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Abstract  35 

Background: Impaired glucose and obesity are frequently observed in patients with Parkinson’s disease 36 

(PD), although it is unclear whether the impairment precedes or results from the neurodegeneration. 37 

Objective: We aimed to assess whether glycemic and anthropometric traits can influence the risk of PD 38 

in 33,674 cases and 449,056 healthy controls using the Mendelian randomization (MR) framework. 39 

Methods: We investigated causality with a two-sample MR approach in the European population to 40 

compute effect estimates with summary statistics from available discovery meta-analyses of genome-wide 41 

association studies (GWAS) on glycemic and anthropometric traits.  42 

Results: We considered a threshold of p-value=0.0038 as significant after accounting for multiple testing, 43 

and p-value<0.05 was considered to be a suggestive evidence for a potential association. We observed a 44 

protective effect of waist-hip ratio (WHR) on PD (Inverse variance-weighted (IVW): OR IVW=0.735; 45 

95%CI= 0.622–0.868; p-value=0.0003; I2 index=22.0%; MR-Egger intercept p-value=0.1508; Cochran Q 46 

test p-value=0.0003). The association was further retained after the exclusion of overlapping UK biobank 47 

(UKB) samples between the WHR and PD datasets (ORIVW=0.791; 95%CI=0.659–0.950; p-value=0.012; 48 

I2 index=13.0%; MR-Egger intercept p-value=0.733; Cochran Q test p-value=0.035). The sensitivity 49 

analysis provided suggestive evidence of an increased risk of PD on fasting glucose (FG) (β IVW=0.0188; 50 

95%CI=0.0062–0.0313, p-value=0.0055; I2 index=0.0%; MR-Egger intercept p-value=0.0957; Cochran Q 51 

test p-value=0.4555) and protective effect of PD on T2D (Weighted median effect: ORWME=0.946; 52 

95%CI=0.9290.983; p-value=0.0051; Weighted mode effect: ORMBE=0.943; 95%CI=0.904–0.983; p-53 

value=0.0116).  54 
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Conclusions: Our results showed that central or abdominal obesity may be protective against PD 55 

development, independent of glucose levels.   56 

Keywords: Mendelian randomization, Causal inference, Neurodegenerative disorders, Parkinson’s 57 

disease, Glycemic traits, Type 2 diabetes, body weight, anthropometric traits 58 

 59 

Introduction 60 

The lack of neuroprotective or disease-modifying therapy has considerably hampered the management of 61 

Parkinson’s disease (PD). However, several recent preclinical and clinical studies have shown the 62 

potential beneficial effects of type 2 diabetes (T2D) specific treatment in exerting neuroprotection against 63 

PD, possibly by modulating glucose homeostasis and body weight1-5. Traditionally, insulin has been 64 

implicated in the general hormonal regulation of glucose metabolism, as insulin crosses the blood-brain 65 

barrier to modulate brain energy homeostasis, with a minor contribution from internal neuronal secretion6. 66 

A recent study also reported significantly higher blood glucose in non-diabetic PD patients compared to 67 

healthy controls during an oral glucose tolerance test, with no significant increase in insulin levels7. The 68 

study further reported an association of higher blood glucose levels with a higher BMI. Recently, type 2 69 

diabetes (T2D) – characterized by high blood sugar, insulin resistance, and low insulin sensitivities – was 70 

shown to be associated with higher motor scores in patients with PD8. Change in body weight is also long 71 

known to occur during the clinical course of PD and with its treatment. A handful of observational studies 72 

with highly heterogeneous epidemiological study designs have investigated the association of body 73 

weight with PD, showing conflicting results although weight loss appears to be a consistent finding in 74 

more advanced PD9-12. In summary, inconclusive evidence from observational studies suggest that several 75 

highly correlated glycemic and anthropometric traits could alter the risk associated with development of 76 

PD. This could be attributed to limited sample sizes, presence of inherent confounding and reporting bias 77 

in observational studies. 78 

Genome-wide association (GWAS) or meta-analyses of GWAS often have larger sample sizes 79 

with adequate coverage of the human genome, making GWAS-based Mendelian randomization (MR) an 80 
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attractive approach. MR has recently evolved as an alternative statistical approach that can, against 81 

potential confounding, judge potentially causal relationships between risk factors (e.g. altered glucose 82 

metabolism or body mass index) and an outcome (e.g. PD)13. In principle, MR allows the use of genetic 83 

variants as proxy representatives of exposure from one population to test an association with an outcome 84 

in a completely independent population. The approach mimics the randomization of exposure in 85 

randomized controlled trials (RCTs) and, thereby, addresses hidden confounding factors. To date, MR 86 

studies exploring the causal role of altered glucose or insulin homeostasis in PD are lacking. However, a 87 

previously published study explored the role of body mass index (BMI) on PD and showed a protective 88 

role of body mass index (BMI) (OR = 0.82, 95% CI = 0.69-0.98)14, 15. Most recently, the availability of 89 

GWAS datasets from the UK Biobank has further made it possible to take advantage of an increased 90 

power associated with a higher sample size by meta-analyzing it with previously existing large scale 91 

consortium datasets on various phenotypes of interest16-18. 92 

In the present study, we expand the spectrum by assessing the impact and influence of several 93 

glycemic traits including 2-hour post-challenge glucose (2hrGlu), fasting glucose (FG), fasting insulin 94 

(FI), fasting insulin (FPI), homeostasis model assessment of β-cell function (HOMA-B), homeostasis 95 

model assessment of insulin resistance (HOMA-IR), glycated hemoglobin (HbA1c), Modified Stumvoll 96 

Insulin Sensitivity Index (ISI), and Type II diabetes (T2D) as well as anthropometric traits including body 97 

mass index (BMI), waist-hip ratio (WHR), waist circumference (WC), hip circumference (HC), adult 98 

height (AH) and birth weight (BW) on PD.  99 

Methods 100 

Study design and identification of datasets 101 

We conducted a two-sample MR study using summary estimates to examine the lifelong effect of 102 

glycemic and anthropometric traits on the risk of PD in the European population. We reviewed the most 103 

recent meta-analyses of discovery GWAS datasets in the literature and identified genetic instruments that 104 

influence glycemic traits including 2hGlu, FG, FI, FPI, HOMA-B, HOMA-IR, HbA1c, ISI, T2D and 105 

anthropometric traits including BMI, WHR, WC, HC, AH, and BW 16, 18-28 (Table 1). For the outcome 106 
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dataset, we used the discovery cohort of a recent meta-analysis of GWAS on 33,674 PD cases and 107 

449,056 controls17.  108 

Prioritization of genetic variants  109 

We extracted significant SNPs from each GWAS dataset by employing a cutoff of 5×10−8. All SNPs with 110 

F-statistics <10 were further excluded for a possible violation of MR assumption I13, 29. A clumping 111 

window of 10,000 kb and linkage disequilibrium (LD; i.e. r2) cutoff of 0.001 was applied in the European 112 

population in the 1000Genome Phase 3v5 dataset to identify the leading SNP that represents each 113 

significantly associated locus30. If a specific leading SNP was not available in the PD dataset, a proxy 114 

SNP (r2 > 0.8) was identified by using the European population in the 1000Genome Phase 3v5 dataset, 115 

when possible. The statistical power to detect a causal association was estimated by the method described 116 

by Brion et al. 31. Specifically, we set the sample size of the outcome dataset to 482,750 with 7.498% as 117 

proportion of PD patients in the dataset, a continuous exposure with a variance ≥1% and a threshold p-118 

value of 3.8 × 10−3
 (see the section below). 119 

Effect estimation using MR and test of pleiotropy 120 

We used the inverse variance-weighted (IVW) method with first order weights as primary method to 121 

investigate the direct causal role of glycemic traits and anthropometric traits on PD16-28. If a genetic 122 

instrument consisted of a single SNP, we used the Wald ratio along with the delta method to estimate the 123 

causal effect and standard error, respectively. We applied a conservative Bonferroni correction to account 124 

for the number of 13 independent tests (local significance level = 0.05/number of tests) for a global 125 

significance of 0.05. All other results from statistical tests are interpreted descriptively. We used the 126 

intercept deviation test with MR-Egger’s and MR-Egger intercept and the I2 index to evaluate the 127 

heterogeneity of Wald estimates. Additionally, we also estimated the Cochran Q statistic for the IVW 128 

method as well as Rucker’s Q` statistics for the MR-Egger’s method to evaluated the heterogeneity32-35.  129 

Sensitivity analysis  130 
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We employed MR-Egger, weighted median (WME), and weighted mode methods (MBE) methods to 131 

check the reliability of estimates by relaxing some of the MR assumption, thereby allowing instruments 132 

with varying proportions of pleiotropic variants, as previously explained33, 36-39. 133 

To avoid the overlapping of samples from UK Biobank, which has been included in recently published 134 

GWAS, we computed casual effect estimates by using PD datasets without UK biobank samples, as used 135 

in the previous study (9,581 PD cases and 33,245 controls)35, 40, 41. 136 

For glycemic traits, a number of studies reported GWAS results from replication and/or pooled data 137 

(Supplementary Table 1a). We therefore compared our primary results with those using genetic 138 

instruments from these additional studies to explore the issue of the bias due to the winner´s curse, led by 139 

the selection of the instruments done from the same dataset (discovery meta-analysis) used for the causal 140 

effect estimation. 141 

Given that BMI has been shown to influence the role of glycemic and anthropometric traits on 142 

several diseases, including PD7, we also estimated the effect of genetic instruments adjusted for BMI for 143 

2hrGlu, FG, FI, ISI, T2D, and WHR to identify their overall influence on the causal effect estimates for 144 

PD.   A summary of GWAS datasets used to study the influence of GWAS study design and BMI 145 

adjusted datasets is provided in Supplementary Tables 1a and 1b respectively. 146 

We employed a leave-one and leave-one-group-out cross-validation approach to check the 147 

influence of outlier variants as well as that of variants known to be associated with confounders of the 148 

relationship between glycemic, and anthropometric traits and PD. We used the PhenoScanner database to 149 

identify potential pleiotropic genetic instruments that are known to be associated with potential 150 

confounders42. Finally, we conducted a reverse directional MR by identifying genetic variants 151 

representing proxy markers of PD using the same study. 152 

Results 153 

Prioritization of genetic instruments and power analysis 154 

The depth of genomic coverage and number of individuals in different discovery GWAS datasets is 155 

provided in Table 1. The table further shows the variance explained by genetic instruments for different 156 
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exposure datasets and availability of genetic instruments in the PD dataset, estimated by the formula 157 

2×β2×EAF×(1-EAF), where β is the estimated genetic effect of the exposure and EAF is the 158 

corresponding allele frequency43. 159 

Two glycemic exposures (HOMA-IR and ISI) were not further analyzed given the absence of 160 

significant variants; however, we analyzed them as outcome with the PD as exposure in the reverse 161 

causation investigation. Thus, the number of primary statistical tests was reduced to the investigation of 162 

the causal effect of seven glycemic traits and six anthropometric traits on PD, leading to 13 tests. The 163 

significance level was accordingly set to 0.05/13 = 3.8 × 10−3. 164 

Our power analysis suggests that our study has ≈80% power to detect a true OR of 1.208 or 0.799 165 

for PD per SD of the continuous phenotype assuming that the proportion of the continuous phenotype 166 

explained by the genetic instrument is ≥1% at a type 1 error rate of 3.8 × 10−3. 167 

Effect estimation and sensitivity analysis 168 

The causal effect estimates of glycemic traits and anthropometric traits on PD are shown in Table 169 

2, which also provides various measures to evaluate the robustness of the effect estimates. The summary 170 

data used to compute effect estimates and sensitivity analysis is further presented in Supplementary 171 

Table 2. Among all the glycemic and anthropometric traits, we found that a 1-standard deviation (SD) 172 

increase in waist-hip ratio (WHR) was associated with a 26.5% lower risk of PD in the European 173 

population (ORIVW=0.735; 95%CI=0.622–0.868 per 1-SD of WHR; p-value=0.0003; I2=25.9%; MR-174 

Egger intercept p-value=0.1508; Cochran Q test p-value=0.0003) (Table 2a). We further observed a 175 

similar effect using the WME method (ORWME=0.810; 95%CI=0.721–0.911). The distribution of 176 

individual SNP-level effect estimates along with the effect estimates computed through different MR 177 

methods for the effect of WHR on PD are shown as scatter and funnel plots in Figure 1. After ruling out 178 

the effect of weak instrument bias on account of overlapping UKB samples, the protective effect of WHR 179 

on PD was retained suggesting the reliability of the observed findings (ORIVW=0.791; 95% CI=0.659–180 

0.950; p-value=0.012; I2=13.0%; MR-Egger intercept p-value=0.733; Cochran Q test p-value=0.035). 181 

Using the PhenoScanner database, out of 357 SNPs WHR associated SNPs employed in causal effect 182 
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analysis; we identified a total of 127 pleiotropic SNPs that have been previously shown to be associated 183 

with non-anthropometric traits such as blood cell count, glycemic traits, lipid levels, and respiratory 184 

capacity (data not shown). In our sensitivity analysis that excluded these pleiotropic SNPs our instrument 185 

was weaker thus explaining the diminished protective effect estimate (ORIVW=0.801; 95% CI=0.640–186 

1.000; p-value=0.052).  The leave-one out sensitivity analysis also failed to show influence of any single 187 

SNP, suggesting reliability of our findings (data not shown here). We further observed a loss of 188 

association when using genetic instruments for WHR which were adjusted for BMI, suggesting a 189 

potential role of BMI in influencing the causal association with PD.  190 

The observed findings of the potential causal role of anthropometric traits was further confirmed 191 

by the absence of the causal effect of any of the glycemic traits, including FG and T2D on PD. This lack 192 

of association of glycemic traits further persisted when we used genetic instruments that were prioritized 193 

from a small proportion of moderately associated SNPs which were followed up in a pooled cohort for 194 

2hGlu, FG, FI, and FPI (Supplementary Table 3a). Similarly, no association was observed for HOMA-B 195 

and HOMA-IR where genetic instruments were available for the replication cohorts. In addition, we did 196 

not observe any influence of the BMI-adjusted instruments that were available for 2hrGlu, FG, FI, and 197 

T2D, regardless of the GWAS study cohort that was used to extract the instrument (Supplementary 198 

Table 3b). With respect to other glycemic traits, we did not find genetic instruments for ISI. However, we 199 

were able to explore the causality using the single genetic instrument for BMI adjusted ISI phenotype 200 

which hinted at an association using genetic instruments prioritized from the discovery cohort only 201 

(ORwald = 0.532, 95% CI=0.286-0.990; p-value=0.0464).  202 

Lastly, we checked reliability of the observed relationships between various glycemic and 203 

anthropometric traits, and PD by conducting MR analyses in reverse direction, as shown in Table 3. We 204 

did not observe any causal effect of PD on WHR (βIVW=-0.0077; 95% CI=-0.0277–0.0122; p-205 

value=0.4288; I2=84.1%; MR-Egger intercept p-value=0.8462; Cochran Q test p-value<0.0001). On the 206 

contrary, in our sensitivity analysis we observed the strongest effect on FG with a 1-log odds increase in 207 

genetic predisposition to PD being associated with 0.0188 mmol/l increase in FG concentration (βIVW = 208 
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0.0188 per log-odds of PD; 95% CI=0.0062–0.0313; p-value=0.0055; I2=0.0%; MR-Egger intercept p-209 

value=0.0957; Cochran Q test p-value=0.4555). Additionally, although IVW method failed to detect 210 

influence of PD on T2D (ORIVW=0.973; 95% CI=0.921–1.028; p-value=0.3258; I2=76.9%; MR-Egger 211 

intercept p-value=0.4711; Cochran Q test p-value=5.28x10-11), the genetic predisposition to PD was 212 

associated with approximately 5.0% lower risk of T2D using other methods (ORWME=0.946; 95% 213 

CI=0.930–0.973; p-value=0.0051; ORMBE=0.943; 95% CI=0.940–0.983; p-value=0.0116).  214 

Our findings further motivated us to explore the triangulation relationship between the traits shown to be 215 

related to PD using the MR approach. Our data suggested a bidirectional causal relationship between T2D 216 

and FG as well as T2D and WHR (Figure 2) (data not shown). We further observed WHR as a potential 217 

risk factor for a higher FG with the absence of any effect of FG on WHR (Figure 2).    218 

Discussion 219 

The present study using a two-sample MR approach aimed to understand the role of glycemic and 220 

anthropometric on PD and observed that an increase in WHR is a strong protective factor for PD. 221 

Furthermore, sensitivity analyses provided suggestive evidence, though not conclusive, of higher glucose 222 

tolerance and protection against T2D in PD patients.  223 

 Dopamine neurotransmission in the human brain is known to modulate the rewarding properties 224 

of food. Previous studies have further shown that dopamine receptors are under expressed in obese 225 

individuals, thereby initiating a feedback look to compensate for lower dopamine secretion44. It is, 226 

however, not known whether an altered dopaminergic metabolism in overweight individuals could 227 

influence the PD susceptibility. Several indicators have been used to measure overweight and obesity. 228 

While WHR and WC are predominantly used as measurements of central obesity, BMI is used as 229 

measurement of overall obesity. It has also been shown that WHR and WC may be regarded as better 230 

alternatives to BMI to measure obesity, especially in individuals with cardiovascular risk factors 231 

including T2D45, 46. Numerous observational studies have previously explored the association between 232 

both measures of obesity and PD with mixed results9, 10. A recent meta-analysis of ten cohort studies with 233 

2706 PD cases showed an absence of association of BMI with PD10. In contrast, a recent nationwide 234 
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health check-up data for the whole South Korean population comprising 44,205 incident cases identified 235 

risky association of abdominal obesity with PD (HR=1.13, 95% CI=1.10–1.16)9.   236 

Using an MR approach, we observed a significant risk reduction of 26.5% with every one unit of SD 237 

increase in WHR, while not observing any role of BMI. Our results are in contrast with a previously 238 

reported protective causal association of BMI with PD, which observed a significant risk reduction of 239 

18%14. The previous study however assessed 77 loci for exploring causal effect of BMI comprising 240 

13,708 PD cases and 95,282 controls compared to 548 loci assessed in a pooled dataset of 33,764 PD 241 

cases 449,056 controls in the present study. The discrepancy in the number of prioritized loci between the 242 

two studies is attributed to the use of GIANT dataset on BMI in the previous study compared to pooled 243 

dataset of GIANT and UKB on BMI used in the present study. Another recent MR study prioritizing 244 

genetic instruments using the UKB dataset only and exploring the casual role of 401 exposures did not 245 

detect a casual role of BMI and WHR15. Nevertheless, they observed a consistent protective causal 246 

association of nine adiposity related traits with the strongest effect observed for arm fat percentage. In 247 

line with our findings, these studies collectively argue that the assessment of fat mass vs. fat-free mass 248 

e.g. by using body plethysmography reflects the underlying causative or protective factors more closely 249 

than body weight or BMI. Interestingly, a recent study reported a slight reduction of 1.12% in PD risk for 250 

every 1kg/m2 increase in BMI without any clear evidence of heterogeneity47. The study employed 251 

23andMe dataset for both BMI and PD datasets and the absence of heterogeneity in the observed findings 252 

possibly suggest that a considerable heterogeneity observed in previous MR studies could be attributed to 253 

the clinical heterogeneity among the commonly employed IPDGC PD cases. Our study provided strong 254 

evidence regarding the role of WHR in PD, nonetheless, further studies are highly warranted to 255 

disentangle the protective role of WHR in PD.  256 

The results observed in our present study provided further suggest a potential role of glucose 257 

metabolism in PD, and data obtained herein agree with the previously published epidemiological studies. 258 

For example, a recent study reported a significantly higher area under time curve (AUC) for the blood 259 

glucose levels in 50 non-diabetic PD patients compared to 50 healthy controls during a 75g oral glucose 260 
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tolerance test (1187 ± 229 vs 1101 ± 201 mmol/min.; p=0.05), with no significant difference in AUC for 261 

blood insulin levels (6681 ± 3495 vs 7271 ± 6070 mmol/min.; p=0.57)7. The study also reported that 262 

higher blood glucose levels were associated with higher BMI (p-value<0.0001). Another recent 263 

longitudinal study identified high blood glucose as a risk marker for PD progression48. The 48-month 264 

follow-up study exploring the role of 44 clinical variables in 135 patients with early PD, identified high 265 

FG levels (p-value=0.013) and T2D (p-value=0.033), among several other factors as significant predictors 266 

of annual cognitive decline in PD. The study further observed significant differences in the baseline levels 267 

of glucose when compared to 109 healthy controls. Our results are henceforth in consent with these 268 

results suggesting that PD promotes dysregulation of glucose metabolism.  269 

The relationship between PD and T2D as observed in our study is intriguing. We observed 270 

association only in sensitivity analyses. Thus, the results should be interpreted with caution. Nevertheless, 271 

several longitudinal studies have previously explored the influence of pre-existing T2D on the 272 

predisposition to PD with contradictory results. A prospective follow-up of 147,096 predominantly 273 

Caucasian participants in the Cancer Prevention Study II Nutrition Cohort from the United States found 274 

no association of the history of diabetes with PD risk (RR=0.88; 95% CI=0.62–1.25)49. Another study that 275 

comprised two large US cohorts – the Nurses’ Health Study (121,046 women) and the Health 276 

Professionals Follow-up Study (50,833 men) – observed similar results (RR=1.04;95% CI=0.74–1.46)50. 277 

In contrast, a follow-up study in 51,552 Finnish individuals demonstrated an increased incidence of PD 278 

among patients with T2D (HR=1.85; 95% CI=1.23–2.80)51. Most recently, a meta-analysis of four cohort 279 

studies (3284 PD cases and 32, 695 diabetes cases) confirmed the finding that the onset of diabetes was a 280 

risk factor for PD (RR=1.37; 95% CI=1.21–1.55)52. However, the same study reported the absence of an 281 

association in pooled populations of five case-control studies (6487 PD cases and 1387 diabetes cases; 282 

OR=0.75; 95% CI=0.50–1.11). In summary, findings of the association between T2D and PD have been 283 

highly heterogeneous and could be attributed to the varying age of onset of T2D and PD. Indeed 284 

previously published meta-analysis showed that the earlier onset of T2D before the onset of PD found to 285 

be a major risk factor for future PD patients53. Our close examination of GWAS datasets used in our study 286 
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showed a remarkable variability in age of onset in PD and T2D subjects. For example, the majority of PD 287 

patients had an age of onset ranging from 48.9 to 71.2 years as compared to the average 52.5 years as an 288 

age of onset in T2D patients. Thus, it is conceivable that the earlier prodromal phase of PD, as compared 289 

to diabetes onset, could be protective against T2D in PD patients. Nevertheless, an in-depth clinical 290 

evaluation of PD subjects is highly warranted to further discern the role of T2D in PD etiology.  291 

Despite our inability to stratify patients by the age of onset, our study has several strengths. We 292 

adopted a comprehensive approach that included several known markers of insulin metabolism. However, 293 

we observed that the genetic instruments for FI, HOMA-B, and HOMA-IR explained a very low amount 294 

of variance and, therefore, potential causation with PD might not be completely ruled out. An important 295 

limitation of this study could be the unavailability of individual-level data, which could have enabled us 296 

to confirm the absence of pleiotropic variants by using various potential confounding variables between 297 

WHR and PD. For instance, it is known that different markers of obesity show gender specific cut-offs 298 

and possibility of specific gender in influencing the observed causal estimates cannot be ruled out54, 55. 299 

Although we observed a suggestive reverse causal association of T2D with PD using different MR 300 

methods, we did not observe similar results with HbA1C, which is a known biomarker for prediabetes or 301 

diabetes. One of the reasons for this could be that the GWAS on HbA1c with 123,491 individuals from 302 

the general population was underpowered when compared to the GWAS on T2D that included 898,129 303 

individuals20, 21.  Another potential limitation could be the existence of overlapping UKB samples 304 

between WHR and PD datasets, which could have led to possible bias in our findings. Nevertheless, our 305 

sensitivity analysis demonstrates retention of the association even after the exclusion of UKB samples 306 

from the PD dataset, highlighting the robustness of our novel finding56. Lastly, we could not conduct a 307 

causal association analysis among different glycemic traits within PD patients. 308 

Despite these limitations, our study represents one of the most comprehensive studies to date that 309 

has explored the potential causal role of glycemic and anthropometric traits on PD. Our analyses suggest 310 

that central obesity may play a role in conferring protection against PD. An extensive sensitivity analysis 311 

further suggested a possible role of PD in altered glucose metabolism independent of insulin activity. 312 
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Furthermore, we showed that, despite high fasting glucose levels, PD patients may be protected against 313 

T2D. We further suggest the adoption of a cautionary approach when drawing clinical interpretations 314 

from the results of the current study, because additional lines of evidence may be generated, including the 315 

potential complex relationship of anthropometric, glycemic and PD with other unexplored traits.  316 

 317 

Author contributions 318 

1. Research project: A. Conception, B. Organization, C. Execution; 2. Statistical Analysis: A. Design, B. 319 

Execution, C. Review and Critique; 3. Manuscript Preparation: A. Writing of the first draft, B. Review 320 

and Critique; 321 

S.G.: 1A, 1B, 1C, 2A, 2B, 3A;  322 

R.G.: 2A, 2B;  323 

F.D.G.: 2C; 324 

N.B.: 3B 325 

C.K.: 3B 326 

I.R.K.: 2C, 3B;  327 

M.S.: 1A, 1B, 2C, 3B 328 

Acknowledgments 329 

This study is, in-part, supported by the EU Joint Programme - Neurodegenerative Diseases Research 330 

(JPND) project under the aegis of JPND (www.jpnd.eu) through Germany, BMBF, funding code 331 

01ED1406. Dr. Sharma is further funded by the Michael J Fox Foundation, USA Genetic Diversity in PD 332 

Program: GAP-India Grant ID: 17473. and also supported by the grants from the German Research 333 

Council (DFG/SH 599/6-1 to M.S.), MSA Coalition, and Michael J Fox Foundation. This study was also 334 

supported by grants from the German Research Foundation (Research Unit ProtectMove, FOR 2488) to 335 

I.R.K., F.D.G.,N.B.,C.K). 336 

Data on PD GWAS was contributed by IPDGC team and downloaded from https://pdgenetics.org/. Data 337 

on glycemic traits were contributed by MAGIC investigators and downloaded from 338 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 19, 2021. ; https://doi.org/10.1101/2020.03.31.017566doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.31.017566


14 

 

www.magicinvestigators.org. Data on T2D were contributed by DIAGRAM investigators and 339 

downloaded from www.diagram-consortium.org. Data on BMI, WHR, WC, HC and height were provided 340 

by GIANT consortium and downloaded from https://portals.broadinstitute.org/collaboration/giant/. Data 341 

on birth weight was provided by EEG consortium and downloaded from https://egg-consortium.org/. 342 

 343 

References 344 

1. Kim DS, Choi HI, Wang Y, Luo Y, Hoffer BJ, Greig NH. A New Treatment Strategy for 345 

Parkinson's Disease through the Gut-Brain Axis: The Glucagon-Like Peptide-1 Receptor Pathway. Cell 346 

Transplant 2017;26(9):1560-1571. 347 

2. Katout M, Zhu H, Rutsky J, et al. Effect of GLP-1 mimetics on blood pressure and relationship to 348 

weight loss and glycemia lowering: results of a systematic meta-analysis and meta-regression. Am J 349 

Hypertens 2014;27(1):130-139. 350 

3. Athauda D, Maclagan K, Skene SS, et al. Exenatide once weekly versus placebo in Parkinson's 351 

disease: a randomised, double-blind, placebo-controlled trial. Lancet 2017;390(10103):1664-1675. 352 

4. Athauda D, Gulyani S, Karnati HK, et al. Utility of Neuronal-Derived Exosomes to Examine 353 

Molecular Mechanisms That Affect Motor Function in Patients With Parkinson Disease: A Secondary 354 

Analysis of the Exenatide-PD Trial. JAMA Neurol 2019;76(4):420-429. 355 

5. Li Y, Perry T, Kindy MS, et al. GLP-1 receptor stimulation preserves primary cortical and 356 

dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism. Proc Natl Acad Sci U S 357 

A 2009;106(4):1285-1290. 358 

6. Kuwabara T, Kagalwala MN, Onuma Y, et al. Insulin biosynthesis in neuronal progenitors 359 

derived from adult hippocampus and the olfactory bulb. EMBO Mol Med 2011;3(12):742-754. 360 

7. Marques A, Dutheil F, Durand E, et al. Glucose dysregulation in Parkinson's disease: Too much 361 

glucose or not enough insulin? Parkinsonism Relat Disord 2018;55:122-127. 362 

8. Pagano G, Polychronis S, Wilson H, et al. Diabetes mellitus and Parkinson disease. Neurology 363 

2018;90(19):e1654-e1662. 364 

9. Nam GE, Kim SM, Han K, et al. Metabolic syndrome and risk of Parkinson disease: A 365 

nationwide cohort study. PLoS Med 2018;15(8):e1002640. 366 

10. Wang YL, Wang YT, Li JF, Zhang YZ, Yin HL, Han B. Body Mass Index and Risk of 367 

Parkinson's Disease: A Dose-Response Meta-Analysis of Prospective Studies. PLoS One 368 

2015;10(6):e0131778. 369 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 19, 2021. ; https://doi.org/10.1101/2020.03.31.017566doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.31.017566


15 

 

11. Wills AM, Perez A, Wang J, et al. Association Between Change in Body Mass Index, Unified 370 

Parkinson's Disease Rating Scale Scores, and Survival Among Persons With Parkinson Disease: 371 

Secondary Analysis of Longitudinal Data From NINDS Exploratory Trials in Parkinson Disease Long-372 

term Study 1. JAMA Neurol 2016;73(3):321-328. 373 

12. van der Marck MA, Dicke HC, Uc EY, et al. Body mass index in Parkinson's disease: a meta-374 

analysis. Parkinsonism Relat Disord 2012;18(3):263-267. 375 

13. Grover S, Del Greco MF, Stein CM, Ziegler A. Mendelian Randomization. Methods Mol Biol 376 

2017;1666:581-628. 377 

14. Noyce AJ, Kia DA, Hemani G, et al. Estimating the causal influence of body mass index on risk 378 

of Parkinson disease: A Mendelian randomisation study. PLoS Med 2017;14(6):e1002314. 379 

15. Noyce AJ, Bandres-Ciga S, Kim J, et al. The Parkinson's Disease Mendelian Randomization 380 

Research Portal. Mov Disord 2019;34(12):1864-1872. 381 

16. Pulit SL, Stoneman C, Morris AP, et al. Meta-analysis of genome-wide association studies for 382 

body fat distribution in 694 649 individuals of European ancestry. Hum Mol Genet 2019;28(1):166-174. 383 

17. Nalls MA, Blauwendraat C, Vallerga CL, et al. Identification of novel risk loci, causal insights, 384 

and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet 385 

Neurol 2019;18(12):1091-1102. 386 

18. Yengo L, Sidorenko J, Kemper KE, et al. Meta-analysis of genome-wide association studies for 387 

height and body mass index in approximately 700000 individuals of European ancestry. Hum Mol Genet 388 

2018;27(20):3641-3649. 389 

19. Scott RA, Lagou V, Welch RP, et al. Large-scale association analyses identify new loci 390 

influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet 391 

2012;44(9):991-1005. 392 

20. Wheeler E, Leong A, Liu CT, et al. Impact of common genetic determinants of Hemoglobin A1c 393 

on type 2 diabetes risk and diagnosis in ancestrally diverse populations: A transethnic genome-wide meta-394 

analysis. PLoS Med 2017;14(9):e1002383. 395 

21. Mahajan A, Taliun D, Thurner M, et al. Fine-mapping type 2 diabetes loci to single-variant 396 

resolution using high-density imputation and islet-specific epigenome maps. Nat Genet 397 

2018;50(11):1505-1513. 398 

22. Manning AK, Hivert MF, Scott RA, et al. A genome-wide approach accounting for body mass 399 

index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat Genet 400 

2012;44(6):659-669. 401 

23. Dupuis J, Langenberg C, Prokopenko I, et al. New genetic loci implicated in fasting glucose 402 

homeostasis and their impact on type 2 diabetes risk. Nat Genet 2010;42(2):105-116. 403 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 19, 2021. ; https://doi.org/10.1101/2020.03.31.017566doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.31.017566


16 

 

24. Strawbridge RJ, Dupuis J, Prokopenko I, et al. Genome-wide association identifies nine common 404 

variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of 405 

type 2 diabetes. Diabetes 2011;60(10):2624-2634. 406 

25. Saxena R, Hivert MF, Langenberg C, et al. Genetic variation in GIPR influences the glucose and 407 

insulin responses to an oral glucose challenge. Nat Genet 2010;42(2):142-148. 408 

26. Walford GA, Gustafsson S, Rybin D, et al. Genome-Wide Association Study of the Modified 409 

Stumvoll Insulin Sensitivity Index Identifies BCL2 and FAM19A2 as Novel Insulin Sensitivity Loci. 410 

Diabetes 2016;65(10):3200-3211. 411 

27. Shungin D, Winkler TW, Croteau-Chonka DC, et al. New genetic loci link adipose and insulin 412 

biology to body fat distribution. Nature 2015;518(7538):187-196. 413 

28. Horikoshi M, Beaumont RN, Day FR, et al. Genome-wide associations for birth weight and 414 

correlations with adult disease. Nature 2016;538(7624):248-252. 415 

29. Pichler I, Del Greco MF, Gogele M, et al. Serum iron levels and the risk of Parkinson disease: a 416 

Mendelian randomization study. PLoS Med 2013;10(6):e1001462. 417 

30. Consortium GP, Auton A, Brooks LD, et al. A global reference for human genetic variation. 418 

Nature 2015;526(7571):68-74. 419 

31. Brion MJ, Shakhbazov K, Visscher PM. Calculating statistical power in Mendelian 420 

randomization studies. Int J Epidemiol 2013;42(5):1497-1501. 421 

32. Greco MF, Minelli C, Sheehan NA, Thompson JR. Detecting pleiotropy in Mendelian 422 

randomisation studies with summary data and a continuous outcome. Stat Med 2015;34(21):2926-2940. 423 

33. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect 424 

estimation and bias detection through Egger regression. Int J Epidemiol 2015;44(2):512-525. 425 

34. Rucker G, Schwarzer G, Carpenter JR, Binder H, Schumacher M. Treatment-effect estimates 426 

adjusted for small-study effects via a limit meta-analysis. Biostatistics 2011;12(1):122-142. 427 

35. Grover S, Lill CM, Kasten M, Klein C, Del Greco MF, König IR. Risky behaviors and Parkinson 428 

disease: A mendelian randomization study. Neurology 2019;93(15):e1412-e1424. 429 

36. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent Estimation in Mendelian 430 

Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet Epidemiol 431 

2016;40(4):304-314. 432 

37. Burgess S BJ. Integrating summarized data from multiple genetic variants in Mendelian 433 

randomization: bias and coverage properties of inverse-variance weighted methods. arXiv:151204486 434 

2015. 435 

38. Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian 436 

randomization via the zero modal pleiotropy assumption. Int J Epidemiol 2017;46(6):1985-1998. 437 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 19, 2021. ; https://doi.org/10.1101/2020.03.31.017566doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.31.017566


17 

 

39. Grover S, Del Greco M F, Kasten M, Klein C, Lill CM, Koenig IR. Risky behaviors and 438 

Parkinson's disease: A Mendelian randomization study in up to 1 million study participants. bioRxiv 439 

2018. 440 

40. Nalls MA, Pankratz N, Lill CM, et al. Large-scale meta-analysis of genome-wide association data 441 

identifies six new risk loci for Parkinson's disease. Nat Genet 2014;46(9):989-993. 442 

41. Lill CM, Roehr JT, McQueen MB, et al. Comprehensive research synopsis and systematic meta-443 

analyses in Parkinson's disease genetics: The PDGene database. PLoS Genet 2012;8(3):e1002548. 444 

42. Staley JR, Blackshaw J, Kamat MA, et al. PhenoScanner: a database of human genotype-445 

phenotype associations. Bioinformatics 2016;32(20):3207-3209. 446 

43. Falconer DS, Mackay TFC. Introduction to Quantitative Genetics. 4 ed. Harlow, Essex, UK: 447 

Longmans Green, 1996. 448 

44. Wang GJ, Volkow ND, Logan J, et al. Brain dopamine and obesity. Lancet 2001;357(9253):354-449 

357. 450 

45. Dalton M, Cameron AJ, Zimmet PZ, et al. Waist circumference, waist-hip ratio and body mass 451 

index and their correlation with cardiovascular disease risk factors in Australian adults. J Intern Med 452 

2003;254(6):555-563. 453 

46. Janssen I, Katzmarzyk PT, Ross R. Body mass index, waist circumference, and health risk: 454 

evidence in support of current National Institutes of Health guidelines. Arch Intern Med 455 

2002;162(18):2074-2079. 456 

47. Heilbron K, Jensen MP, Bandres-Ciga S, et al. Unhealthy Behaviours and Parkinsons Disease: A 457 

Mendelian Randomisation Study. medRxiv 2020:2020.2003.2025.20039230. 458 

48. Mollenhauer B, Zimmermann J, Sixel-Doring F, et al. Baseline predictors for progression 4 years 459 

after Parkinson's disease diagnosis in the De Novo Parkinson Cohort (DeNoPa). Mov Disord 460 

2019;34(1):67-77. 461 

49. Palacios N, Gao X, McCullough ML, et al. Obesity, diabetes, and risk of Parkinson's disease. 462 

Mov Disord 2011;26(12):2253-2259. 463 

50. Simon KC, Chen H, Schwarzschild M, Ascherio A. Hypertension, hypercholesterolemia, 464 

diabetes, and risk of Parkinson disease. Neurology 2007;69(17):1688-1695. 465 

51. Hu G, Jousilahti P, Bidel S, Antikainen R, Tuomilehto J. Type 2 diabetes and the risk of 466 

Parkinson's disease. Diabetes Care 2007;30(4):842-847. 467 

52. Cereda E, Barichella M, Pedrolli C, et al. Diabetes and risk of Parkinson's disease: a systematic 468 

review and meta-analysis. Diabetes Care 2011;34(12):2614-2623. 469 

53. Xu Q, Park Y, Huang X, et al. Diabetes and risk of Parkinson's disease. Diabetes Care 470 

2011;34(4):910-915. 471 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 19, 2021. ; https://doi.org/10.1101/2020.03.31.017566doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.31.017566


18 

 

54. Schorr M, Dichtel LE, Gerweck AV, et al. Sex differences in body composition and association 472 

with cardiometabolic risk. Biol Sex Differ 2018;9(1):28. 473 

55. Macek P, Biskup M, Terek-Derszniak M, et al. Optimal cut-off values for anthropometric 474 

measures of obesity in screening for cardiometabolic disorders in adults. Sci Rep 2020;10(1):11253. 475 

56. Burgess S, Davies NM, Thompson SG. Bias due to participant overlap in two-sample Mendelian 476 

randomization. Genetic epidemiology 2016;40(7):597-608. 477 

 478 

List of figures and tables 479 

Figure 1. Graphical representation of causal association analysis and assessment of pleiotropy  480 

A. Scatterplot showing causal effect estimates computed using various MR methods for the association of 481 

Parkinson disease (PD) as exposure with Waist Hip Ratio (WHR) as an outcome. 482 

B. Funnel plot showing the extent of heterogeneity among the individual Wald ratio estimates for the 483 

association of Parkinson disease (PD) as exposure with Waist Hip Ratio (WHR) as an outcome. 484 

Figure 2. Graphical representation of causal relationship between Parkinson's disease, glycemic and 485 

anthropometric traits. *Effect estimate computed using weighted median effect method (WME). 486 

 487 

Table 1. Details of the discovery GWAS datasets that explored and prioritized genetic instruments used 488 

for direct and reverse casual analysis in the present study. The direct analysis was done using Parkinson’s 489 

disease (PD) as an outcome, and the reverse was done using glycemic traits and modifiable 490 

anthropometric traits as an outcome. 491 

Table 2. Causal effect estimates using different Mendelian randomization (MR) methods and 492 

heterogeneity analysis of causal effect estimates for Parkinson's disease (PD) by using various (a) 493 

glycemic traits as exposures. (b) anthropometric traits as exposures. 494 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 19, 2021. ; https://doi.org/10.1101/2020.03.31.017566doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.31.017566


19 

 

Table 3. Causal effect estimates using different Mendelian randomization methods and heterogeneity 495 

analysis of causal effect estimates for various (a) glycemic traits and (b) modifiable anthropometric traits 496 

by using Parkinson's disease as an exposure. 497 

Supplementary Table 1a. Details of follow-up genetic variants in the replication and pooled exposure 498 

GWAS datasets and prioritized genetic instruments used for the secondary analysis 499 

Supplementary Table 1b. Details of exposure GWAS datasets adjusted for BMI and prioritized genetic 500 

instruments used for the sensitivity analysis 501 

Supplementary Table 2. Harmonized summary effect estimates from exposure and outcome datasets 502 

used for the conduct of Mendelian randomization (MR) 503 

Supplementary Table 3. Sensitivity analysis exploring the (a) influence of GWAS study design (b) BMI 504 

adjusted traits on causal effect estimates 505 

Financial disclosures 506 

 507 

Author Sandeep Grover 

Stock Ownership in 
medically-related fields 

None 

Consultancies None 

Advisory Boards None 

Partnerships None 

Honoraria None 

Grants None 

Intellectual Property Rights None 

Expert Testimony None 

Employment Centre for Genetic Epidemiology, Institute for Clinical Epidemiology 
and Applied Biometry, University of Tübingen, Tübingen, Germany  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 19, 2021. ; https://doi.org/10.1101/2020.03.31.017566doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.31.017566


20 

 

Contracts None 

Royalties None 

Other None 

    508 

Author Ricarda Graf 

Stock Ownership in 
medically-related fields 

None 

Consultancies None 

Advisory Boards None 

Partnerships None 

Honoraria None 

Grants None 

Intellectual Property Rights None 

Expert Testimony None 

Employment 
Institut für medizinische Statistik, Universität Göttingen, Göttingen, 
Germany  
 

Contracts None 

Royalties None 

Other None 

 509 

Author Christine Klein 

Stock Ownership in 
medically-related fields 

None 

Consultancies Medical Consultant for Centogene and Retromer Therapeutics 

Advisory Boards Else Kroener Fresenius Foundation 

Partnerships None 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 19, 2021. ; https://doi.org/10.1101/2020.03.31.017566doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.31.017566


21 

 

Honoraria Speaking Honorarium (Desitin) 

Grants DFG, EU, BMBF, MJFF, Centogene 

Intellectual Property Rights None 

Expert Testimony None 

Employment University of Luebeck and University Hospital of Schleswig Holstein 

Contracts None 

Royalties Oxford University Press 

Other None 

 510 

Author Norbert Brüggemann 

Stock Ownership in 
medically-related fields 

None 

Consultancies Centogene, Bridgebio 

Advisory Boards Bridgebio 

Partnerships None 

Honoraria None 

Grants DFG (BR4328.2-2, GRK1957) 

Intellectual Property Rights None 

Expert Testimony None 

Employment 
University Medical Center Schleswig-Holstein Lübeck, Department of 
Neurology; University of Lübeck 

Contracts None 

Royalties None 

Other None 

 511 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 19, 2021. ; https://doi.org/10.1101/2020.03.31.017566doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.31.017566


22 

 

Author Inke R. König 

Stock Ownership in 
medically-related fields 

None 

Consultancies None 

Advisory Boards None 

Partnerships None 

Honoraria None 

Grants German Research Foundation, BMBF, German Cancer Aid 

Intellectual Property Rights None 

Expert Testimony None 

Employment University of Lübeck, Germany 

Contracts None 

Royalties None 

Other None 

 512 

Author Fabiola Del Greco M 

Stock Ownership in 
medically-related fields 

None 

Consultancies None 

Advisory Boards None 

Partnerships None 

Honoraria None 

Grants None 

Intellectual Property Rights None 

Expert Testimony None 

Employment Eurac research, Bolzano, Italy 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 19, 2021. ; https://doi.org/10.1101/2020.03.31.017566doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.31.017566


23 

 

Contracts None 

Royalties None 

Other None 

 513 

Author Manu Sharma 

Stock Ownership in 
medically-related fields 

None 

Consultancies None 

Advisory Boards None 

Partnerships None 

Honoraria None 

Grants Michael J Fox Foundation, DFG, MSA Coalition 

Intellectual Property Rights None 

Expert Testimony None 

Employment Centre for Genetic Epidemiology, Institute for Clinical Epidemiology 
and Applied Biometry, University of Tübingen, Tübingen, Germany 

Contracts None 

Royalties None 

Other None 

 514 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 19, 2021. ; https://doi.org/10.1101/2020.03.31.017566doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.31.017566


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 19, 2021. ; https://doi.org/10.1101/2020.03.31.017566doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.31.017566


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 19, 2021. ; https://doi.org/10.1101/2020.03.31.017566doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.31.017566

