
PhyDOSE: Design of Follow-up
Single-cell Sequencing Experiments of Tumors‡

Leah Weber 1,∗ Nuraini Aguse 1,∗ Nicholas Chia 2,3 Mohammed El-Kebir 1,†

1Dept. of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801
2Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905

3Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, MN 55905
∗Shared first authorship; †Corresponding author: melkebir@illinois.edu;

‡Accepted at RECOMB-CCB 2020

Abstract

The combination of bulk and single-cell DNA sequencing data of the same tumor enables the infer-
ence of high-fidelity phylogenies that form the input to many important downstream analyses in cancer
genomics. While many studies simultaneously perform bulk and single-cell sequencing, some studies
have analyzed initial bulk data to identify which mutations to target in a follow-up single-cell sequenc-
ing experiment, thereby decreasing cost. Bulk data provide an additional untapped source of valuable
information, composed of candidate phylogenies and associated clonal prevalences. Here, we introduce
PhyDOSE, a method that uses this information to strategically optimize the design of follow-up sin-
gle cell experiments. Underpinning our method is the observation that only a small number of clones
uniquely distinguish one candidate tree from all other trees. We incorporate distinguishing features into
a probabilistic model that infers the number of cells to sequence so as to confidently reconstruct the phy-
logeny of the tumor. We validate PhyDOSE using simulations and a retrospective analysis of a leukemia
patient, concluding that PhyDOSE’s computed number of cells resolves tree ambiguity even in the pres-
ence of typical single-cell sequencing errors. In a prospective analysis, we demonstrate that only a small
number of cells suffice to disambiguate the solution space of trees in a recent lung cancer cohort. In
summary, PhyDOSE proposes cost-efficient single-cell sequencing experiments that yield high-fidelity
phylogenies, which will improve downstream analyses aimed at deepening our understanding of cancer
biology.
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Figure 1: PhyDOSE computes the number of single cells to sequence to identify the true phylogeny.
(a) Mutation frequencies f obtained from bulk DNA sequencing data. (b) The solution space T of trees
inferred from f . We show a distinguishing feature of T1 (orange and green). (c) For tree T1, PhyDOSE
suggests that k = 2 single cells suffice to observe clones that are unique to T1. (d) In a follow-up SCS
experiment we observe k = 2 cells, one from the orange clone and one from the green clone. As such, we
eliminate trees T2 and T3, concluding that phylogeny T1 is the true phylogeny T ∗.

1 Introduction

Tumorigenesis follows an evolutionary process during which cells gain and accumulate somatic mutations
that lead to cancer (Nowell, 1976). The most natural expression of an evolutionary process is a phylogeny
— a tree that describes the order and branching points of events in the history of a cellular population. Tu-
mor phylogenies are critical to understanding and ultimately treating cancer, with recent studies using tumor
phylogenies to identify mutations that drive cancer progression (Jamal-Hanjani et al., 2017; McGranahan
et al., 2015), assess the interplay between the immune system and the clonal architecture of a tumor (Łuksza
et al., 2017; Zhang et al., 2018), and identify common evolutionary patterns in tumorigenesis and metas-
tasis (Turajlic et al., 2018a,b). These downstream analyses critically rely on accurate phylogenies that are
inferred from sequencing data of a tumor.

The majority of current cancer genomics data consist of pairs of matched normal and tumor samples
that have undergone bulk DNA sequencing. Bulk data is composed of sequences from cells with distinct
genomes. More specifically, we observe frequencies f = [fi] for the set of somatic mutations in the tumor
(Fig. 1a). Many deconvolution methods have been proposed for tumor phylogeny inference from such data
(Deshwar et al., 2015; El-Kebir et al., 2015, 2016; Malikic et al., 2015; Popic et al., 2015; Yuan et al.,
2015), typically inferring a set T of equally plausible trees (Fig. 1b). These approaches are unsatisfactory,
as candidate trees with different topologies may alter conclusions in downstream analyses. Single-cell
sequencing (SCS), as opposed to bulk sequencing, enables us to observe specific clones present within the
tumor. These clones correspond to the leaves of the true phylogeny, allowing phylogeny inference methods
to reconstruct the tree itself once we observe all clones in the tumor (El-Kebir, 2018; Jahn et al., 2016; Ross
and Markowetz, 2016; Zafar et al., 2017). However, the elevated error rates of SCS, as well as its high
cost (Navin, 2014), make it prohibitive as a standalone method for phylogeny inference. As such, hybrid
methods have been recently proposed to infer high-fidelity phylogenies from combined bulk and SCS data
obtained from the same tumor (Malikic et al., 2019a,b).
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Several hybrid datasets have been obtained by performing bulk and single-cell DNA sequencing si-
multaneously (Kuboki et al., 2019; Leung et al., 2017). However, there is merit in first performing bulk
sequencing to guide follow-up SCS experiments. For instance, several studies first identified a subset of
single-nucleotide variants from the bulk data to target in subsequent SCS experiments, thereby reducing
costs compared to conventional whole-genome SCS approaches (Gawad et al., 2014; Kim et al., 2018;
McPherson et al., 2016). Davis et al. (2019) recently introduced SCOPIT, a method to compute how many
cells are needed to observe all clones of a tumor, given estimates on the smallest prevalence of a clone as
well as the number of clones to detect. The authors provide no guidance on how to obtain these two quan-
tities. Here, we build upon this work by directly incorporating knowledge encoded by the trees T inferred
from the initial bulk sequencing data. Indeed, by using data from a SCS experiment we may eliminate trees
from T that do not align with the observed clones (Fig. 1). In other words, if we observe all clones in a
tumor, it is possible to determine the phylogeny of the tumor. However, is it possible to achieve the same
goal by observing fewer clones? If so, how many cells are necessary for us to observe the required clones?

We introduce Phylogenetic Design Of Single-cell sequencing Experiments (PhyDOSE), a method to
strategically design a follow-up SCS experiment aimed at inferring the true phylogeny (Fig. 1). Given a set
T of candidate trees inferred from initial bulk data, we describe how to distinguish a single tree T among the
rest using features unique to T . In particular, if our SCS experiment results in observing cells corresponding
to a distinguishing feature of T , we may conclude that T is in fact the true tree. This means that we can
typically identify T using only a subset of the clones. To determine the number of cells to sequence, we
introduce a probabilistic model that incorporates SCS errors and models successful SCS experiments as a
tail probability of a multinomial distribution (Fig. 1c). Finally, we reconcile the sampled cells utilizing these
distinguishing features to infer the true phylogeny (Fig. 1d). We validate PhyDOSE using both simulated
data and a retrospective analysis of a leukemia patient that has undergone both bulk and SCS sequencing. We
also demonstrate the utility of PhyDOSE by prospectively computing how many cells are needed to resolve
the uncertainty in phylogenies of a recent lung cancer cohort. The cost-efficient SCS experiments enabled
by PhyDOSE will yield high-fidelity phylogenies, improving downstream analyses aimed at understanding
tumorigenesis and developing treatment plans.

2 Problem Statement

Let n be the number of single-nucleotide variants, or simply mutations, identified from initial bulk sequenc-
ing data of a matched normal and tumor biopsy sample. For each mutation i, we observe the variant allele
frequency (VAF), i.e. the fraction of aligned reads that harbor the tumor allele at the locus of mutation i.
Specialized methods exist that combine copy number information and VAFs to infer a cancer cell fraction
fi for each mutation i, which is the proportion of cells in the tumor biopsy that contain at least one copy of
the mutation (Bolli et al., 2014; Dentro et al., 2017; Jamal-Hanjani et al., 2017; Stephens et al., 2012). Here,
we refer to cancer cell fractions as frequencies. Typically, phylogenies T inferred by current methods from
frequencies f = [fi] adhere to the infinite sites assumption. That is, each mutation i is introduced exactly
once at vertex vi and never subsequently lost.

When we sequence a single cell from the same tumor biopsy, assuming no errors, we identify a clone of
the tumor. In other words, we observe a set of mutations that must form a connected path in the unknown
true phylogeny T ∗. By repeatedly sequencing single cells until we observe all clones in the tumor, we will
have observed all root-to-vertex paths of T ∗, thus identifying tree T ∗ itself. We assume that (i) the true
unknown phylogeny T ∗ is among the trees in T and that (ii) mutations among single cells that we sample
from the tumor biopsy follow the same distribution as f . The latter assumption particularly holds for liquid
tumors with well-mixed tumor populations, and may be expected to hold for solid tumors if we isolate single
cells at random from the same tissue that underwent bulk sequencing. This leads to the following question
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Figure 2: The SCS POWER CALCULATION FOR PHYLOGENY T (T -SCS-PC) problem. (a) We are
given frequencies f and a tree T1 that we want to distinguish from the other trees {T2, T3}. The pair (T1, f)
uniquely determine clonal prevalences u(T1, f). (b) Featurettes of T1 correspond to root-to-vertex paths,
yielding distinguishing features Π1 and Π2, each with one featurette absent in T2 and another absent in T3.
(c) With k = 2 cells, we must observe clones from either Π1 or Π2 for a successful outcome, resulting in
probability Pr(Y2 | u(T1, f)) ≈ 0.12. (d) To increase this probability to γ = 0.95, we need k∗ = 32 cells.

and problem statement. How many single cells do we need to identify T ∗ with confidence level γ?

Problem 1 (SCS POWER CALCULATION (SCS-PC)). Given a set T of candidate phylogenies, frequen-
cies f and confidence level γ, find the minimum number k∗ of single cells needed to determine the true
phylogeny T ∗ among T with probability at least γ.

Clearly, we do not know which phylogeny in T is the true underlying phylogeny T ∗ of the tumor. Thus,
we consider a slightly different problem: In the T -SCS-PC problem (defined formally at the end of the
section), we are given an arbitrary phylogeny T ∈ T and want to perform a similar power calculation when
conditioning on T being the true phylogeny. By solving the T -SCS-PC problem for all trees T1, . . . , T|T |,
we obtain the numbers k(T1), . . . , k(T|T |) of single cells needed for each tree. As T ∗ is in T , the maxi-
mum number among k(T1), . . . , k(T|T |) is an upper bound on the number of required SCS experiments to
identify T ∗ with probability at least γ. To solve the T -SCS-PC problem, we need to reason for which SCS
experiments we can conclude that T is the true phylogeny.

Observe that each tree T in T describes a unique set of clones, corresponding to the sets of mutations
encountered in all root-to-vertex paths of T (Fig. 1). Thus, if we observe all clones of a phylogeny T in our
SCS experiments, we may conclude that T is the true phylogeny. What is the probability of doing so? To
answer this question, we must compute the prevalence of each clone in the tumor biopsy. For phylogenies
that adhere to the infinite sites assumption, the prevalences u(T, f) = [ui] of the clones in the tumor biopsy
are uniquely determined by the phylogeny T and frequencies f as

ui = fi −
∑

j∈δT (i)

fj ∀i ∈ [n]. (1)
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where δT (i) is the set of children of the node where mutation i was introduced (El-Kebir et al., 2015).
Tumor phylogeny inference methods guarantee that the inferred phylogenies T from frequencies f

have clonal prevalences u(T, f) = [ui] that are nonnegative and that
∑n

i=1 ui ≤ 1, where the remain-
der u0 = 1 −

∑n
i=1 ui is the prevalence of the normal clone. Thus, conditioning on a phylogeny T and

frequencies f , sequencing one cell from the tumor will lead us to observe one of the n+ 1 clones of T with
probabilities (u0, . . . , un). In other words, the outcome of this SCS experiment with one cell is a draw from
the categorical distribution Cat(u0, . . . , un). The possible outcomes of a SCS experiment composed of k
cells thus follow a multinomial distribution Mult(u0, . . . , un). Thus, the probability of observing all tumor
clones of T in such a SCS experiment with k cells corresponds to the tail probability of the multinomial
where each of the n tumor clones is observed at least once. The corresponding power calculation is to
determine the smallest number for k where the tail probability is greater or equal to the confidence level γ.
Note that this power calculation for observing all clones was previously introduced by Davis et al. (2019).

Importantly, in many cases we need not observe all clones of T to distinguish T from the remaining
phylogenies T \ {T} (Fig. 2). This means that we may conclude that T is the true phylogeny with a SCS
experiment with fewer cells. To formalize this notion, we start by defining a featurette.

Definition 1. A featurette τ is a subset of mutations.

We say that a featurette τ is present in a phylogeny T if the nodes/mutations of τ induce a path of T
starting at the root node, otherwise we say that τ is absent in T . The same featurette, however, may be
present in more that one phylogeny. Thus, multiple featurettes may be required to distinguish a phylogeny
T from the remaining phylogenies T \ {T}.

Definition 2. A set Π of featurettes is a distinguishing feature of T if (i) for all featurettes τ ∈ Π it holds
that τ is present in T , and (ii) for each remaining phylogeny T ′ ∈ T \ {T} there exists a featurette τ ′ ∈ Π
where τ ′ is absent in T ′.

Thus, a SCS experiment where we observe one cell from each clone of a distinguishing feature Π of T
enables us to conclude that phylogeny T is the true phylogeny. As discussed, every phylogeny T has a trivial
distinguishing feature, which is composed of all featurettes present in T . Moreover, T may have multiple
distinguishing features. Therefore, we must consider the complete set of all distinguishing features, which
we call the distinguishing feature family.

Definition 3. The set Φ(T, T \ {T}) composed of all distinguishing features of T with respect to T \ {T}
is a distinguishing feature family of T .

Let (c0, . . . , cn) be the outcome of a SCS experiment of k cells, where ci ≥ 0 is the number of cells
observed of clone i and

∑n
i=0 ci = k. This experiment is successful if, among the k sequenced cells, we

observe the clones of at least one distinguishing feature Π ∈ Φ(T, T \ {T}) — i.e. ci > 0 for all clones i in
some distinguishing feature Π ∈ Φ(T, T \ {T}). As discussed, conditioning on frequencies f and T being
the true phylogeny, outcomes (c0, . . . , cn) of SCS experiments of k cells follow a multinomial distribution
Mult(k, u0, . . . , un) where u(T, f) = [ui] is defined as in (1). Let Yk denote the event of a successful
outcome. We are interested in computing the probability Pr(Yk | u(T, f)), which equals the sum of the
probabilities of all successful outcomes. More specifically, we want to determine the smallest number k∗ of
single cells to sequence such that Pr(Yk∗ | u(T, f)) is at least the prescribed confidence level γ (Fig. 2).

Problem 2 (SCS POWER CALCULATION FOR PHYLOGENY T (T -SCS-PC)). Given a set T of candidate
phylogenies and a phylogeny T ∈ T , frequencies f and confidence level γ, find the minimum number k∗ of
single cells needed such that Pr(Yk | u(T, f)) ≥ γ.

Section A.1 proves that the above problem is NP-hard.

Theorem 1. T -SCS-PC is NP-hard.
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Figure 3: PhyDOSE implementation details. (a) To account for minimal distinguishing features that share
featurettes, we use the inclusion-exclusion principle to compute Pr(Yk | u(T, f)). Here, Π1 (red) and Π2

(blue) share a featurette (with ‘triangle’ and ‘heart’ mutations). (b) To enumerate the set Φ∗ of minimal
distinguishing features of T1, we reduce the problem to SET COVER and repeatedly identify minimum
covers. Here, the universe U is composed of trees {T2, T3} and there is a subset in F for each featurette τ
of T1 composed of the trees where τ is absent.

3 Methods

We introduce Phylogenetic Design Of Single-cell sequencing Experiments (PhyDOSE), a method to deter-
mine the number of single cells to sequence to identify the true phylogeny given initial bulk sequencing data.
PhyDOSE is implemented in C++/R and is available at https://github.com/elkebir-group/
PhyDOSE. This section describes the various methodological components of PhyDOSE.

3.1 Multinomial Power Calculation

To solve the T -SCS-PC problem, it suffices to have an algorithm that computes Pr(Yk | u(T, f)), which is
the probability of concluding that T is the true phylogeny. Using this algorithm we identify k∗ by starting
from k = 0 and simply incrementing k until the corresponding probability Pr(Yk | u(T, f)) exceeds the
prescribed confidence level γ. In the following, we describe how to efficiently compute Pr(Yk | u(T, f)).

Recall that the outcome of a SCS experiment composed of k cells corresponds to a vector c = [ci], where
ci ≥ 0 is the number of cells that we observe from clone i and

∑n
i=0 ci = k. In a successful outcome c

we observe at least one cell for each featurette in at least one distinguishing feature Π ∈ Φ(T, T \ {T}),
where Φ(T, T \ {T}) is the distinguishing feature family. For brevity, we will write Φ rather than Φ(T, T \
{T}). Let c(Π, k) denote the set of all outcomes where we observe at least one cell for each featurette in
a distinguishing feature Π — i.e.

∑n
i=0 ci = k, and for all i ∈ {0, . . . , n} it holds that ci > 0 if clone

i is a featurette in Π and ci ≥ 0 otherwise. The set c(Φ, k) of successful outcomes is defined as the
union

⋃
Π∈Φ c(Π, k). The probability of any SCS outcome c = (c0, . . . , cn) is distributed according to

Mult(k,u(T, f)). Since successful outcomes enable us to conclude that T is the true phylogeny, we have

Pr(Yk | u(T, f)) =
∑

`∈c(Φ,k)

Mult(` | k,u(T, f)) =
∑

`∈c(Φ,k)

k!∏n
i=0 `i!

n∏
i=0

u`ii . (2)

If there is only one distinguishing feature Π, i.e. Φ = {Π}, then the desired probability is a standard
tail probability of the multinomial where we sum up the probabilities of outcomes c(Π, k) = [ci] such that
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∑n
i=0 ci = k, ci > 0 if clone i is a featurette of Π and ci ≥ 0 otherwise. Davis et al. (2019) have developed

a method titled SCOPIT that performs a fast calculation of this tail probability using a connection to the
conditional probability of independent Poisson random variables described by Levin (1981). If there are
multiple distinguishing features but they are pairwise disjoint — i.e. no two distinct distinguishing features
share the same featurette — then we simply have

Pr(Yk | u(T, f)) =
∑
Π∈Φ

∑
`∈c(Π,k)

Mult(` | k,u(T, f)), (3)

and we can apply the fast computation (Davis et al., 2019) to obtain each independent tail probability.
However, the equality in the above equation does not hold if the family Φ is composed of distinguishing
features with overlapping featurettes. Incorrectly applying this equation will lead us to overestimate the
value of k∗. Since single-cell sequencing is expensive, overestimating the number of cells to sequence in a
SCS experiment can be costly and unnecessary. One naive way would be to simply brute force all (n+ 1)k

SCS outcomes, but this will not scale. Instead, to calculate Pr(Yk | u(T, f)) exactly, we propose to use the
inclusion-exclusion principle as follows.

Pr(Yk | u(T, f)) =
∑
∅(Φ′⊆Φ

(−1)|Φ
′|+1

∑
`∈c(I(Φ′),k)

Mult(` | k,u(T, f)), (4)

where I(Φ′) is the set of all featurettes in Φ′, i.e. I(Φ′) =
⋃

Π∈Φ′ Π (Fig. 3a).
Thus, we need to compute 2|Φ|−1 tail probabilities, which each can be done using the fast calculation in

SCOPIT (Davis et al., 2019). In the worst case, Φ has O(2n) distinguishing features resulting in O(2n) tail
probabilities. We now describe one final optimization that will significantly reduce the number of required
computations. This is based on the following observation.

Observation 1. If Π is a distinguishing feature of T then for all featurettes τ present in T it holds that
Π ∪ {τ} is a distinguishing feature of T .

This means that distinguishing features in Φ form a partially ordered set under the set inclusion relation.
We call a distinguishing feature Π minimal if there does not exist another distinguishing feature Π′ ∈ Φ that
is a proper subset of Π, i.e. Π′ ( Π. A direct consequence of Observation 1 is that the outcome of an SCS
experiment is successful when we observe all featurettes of a distinguishing feature Π, and remains so even
if we observe additional featurettes τ ′ 6∈ Π. As such, successful outcomes w.r.t. Φ equal those w.r.t. the set
Φ∗ of all minimal distinguishing features of T .

Observation 2. It holds that c(Φ∗, k) = c(Φ, k).

Therefore, it suffices to restrict our attention to only Φ∗ rather than the complete family Φ when com-
puting Pr(Yk | u(T, f)) using (4). Section A.2.1 describes how to find Φ∗ by reducing the problem to that
of finding all minimal set covers, which we solve in an iterative fashion using integer linear programming.

3.2 Consideration of SCS Error Rates

One current challenge with SCS is that the false negative rate per site is quite high with typical rates up to 0.4
for the commonly used multiple displacement amplification (MDA) method (Fu et al., 2015). On the other
hand, current false positive rates are low and are typically less than 0.0005 for MDA-based whole-genome
amplification (Fu et al., 2015). A false negative is defined as not observing a mutation that is present in the
cell. A false positive occurs when we observe the presence of a mutation that did not occur in that cell.

Our method can easily be adjusted when the false negative rate β is known. The probability of a true
positive corresponds to 1 − β. To observe a featurette/clone i that has ni mutations and a prevalence of

7

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2020. ; https://doi.org/10.1101/2020.03.30.016410doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.30.016410
http://creativecommons.org/licenses/by/4.0/


0

4

8

12

16

20

24

N
um

be
r 

of
 T

re
es

(a)

1

2

3

N
um

be
r 

of
 F

ea
tu

re
tte

s

(b)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

%
 D

ec
re

as
e 

in
 k

*

False Negative Rate 0 0.1 0.2

(c)

0

25

50

75

100

125

150

175

k*

False Negative Rate 0 0.1 0.2

(d)

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

%
 S

uc
ce

ss
fu

l S
C

S
 E

xp
er

im
en

ts

False Negative Rate 0 0.1 0.2

(e)

Figure 4: Simulations demonstrate that PhyDOSE’s calculated number of cells resolves tree ambiguity.
We used confidence level γ = 0.95 to determine the number k∗ of single cells to sequence. (a) Number
|T | of trees output by SPRUCE (El-Kebir et al., 2015). (b) Number |Π| of featurettes among minimal
distinguishing features Φ∗. (c) Percent decrease in k∗ when utilizing PhyDOSE instead of the naive method.
(d) Number k∗ of cells identified by PhyDOSE. (e) Success rate of in silico SCS experiments (100 trials).

ui, we thus need to have ni true positives. Thus, we derive new clonal prevalences u′(T, f , β) = [u′i] from
u(T, f) = [ui]. For each i ∈ {1, . . . , n}, we set u′i = ui(1 − β)ni where ni is the number of mutations in
featurette/clone i. We set u′0 to be equal to 1−

∑n
i=1 u

′
i. This adjustment result in a reduction of the clonal

prevalences and ultimately increases the value of k∗. The issue of false positives is less serious as error rates
are low enough to be negligible.

3.3 Determining the True Phylogeny T ∗

The final step is to determine the true phylogeny T ∗ after performing a SCS experiment with the number
k∗ of cells computed by PhyDOSE. To this end, we compute the support of each tree T ∈ T . Intuitively,
support(T ) is the number of cells that support the conclusion that T is the true phylogeny. Formally, we
say that a distinguishing feature Π of a tree T is observed if each featurette of Π is observed in at least one
cell. Using this, we define support(T ) as the number of cells that correspond to featurettes of an observed
distinguishing feature Π of T . Per Observation 1, it suffices to restrict our attention to the set Π∗ of minimal
distinguishing features. There are two outcomes of a SCS experiment with k∗ cells. Either there is no tree
T ∈ T with non-zero support or there are one or more trees with non-zero support. In the former case, the
SCS experiment has failed, which is expected to occur with probability 1− γ. In the latter case, which may
occur in the presence of false negatives and false positives, we return the set of trees with maximum support.

4 Results

In this section, we demonstrate the application of PhyDOSE to simulated and real data. Section 4.1 provides
results for simulated data. Section 4.2 provides retrospective results for a leukemia patient where both
bulk and single-cell DNA sequencing have been performed (Gawad et al., 2014). Finally, Section 4.3 uses
PhyDOSE to perform a prospective analysis to determine the required number of single cells to identify the
true phylogeny in a lung cancer patient cohort (Jamal-Hanjani et al., 2017).

4.1 Simulated data

To assess the performance of PhyDOSE, we generated simulated data where the ground truth tree T ∗ is
known. Given a fixed number n of mutations, we first generated a ground truth tree T ∗ with n vertices
uniformly at random using Prüfer sequences (Prüfer, 1918). Next, we generated clonal prevalences u = [ui]
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by drawing from a symmetric n + 1-dimensional Dirichlet distribution with concentration parameter 0.2.
We used rejection sampling to ensure that each clonal prevalence ui was at least 0.05. Let σ(i) be the set
of clones that contain mutation i. We generated frequencies f = [fi] by setting fi =

∑
j∈σ(i) uj for each

mutation i ∈ {1, . . . , n}. We used the SPRUCE algorithm (El-Kebir et al., 2015) to enumerate the set T of
trees given frequencies f . Finally, we considered varying false negative rates β ∈ {0, 0.1, 0.2}. In order to
validate our method, we generated, for each simulation instance, 10000 single cells sampled according to
the clonal prevalences u and under the specified false negative rates β from the clones of the ground truth
tree T ∗. In total, we generated 100 simulation instances for n = 5 mutations and each value of β.

The number |T | of trees in our simulations ranged from 1 to 25 with a median of 11 trees per simulation
instance (Fig. 4a). We ran PhyDOSE to identify the minimal distinguishing feature family Φ∗ for each tree
in each simulation instance, which yielded a single minimum distinguishing feature in each case. Fig. 4b
shows the number of featurettes in each minimal distinguishing feature identified by PhyDOSE for each tree
in each simulation instance, ranging from 1 to 3 with a median of 2. Importantly, this number is smaller
than the total number of 5 featurettes. As such, running PhyDOSE resulted in a median reduction of ∼ 76%
in the number of cells needed to identify the true tree T ∗ compared to the naive approach of requiring all
featurettes/clones to be observed (Fig. 3c). In particular, with a confidence level of γ = 0.95, PhyDOSE
computed a median number of k∗ = 36 single cells to identify the true phylogeny T ∗ (Fig. 4d) compared
to a median number of k∗ = 127 single cells proposed by the naive method (Fig. S3). Upon performing
100 in silico SCS experiments with PhyDOSE’s number k∗ of cells for each simulation, we observed that
a median of 96% of experiments uniquely identified T ∗ (Fig. 4e). With increasing false negative rates
β ∈ {0, 0.1, 0.2} we observed that (i) PhyDOSE continued to outperform the naive method (Fig. 4c), (ii)
more cells were needed to identify T ∗ (Fig. 4d), but (iii) the median fraction of successful in silico SCS
experiments remained close to γ = 0.95 although variance increased (Fig. 4e).

In summary, our simulations demonstrate that PhyDOSE’s distinguishing feature analysis results in
significantly fewer cells to sequence than the naive approach without a subsequent loss in power to identify
the true phylogeny. Moreover, we find that PhyDOSE is robust to increasing values of false negatives rates
that are typical to real data.

4.2 Retrospective Analysis of a Leukemia Patient

We considered a cohort of six childhood acute lymphoblastic leukemia (ALL) patients whose blood was
sequenced using bulk and targeted single-cell DNA sequencing (Gawad et al., 2014). The number of se-
quenced single cells per patient varied between 96 and 150. To validate our approach, we used PhyDOSE
to calculate the number k(T ∗) of cells needed to identify the true phylogeny T ∗ that is consistent with both
data types, thereby retrospectively determining whether fewer single cells suffice to determine T ∗, decreas-
ing the cost of replicate experiments. In addition, we assessed whether the calculated number k(T ∗) yielded
T ∗ using in silico SCS experiments.

Recall that PhyDOSE relies on two key assumptions, i.e. (i) a correspondence between mutation fre-
quencies in the bulk and SCS data, and (ii) the presence of T ∗ among the trees T inferred from the bulk
data under the infinite sites assumption. Only patient 2 satisfied both criteria (as detailed in Section A.3).
Gawad et al. (2014) sequenced 16 autosomal mutations in 115 cells for this patient. Using the infinite sites
assumption and assuming the absence of copy-number aberrations, we define the cancer cell fraction, or
frequency fi of each mutation i in the bulk data as 2 · VAF(i). We define the SCS mutation frequency as
the fraction of single cells that harbor the mutation. Strikingly, there is a clear correlation between the bulk
and SCS mutation frequencies, supporting PhyDOSE’s first assumption (Fig. 5a). We excluded mutation
CMTM8 because of a notable discrepancy in frequencies (0.4 in bulk vs. 0.2 in SCS). Using SPRUCE (El-
Kebir et al., 2015), we enumerated the set T of trees from the bulk data, yielding over 2.5 million trees.
This number is mainly driven by 3 mutations (ATRNL1, LINC00052 and TRRAP) with a VAF less than 0.05.
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Figure 5: Retrospective analysis of ALL patient 2 demonstrates that fewer cells suffice for replication.
(a) There is a strong correlation between bulk and single-cell mutation frequencies. Colors indicate mutation
clusters from SCS data and excluded mutations are indicated by ‘x’. (b) Phylogeny T ∗ that is consistent
with the SCS and bulk data. (c) Percent of successful outcomes in 100 in silico SCS experiments, obtained
by sampling from the 115 sequenced cells without replacement following PhyDOSE’s calculated number
k(T ∗) of cells (103 for γ = 0.95 and 50 for γ = 0.75). Exclusive outcomes (yellow) uniquely identified T ∗

whereas tied outcomes (purple) yielded a small set of candidate phylogenies that include T ∗. (d) Number of
candidate phylogenies in the case of ties.

Excluding these 3 mutations resulted in a more tractable number of 2576 trees. Fig. 5b shows the single tree
T ∗ ∈ T that was consistent with the cleaned single-cell data, supporting PhyDOSE’s second assumption.

We ran PhyDOSE using varying confidence levels γ ∈ {0.75, 0.95} and an estimated false negative
rate of β = 0.2. PhyDOSE calculated that k(T ∗) = 103 cells suffice to identify T ∗ with confidence level
γ = 0.95. Indeed, performing 100 in silico SCS experiments, by sampling k(T ∗) cells among the 115
sequenced cells without replacement, yielded a success rate of 99% (Fig. 5c). To reduce costs, we explored
what would have happened retrospectively with a lower confidence level γ of 0.75. PhyDOSE calculated
that k(T ∗) = 50 cells are needed for γ = 0.75, which is a significant cost savings over γ = 0.95. Performing
100 in silico SCS experiments yielded a success rate of uniquely identifying T ∗ of 66%, which was lower
than the expected rate of 75%. Furthermore, we noted that in an additional 26% of experiments the correct
phylogeny T ∗ was among the trees with the highest overall support (Fig. 5c). The number of trees in the
tied set of successes varied from 2 to 6 (Fig. 5d), showing that although PhyDOSE did not uniquely identify
the tree, it was able to significantly reduce the original set of 2576 trees (Figs. S4 and S5).

In summary, this retrospective analysis shows that the true tree for patient 2 could have been identified
confidently with fewer cells than the 115 cells sequenced by Gawad et al. (2014). With a lower confidence
level γ, PhyDOSE computes that far fewer cells are required, significantly reducing costs but at the expense
of a lower success rate of uniquely identifying the true phylogeny. Nevertheless, the resulting SCS experi-
ment will eliminate a large fraction of the original set of candidate phylogenies due to the incorporation of
distinguishing features in the PhyDOSE power calculation.

4.3 Prospective Analysis of a Lung Cancer Cohort

Using PhyDOSE, we prospectively determined the number of cells needed to uniquely identify the true
phylogeny for the 25 out of 100 patients in the TRACERx non-small-cell lung cancer cohort that have
multiple candidate trees (Jamal-Hanjani et al., 2017). The authors previously identified the set of candidate
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trees T for each patient using CITUP (Malikic et al., 2015) after clustering mutations with PyClone (Roth
et al., 2014). Jamal-Hanjani et al. (2017) reported the cancer cell fraction of each mutation cluster in each
bulk sample. The number of trees in the candidate set for each patient ranged from 2 to 17, with each
containing mutation clusters with between 5 and 882 mutations (Table S6).

Unlike in the simulations and ALL patient 2, multiple bulk samples per patient were available for anal-
ysis. Therefore, we calculated k∗ for each sample independently for all 25 patients at varying confidence
level γ ∈ {0.75, 0.95}. Mutation clusters alleviate the issue of false negatives, i.e. it suffices to only observe
a single mutation to impute the presence of the other mutations in the same cluster. Here, with a typical SCS
false negative rate of 0.2, the probability of all mutations in the smallest cluster (with size 5) dropping out
thus equals 0.25 = 0.00032, a probability that can be neglected. As such, we set β = 0. The reported k∗

value is the minimum k∗ over the set of available samples, subsequently identifying which of the samples
is the best to utilize for the SCS experiment. PhyDOSE was able to return a finite value of k∗ for 23 out of
the 25 patients.PhyDOSE will return ∞ when for each sample of the patient there is a featurette in every
distinguishing feature where the clonal prevalance is 0. For two of the 23 patients the calculated k∗ was
over 400 due to featurettes in the distinguishing features with low clonal prevalences. For the remaining 21
patients, the median value of k∗ was 29 for γ = 0.95 and 14 for γ = 0.75 (Fig. S6). These strikingly low
values of k∗ for the majority of the 25 patients with multiple candidate trees demonstrate the benefit of using
PhyDOSE to strategically optimize the design of follow-up single cell experiments.

5 Discussion

In this work, we showed that the mutation frequencies f and the set T of tumor phylogenies inferred from
initial bulk data contain valuable information to provide guidance for follow-up SCS experiments. We
introduced PhyDOSE, a method to calculate the number k∗ of single cells needed to infer the true phylogeny
T ∗ given f , T and a user-specified confidence level γ. Underpinning our method is the observation that often
only a subset of clones suffices to distinguish one tree T ∈ T from the remaining trees T \ {T}. Thus, by
observing cells in a follow-up SCS experiment from these distinguishing clones — the probability of which
we model as a tail probability of a multinomial distribution — we can definitively conclude that T is the true
phylogeny. We validated PhyDOSE using simulations and a retrospective analysis of a leukemia patient,
concluding that PhyDOSE’s computed number k∗ of cells resolves tree ambiguity, even in the presence
of SCS errors. In a prospective analysis, we demonstrated that only a small number of cells suffice to
disambiguate the solution space of trees in a recent lung cancer cohort. In summary, PhyDOSE proposes
cost-efficient SCS experiments that will yield high-fidelity phylogenies, which will consequently improve
downstream analyses in cancer genomics aimed at deepening our understanding of cancer biology.

There are several future research directions. First, in the case of multiple bulk samples, rather than se-
lecting cells from a single sample, a better strategy would be to select cells across samples. To model this
accurately, we must consider a multinomial mixture model. Second, to further reduce SCS costs, we might
want to include a mutation selection step as part of our approach to perform targeted rather than whole-
genome sequencing. Third, similar ideas can be used to design follow-up sequencing experiments using
alternative sequencing technologies such as long read sequencing. Fourth, we plan to replace the integer
linear program used for identifying minimal distinguishing features with a combinatorial algorithm. This
will enable us to develop an easy-to-use and install R package with a Shiny user interface. Fifth, to improve
robustness in the presence of SCS errors, we plan to explore alternative definitions of successful SCS exper-
iment outcomes, requiring that more than one cells is observed of each featurette of a distinguishing feature.
Sixth, we plan to explore evolutionary models beyond the infinite sites model, such as the Dollo parsimony
model where mutations might be lost (El-Kebir, 2018). Finally, the concept of distinguishing features may
be useful to summarize diverse solution spaces in cancer phylognetics (Aguse et al., 2019).
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Universe 𝑈 = {1,2,3,4,5}

Family ℱ = {𝑆-, 𝑆., 𝑆/, 𝑆0} = { 1,2,3 , 2,3 , 3,4 , {4,5}}

⊥

⊤

𝑆-

𝑆. 𝑆/ 𝑆0

Frequencies 𝐟 = (1 0.5 𝜀 𝜀 𝜀 𝜀)
⊥⊤ 𝑆- 𝑆. 𝑆/ 𝑆0

⊥

⊤

𝑆- 𝑆.

𝑆/ 𝑆0

⊥

⊤

𝑆- 𝑆.
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𝑆/

⊥

⊤
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𝑆- 𝑆. 𝑆/

⊥

⊤

𝑆- 𝑆. 𝑆/ 𝑆0

𝑇: 𝑇- 𝑇.

𝑇/ 𝑇0 𝑇;

Pr 𝑌? 𝐮(𝑇:, 𝐟)) > 0

Confidence level γ = 𝜀

Figure S1: Reduction from SET COVER to T -SCS-PC. Given a family F of subsets {S1, . . . , S|F|} on a
universe U = {1, . . . , n}, we construct n+ 1 trees T = {T0, . . . , Tn} with mutations {>,⊥, S1, . . . , S|F|}.
We seek to distinguish T0 from the remaining trees {T1, . . . , Tn}. The key concept captured by the reduction
is that there is a cover of size k if and only if Pr(Yk | u(T0, f)) is greater than 0. Here, S1 and S4 form a
cover of size k = 2 of the universe U and the corresponding probability Pr(Yk | u(T0, f)) is greater than 0.

A.1 Complexity

Theorem 2. T -SCS-PC is NP-hard.

We prove the theorem using a polynomial-time reduction from the SET COVER problem, a known NP-hard
problem (Karp, 1972).

Problem 3 (SET COVER). Given a family F of subsets {S1, . . . , S|F|} over a universe U = {1, . . . , n},
find a cover C ⊆ F such that

⋃
S∈C S = U and C has minimum cardinality.

Specifically, we reduce a SET COVER instance (F , U) to an T -SCS-PC instance (T , T, f , γ) as follows.
The set T = {T0, . . . , Tn} includes one tree Ti for each element i in the universeU and an additional tree T0.
All trees in T have |F|+ 2 vertices, corresponding to subsets {S1, . . . , S|F|} and two additional mutations
{>,⊥}. Each tree in T includes the edge (>,⊥). Additionally, if element i ∈ U is absent from subset
Sj then there is an edge (>, Sj) in tree Ti, otherwise Ti includes an edge (⊥, Sj). Tree T0 includes edges
(>, Sj) for all subsets Sj . As for the frequencies f , we set f> = 1, f⊥ = 0.5 and the remaining frequencies
fSj = ε for all subsets Sj ∈ F . Moreover, we set the confidence level γ to ε as well. In the corresponding
T -SCS-PC instance (T , T0, f , ε), the tree of interest is T0. Fig. S1 shows an example.

The key idea is that as γ = ε > 0 is a small positive infinitesimal constant, this T -SCS-PC instance
seeks the smallest number k∗ of cells such that Pr(Yk∗ | u(T0, f)) is non-zero. In particular, this number k∗

of cells will only be achieved if there is a distinguishing feature Π of the same size k∗. By our reduction,
there is a 1-1 correspondence between set covers of U and distinguishing features Π of T0 with respect to
{T1, . . . , Tn}. Specifically, a set cover C of size k corresponds to a distinguishing feature Π(C) of the same
size k, and vice versa. As such, we have the following lemma whose proof is in the supplement.
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Lemma 1. Let (T , T0, f , γ = ε) be the T -SCS-PC instance corresponding to SET COVER instance (U,F).
A minimum cover has size k∗ if and only if k∗ is the smallest integer such that Pr(Yk∗ | u(T0, f)) ≥ γ.

Proof. (⇒) Let C be a minimum cover of the SET COVER instance (U,F). By the premise, we have that
|C| = k∗. We start by showing that Pr(Yk∗ | u(T0, f)) ≥ γ by constructing a distinguishing feature Π(C)
of T0 where |Π| = k∗. Observe that for each subset Sj in C we have that {>, Sj} is a featurette of T0. We
define Π(C) to be composed of featurettes {>, Sj} for all subsets Sj ∈ C. Thus, |Π(C)| = k∗. To show
that Π(C) is a distinguishing feature of T0, it remains to show that at least one featurette τ ∈ Π(C) is absent
in each tree in T \ T0 = {T1, . . . , Tn}. Consider any tree Ti 6= T0. Since C is a cover, the element i of
the universe U corresponding to tree Ti must be covered by some subset Sj ∈ C. This means that tree Ti
contains the edge (⊥, Sj), which means that the featurette {>, Sj} in Π(C) is absent from Ti. Hence, Π(C)
is a distinguishing feature of T0.

We now must show that Pr(Yk∗ | u(T0, f)) ≥ γ. We do so by focusing on distinguishing feature Π(C).
By construction of T0 and f , it follows from (1) that each featurette {>, Sj} in Π(C) has a clonal prevalence
uj = ε. This means that a SCS experiment of k∗ cells where we only observe the k∗ featurettes/clones has
a probability that is strictly greater than 0. Therefore, Pr(Yk∗ | u(T0, f)) > 0. Since ε is a small positive
infinitesimal constant, we have that Pr(Yk∗ | u(T0, f)) ≥ γ = ε.

It remains to show that k∗ is the smallest integer where Pr(Yk∗ | u(T0, f)) ≥ ε. Assume for a contra-
diction that the smallest integer k′ where Pr(Yk′ | u(T0, f)) ≥ ε is strictly smaller than k∗. This means
that there exists a minimal distinguishing feature Π′ of size at most k′. By definition Π′ is composed of
featurettes corresponding to root-to-vertex paths in T0. Since Π′ is minimal, it will not contain the featurette
{>,⊥} as this featurette is present in all remaining trees {T1, . . . , Tn}. Thus, Π′ is composed of featurettes
of the form {>, Sj} where Sj ∈ F . Since Π′ is a distinguishing feature, no tree Ti ∈ {T1, . . . , Tn} contains
all featurettes of Π′. By construction of {T1, . . . , Tn}, this means that the subsets encoded in Π′ form a cover
of the universe U . Thus, there exists a cover with size strictly smaller than k∗, contradicting the premise.
Therefore, k∗ is indeed the smallest integer where Pr(Yk∗ | u(T0, f)) ≥ γ = ε.

(⇐) Let k∗ be the smallest integer such that Pr(Yk∗ | u(T0, f)) ≥ γ = ε. We start by showing that the
size of a minimum distinguishing feature Π of T0 has to be exactly k∗. Clearly, if |Π| > k∗ then Pr(Yk∗ |
u(T0, f)) = 0 as there exists no successful SCS experiment with k∗ cells. On the other hand, if |Π| < k∗

then there exists a successful SCS experiment with |Π| cells. In other words, Pr(Y|Π| | u(T0, f)) ≥ ε. This
contradicts that k∗ is the smallest integer where Pr(Y|Π| | u(T0, f)) ≥ ε. Hence, |Π| = k∗.

Consider a minimum distinguishing feature Π of T0. By the previous argument, we know that |Π| = k∗.
We will show that Π encodes a cover C(Π) of U of size k∗. Since Π is minimal, it will not contain the
featurette {>,⊥} of T0 as this featurette is present in all remaining trees {T1, . . . , Tn}. Thus, Π is composed
of k featurettes of the form {>, Sj} where Sj ∈ F . Let C(Π) be defined as the collection of subsets Sj ∈ F
where {>, Sj} in Π. Since Π is a distinguishing feature, no tree Ti ∈ {T1, . . . , Tn} contains all featurettes
of Π. By construction of {T1, . . . , Tn}, this means that C(Π) is a cover of size k of the universe U .

Finally, we must show that there exists no cover C ′ of U with size |C ′| strictly smaller than k∗. Suppose
for a contradiction that such a cover C ′ exists. By construction, C ′ encodes a distinguishing feature Π(C ′)
composed of featurettes {>, Sj} for all subsets Sj ∈ C ′. Thus, |Π(C ′)| = |C ′|. To show that Π(C ′) is a
distinguishing feature of T0, we must show that (i) all features τ ∈ Π(C ′) are present in T0, and (ii) at least
one featurette τ ∈ Π(C) is absent in each tree in T \T0 = {T1, . . . , Tn}. Condition (i) holds by construction
of Π(C ′) and T0, i.e. for each subset Sj in C ′ we have that {>, Sj} is a featurette of T0. As for condition
(ii), consider any tree Ti 6= T0. Since C ′ is a cover, the element i of the universe U corresponding to tree Ti
must be covered by some subset Sj ∈ C ′. This means that tree Ti contains the edge (⊥, Sj), which means
that the featurette {>, Sj} in Π(C ′) is absent from Ti. Hence, Π(C ′) is a distinguishing feature of T0. This
in turn means that Pr(Y|Π(C′)| | u(T0, f)) > 0. In other words, Pr(Y|Π(C′)| | u(T0, f)) ≥ γ = ε, thus
contradicting the premise. Hence, minimum set covers of (U,F) have cardinality k∗.
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The theorem follows from the above lemma, as the reduction to obtain (T , T0, f , γ = ε) from (U,F)
takes only polynomial time.

A.2 Supplementary Methods

A.2.1 Finding the Minimal Distinguishing Feature Family Φ∗

To perform the calculation in (4), it is necessary to first find the minimal distinguishing feature family Φ∗.
Using similar ideas as in our hardness proof (Section A.1), we consider the reverse reduction from the
problem of finding a minimal distinguishing feature to that of finding a minimum size set cover (Problem 3).

We define the universeU = {1, . . . ,m} to be the set T \{T} = {T1, . . . , Tm} of trees excluding the tree
T for which we want to solve the T -SCS-PC problem. We define the family F = {S1, . . . , Sn} of subsets
to correspond to the n featurettes present in T . Specifically, the subset Sj corresponding to featurette τj that
is present in T is composed of elements i ∈ U corresponding to trees Ti where τj is absent. The key idea is
that Sj is indicating in which input trees featurette τj of T is absent. We note that F is a multi-set as distinct
featurettes τj and τj′ may be absent in the same set of trees, thus leading to Sj = Sj′ (Fig. 3b). There is a
bijection between set covers of (U,F) and distinguishing features of T . That is, each distinguishing feature
Π = {τ1, . . . , τ|Π|} corresponds to the same-sized cover Π(C) composed of subsets {S1, . . . , S|Π(C)|}, and
vice versa. In particular, a minimal distinguishing feature corresponds to a minimal set cover. Thus, we
may use the following integer linear program (ILP) to find a minimum set cover C and thus a corresponding
minimum distinguishing feature Π(C) — a minimal distinguishing feature of minimum size.

min
n∑
j=1

xj s.t.
∑

j∈[n]:i∈Sj

xj ≥ 1, ∀i ∈ [m]. (5)

In order to find the next minimum distinguishing feature Π(C ′) that is not contained within Π(C), we add
the following constraint to the ILP. ∑

j∈C
xj ≤ |C| − 1, ∀C ∈ C∗, (6)

where C∗ = {C}. By repeatedly adding identified minimum set covers to C∗ until the ILP becomes infeasi-
ble, we identify all minimal set covers C∗ and thus all minimal distinguishing features Φ∗. Fig. 3b shows an
example. We use IBM ILOG CPLEX v12.9 to solve the ILP1.

A.3 Supplementary Results

Gawad et al. (2014) used an EM-based algorithm to cluster the sequenced cells into 2 to 7 clones for each
patient. Based on the fact that false negatives occur more frequently than false positives, we designated an
SNV as present if at least 30% of cells in the clone had the mutation. We then checked if the resulting binary,
clone-by-SNV matrices adhered to the infinite sites assumption, which was the case for only patients 2 and
3. While the VAFs of all 16 SNVs in patient 2 are less than 0.5, patient 3 had 6 out 49 SNVs with a VAF
larger than 0.5, which is indicative of copy number aberrations. Since no copy number information was
available to infer cancer cell fractions, we excluded patient 3 from our analysis, thus restricting our attention
to patient 2.

Gawad et al. (2014) clustered the 115 cells of patient 2 into 5 clones. This patient has 16 SNVs, from
which we excluded mutations CMTM8, ATRNL1, LINC00052 and TRRAP for reasons that we described

1https://www.ibm.com/analytics/cplex-optimizer
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in the main text. The majority voting rule described above yielded a binary clone-by-SNV matrix with 4
mutations clusters that each correspond to SNVs that co-occur in every clone (Fig. S2a), corresponding to
a two-state perfect phylogeny TSCS on the mutation clusters (Fig. 5b). To obtain the set T of candidate
phylogenies, we considered the bulk data. Specifically, we merged mutations ZC3H3 and XPO7 as they
had the same VAF in the bulk data and occurred in the same mutation cluster in the cleaned SCS data
(Fig. 5a). Using SPRUCE (El-Kebir et al., 2015), we enumerated |T | = 2576 trees (Fig. S2b). Only one
tree T ∗ ∈ T was consistent with TSCS, i.e. each mutation cluster of TSCS formed a connected path in T ∗

and subsequently collapsing these paths in T ∗ yields TSCS. Comparing the cleaned single-cell data to the
raw values, we computed a false negative rate β of 0.2 for the 14 mutations (Fig. S2a), which was in line
with the value reported by Gawad et al. (2014).
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Table S6: Prospective analysis of TRACERx non-small-cell lung cancer cohort. Table shows the patient
identifier, the number of mutation clusters, the number of bulk samples, the minimum number of mutations
per cluster, the maximum number of mutations per cluster, the size of the candidate set T of trees as deter-
mined by Jamal-Hanjani et al. (2017), PhyDOSE’s k∗ calculated at confidence levels of γ ∈ {0.75, 0.95}
and the recommended sample label from which the single cells should be drawn.

patient clusters samples min muts max muts |T | k∗(γ = 0.75) k∗(γ = 0.95) sel. sample
CRUK0004 7 4 10 78 2 15 32 R3
CRUK0005 6 4 24 536 2 12 26 R3
CRUK0011 8 3 12 335 3 16 34 R2
CRUK0012 5 2 11 84 2 7 15 R1
CRUK0013 9 5 5 114 8 487 1051 LN1
CRUK0022 5 2 5 158 2 11 23 R1
CRUK0023 10 4 5 226 2 10 20 R1
CRUK0025 7 3 10 350 2 12 25 R2
CRUK0028 5 2 5 72 2 15 33 R1
CRUK0031 7 3 15 675 2 14 30 R1
CRUK0037 10 5 6 397 17 ∞ ∞ N/A
CRUK0038 4 2 6 107 2 20 43 R1
CRUK0046 5 4 5 186 2 14 29 R1
CRUK0049 6 2 7 882 4 17 37 R2
CRUK0063 8 5 5 167 2 16 33 R4
CRUK0067 5 2 24 263 2 14 29 R1
CRUK0068 10 4 11 532 3 ∞ ∞ N/A
CRUK0070 10 5 6 254 2 11 24 R6
CRUK0076 9 4 8 846 4 21971 47470 R2
CRUK0077 7 4 9 586 2 10 22 R4
CRUK0084 6 4 5 332 2 8 17 R2
CRUK0094 6 4 6 50 2 10 22 R4
CRUK0095 4 3 6 216 2 20 42 R2
CRUK0099 5 4 5 438 2 21 46 R6
CRUK0100 8 3 5 777 3 12 24 R2
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SIGLEC10 RIMS2 PLEC BDNF-AS FGD4 PCDH7 FAM105A RRP8 INHA ZC3H3 XPO7 BRD7P3

1 1* 1* 0 0 0 0 0 0 1 1 1*
1 1* 1 0 0 0 0 0 0 1 1 1
1 1* 1* 0 0 0 0 0 0 1 1 1
1 1 1 0 0 0* 0 0* 0 1 1 1*
1 1* 1 0 0 0 0 0 0 1 1 1*

1* 1* 1 0 0 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0 0 1* 1 1
1 1 1 0 0 0 0 0 0 1 1 1
1 1* 1 0 0 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0 0 1 1 1
1 1 1* 0 0 0 0 0 0 1 1* 1

1* 1 1 0 0 0 0 0 0* 1 1 1
1 1 1 0 0 0 0 0 0 1 1 1
1 1 1 0* 0 0 0 0 0 1 1 1*

1* 1 1 0 0 0 0 0 0 1 1 1
1 1* 1 0 0 0 0 0 0 1 1* 1*
1 1 1 0 0 0 0 0 0 1* 1 1
1 1* 1* 0 0 0 0 0 0 1* 1 1

1* 1 1 0 0 0 0 0 0 1 1 1*
1 1 1 0 0 0 0 0 0 1 1 1
1 1* 1 0 0 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0 0 1* 1 1
1 1 1 0 0 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0 0 1 1 1*
1 1 1 0 0 0 0 0 0 1 1 1*

1* 1 1 0 0 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0 0 1 1 1*
1 1 1 0 0 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0 0 1 1 1*

1* 1* 1 0 0 0 0 0 0 1* 1 1*
1 1 1 0 0 0 0 0* 0 1 1 1
1 1 1* 0 0 0 0 0 0 1* 1 1
1 1 1* 1 1 1 1 1 1* 0 0 0
1 1 1 1 1 1* 1 1 1* 0* 0 0
1 1* 1 1 1 1* 1 1 1 0 0 0

1* 1* 1* 1 1* 1* 1* 1* 1* 0 0 0
1 1 1 1 1 1* 1* 1 1* 0 0 0

1* 1 1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1* 1 1 0 0 0
1 1 1 1 1 1 1 1 1 0* 0* 0*
1 1 1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1* 1 1 0 0 0

1* 1* 1* 1* 1* 1* 1* 1* 1 0 0 0
1 1* 1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1* 1* 1 1* 0 0 0
1 1* 1 1 1 1* 1 1 1* 0* 0 0
1 1 1 1* 1 1 1 1 1* 0 0 0
1 1* 1* 1 1 1 1 1 1* 0* 0 0
1 1 1 1 1 1 1 1 1 0 0 0
1 1 1* 1 1 1 1 1 1 0 0 0
1 1* 1 1* 1 1* 1 1 1 0 0 0
1 1 1 1 1* 1* 1 1 1 0 0 0
1 1 1 1 1 1 1 1 1 0 0 0

1* 1* 1* 1 1 1 1 1 1 0 0 0
1* 1 1 1* 1* 1* 1* 1 1 0 0 0
1 1 1 1 1 1* 1 1 1* 0 0 0
1 1 1* 1 1 1 1 1 1* 0 0 0
1 1 1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1* 1 0 0 0
1 1 1* 1 1 1 1* 1 1 0 0 0
1 1* 1 1 1 1 1* 1 1 0 0 0
1 1 1 1 1 1* 1 1 1 0 0 0
1 1 1 1 1 1 1 1 1 0 0 0
1 1* 1 1 1* 1 1 1 1 0* 0* 0*
1 1* 1* 1 1 1* 1 1 1* 0 0* 0
1 1 1 1 1 1 1 1 1 0* 0* 0*
1 1* 1 1 1 1* 1 1 1 0 0 0

1* 1 1 1 1 1 1 1 1 0 0 0
1* 1 1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 0 0* 0 0
1 1* 1 1* 1 1 1* 1 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0

1* 1 1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0
1 1* 1 1 1 1 1* 1 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1* 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0
1 1 1* 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1* 1 0 0 0 0
1 1 1* 1 1 1 1 1* 0 0 0 0
1 1 1* 1* 1 1 1 1* 0 0 0 0
1 1* 1 1 1* 1 1* 1* 0 0 0 0
1 1 1* 0 0 0 0 0 0 0 0 0

1* 1 1 0 0 0 0 0 0 0 0 0
1 1 1* 0 0 0 0 0 0 0 0 0
1 1 1* 0 0 0 0 0 0 0 0 0
1 1* 1 0 0 0 0 0 0 0 0 0
1 1 1* 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0

1* 1 1* 0 0 0 0 0 0 0 0 0
1 1 1* 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0
1 1 1* 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 0 0* 0* 0 0 0* 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 0 0* 0 0 0 0 0 0 0
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Figure S2: Retrospective analysis of ALL patient 2 where Gawad et al. (2014) sequenced 115 single
cells, targeting 16 mutations. (a) Overview of single-cell data, focusing on a subset of 14 mutations. Each
row is a single cell and columns correspond to mutations. Black cells indicate presence of the SNV, whereas
white cells indicate absence. Text in each cell indicates a true positive (‘1’), false negative (‘1*’), true
negative (‘0’) or false positive (‘0*’) entry. (b) Overview of the set T of trees, where each edge is labeled
by its frequency in T . Red edges encode the tree T ∗ that is consistent with SCS data in (a). In particular,
the SCS data encodes a tree composed of four mutation clusters, each indicated by a different shading.
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Figure S3: Number of cells calculated by PhyDOSE versus the naive approach. In the naive approach
all featurettes/clones of the tree must be observed in at least one cell with confidence level γ = 0.95.
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Figure S4: Distribution of number of supporting cells for each candidate tree across 100 in silico SCS
experiments at varying success probabilities for ALL patient 2 (Gawad et al., 2014). For γ = 0.75, we
sampled k(T ∗) = 50 cells from the SCS data. For γ = 0.95, we sampled k(T ∗) = 103 cells. Fig. S5 shows
the candidate trees.
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Figure S5: Candidate trees that had a non-zero support across 100 in silico SCS experiments for ALL
patient 2 (Gawad et al., 2014). For γ = 0.75, we sampled k(T ∗) = 50 cells from the SCS data. For
γ = 0.95, we sampled k(T ∗) = 103 cells. Labels match tree indices in Fig. S4.
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Figure S6: PhyDOSE calculated k∗ for the lung cancer cohort at varying confidence levels. Patients
CRUK0013, CRUK0037, CRUK0068, CRUK0076 were excluded from the plot, but are shown in Table S6.
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