Figure 3D). Again, 276 

spike rate within the ensemble was higher during epochs of ensemble activation (Figure 3D, green, 277 

two-sided Wilcoxon rank sum test, Z = 14.7, D = 2.6, power = 0.99, p < 0.001). On the other hand, 278 

when an ensemble was inactive, multi-unit activity outside of the ensemble was relatively higher 279 

(Figure 3D, orange, two-sided Wilcoxon rank sum test, Z = 6.8, D = 0.8, power = 0.99, p < 0.001). 280 

Presumably, this is due to those units spiking as members of other ensembles during those epochs. 281 

These findings confirm what is shown in Figure 1B, namely that LC ensemble activations are 282 

associated with an increase in spike rate of only the single units in that ensemble. Most importantly, 283 

these results show that the firing strength can vary considerably across LC ensembles, which could 284 

potentially correlate with their relation to cortical state.  285 

Next, we assessed how ensemble activation related to the tendency of LC single units to fire in 286 

bursts. We defined a burst as an occurrence of 2 or more consecutive spikes with an inter-spike 287 

interval of less than 80 msec. We chose 80 msec based on the physiological definition used in prior 288 

work on the LC, as well as on dopamine neurons (Grace and Bunney, 1984; Tung et al., 1989). 289 
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Low inter-spike intervals are important from the point of view of the physiological downstream 290 

effect LC neuronal spiking, as it is known that when LC neurons send a few spikes in a short ISI, 291 

K+ leak causes axonal depolarization so that later spikes in the burst are conducted faster (Aston-292 

Jones et al., 1985); therefore, the ISI at the sites of norepinephrine release may be even shorter 293 

than measured at the soma. Direct electrical stimulation of the LC at burst frequencies increases 294 

norepinephrine release (Florin-Lechner et al., 1996). Therefore, brief ISIs during ensemble 295 

activation could play a key role in the contribution of LC ensemble activations to cortical state. 296 

Within ensembles, single units tended to burst more during the ensemble active times than during 297 

inactive times (Figure 3C, two-sided Wilcoxon rank sum test, Z = 15.2, D = 0.5, power = 0.99, p 298 

< 0.0001). We found that single units within an ensemble, when merged into a single multi-unit 299 

spike train, also burst more often when the ensemble was active than when the ensemble was in 300 

an inactive state (Figure 3C, two-sided Wilcoxon rank sum test, Z = 13.1, D = 1.0, power = 0.99, 301 

p < 0.0001). These results demonstrate than LC ensemble activation is associated with increased 302 

burst firing of the units in the ensemble, which in turn suggest a strong downstream effect of LC 303 

ensembles on their (forebrain) projection targets. 304 
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 305 
Figure 3. LC ensembles are characterized by different magnitudes of change in spike rate 306 

and an increase in burst firing. (A) Average PETHs of the ensembles in the same cluster. The 307 

zero time on the x-axis is the ensemble active time. The PETHs of all ensembles were grouped 308 

into 3 clusters that increased their firing rate to different degrees. (B) The pie chart illustrates the 309 

percentage of ensembles in each PETH cluster. Most ensembles had a medium (purple) or low 310 

(green) magnitude increase in single unit spike rate. (C, D) The box plots show the distribution of 311 

the spike rates for the single units inside the ensemble (green) and outside the ensemble (orange). 312 

The result is shown separately for individual single units (C) and the spike trains merged across 313 

single units (D). The spike rate was calculated as the average of all ensemble activation events 314 

combined across all single units in the ensemble (i.e., in Figure 1B and 5A spike rasters, all events 315 
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of different colors were averaged). Spike rate increased when the ensemble was in an active state 316 

for both single units and multi-unit activity. Additionally, when the ensemble was inactive, multi-317 

unit activity outside of the ensemble was higher presumably due to units spiking in other 318 

ensembles. (E, F) The box plots show the distribution of the burst rates for the single units inside 319 

the ensemble (green) and outside the ensemble (orange). The result is shown separately for 320 

individual single units (E) and the spike trains merged across single units (F). Single units inside 321 

the ensemble burst more frequently during ensemble active times. The same result was found for 322 

merged spike trains of all single units in the ensemble (F, green). However, merging the spike 323 

trains of single units outside of the ensemble revealed increased bursting when the ensemble was 324 

not active.  Again, this difference is presumably due to the units outside of a selected ensemble 325 

being active in other ensembles when the selected ensemble in offline. 326 

LC ensembles show signs of self-inhibition and limited lateral-inhibition  327 

Our analyses have shown that LC ensembles are activated briefly with long pauses between an 328 

activation and the next one (Figure 1B). Such pauses may maintain independent activation times 329 

between ensembles, so that different ensembles can activate at different times and produce 330 

ensemble-specific cortical states. Pauses between LC ensemble activations may be generated by 331 

local inhibitory mechanisms. Local noradrenergic inhibition is a prevalent determinant of the 332 

spiking patterns of individual LC neurons via self-inhibitory and lateral-inhibition neuronal circuit 333 

motifs (Aghajanian et al., 1977; Ennis and Aston-Jones, 1986). LC neurons are large (25 um soma) 334 

and densely packed with numerous close proximity dendrites (Swanson, 1976; SHIMIZU et al., 335 

1978; Grzanna and Molliver, 1980), which are the site of alpha-2 receptors that can mediate 336 

noradrenergic self-inhibition and lateral-inhibition (Lee et al., 1998; Huang et al., 2007). Thus, the 337 

activation of multiple LC neurons and the volume transmission of local release of noradrenaline 338 

across closely packed dendrites should inhibit a large number of neurons in the LC. Indeed, highly-339 

localized direct electrical stimulation in the LC initially excites LC neurons and the resultant local 340 

norepinephrine release and its volume transmission causes inhibition of all recorded neurons 341 

around 200 um from the stimulation site (Marzo et al., 2014). We predicted that LC ensemble 342 

activations, which involve synchronous activation of multiple LC neurons, would be associated 343 

with a similar spread of lateral inhibition across many single units. Such synchronous release of 344 

norepinephrine by the neurons in an ensemble should also serve to self-inhibit the ensemble. 345 

The NMF method for detecting ensembles is well suited for assessing ensemble activation-evoked 346 

self-inhibition and lateral-inhibition because the method provides the times at which ensembles 347 
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are activated. We assessed self-inhibition of LC ensembles by examining LC ensemble activation 348 

timing auto-correlograms (Figure 4A). We assessed lateral-inhibition between LC ensemble-pairs 349 

by measuring the cross-correlograms between their activation times (Figure 4B). We found that a 350 

trough in the auto-correlogram, which indicates self-inhibition, occurred in the majority of the 351 

ensembles (90 out of 146 ensembles, 62%). Of these 90 ensembles with signs of self-inhibition, 352 

the inhibition lasted less than 300 msec and the spiking was most inhibited at 100 msec after 353 

ensemble activation (Figure 4E). When we considered lateral-inhibition between pairs of LC 354 

ensembles, we observed 44% of ensemble-pairs (out of 790 total) had an inhibitory interaction. 355 

The histogram showing the timing of significant lateral-inhibitory interactions between ensemble-356 

pairs has a peak at ±300 msec (Figure 4F). Overall, these analyses demonstrate some similarities 357 

between LC functional motifs for single units and ensembles. Specifically, we show that LC 358 

ensembles tend to inhibit themselves. Moreover, we show that some ensembles laterally-inhibit 359 

other ensembles. However, the activation of an LC ensemble does not cause a global “halo” of 360 

surrounding inhibition across the LC given that only 44% of ensemble-pairs showed signs of 361 

lateral-inhibition. These inhibitory mechanisms could help produce the sparse activations of LC 362 

ensembles, replete with pauses, such that ensembles activate largely independently from each 363 

other.  364 

 365 
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Figure 4. LC ensembles exhibited self-inhibition, lateral-inhibition, and patterned self-366 

excitation and co-excitation. (A-D) Four examples of self-interactions (A - inhibitory, C - 367 

excitatory) and cross-interactions (B - inhibitory, D - excitatory). Significant excitatory or 368 

inhibitory interactions were defined as those that crossed the upper (excitation) or lower 369 

(inhibition) bounds of the 1% pairwise maximum or minimum threshold (dashed green lines) 370 

calculated using 1000 surrogate data sets constructed by jittering ensemble active times. The solid 371 

blue line shows the average of the surrogate correlograms. (E) Histogram showing the number of 372 

significant self-inhibitions during different time bins. The plot shows that self-inhibition in almost 373 

all cases (98% of all auto-correlogram time points across all ensembles) lasts less than 300 msec. 374 

(F) Histogram showing the number of significant lateral-inhibition times for all ensemble-pairs 375 

that exhibited significant lateral-inhibition. The histogram shows a peak at ±300 msec. (G) 376 

Histogram showing the number of significant self-excitations during different time bins. Self-377 

excitation happens after 300 msec in 73% of the ensembles. (H) Histogram showing the number 378 

of significant ensemble-pair coactivation during each time bin reveals an initial peak at time 0 and 379 

another peak around ±600 msec. The inner plot shows the histogram of synchrony index values 380 

between the ensemble-pairs that had significant coactivation at time 0. The average synchrony 381 

index is 28%, which indicates low zero-lag synchrony, even among ensemble-pairs with a 382 

significant zero-lag peak in the cross-correlogram. 383 

LC ensemble pairs exhibit time-patterned excitations 384 

Another important piece of information for understanding the temporal organization of LC 385 

ensemble activity is how often an LC ensemble self-activates and how often it activates in time 386 

with other LC ensembles. Although the LC has no intrinsic excitatory neurotransmitters, it does 387 

receive numerous extrinsic sources of excitatory input (for review, see Totah et al., 2018b). Thus, 388 

while LC ensembles cannot directly excite one another, it is possible that one ensemble is 389 

consistently activated after another ensemble due to an extrinsic input (or inputs) that 390 

systematically pattern the activation times of LC ensembles. We examined the temporal pattern of 391 

LC ensemble activation events by calculating LC ensemble auto-correlograms (to study self-392 

excitation) and LC ensemble-pair cross-correlograms to study coactivation properties of LC 393 

ensembles. In LC ensemble activation auto-correlograms, we observed self-excitation occurring 394 

after 300 msec in 73% of the 146 ensembles (Figure 4G). Among 790 ensemble-pairs, we 395 

observed 64% had excitatory interactions which peaked around time zero and again around ±600 396 

msec (Figure 4H), indicating some degree of temporal organization in the sequency of activation 397 

times of different ensembles. We quantified the amount of zero-lag synchrony between ensembles 398 

using a synchronization index (see Methods). The average synchrony between the ensembles with 399 
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significant coactivation at time 0 was around 28% (Figure 4H, inset). The low value of the 400 

synchronization index shows that ensembles that have synchronous coactivation (i.e., significant 401 

zero-lag values in the cross-correlogram) are, on average, activated together only in a limited 402 

proportion (on average, 28%) of instances of activations. Thus, contrary to the traditional 403 

hypothesis that LC fires en masse with a high level of population synchrony, ensembles are rarely 404 

firing in zero-lag synchrony. Overall, excitation of LC ensembles occurs in diverse patterns with 405 

a preference for partly rhythmic excitatory interactions with a time lag of ~600 msec and rarer 406 

bouts of ensemble-pair synchrony. 407 

Diverse cortical states are associated with activation of different LC ensembles 408 

Our analyses thus far have demonstrated that the LC has unit type-specific ensembles which are 409 

activated largely at different times and, on rare instances, coactivated. We turned to our other 410 

central objective, which was to examine the relationships between brain state and LC ensemble 411 

dynamics. Prior work has demonstrated that LC neurons, when synchronously activated, cause a 412 

specific change in cortical oscillatory state during either anesthesia or sleep that is characterized 413 

by decreased low frequency spectral power and increased higher frequency spectral power in the 414 

mean extracellular field potential (Eschenko et al., 2011; Marzo et al., 2014; Safaai et al., 2015). 415 

This cortical state has been termed the “activated state.” It is possible, however, that activation of 416 

different LC ensembles could be associated with other brain states. LC neurons have localized 417 

projections to the forebrain and release a range of neurotransmitters (Totah et al., 2018b; Chandler 418 

et al., 2019); therefore, LC ensembles that project to different forebrain neuronal networks could 419 

affect how those neuronal networks self-organize brain states.  420 

We tested the hypothesis that activation of LC ensembles was accompanied by the activated 421 

cortical state. Such a finding would be wholly consistent with prior studies during urethane-422 

anesthesia or during sleep, which examined cortical spectral power after spontaneous increases in 423 

LC multi-unit spiking or after LC stimulation (Carter et al., 2010; Marzo et al., 2014; Neves et al., 424 

2018; Hayat et al., 2020). Here, we examined changes in cortical area 24a local field potential 425 

(LFP) power triggered on LC ensemble activation times. For each instance of ensemble activation, 426 

we calculated the LFP spectrogram modulation in a window of 400 msec before ensemble 427 

activation until 500 msec afterwards. This window was chosen for two reasons. First, it provided 428 
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a good tradeoff between temporal and spectral resolution. Second, our previous analyses of cross-429 

correlations (Figure 4) and durations of activation and inactivation (Figure 2A) show that it is 430 

unlikely that ensembles were coactive during this window. Therefore, this window ensured that 431 

changes in the cortical LFP spectrum were related to activation of an individual ensemble. We 432 

averaged the spectral modulations for each ensemble over all instances its activation (N = 89 433 

ensembles considered for this analysis because cortical LFP was recorded in 9 out of 15 rats). 434 

Visual inspection of the LC ensemble activation-triggered spectra revealed diverse cortical states 435 

depending on which ensemble was activated (Supplementary Figure 4).  436 

We thus assessed whether LC ensemble activation gave rise to multiple types of cortical states 437 

and, if so, which were the most predominant cortical states associated with LC ensemble 438 

activation. To do so, we clustered the spectral modulations associated with each of the 89 LC 439 

ensembles. If all LC ensembles were associated with the cortical activated state, then a single 440 

cluster would be observed. However, we found 4 predominant types of spectra in the clustering 441 

analysis out of which only one can be described as the activated state (i.e., decreased low frequency 442 

spectral power and increased high frequency spectral power). We chose 4 clusters by first varying 443 

the putative number of clusters from 1 to 22 and then choosing the number of clusters as the elbow 444 

of the curve where error dropped below 5% such that using more clusters would have given a much 445 

diminished return in terms of additional quality of data description (for details, see Methods and 446 

Supplementary Figure 5A). A silhouette analysis was used to confirm consistency of clustering 447 

across different distance functions (Supplementary Figure 5B). The average spectrum of each 448 

spectral cluster is shown in the top row of Figure 5A (non-significant modulations are white) and 449 

the lower rows show the activity of a single example ensemble selected from each cluster and that 450 

ensemble’s activation-triggered cortical spectrum. Across all plots, the time of LC ensemble 451 

activation (t=0 sec) is indicated by a red line. Our results clearly show that activation of different 452 

sub-sets of ensembles is associated with different cortical states beyond the canonical activated 453 

state. 454 
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455 
Figure 5. Activation of different LC ensembles are associated with diverse changes in cortical 456 

LFP power spectra.  (A) LFP power spectra were triggered on LC ensemble activation times. The 457 

resulting spectra were clustered into 4 types, which are shown as 4 columns. The top row shows 458 

the average spectrogram across all spectra in each cluster. Only significant modulations (yellow – 459 

increase, blue – decrease) are shown; non-significant values are white. The ensemble activation 460 

time is at time 0 and is marked by a solid red line. The lower 3 rows show the activity of an example 461 

ensemble from each of the 4 spectral clusters and the ensemble activation-triggered spectrogram 462 

for that ensemble. The example spectra show both significant and non-significant values. (B) A 463 

histogram of the percentage of the ensembles in each cluster that were preferentially active during 464 

a specific ongoing cortical state. The blue bar shows ensembles with no preferred state. Most 465 
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ensembles are not preferentially active during a specific ongoing cortical state, but the remaining 466 

ensembles were preferentially engaged during the activated state. (C) The box plots show the 467 

distributions of maximal spike rates of the ensembles’ PETHs in each spectral cluster. There was 468 

a significant difference in spike rate between clusters 1 and 2, as well as between clusters 1 and 3. 469 

(D) The boxplots illustrate the distribution of the spike rate averaged across single units within the 470 

ensembles and separating the ensembles by spectral cluster. A significant difference was observed 471 

only between clusters 1 and 3. (E) The boxplots show the distributions of the number of single 472 

units within the ensembles for the different spectral clusters. A significance difference was found 473 

only between spectral clusters 1 and 3. 474 

The power spectra were spatiotemporally diverse across the 4 clusters. Ensembles that fell into the 475 

first type of spectrum (Cluster 1 in Figure 5A, top row) were associated with the activated state. 476 

This type of spectra was associated with activation of 28% of the 89 ensembles. The second 477 

spectral type (Cluster 2) was associated with activation of 22.5% of LC ensembles and was 478 

characterized by an increase in middle to high frequency components of the LFP whereas low 479 

frequencies did not change. The third type of spectral modulation (Cluster 3) opposed the direction 480 

of the first two spectral types, in that the middle to high frequency components of the LFP were 481 

decreased. This spectral pattern was associated with 22.5% of the ensembles. In all 3 of the 482 

aforementioned spectral types, the change in cortical state took place after LC ensembles activated. 483 

However, the last type of spectrum (Cluster 4) was associated with a change in cortical state that 484 

began before LC ensemble activation, namely a decrease in high frequency spectral power. 485 

Overall, different LC ensembles are associated with spectrotemporally diverse cortical states. 486 

One explanation for the diversity of LC ensemble-specific cortical states is that specific ensembles 487 

are active only during particular types of cortical states. Under urethane anesthesia, cortical LFP 488 

can be characterized by relatively long durations (multiple seconds to minutes or hours) of 489 

predominantly very slow (<1 Hz) / slow (<4 Hz) oscillations or by the “activated” state (Clement 490 

et al., 2008). For instance, it is possible that ensemble activations associated with a type 1 spectral 491 

cluster (Figure 5A) could be observed only during the activated state and thus represent a 492 

strengthening of that state (i.e., a further reduction in low frequency spectral power and a 493 

potentiation of high frequency spectral power). Here, we examined this possibility by assigning 494 

ongoing states to long epochs (7.5 sec duration) of cortical activity and assessing the preferred 495 

ongoing state (or lack thereof) of the LC ensembles grouped into different spectral cluster types. 496 

Each 7.5 sec window of cortical LFP was assigned one of four possible cortical states based on 497 
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prior definitions (see Methods and (Totah et al., 2018a): very slow, slow, mixture of slow and 498 

activated, or activated. A Bayesian procedure was then used to assess whether ensembles tended 499 

to be active in a preferred ongoing cortical state or not. Overall, we found that most ensembles 500 

(63%) were not preferentially active during any specific ongoing cortical state (Figure 5B). This 501 

finding shows, for instance, that a type 1 cortical power spectrum associated with the activation of 502 

a particular LC ensemble was just as likely to occur during an epoch of ongoing cortical slow 503 

oscillations as during an epoch of ongoing cortical activation. However, approximately 24% of the 504 

ensembles were preferentially active during the activated state. Therefore, all 4 types of cortical 505 

power spectra shown in Figure 5A could be observed during longer epochs (7.5 sec) of cortical 506 

activation. For example, activation of an LC ensemble associated with a type 1 spectral cluster 507 

occurring during the activated state could be interpreted as a strengthening of the activated state. 508 

On the other hand, a type 2 spectral cluster could be interpreted as a modification of the ongoing 509 

activated state, whereby power increases in only the middle to high frequencies. A small number 510 

of ensembles were active primarily during other states (4% in the mixed state, 6% in the slow state, 511 

and 3% in the very slow state). This analysis shows that the diverse set of cortical states associated 512 

with activation of different LC ensembles is not due to specific ensembles being active during only 513 

particular ongoing cortical states. 514 

Another potential explanation for the distinct cortical states associated with different LC 515 

ensembles is that the firing strength of the ensemble is related to the cortical state. For instance, 516 

the canonical activated state (type 1 cortical power spectrum) might only occur when an LC 517 

ensemble reaches a certain threshold spike rate. We showed that different ensembles have different 518 

firing strengths (Figure 3A) and these differences might predict the relationship between the LC 519 

ensemble and cortical state. We assessed whether there was a systematic difference in the strength 520 

of ensemble population spike rate across the 4 cortical state clusters shown in Figure 5A. The 521 

population spike rate was calculated as the average of all ensemble activation events combined 522 

across all single units in the ensemble (i.e., in the spike rasters shown in Figure 1B and Figure 523 

5A, all events of different colors were averaged). The peak spike rate of the resulting PETH was 524 

used to characterize the firing strength of the population in each ensemble. We found that the 525 

median population spike rate across ensembles in each cortical spectral cluster differed across 526 

clusters (Kruskal-Wallis test, p = 0.0003, 𝜔2 = 0.9633, 𝜒2 = 18.82), but post-hoc tests showed that 527 
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only cluster 1 was different from clusters 2 and 3; therefore, there was no systematic relationship 528 

between cortical spectral cluster type and population spike rate (Figure 5C). We also examined 529 

the peak spike rate of the single units in each ensemble. For this analysis, the spike rates around 530 

ensemble activation events were first averaged for each single unit separately (i.e., in the spike 531 

rasters shown in Figure 1B and Figure 5A, all events of the same color were first averaged). The 532 

peak spike rate of the PETH of each single unit was averaged across units to obtain a measure of 533 

single unit firing strength. The median spike rate across all ensembles in each cortical spectral 534 

cluster type again differed across clusters (Kruskal-Wallis test, p = 0.0334, 𝜔2 = 0.9871, 𝜒2 = 535 

8.71). The result was similar to that obtained by examination of the population spike rate, in that 536 

the single unit firing rate differed only between clusters 1 and 3 (Figure 5D).  537 

We examined a final factor that could predict how different LC ensembles are associated with 538 

particular cortical states. Specifically, the size of the ensemble (i.e., the number of single units 539 

within the ensemble) might systematically vary with the cortical spectral cluster type. For instance, 540 

a type 1 cluster might only be observed when ensembles of a particular size are activated. In order 541 

to assess this relationship, we calculated the median number of units across ensembles in each 542 

cortical state cluster. Ensemble size differed across clusters (Kruskal-Wallis test, p = 0.0029, 𝜔2 543 

= 0.9608, 𝜒2 = 13.97), but only between clusters 1 and 3 (Figure 5E). These results demonstrate 544 

that, while cluster 1 and 3 differ, there is no systematic relationship between the size of an 545 

ensemble and cortical state. Overall, our results demonstrate that cortical state depends on which 546 

specific ensembles are active, rather than simply an overall increase in the number of active single 547 

units or their firing strength. 548 

Activating a larger pool of LC ensembles results in a more homogeneous cortical state 549 

Our data clearly demonstrate a relationship between individual LC ensembles and distinct cortical 550 

states with heterogeneous spectrotemporal properties. This finding stands in marked contrast to 551 

the single activated state evoked by direct stimulation of the LC, which activates most of the 552 

neurons synchronously (Marzo et al., 2014). Therefore, we predicted that when LC ensembles are 553 

coactive (i.e., more of the LC neurons are activated simultaneously and approaching stimulation-554 

evoked whole-LC activation), the associated cortical state should become more homogenous. In 555 

order to test this prediction, we took advantage of our observation that pairs of LC ensembles can 556 
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sometimes become coactive (28% of the time among 64% of the ensemble-pairs, Figure 4H). We 557 

assessed the cortical LFP spectra, as in Figure 5, but triggering cortical spectrograms only on 558 

coactivation times of ensemble pairs (Figure 6). A total of 199 ensemble-pairs had a significant 559 

zero lag cross-correlogram indicating coactivation. In contrast with the four heterogenous cortical 560 

states observed during activation of individual LC ensembles (Figure 5A), k-means clustering 561 

now revealed only two types of cortical power spectra (Figure 6). One cluster is the canonical 562 

activated brain state that is expected based on prior studies of LC activity (cluster 2, 103 of 199 563 

ensemble-pairs) and the other cluster is a homogenous decrease in spectral power (96 ensemble-564 

pairs in cluster 1). Therefore, when multiple LC ensembles are coactive such that the LC 565 

population activity is closer to whole-LC activation, the modulation of cortical state is more 566 

homogenous. 567 

 568 

Figure 6. Synchronous coactivations of LC ensemble-pairs are associated with more 569 

homogeneous changes in cortical LFP power spectra.  The LFP power spectra were triggered 570 

on the coactivation times of LC ensemble-pairs that had significant zero-lag cross-correlations 571 

(Figure 4H). The resulting spectra clustered into 2 spectral types. Each plot shows the average 572 

spectrogram across all ensemble-pairs associated with each type of spectrum. Only significant 573 

changes in the power spectrum are plotted in color; non-significant modulations are white. 574 

Discussion 575 

Cortical states can vary over a wide range and have been shown to be in a tight relationship with 576 

many functions that are relevant to psychiatric disorders, such as arousal level, perceptual ability, 577 

cognitive task engagement, and reaction times. It is thus no surprise that there have been long-578 

standing efforts to understand the neural factors contributing to cortical state fluctuations (Harris 579 

and Thiele, 2011; McGinley et al., 2015; McCormick et al., 2020). While the LC has been long 580 

implicated in having a role in determining cortical state maintenance and transitions, LC neuronal 581 
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population activity has always been thought and shown to produce a single activated cortical state 582 

(similar to that observed in sleep-wake transitions) by presumably collective firing of the LC 583 

neurons (Carter et al., 2010; Marzo et al., 2014; Hayat et al., 2020). However, the LC is of course 584 

involved in many other functions beyond the sleep-wake transition, which begs the question of 585 

whether LC population activity, perhaps through more nuanced dynamics than en masse firing, 586 

could be involved in the control of a diversity of brain states beyond the activated state.  587 

Here, we use NMF to decompose LC population activity into individual patterns of coactive 588 

neurons over time. Our analyses show that the population activity consists of a nuanced sequence 589 

of different ensembles activating at largely different times and only rarely in synchrony. We 590 

characterized the physiological features of ensembles and found variations in firing strength and 591 

size of the neuronal population, as well as increased burst firing during ensemble activation. 592 

Ensembles tended to be made of units of the same type, with individual units mostly participating 593 

in one ensemble, but sometimes in more than one ensemble. Analysis of the temporal dynamics of 594 

ensemble activity revealed that LC ensembles are self-inhibitory and also laterally-inhibit one 595 

another, which may contribute to the rarity of simultaneous activation of multiple ensembles.  596 

We addressed our central question about the LC relationship with cortical state by triggering 597 

cortical power spectra on LC ensemble activation times. Our analysis revealed four types of LC 598 

ensemble-associated states, which were spectrotemporally diverse. Two of these states resembled 599 

the previously-reported activated state, but with an important difference. While one state was 600 

characterized by a decrease in delta/theta power and an increase in beta/gamma power, the other 601 

state was characterized by a pronounced increase in beta (20 – 30 Hz) power and no change to the 602 

lower frequency bands. The other two states involved a decrease in beta/gamma power without a 603 

change in the low frequencies, which is not consistent with prior work demonstrating the activated 604 

state following LC spiking.  These various brain states were not related to the size of the ensemble 605 

or its population firing rate. Importantly, coactivation of LC ensemble-pairs, which approaches 606 

closer to the whole-LC activation caused by LC stimulation, was associated with only two cortical 607 

states, including an activated one. Our results are in line with stimulation studies showing that 608 

nearly whole-LC activation produces the activated state exclusively (Carter et al., 2010; Marzo et 609 

al., 2014; Hayat et al., 2020). However, contrary to the current framework that the LC produces 610 

the activated state, our findings suggest that discrete LC ensembles are spontaneously activated 611 
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with a rich, largely non-synchronous dynamic and that different ensembles associate with 612 

unexpectedly diverse cortical states. 613 

Spontaneous activation of LC ensembles at different times may be enforced by local noradrenergic 614 

inhibition 615 

We observed that LC ensembles were activated at largely different times. Such activation patterns 616 

must rely on afferents to the LC and intra-LC neurotransmitters. Our analyses of auto- and cross-617 

correlations of ensemble activation times suggest that intra-LC norepinephrine volume 618 

neurotransmission may be involved in maintaining the independence between LC ensembles and 619 

structuring their activation timing by regulating epochs of ensemble silence. We found that self-620 

inhibition was maximal 100 msec after ensemble activation and lasted a few hundred msec. This 621 

duration is similar to spontaneous self-inhibition of LC single units (Ennis and Aston-Jones, 1986). 622 

It is also consistent with the duration of self-inhibition after a single current pulse evokes an 623 

increase in spontaneous firing (Marzo et al., 2014). The synchronized activation of all single units 624 

in an ensemble likely causes a post-activation inhibition that is also synchronized across the single 625 

units in that ensemble. Thus, noradrenergic self-inhibition by LC ensembles could potentially 626 

rapidly curtail an ensemble’s activity after it has fired, which would reduce synchrony across 627 

ensembles and promote independence between ensembles.  628 

Lateral inhibition may offer a similar constraint on LC ensemble activation due to the intra-LC 629 

volume transmission of norepinephrine released during neuronal activity, which would stimulate 630 

alpha-2 noradrenergic receptors on neurons in other ensembles. We observed lateral inhibition 631 

between LC ensembles, which was apparent as decreased coincidental ensemble-pair activations 632 

in cross-correlograms. Although activation of multiple LC neurons in an ensemble might be 633 

expected to produce a “halo” of surrounding inhibition across the LC, we observed lateral 634 

inhibition among only 44% of ensemble-pairs. Overall, these analyses demonstrate some similar 635 

noradrenergic inhibitory motifs that apply to both single LC neurons and LC neuronal ensembles 636 

and may promote activation of ensembles at distinct times. 637 

Potential causes of the diversity in cortical state during activation of LC ensembles 638 
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The physiological causes of LC ensemble-specific cortical states are unknown, but two potential 639 

factors for future study are the diversity of each ensemble’s neurochemical make-up and/or its 640 

projection profile. Given that the region in which we assessed cortical state (area 24a) receives 641 

projections from approximately 61 to 65% of LC neurons in the rat (Chandler et al., 2013, 2014), 642 

it seems likely that most of the ensembles project to area 24a and they should, therefore, produce 643 

a similar state change. Our finding to the contrary could be explained by the possibility that the 644 

neurochemical make-up of the LC neurons differs across ensembles and results in cortical state 645 

diversity. Another possibility is that, in spite of most ensembles presumably sharing area 24a as a 646 

projection target, it is the other targets that are potentially not shared across ensembles, which leads 647 

to LC ensemble-specific cortical states in 24a. According to this network perspective, LC 648 

ensembles associated with different brain states have divergent axon collaterals which enable the 649 

ensembles to modulate distinct neuronal networks (i.e., sub-sets of brain regions). The 650 

neuromodulation of different networks changes the self-organization of cortical states. 651 

It is worth noting here that we observed patterns of LC burst firing during ensemble activation that 652 

suggest norepinephrine release could be temporally-coordinated across multiple brain targets, 653 

which could allow the LC neurons in a specific ensemble to modulate a specific multi-region 654 

neuronal network. We found that LC ensemble activity was associated with burst firing (i.e., <80 655 

msec inter-spike interval) both at a population level across units in the ensemble and for spikes of 656 

individual single units in the ensemble. Population level bursts may be relevant to tightly-timed 657 

norepinephrine release in multiple brain regions innervated by the units in the ensemble. On the 658 

other hand, increased bursting by single units during ensemble activation may promote increased 659 

norepinephrine release from single neurons by altering LC axon conduction velocities and 660 

neurotransmitter release probability (Aston-Jones et al., 1980; Florin-Lechner et al., 1996). 661 

Overall, the burst firing patterns we observed could serve to potentiate the amount of 662 

norepinephrine release, while at the same time temporally-coordinating that “boost” in 663 

norepinephrine release across multiple targets of the neurons in the ensemble. Population level 664 

bursts and single unit bursts during ensemble activation may be another physiological 665 

characteristic that influences the relationship between specific LC ensembles and various cortical 666 

states. 667 

Implications for understanding the role of LC in brain state and behavioral transitions 668 
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Our findings open up the intriguing possibility that the brain state during specific behavioral events 669 

may depend on which LC ensemble(s) activate. New tools that finally enable large-scale 670 

recordings of many LC single units simultaneously in the awake organism could reveal such a 671 

relationship. Although we observed rare coactivation of LC ensembles (28% of the time on average 672 

among 64% of ensemble-pairs) under anesthetized conditions, it is possible that the LC ensemble 673 

activation patterns differ in the awake organism. For instance, among cholinergic neurons, highly-674 

transient synchronous ensemble activity has been observed at the time of behavioral transitions 675 

(i.e., locomotion onset) in mice (Howe et al., 2019). However, given that anesthesia promotes 676 

synchronous firing among neurons, it is likely that LC ensembles are independently-active in the 677 

non-anesthetized organism too. Overall, our analyses demonstrate for the first time that LC 678 

population activity is constructed from independently active ensembles and that the canonical 679 

activated state associated with en masse collective activation of LC neurons is only one of many 680 

brain states that can occur depending on which particular LC ensemble is active. 681 

Materials and Methods 682 

Data collection: Recording procedure and signal acquisition 683 

Experiments were carried out with approval from the local authorities and in compliance with the 684 

German Law for the Protection of Animals in experimental research 685 

(Tierschutzversuchstierverordnung) and the European Community Guidelines for the Care and 686 

Use of Laboratory Animals (EU Directive 2010/63/EU). Male Sprague-Dawley rats (350 - 450 g) 687 

were used (specific pathogen free, Charles River Laboratories, Sulzfeld, Germany). They were 688 

pair housed. Experiments were carried out during the active period of the rats, which were housed 689 

on a light cycle of 08:00 to 20:00 darkness. A sub-set of the data were collected from rats used in 690 

a prior study and typical histological sections are shown in that work (Totah et al., 2018a). 691 

Rats were anesthetized using an intra-peritoneal (i.p.) injection of urethane at a dose of 1.5 g/kg 692 

body weight (Sigma-Aldrich, U2500). Surgical procedures were as described in prior work (Totah 693 

et al., 2018a). Electrodes targeted the LC and the prelimbic division of the medial prefrontal cortex. 694 

The coordinates for LC were 4.0 mm posterior from lambda, 1.2 mm lateral from lambda, and 695 

approximately 6.0 mm ventral from the brain surface (implanted at a 15 deg posterior angle). The 696 
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coordinates for the cortex were 3.0 mm anterior and 0.8 mm lateral from bregma and 3.0 mm 697 

ventral from the brain surface. The LC electrode was targeted based on standard 698 

electrophysiological criteria (see prior work for a detailed description (Totah et al., 2018a). At the 699 

end of the recording, we administered clonidine (0.05 mg/kg) i.p. (Sigma-Aldrich, product 700 

identification: C7897) to confirm cessation of noradrenergic neuron spiking. We also verified LC 701 

targeting in most experiments using histological examination of coronal sections (50 um thick) 702 

that were stained for Cresyl violet or a DAB and horse radish peroxidase reaction with hydrogen 703 

peroxide to visualize an antibody against tyrosine hydroxylase, as shown in prior work (Totah et 704 

al., 2018a).  705 

The LC was recorded using a multi-channel silicone probe (NeuroNexus, Model: A1x32-Poly3-706 

10mm-25s-177-A32). The impedance of the electrodes was ~1.0 to 2.0 MOhm. Cortical local field 707 

potentials were recorded using a single tungsten electrode with an impedance of 200 – 800 kOhm 708 

(FHC). A chlorided silver wire inserted into the neck muscle was used as a ground. Electrodes 709 

were connected to a pre-amplifier (in-house constructed) via low noise cables. Analog signals were 710 

amplified (by 2000 for LC and 500 for cortex) and filtered (8 kHz low pass, DC high pass) using 711 

an Alpha-Omega multi-channel processor (Alpha-Omega, Model: MPC Plus). Signals were then 712 

digitized at 24 kHz using a data acquisition device (CED, Model: Power1401mkII). 713 

NMF decomposition of population spike trains into coactive ensembles 714 

We used non-negative matrix factorization (NMF) (Lee and Seung, 1999) to decompose a matrix 715 

of the spike counts of all simultaneously recorded single units across time intervals. NMF linearly 716 

decomposes the matrix of the spike counts of the population of single units at each time interval 717 

as a sum across a set of non-negative basis functions (modules) using non-negative coefficients 718 

(Lee and Seung, 1999; Onken et al., 2016; Williams et al., 2018). The non-negativity constraint is 719 

useful for obtaining sparse representations and it is particular suitable for decomposing population 720 

spike count at different time intervals, which are always non-negative. Previous work has shown 721 

that the NMF of population spike trains provides a robust decomposition whose basis functions 722 

can be biologically interpreted as a set of the firing patterns of the single units that are coactive 723 

(i.e., an ensemble) and the coefficients quantify the relative strength of recruitment of each 724 

ensemble firing pattern at any given time (Onken et al., 2016). 725 
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We employed an NMF decomposition that we have previously termed “space only NMF” because 726 

it decomposes the population firing patterns across single units at each time interval (Onken et al., 727 

2016): 728 

R = WH + residuals 729 

R ∈ ℤ+
𝑇 × 𝑁 is the data matrix containing the spike counts of each of N single units binned into T 730 

time bins (with 𝑡 being the index of each time bin). H ∈ ℝ+
𝐾 × 𝑁  is the matrix containing the basis 731 

function, which has K spatial modules. Each module captures a different pattern of coactivity of 732 

the single units and can, therefore, be used to identify which neurons are active together and thus 733 

form ensembles. W ∈ ℝ+
𝑇 × 𝐾is the matrix containing the activation coefficients that describe the 734 

strength of recruitment of each module (and thus of each ensemble of coactive neurons) at each 735 

time interval. The residuals express the error in the reconstruction of the original population spike 736 

train matrix. We computed the decomposition using the multiplicative update rule to minimize the 737 

Frobenius norm between the original and the reconstructed data (Lee and Seung, 1999). Note that 738 

the use of the Frobenius norm assumes that the residuals have a Gaussian white noise structure.  739 

One free parameter of the analysis is the temporal resolution of the time binning, T. We binned 740 

spike counts at T = 100 msec. The time resolution was selected based on our previous work 741 

reporting that pairs of LC single units are predominantly synchronized on a timescale of 742 

approximately 100 msec or less (Totah et al., 2018a). We also used ranges of T from several tens 743 

of msec to a few hundreds of msec and found that shorter bins (<=20  msec) and longer bins (> 744 

1s), which our prior work suggests would be outside the range of LC single unit synchrony, tend 745 

to artificially identify either many modules each containing only one single active unit  or one 746 

large ensemble containing all single units, respectively.  747 

The second free parameter of the NMF analysis is the number of different modules,K, which were 748 

chosen for computing the decomposition. Following established procedures (Onken et al., 2016; 749 

Williams et al., 2018), we chose K for each rat by computing the amount of the variance explained 750 

by the decomposition when varying K  from its minimum possible value (one) to its maximum 751 

possible value (the number of simultaneously-recorded single units). An elbow in this plot 752 

indicates a point of diminishing returns for including more modules. We thus chose the number of 753 
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modules as the smallest K in the elbow region of this curve for which the decomposition 754 

reconstructed at least 60% of the variance of the original spike train data. Given that the NMF 755 

decomposition may have local maxima in the variance explained (or equivalently local minima in 756 

error reconstruction), after selecting K , we repeated the decomposition five times using this K  and 757 

used randomly chosen initialization conditions on each repetition. The selected K  was used if all 758 

solutions had a high degree of stability across these five random initializations. Stability was 759 

assessed by checking the repeatability of clustering in comparison to randomly assigning single 760 

units to ensembles. The degree of stability was computed as follows. We hard clustered the data 761 

to assign each single unit to one and only one ensemble by dividing each column of H by its 762 

maximum and removing the values below 1. From these data we then measured the stability across 763 

the five decompositions using the Rand Index (Rand, 1971). We compared the average of the Rand 764 

index for each animal with 100 repetitions of the five random clustering. The average Rand Index 765 

was always greater than the top 5% of the distribution of mean Rand Indices resulting from random 766 

clustering. Therefore, NMF decomposition produced meaningful and repeatable ensembles. 767 

Among those random initializations, the final decomposition reported in the analyses was chosen 768 

as the one leading to the maximum variance explained. 769 

The modules detected by NMF provide a pattern of coactivation of different single units and the 770 

activation coefficients measure the strength of recruitment of each module at any given time. From 771 

these data, we used a threshold-crossing of the coefficients to define when ensembles were active 772 

and which single units were active in the ensemble. In order to perform the thresholding, we first 773 

normalized the columns of H to the minimum and maximum and then set a threshold based on the 774 

distribution of coefficients. Single units within a module were defined as an ensemble of coactive 775 

single units if their corresponding element of H crossed the 95th percentile threshold of the 776 

distribution of coefficient values for that rat. Coefficients below this value were set to zero and 777 

values above the threshold were set to one. In the resulting binary version of the matrix, H, a value 778 

of 1 represented spatial modules corresponding to a single unit belonging to an ensemble. 779 

The columns of the W matrix correspond to a set of activation coefficients representing the strength 780 

of recruitment of each module at any given time interval. We thresholded these continuous values 781 

into binary values using the same method explained above for the spatial modules. The binary 782 
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version of the matrix, W, hereafter referred to as “activation coefficient matrix,” was used to 783 

determine whether an ensemble is active or not in each time bin.   784 

The evaluation of physical clustering of ensembles according to location on the recording array 785 

To assess whether single units within an ensemble tended to cluster on the recording array, we 786 

measured the pairwise distance between the units within each ensemble. The location of each unit 787 

was assigned to the electrodes on which the maximal waveform was recorded. Euclidian pairwise 788 

distances of the units inside each ensemble were calculated. 789 

The assignment of single unit types in the ensembles 790 

Single unit type was defined by waveform duration, as in prior work (Totah et al., 2018a). We 791 

determined if single units of the same type were more likely than chance to belong to an ensemble 792 

by computing the exact probability of having ensembles of the same single unit type under the null 793 

hypothesis of random assignment. These probabilities were computed by the means of repetition 794 

of random sampling (assembling) without replacement. The number of units in the sample was 795 

fixed to the number of single units in the ensemble. The number of repetitions for each rat was the 796 

number of ensembles that were empirically found by NMF to consist of only one type of single 797 

unit. 798 

Calculation of cross-correlograms between pairs of ensembles  799 

Interactions between pairs of ensembles were measured using cross-correlograms between their 800 

time-dependent activation coefficients. Cross-correlograms were calculated in a window of 2000 801 

msec with a bin size of 100 msec. The cross-correlograms were compared to 1000 surrogate cross-802 

correlograms by jittering the activation times uniformly between ±1000 msec. Significant 803 

excitatory (or inhibitory) interactions were those that had cross-correlogram bins which crossed 804 

the upper (or lower) 1% of pairwise coincidental activations observed in the surrogate data. 805 

The degree of synchrony between ensemble-pairs that had a significant excitatory interaction at 806 

time 0 in the cross-correlogram was measured using a synchrony index: 807 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2020. ; https://doi.org/10.1101/2020.03.30.015354doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.30.015354
http://creativecommons.org/licenses/by-nc-nd/4.0/


𝑠𝑦𝑛𝑐ℎ = (
2 ∗ 𝑐𝑖𝑗

𝜏𝑖 + 𝜏𝑗
) ∗ 100 808 

where 𝑐𝑖𝑗 is the number of times the two ensembles are coactive and 𝜏𝑖 , 𝜏𝑗 are the number of active 809 

times for each ensemble. 810 

Calculation of ensemble auto-correlograms 811 

Auto-correlograms were calculated in a 1000 msec time window using a 100 msec time bin. The 812 

significance of inhibition was assessed with the same procedure used for cross-correlograms (see 813 

above) that compared the observed auto-correlogram against 1000 surrogate auto-correlograms. 814 

Peri-event time histograms of single unit activity during ensemble activation 815 

The Peri-Event Time Histogram (PETH) of the spike times of single units inside and outside of an 816 

ensemble were aligned to events (at t = 0 msec), which were the ensemble activation times. We 817 

examined spike rate during a window from 100 msec before up to 400 msec after the ensemble 818 

activation times and used 1 msec bins. For each single unit, we calculated the average spike rate 819 

across activation events as though they were different “trials”. PETHs were smoothed with a 820 

Gaussian kernel (10 msec width). The PETH for each ensemble was obtained by averaging PETHs 821 

across all single units that were active in the ensemble.    822 

PETH clustering was done in two steps. First, the dimensionality of the original PETHs in time 823 

was reduced using the Principle Component Analyses (Hotelling, 1933). Two dimensions 824 

explained more than 95% of the variance in the original data. After visualizing the data in the 2 825 

dimensions we observed 3 non-circular masses of data. Therefore, we clustered the data in 3 groups 826 

using a Gaussian Mixture Model (GMM) (McLachlan and Peel, 2000). The GMM was calculated 827 

with 3 repetitions and full covariances. 828 

Burst rate calculation 829 

We studied bursting by detecting short inter-spike intervals (ISIs). We detected bursts using the 830 

same procedure both at the level of single units (within or outside an ensemble) and at the level of 831 

merged spike times of all single units (within or outside an ensemble). We defined a burst as each 832 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2020. ; https://doi.org/10.1101/2020.03.30.015354doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.30.015354
http://creativecommons.org/licenses/by-nc-nd/4.0/


occurrence of 2 or more consecutive spikes with an ISI of less than 80 msec. We measured burst 833 

rates both within periods in which the ensemble was classified as active or inactive. Burst rate was 834 

measured in units of bursts per sec and was defined as the total number of bursts normalized by 835 

the total time considered. 836 

LC ensemble-triggered average LFP spectral modulation  837 

We investigated the relation between the activation of LC ensembles and brain state by triggering 838 

cortical LFP spectrograms on the timing of ensemble activation events. Spectra were computed 839 

using the multitaper method implemented in Chronux toolbox with 3 tapers and time bandwidth 840 

product of 5 (Mitra and Bokil, 2007). Short-time Fourier transforms were computed in a 10 msec 841 

moving window with a duration of 200 msec. The resulting spectral resolution was ~4 Hz and the 842 

temporal resolution was 10 msec. We then averaged the resulting event-triggered spectra across 843 

all detected activation events separately for each ensemble. From the averaged spectra, we 844 

computed an ensemble activation-triggered spectral modulation that characterized the effects of 845 

LC ensemble activation on the cortical LFP power spectrum. The spectral modulation was 846 

calculated as follows. We first averaged the spectrogram in time at each frequency for the baseline 847 

duration (400 msec before the ensemble being active) and then subtracted the baseline averaged 848 

spectrogram from the original spectrogram at each time step and divided by their sum. 849 

This quantity varies between -1 to 1 for each time t and frequency f and describes the average 850 

change in cortical LFP power around the time of ensemble activation. 851 

Spectrogram clustering 852 

The set of so obtained ensemble activation-triggered spectral modulations were clustered, in order 853 

to assess the diversity of LC ensemble activation-triggered brain states. The clustering was 854 

performed using the k-means algorithm (Arthur and Vassilvitskii, 2007). The k-means algorithm 855 

requires specifying a choice for the number of possible clusters and for the mathematical function 856 

used to compute the distance between the different spectrograms. We tried various definitions of 857 

distance functions (Pearson Correlation, Euclidean distance, cosine, and cityblock), and we chose 858 

Pearson correlation as distance function because it gave higher averaged silhouette values 859 

(Rousseeuw, 1987) (i.e., cleaner clustering). We clustered the spectral modulation into k=4 860 
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clusters. This number of clusters was selected because it corresponded to the elbow point (defined 861 

as the first point in which the error drops below 5%) of the curve quantifying the normalized 862 

clustering error (error divided by the maximum error) as a function of the selected number of 863 

clusters.  The error in the k-means clustering is computed as sum of the distances of each data 864 

point to their respective cluster centroid. We assessed the significance of the clustered spectral 865 

modulations at each time and frequency by pooling the spectral modulations of all ensembles in 866 

each cluster by comparing the median of the population at each point against zero using Wilcoxon 867 

signed rank test (5% significance level). The p-values were corrected for multiple comparisons 868 

using Benjamini’s & Hochberg’s method for false discovery rate (Benjamini and Hochberg, 1995). 869 

The above analysis was done taking for clustering all spectral modulations obtained in 870 

correspondence of a detected activation of one or more ensembles. We performed a further control 871 

analyses in which we clustered only the subset of the spectral modulations during coactivation of 872 

ensemble-pairs. The clustering procedure for this control analysis was identical to the one reported 873 

above, but selected a number of clusters (corresponding to the elbow point of the error curve) equal 874 

to 2 clusters.  875 

Determining the preferred cortical state for activation of different LC ensembles 876 

We measured whether different ensembles are preferentially active in specific cortical states using 877 

state definitions from our prior work (Totah et al., 2018a). Briefly, we first divided spontaneous 878 

cortical LFPs in windows of 7.5 sec duration and then classified these windows according to their 879 

synchronization index on the basis of the relative prevalence of slow vs fast activity. Our method 880 

classified the LFP activity in each 7.5 window into one of 4 possible different categories: very 881 

slow LFP oscillations (peak <1Hz), slow LFP oscillations (peak between 1-2 Hz), an “activated 882 

state” of increased high frequency LFP oscillations (> 20 Hz) and decreased low frequency LFP 883 

oscillations (< 2 Hz), or a mixture of slow and activated states. The classification was performed 884 

as follows. The distribution of LFP voltages was obtained for each window. The distribution was 885 

tested for bimodality using Hartigan’s Dip Test (p<0.05). A significant dip test selected epochs 886 

that were bimodal and therefore either contained very slow oscillations or slow oscillations. We 887 

also separated those states with a significant dip test into very slow oscillation states and slow 888 

oscillation states using the proportion of the power spectrum of each LFP epoch that was very low 889 
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frequency (<0.4 Hz). The distribution of power ratios was bimodal, which suggested that epochs 890 

of LFP clustered into very slow oscillation and slow oscillation states. A non-significant dip test 891 

selected for epochs of LFP that were relatively flat (activated state or mixture of activated and 892 

slow oscillations). We separated activated states from mixture states by examining the kurtosis of 893 

the LFP voltage distribution, with high kurtosis values indicating a sharply peaked distribution 894 

with very little variability (activated state). Each 7.5 second epoch of LFP (and its voltage 895 

distribution) was thus associated with 3 values: a dip test p value, kurtosis, and power ratio. These 896 

values were used with K-means clustering to assign each LFP epoch a state: activated, mixture 897 

(activated and slow oscillations), slow oscillations, very slow oscillations, and unclassified. 898 

We characterized whether each LC ensemble was active during a specific cortical state by 899 

computing the likelihood of ensemble activation given a cortical state using Bayes rule. We 900 

compared this likelihood to 1000 surrogate likelihoods which were computed by shuffling the 901 

activation times (keeping the number of activation times constant). If the likelihood at a particular 902 

state crosses the 95th percentile of the surrogate distribution, the ensemble was considered as 903 

preferentially active during that state. If the likelihood for an ensemble crossed the statistical 904 

threshold for more than one state, we marked the preferred state as the one that had the larger 905 

likelihood value. 906 
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 1072 

Supplementary Figure 1. Data underlying the choice of the optimal number of modules (K) 1073 

in each rat. Each panel depicts the percentage of explained variance versus the number of the 1074 

modules for each rat. Solid green lines show the number of selected modules based on the criteria 1075 

of first elbow after at least 60% of variance is explained. The dotted red lines show the amount of 1076 

the explained variance at the selected number of modules. 1077 
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 1079 

Supplementary Figure 2. The spatial properties of the detected ensembles.  (A) Bar plot 1080 

showing the percentage of all simultaneously recorded single units within each ensemble. The 1081 

percentage was calculated as the number of single units inside the ensemble divided by the total 1082 

number of single units recorded for that rat. Each ensemble is a bar. The bars are grouped by rat. 1083 

Note that a single unit can be part of more than one ensemble. Overall, the results suggest that the 1084 
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ensembles can vary in size. (B) Boxplots showing the pairwise Euclidian distance among the single 1085 

units inside an ensemble. Ensembles with only two single units were excluded from this plot. The 1086 

distributions indicate that ensembles are spatially diffuse. 1087 
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 1089 

Supplementary Figure 3. Supporting data showing the clustering of PETHs. The scatter plot 1090 

shows the projections of the PETHs into two dimensions (PC1, PC2) using PCA. The first two 1091 

principle components explained more than 95% of the variance. Three non-circular masses were 1092 

clustered using GMM. Data points falling into each cluster are color coded separately. 1093 

  1094 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2020. ; https://doi.org/10.1101/2020.03.30.015354doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.30.015354
http://creativecommons.org/licenses/by-nc-nd/4.0/


 1095 

Supplementary Figure 4. Examples of LC ensemble activation-triggered cortical LFP power 1096 

spectra. Examples from 12 different LC ensembles illustrate the diverse cortical states which 1097 

occur around the time of ensemble activation. The examples are shown in 4 columns, each of 1098 

which indicates a specific trend in the spectra corresponding to the clusters shown in the Figure 5. 1099 
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 1101 

Supplementary Figure 5. The result of analyses supporting the determination of the best 1102 

criteria for spectral clustering. (A) The normalized error (error divided by the maximum error) 1103 

of the k-means clustering of the ensemble activation-triggered spectra versus the number of 1104 

clusters. Four different distance measures were assessed and each is plotted in a different color. 1105 

(B) Each panel shows the result of the silhouette analyses on the chosen number of clusters for 1106 

four different distance measures. The optimal distance was selected based on both the uniformity 1107 

in each cluster (the width of the bar plots) and the average silhouette value (the dashed red line). 1108 
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