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Abstract

Recent studies have shown how MEG can reveal spatial patterns of functional connectivity using frequency-specific
oscillatory coupling measures and that these may be modified in disease. However, there is a need to understand
both how repeatable these patterns are across participants and how these measures relate to the moment-to-moment
variability (or ‘irregularity’) of neural activity seen in healthy brain function. In this study, we used Multi-scale Rank-
Vector Entropy (MRVE) to calculate the dynamic timecourses of signal variability over a range of temporal scales. The
correlation of MRVE timecourses was then used to detect functional connections in resting state MEG recordings that
were robust over 183 participants and varied with temporal scale. We then compared these MRVE connectivity patterns
to those derived using more standard amplitude-amplitude coupling measures, using methods designed to quantify the
consistency of these patterns across participants.

Using oscillatory amplitude envelope correlation (AEC), the most consistent connectivity patterns, across the cohort,
were seen in the alpha and beta frequency bands. At fine temporal scales (corresponding to ‘scale frequencies’, fS
= 30-150Hz), MRVE correlation detected mostly occipital and parietal connections and these showed high similarity
with the networks identified by AEC in the alpha and beta frequency bands. The most consistent connectivity profiles
between participants were given by MRVE correlation at fS = 75Hz and AEC in the beta band.

It was also found that average mid- to fine scale variability within each region (fS ∼ 10-150Hz) negatively correlated
with the region’s overall connectivity strength with other brain areas, as measured by fine scale MRVE correlation (fS ∼
30-150Hz) and by alpha and beta band AEC. These findings suggest that local activity at frequencies fS & 10Hz becomes
more regular when a region exhibits high levels of resting state connectivity.
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1. Introduction

In recent years, MEG has revealed much about the
electrophysiological underpinnings of connectivity in the
brain. The direct view of neuronal activity provided by
MEG and its excellent temporal resolution have allowed
the investigation of frequency-specific communication [5]
[20] [21] and dynamic changes in connectivity on the mil-
lisecond timescale [1] [30].

Alterations in MEG connectivity have also been de-
tected in patient groups [41] [18] [4] [19] [13] [2]. How-
ever, to be clinically useful, connectivity research must
progress from group-level analysis to the characterisation
of individual subjects. To make meaningful comparisons
between connectivity profiles of individuals, robust con-
nectivity measures are needed that give consistent results
for subjects with the same pathology.

Several recent studies have found that many commonly
used techniques for measuring functional connectivity in
MEG lack repeatability between healthy subjects, and even
show inconsistency over repeated scans of the same subject
[45] [8] [25]. [8] found that the method that gave the most

consistent connectivity was oscillatory amplitude envelope
correlation (AEC), using symmetric orthogonalisation to
remove spurious zero-lag correlation between timecourses
due to signal leakage [7]. The repeatability of connectiv-
ity given by any alternative methods could therefore be
compared to AEC to assess the extent to which it can add
to our understanding of cortical communication in health
and disease.

Many of the most popular techniques for measuring
connectivity are based on measuring the synchronisation
of oscillatory activity within narrow frequency bands. An-
other, less studied, aspect of electrical neural activity is the
constantly fluctuating activity present in the brain even
when it is supposedly ‘at rest’. This variable activity is
observed when there is a breakdown of synchrony between
neurons, allowing an increase in the information that can
be processed within a network [3]. The MEG signals gen-
erated by such activity consist of a superposition of many
low power signals from smaller neuron populations. This
variable activity appears more irregular, or ‘random’, and
so is often dismissed as neural ‘noise’, but it is thought
to be vital for healthy brain function [11] [17] [36]. It has
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been shown that the variability of neural activity changes
throughout the lifespan [27], and it has been found to be
altered in patient groups where activity that is either too
regular or too variable is associated with mental disorder
[32] [29] [3].

While the physiological role of variability in the brain
is not certain, it is possible that it is related to levels of
synchronisation between cortical regions, i.e. connectivity.
The synchronisation of oscillatory activity, which is highly
regular and therefore has low variability, is currently the
most promising mechanism for connectivity between brain
regions [34] [15] [12] [5] [20] [37]. In contrast, it is thought
that local information processing performed within segre-
gated brain regions is associated with signals of high vari-
ability that therefore contain higher levels of information
[38] [16]. This would lead to the hypothesis that the vari-
ability of signals from a cortical region might be related
to the levels of connectivity it exhibits with other brain
areas.

There is evidence for such a relationship in the liter-
ature. One fMRI study found a correlation between the
variability of BOLD signals and functional connectivity
[44] between spatially separated cortical regions. Age-
related connectivity changes have also been shown to co-
vary with the variability of EEG and MEG signals [40] [27]
and in an EEG study applying graph theory to functional
networks, variability was found to correlate with network
node centrality [28].

The variability of neural activity can be quantified us-
ing entropy measures, where more disordered and irregular
signals have larger entropy, and more regular signals have
lower entropy. There are many possible ways of estimating
signal entropy [17]. However, one measure that has been
shown to be useful in measuring the spatio-temporal vari-
ability of MEG signals is Rank-Vector-Entropy (RVE) [33]
[3]. RVE is a derivative of Shannon entropy [35] that has
a built-in ability to provide a dynamic timecourse of sig-
nal entropy, retaining its original temporal resolution. It
is also computationally efficient, is calculated from broad-
band activity timecourses, and is independent of signal
amplitude [33]. The relationship between variability and
neural synchronisation, and the desirable qualities of RVE,
suggest that RVE could be an alternative measure to use
in functional connectivity analysis that is not limited to
the consideration of oscillatory activity.

RVE, and many other entropy measures, measure sig-
nal variability at a single temporal scale. However, it has
been shown that neural activity contains recurring pat-
terns that occur across a range of such scales [9]. It is not
certain what these correspond to physiologically, however
it is thought that activity at coarser scales is associated
with long range, distributed information processing, while
more local processing is captured at finer scales [40].

To utilise the in-built temporal resolution that is spe-
cific to RVE, a multi-scale extension of RVE (MRVE) is
proposed [9]. MRVE timecourses at any temporal scale
can be calculated from MEG virtual sensor timecourses at

any number of required voxels, allowing for a direct com-
parison with dynamic oscillatory measures. In this paper,
MRVE was used used to reconstruct functional connec-
tivity patterns, assess how repeatable these patterns are
across a cohort of healthy volunteers and investigate how
these patterns vary with temporal scale. We then com-
pared connectivity profiles measured by MRVE correla-
tion with those derived using amplitude envelope correla-
tion (AEC). We also compared the robustness of MRVE
correlation, and whether it provides extra information over
standard methods, by comparing connectivity patterns de-
rived at multiple entropy time scales with those derived
from AEC in multiple frequency bands. Finally, the phys-
iological relevance of variability was investigated by exam-
ining the relationships between MRVE, oscillatory ampli-
tude and regional connectivity strength.

2. Methods

2.1. Data acquisition

Five-minute resting state MEG recordings were acquired
from 183 participants (123 female) as part of the ‘100
Brains’ and UK MEG Partnership normative scanning projects.
Inclusion criteria ensured all participants were aged 18-65
(mean 24.5±5.4 years), had completed or were undertak-
ing a degree, had normal or corrected-to-normal vision,
and had no history of neurological or neuropsychiatric dis-
orders. All procedures were given ethical approval by the
Cardiff University School of Psychology Ethics Commit-
tee, and all participants gave written informed consent
before taking part.

Data were acquired using a whole head 275-channel
CTF radial gradiometer system at a 1200 Hz sample rate.
An additional 29 reference channels were recorded for noise
cancellation purposes and the primary sensors were anal-
ysed as synthetic third-order gradiometers [43]. Subjects
were seated upright in the magnetically shielded room with
their head supported with a chin rest to minimize move-
ment. Participants were asked to rest and fixate their
eyes on a central red fixation point, presented on either
a CRT monitor or LCD projector. Head localisation was
performed at the beginning and end of each scan, using
three fiducial markers. Horizontal and vertical electro-
oculograms (EOG) were recorded to monitor eye blinks
and eye movements.

Participants also underwent a magnetic resonance imag-
ing (MRI) session to acquire a T1-weighted 1mm anatom-
ical scan, using an inversion recovery spoiled gradient echo
acquisition (3T, General Electric).

2.2. Pre-processing

All data were downsampled to 600Hz and a 1-150Hz
bandpass filter applied. Datasets were cut into 2 second
epochs, which were each visually inspected and removed if
they contained any major artefacts.
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Co-registration was performed manually between the
MEG and MRI coordinate spaces; the fiducial locations
were kept fixed relative to each participant’s nasion, left
and right ears and so could then be identified and marked
on their MRI scan.

To perform analysis in source space, MEG virtual sen-
sor timecourses were obtained using a scalar LCMV beam-
former [42] using FieldTrip [31]. Lead fields were calcu-
lated using a localspheres head model for voxels on a 6mm3

grid [22]. Covariance matrices were obtained using the
broadband pre-processed data filtered between 1-150Hz,
as well as for activity within ten narrower frequency bands
(1-4, 3-8, 8-13, 13-30, 40-60, 60-80, 80-100, 100-120, 120-
140 and 140-160Hz). For all frequency bands, beamformer
weights were normalised using the vector norm [20]. The
coordinate space for each participant was transformed to
the MNI template [14]. The estimated timecourses were
then calculated at each voxel for each frequency band,
which were then subsequently used to calculate variability
and oscillatory amplitude timecourses.

2.3. Variability

2.3.1. RVE

The RVE method was first described by [33]. At each
time point, a window of W points is taken from the signal,
each separated by a lag, ξ, to avoid oversampling, where
fs represents the sample rate, and fc is the low-pass fre-
quency applied to the data.

ξ =
fs
2fc

(1)

These W points are ordered in size, and then converted
to the position they originally held in the window. This
is the ‘rank-vector’ associated with this time point. The
Shannon entropy is calculated at each time point using a
state probability distribution derived from the frequency
of occurrence of the rank-vectors that occurred previously
in the signal [35]. Temporal resolution is introduced using
a ‘leaky integrator’, which gives RVE a ‘memory’ of states
that is limited in time [33].

2.3.2. MRVE

The calculation of MRVE at each scale is identical to
the calculation of RVE, except that each instance of the
sliding window is formed from a ‘coarse-grained’ version
of the raw signal. For a given scale factor, S, at each
time point in the signal, t, W consecutive, non-overlapping
windows of S points are taken starting at t, where each
value is separated by lag ξ. Then, the values in the sliding
window are found by taking the average of the data points
within these windows. This is given by Equation 2, where
x represents the signal timecourse sampled with lag ξ, and
yt is the window found at time point t.

yt,j =
1

S

jS∑
i=t+(j−1)S+1

xi for 1 ≤ j ≤W (2)

As the rank-vector calculated is dependent on the scale
factor used, a separate entropy timecourse is generated for
each value of S used.

The time scale examined by MRVE is determined by
the effective sample frequency of the values in yt. This
‘scale frequency’, fS , is determined by the scale factor,
where a higher value of S corresponds to a coarser sam-
pling rate and therefore a lower value of fS [10]. Equation
3 relates the scale factor to fS to aid in the interpretation
of MRVE and its relationship with oscillatory measures.

fS =
fc
S

(3)

2.4. Functional connectivity

90 nodes were selected by taking one voxel timecourse
to represent each region of the AAL atlas [39]. The selec-
tion was performed for each participant and for each fre-
quency band, by identifying the virtual sensor time course,
within each AAL region, that had the highest temporal
standard deviation. To avoid the detection of spurious
connections due to signal leakage, the zero-lag correlation
between all 90 AAL timecourses was removed by sym-
metric orthogonalisation [7]. This resulted in 90 orthogo-
nal timecourses for each participant and frequency range,
which were then used to calculate MRVE and oscillatory
amplitude timecourses.

MRVE was calculated from the broadband, 1-150Hz
virtual sensor timecourses, using a window length of W =
5 and a decay time constant of τ = 0.07s. Timecourses
were calculated for 25 scale factors between S = 1 − 150,
with corresponding scale frequencies ranging from fS =
1−150Hz. Oscillatory amplitude envelopes were found by
applying the Hilbert transform to the timecourses obtained
for each of the aforementioned narrow frequency bands.
Functional connectivity was then measured as described
by [23]. The MRVE and Hilbert envelope timecourses were
de-spiked to remove artefactual temporal transients using
a median filter, and downsampled to 1 Hz. The first 50
samples were then trimmed to remove the MRVE ‘warm-
up’ period while the histogram populates, and a window
of samples at the end was removed, the length of which
was defined by the length in time of the longest sliding
window used in the MRVE calculation, corresponding to
the largest scale factor.

Functional connectivity matrices were calculated sep-
arately for MRVE at each scale, and for oscillatory am-
plitude within each narrow frequency band by correlat-
ing each of the 90 timecourses from each participant with
all others. The correlation values were then normalised
by converting them to Z-scores using the Fisher trans-
form. These were variance-normalised to correct for the
effects of the varying timecourse lengths between partici-
pants, due to the removal of data epochs containing arte-
facts [23]. Significant connections were determined by first
ranking connections in order of strength for each partici-
pant, where the strongest connection was given the value
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1 and the weakest given value 0. ‘Valid connections’ were
taken as those with a mean rank above a threshold of 0.8,
indicating that these connections are consistently among
the strongest across participants. This threshold is arbi-
trary, however it has been shown previously to be a suit-
able threshold for detecting robust resting state network
connections using AEC [23].

2.5. Software

Data analysis was performed in MATLAB, using Field-
trip functions and custom built MATLAB scripts [31].
Connections were visualised on a template brain using the
SourceMesh MATLAB toolbox, and voxel-wise correlation
colourmaps were created in mri3dX.

3. Results

3.1. Consistency of functional connectivity across partici-
pants

First, MRVE correlation was used to measure func-
tional connectivity and we assessed which of these connec-
tions were consistently among the strongest across sub-
jects. Figure 1 shows the location and number of the valid
connections found for scale frequencies, fS = 1-150Hz. At
higher scale frequencies, i.e. at finer temporal scales, most
connections are found in occipital and parietal regions. As
shown in Figure 2, the maximum number of connections
was found at fS = 75Hz. However, there is a second peak
in the number of valid connections found at fS = 10Hz,
where more frontal connections are seen. Cumulatively
across all scales, valid connections were detected between
254 different pairs of nodes.

The valid connections found using AEC are also shown
in Figure 1. Valid connections were found within four
frequency bands. The most valid connections were seen
in the beta band, giving the same number as for fS =
75Hz using MRVE correlation. Across all frequency bands,
valid connections were detected between 248 different node
pairs.

We then investigated whether MRVE correlation could
provide additional information about functional connec-
tivity beyond that provided by AEC analysis. Firstly, it
was seen whether each method could detect unique connec-
tions that were not deemed valid by the alternate method.
To determine this for each connection, its mean rank, av-
eraged across all subjects, was calculated for all scale fre-
quencies for MRVE and for all frequency bands using AEC.
For each connection, we then found the highest mean rank
for any of the MRVE scales and the highest mean rank for
any of the AEC frequency bands. Those with a highest
mean rank above the threshold of 0.8 for either method
were taken as detectable by the corresponding connectiv-
ity measure. Figure 2 shows the highest mean rank val-
ues for each connection plotted against each other. Those
connections that are ‘unique’ to each method are shown

Figure 1: Valid connections (mean rank > 0.8) found using AEC
correlation for four frequency bands (above) and MRVE correlation
for a range of time scales (below). Each point represents an AAL
region and each line represents a connection. The midpoint of the
frequency band (for AEC) or scale frequency (for MRVE correlation)
is indicated in the top left corner of each plot, in Hz. The key at
the top indicates the colour of the connections that originate in each
brain region. No valid connections were found using AEC in the 3-8,
40-60, 60-80, 80-100 or 140-160Hz frequency bands.

4

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 1, 2020. ; https://doi.org/10.1101/2020.03.31.017749doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.31.017749
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: A) The number of valid connections found for each scale frequency using MRVE correlation and each frequency band using AEC.
B) The highest mean rank of each connection across all frequency bands vs. all scale frequencies, where the colour indicates whether the
connection is detected by both MRVE correlation and AEC, detected by neither, or detected by only one of the methods. Circle plots show
the connections that are only detected as valid by either MRVE correlation or AEC. C) Valid connections plotted on a template brain for
MRVE scale frequencies fS = 75Hz and 10Hz and AEC frequency bands 1-4Hz, 8-13Hz and 13-30Hz.

plotted between the AAL nodes. 200 connections are vis-
ible for both MRVE correlation and AEC across all scales
and frequency ranges, leaving 54 connections (21%) that
can only be seen using MRVE correlation, and 49 (19%)
that can only be seen using AEC.

3.1.1. Robustness of connectivity measures to sample size

The robustness of each connectivity measure to the
participant sample size was determined using bootstrap-
ping. Sub-samples of a range of sizes were taken from the
participant cohort by simple random sampling with re-
placement. The number of valid connections was found for
each sub-group taken, over 1000 tests per sub-group size,
N . It can be seen in Figure 3A that the average number
of connections found was less stable when using fewer par-
ticipants in the analysis for both MRVE correlation and
AEC. The average number approximates to the number of
connections detected using the whole cohort (as shown in
Figure 2a) when using N & 60. However, for both MRVE
correlation and AEC, the variance in the number of valid
connections detected was found to be larger when fewer
participants were included. For N . 60, a smaller sam-
ple was also associated with more connections detected on
average.

3.1.2. Consistency of connectivity patterns across partici-
pants

The consistency of the connectivity profiles between
individuals was then investigated. The average connectiv-
ity profile for each frequency band and scale frequency was
taken by vectorising the mean z score connectivity matrix.
This profile was then correlated with the equivalent vector
of z scores obtained for each participant individually. For
very robust networks that are highly reproducible across
subjects, this method will give consistently high pattern-
correlation with the average connectivity profile. However,
the distribution of correlation coefficients will be, on aver-
age, lower for a network that shows high variability across
participants. Each pattern-correlation coefficient is repre-
sented in the colour plot shown in figure 3B. For each scale
factor and frequency band, these have been sorted in de-
scending order of participants. Consistent high correlation
with the average connectivity patterns, representing high
cross-subject repeatability, can be seen for MRVE correla-
tion at scale frequencies 50 and 75Hz, and for alpha and
beta band AEC.

To further quantify the consistency of each connectiv-
ity measure across subjects, the mean correlation with the
average connectivity profile was found for each scale fre-
quency and frequency band (i.e. the average was taken
from each column on the colour plot). These average
pattern-correlation values are shown in figure 3C, with
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Figure 3: Analysis of the robustness and inter-participant consistency of the connectivity measures given by AEC and MRVE correlation.
A) Robustness to reducing the number of subjects included in the analysis as measured by bootstrapping. Plot shows the mean number of
valid connections detected over 1000 sub-samples of size N , randomly sampled with replacement. Error bands show the standard deviation.
B) Consistency across subjects found by correlating the vectorised z score connectivity matrices of individual subjects with the average
connectivity pattern across all subjects. Colour plots show the resultant pattern-correlation coefficients for each subject, sorted by correlation
strength, for each MRVE scale frequency and AEC frequency band. AEC bands are represented by the frequency at the midpoint between the
limits of the frequency range. C) These pattern-correlation coefficients over subjects were transformed to z scores and averaged for each scale
frequency and frequency band. Error bands show the standard deviation over 1000 sub-samples of N = 90. D) Sorted pattern-correlation
coefficients, calculated as in B) for MRVE scale frequency fS = 75Hz and beta band AEC.
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errorbands generated by bootstrapping, using 1000 sub-
samples of group size N = 90. The highest mean pattern-
correlation was found for MRVE correlation, fS=75Hz
(r = 0.5089 ± 0.0004), followed by beta band AEC (r =
0.4980 ± 0.0003), suggesting that these two connectivity
profiles were the most reproducible across subjects.

The pattern-correlation values (as shown in Figure 3b)
were then compared for MRVE correlation at fS = 75Hz
and beta band AEC. The sorted pattern-correlation val-
ues for these frequencies are shown in Figure 3D. It ap-
pears that MRVE correlation at fS = 75Hz gives individ-
ual profiles that are slightly more similar to the average
connectivity profile than beta band AEC. The pattern-
correlation values were then compared in a permutation
test, where the group assignment was randomised between
75Hz MRVE and beta band AEC over 10,000 permuta-
tions. However, it was found that there was no significant
difference between the pattern-correlation values (p=0.344)
for each connectivity measure.

3.1.3. Predicting MRVE connectivity from AEC connec-
tivity

The amount of variance in the MRVE correlation that
could be explained by AEC was then calculated using a
multiple regression model. The fraction of the variance in
the MRVE connectivity that could be explained by AEC
was then calculated by vectorising the connectivity matri-
ces and using the model in equation 4, where i represents
each frequency band, Nf is the number of frequency bands
used in the model and xi represent the regression coeffi-
cients.

MRV E correlation ∼ 1 +

Nf∑
i=1

xiAECi (4)

The adjusted R2 value found for each scale factor is
shown in Figure 4. The adjusted R2 value was used to de-
termine which combination of frequency bands would best
explain the MRVE connectivity, as the highest adjusted R2

values are obtained when the model only includes predictor
variables which add explained variance beyond that which
would be expected by chance. However, it was found that
the highest adjusted R2 values for each scale frequency
were achieved when the AEC connectivity vectors from all
frequency bands were incorporated in the model, except
for fS = 7.9Hz when the alpha band was excluded, and
for fS = 150Hz when the 80-100Hz band was excluded.

3.2. Temporal correlation between MRVE and oscillatory
amplitude envelopes

The relationship between entropy and oscillatory am-
plitude was then investigated. At each voxel in the brain,
the temporal correlation between MRVE timecourses and
oscillatory amplitude envelopes was found across scale fre-
quencies and frequency bands. Average z-scores are shown
on a template brain in Figure 5.

The relationship is shown to be dependent on the MRVE
scale frequency and oscillatory frequency band. However,
the direction is generally consistent across the brain for
each combination. At high scale frequencies (fS = 50-
150Hz), MRVE shows a strong negative correlation with
power in the alpha and beta frequency bands, where the
strongest relationship is seen between MRVE at fS = 75Hz
and beta band amplitude in the occipital and parietal re-
gions. At fS = 50-75Hz, a weak positive correlation with
gamma band amplitude is also observed, which is strongest
in frontal and temporal regions. At mid to lower scale fre-
quencies (fS = 1-25Hz), MRVE shows a negative correla-
tion with delta band amplitude but a positive correlation
with power in the alpha and beta bands. However, the ar-
eas in which the strongest positive correlation is observed
varies with scale frequency and differs between the two
frequency bands. The strongest positive correlation was
observed between MRVE at fS = 21.4Hz and beta band
amplitude in frontal and temporal regions. However, pos-
itive correlation was also observed in occipital and pari-
etal regions between alpha and beta band amplitude and
MRVE for fS = 1-8.8Hz.

3.3. The relationship between MRVE magnitude, oscilla-
tory amplitude and connectivity strength

The overall connectivity ‘strength’ was then estimated
for each AAL region. This was done for each node by
finding the sum of the correlation coefficients indicating
the connectivity between that node and all other nodes,
for each AEC frequency band and each MRVE correla-
tion scale frequency. This gave one connectivity strength
value for each AAL region for each participant, for each
frequency band and scale frequency used. The average
entropy value within each AAL region was then found at
each scale frequency for each participant, by taking the av-
erage value of the MRVE timecourses from the node voxel
used in the connectivity analysis. Figure 6 shows the cor-
relation between a vector containing all average entropy
values across participants and the corresponding connec-
tivity strength values. The correlation between connec-
tivity strength and average oscillatory amplitude was also
found, taken as the mean value of the hilbert envelope
calculated for activity in each frequency band.

At high scale frequencies, it was generally found that
average variability negatively correlates with connectivity
strength. The strongest relationship with MRVE correla-
tion was found between average entropy at fS = 75Hz
and connectivity strength at fS = 150Hz (r = −0.62,
p << 0.001), whereas the strongest relationship with AEC
was found between average entropy at fS = 50Hz and al-
pha band connectivity strength (r = −0.50, p << 0.001).
However, a weaker positive correlation was found between
average entropy at fine time scales and connectivity at
coarser scales, where the strongest correlation was found
between average entropy at fS = 75Hz and connectiv-
ity strength at fS = 10Hz (r = 0.18, p << 0.001). A
positive correlation is also seen between average entropy
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Figure 4: (left) The maximum adjusted R2 obtained across all possible multiple linear regression models for each scale frequency. (right)
Colour plot showing regression coefficients, where each column represents the coefficients obtained using MRVE correlation at the given scale
frequency as the response variable. AEC bands are represented by the frequency at the midpoint between the limits of the frequency range.
Black indicates that the corresponding AEC frequency was not included as a predictor variable in the optimal regression model (maximising
adjusted R2).

at very low scale frequencies (fS = 1-3Hz) and AEC in
the alpha and beta bands, as well as with MRVE corre-
lation at the highest scale frequencies. This is strongest
between average entropy at fS = 3Hz and alpha band AEC
(r = 0.25, p << 0.001), and between average entropy at
fS = 2Hz and MRVE correlation at fS = 150Hz (r = 0.20,
p << 0.001).

In contrast, there was generally a positive relation-
ship between average oscillatory amplitude and connec-
tivity strength. As shown in the top left of Figure 6, for
AEC connectivity the strongest correlations were found
when relating amplitude and connectivity strength within
the same frequency band, where the strongest relationship
was found for the beta band (r = 0.49, p << 0.001). Aver-
age amplitude also generally showed a positive correlation
with connectivity strength as measured by MRVE corre-
lation at fine time scales, where the strongest relationship
was found between alpha band amplitude and connectivity
strength for fS = 150Hz (r = 0.46, p << 0.001).

4. Discussion

The correlation of neural variability as measured by
MRVE was used here to detect robust functional connec-
tions from MEG recordings, suggesting that this is a viable
method for the analysis of resting state connectivity. The
existence of robust connections that can only be detected
by MRVE correlation also suggests that this method can
provide complementary information to that provided by
AEC.

By introducing the multi-scale element to the RVE
method, it was possible to observe network connections
that were present at different temporal scales. The num-
ber of valid connections detected and the brain areas they
originated from varied with each scale frequency, although

it was found that two general patterns of connectivity
emerged.

At finer temporal scales (fS = 30-150Hz), the networks
revealed are dominated by occipital and parietal connec-
tions, with some fronto-parietal and temporo-parietal con-
nections. Connectivity in these regions during the resting
state has been well established in the literature, in both
fMRI [24] and MEG studies, where connections in these ar-
eas have been found in the alpha and beta frequency bands
using oscillation-based connectivity measures [5] [20].

The relationship between MRVE at fine time scales
and oscillatory amplitude in the alpha and beta frequency
bands was a recurring feature throughout the analysis here.
It was shown that the connectivity profiles revealed by fine-
scale MRVE correlation and AEC in the alpha and beta
bands showed high levels of similarity; the AEC within
the alpha and beta frequency ranges made large contribu-
tions to the explained variance in the MRVE correlation
at fS = 75Hz, the scale at which most connections were
detected. It was also found that fine-scale variability time-
courses exhibited a strong negative correlation with the al-
pha and beta band amplitude envelopes, and that connec-
tivity strength negatively correlates with average MRVE
at this frequency while positively correlating with alpha
and beta band amplitude. These findings imply that high
levels of alpha and beta band AEC are associated with
more regular activity at scale frequencies fS = 30-150Hz.

It could be that the decrease in variability represents
a reduction in information processing performed locally
within areas showing high levels of inter-regional connec-
tivity. Entropy is maximised when there is the least in-
tegration between brain regions, while increased connec-
tivity introduces statistical dependencies from activity in
other brain areas and so decreases the ‘randomness’ exhib-
ited by a region [38].

These results are also potentially consistent with a com-
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S fS (Hz) δ θ α β γ40−60 γ60−80 γ140−160

1 150.0

2 75.0

3 50.0

4 37.5

5 30.0

6 25.0

7 21.4

8 18.8

9 15.0

10 16.7

11 13.6

13 11.5

15 10.0

17 8.8

20 7.5

25 6.0

30 5.0

50 3.0

75 2.0

150 1.0

Figure 5: The temporal correlation between MRVE timecourses and oscillatory amplitude envelopes for scale frequencies fS = 1-150Hz and frequency
bands 1-4Hz (δ), 3-8Hz (θ), 8-13Hz (α), 13-30Hz (β), 40-60Hz (γ40−60), 60-80Hz (γ60−80) and 140-160Hz (γ140−160). The temporal correlation
coefficient was found at each voxel for each participant and transformed to a z-score by applying the Fisher transformation. The 95% confidence
interval was found for the z-scores calculated across all participants for each voxel. Average Pearson correlation values were found at each voxel
where z = 0 lay outside of this confidence interval and displayed on a template brain as indicated by the colour bar. See supplementary material for
whole brain correlation images for all scales and frequency bands.
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Figure 6: The correlation between average oscillatory amplitude/entropy and the overall connectivity strength at each voxel as measured by
AEC and MRVE correlation. AEC bands are represented by the frequency at the midpoint between the limits of the frequency range. Warm
colours indicate positive correlation whereas cooler colours show negative correlation and grey indicates a non-significant relationship.

putational model that recently showed that correlated am-
plitude envelope fluctuations in the alpha and beta bands
are driven by time-delayed coupling between oscillators in
the gamma band [6]. It was found that transient synchro-
nisation between these oscillators led to correlated ampli-
tude fluctuations at a reduced collective frequency. Future
work could investigate whether the correlation between en-
tropy timecourses at high scale frequencies is driven by the
degree of synchronisation between oscillators at the same
natural frequencies.

At coarser temporal scales, a second network pattern
emerged consisting of mostly frontal and temporal connec-
tions that most closely resembled the AEC network found
within the delta band. This similarity was again supported
by the regression analysis, where the delta band AEC ex-
plained the largest fraction of variance in the MRVE cor-
relation for scale frequencies fS = 1 − 13.6Hz. However,
the overall fraction of the variance that can be explained
at these coarser time scales is relatively small, suggesting
that MRVE correlation provides more novel information
about connectivity at these scales beyond that which can
be observed by AEC. Although, as shown in Figure 2c, the
connections detected at lower scale frequencies originated
at the very front of the brain. While all datasets were vi-
sually cleaned and each set of virtual sensor timecourses
were orthogonalised, it is possible that contamination by
signals from eye movements could be causing spurious con-
nections in these regions. Future work could repeat the
analysis outlined here using data that has been cleaned of

eye movement artefacts, for example using ICA.
It is interesting to note that MRVE correlation, for a

given scale frequency, does not provide the same informa-
tion about functional connectivity as AEC for an overlap-
ping frequency band. For example, while the frequency
band that shows the most connections using AEC ranges
from 13-30Hz, scale frequencies in this range are associ-
ated with a trough in the number of connections when
using MRVE correlation. In fact, Figure 4 shows that for
each frequency band, AEC explains a low percentage of
the variance in the MRVE correlation at scale frequencies
in the same range. This suggests that in regions showing
high connectivity strength, the amplitude and variability
of activity of a particular frequency are not related.

However, MRVE was shown to have a complex rela-
tionship with oscillatory amplitude. In general, a posi-
tive correlation was found between oscillatory amplitude
and entropy timecourses calculated within the same fre-
quency range, whereas a negative correlation is seen when
the MRVE scale frequency is approximately higher than
the lowpass frequency of the oscillatory frequency band.
At the finest time scales, this is seen as a biphasic rela-
tionship where MRVE shows negative correlation with low
frequency amplitude but positive correlation with gamma
band amplitude. This has been found previously in a study
using RVE at a single time scale, when applied to task data
(fS = 150Hz) [3]. Here, the relationship was replicated in
resting state data and was found to be consistent in di-
rection across the brain. However, by considering multiple
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time scales using MRVE, it was found that the correlation
between entropy and amplitude envelopes varies with the
entropy scale frequency.

While the direction of each relationship was found to
be generally consistent across the brain, the strength of
the relationships were often found to vary spatially. For
a number of combinations, the correlation was found to
be strongest either in occipital and parietal regions, where
most functional connections were detected, or in frontal
and temporal regions. For example, the negative corre-
lation between beta band amplitude and MRVE at fine
scales is strongest in more posterior regions. In contrast,
the positive correlation observed for fS values within the
beta frequency range is strongest in anterior regions. This
could imply that regional connectivity strength moderates
the relationship between the variability and oscillatory am-
plitude of neural activity within that region. Future work
could look at whether the same phenomenon is observed
during a task, during which different regions would show
higher connectivity strength.

Connectivity strength was generally found to positively
correlate with oscillatory amplitude, in agreement with
previous research [37], but was found to negatively corre-
late with variability. This is consistent with the prevailing
theory that oscillatory activity (which is highly regular) fa-
cilitates synchronisation between cortical regions [34] [15]
[6]. The relationship between connectivity and oscillatory
amplitude is often confounded by the fact that an increase
in amplitude is associated with an increase in SNR. How-
ever, it is unlikely that this would be causing the observed
relationship with variability. If the low measured entropy
was driven by increases in underlying signal strength, we
would expect to detect connections in the gamma band
using AEC that match those found by MRVE correlation
for scale frequencies in the same range, whereas in real-
ity very few connections are seen using AEC at these high
frequencies.

While a weaker positive correlation was observed be-
tween connectivity at coarse scales and average entropy
at fine scales, it is uncertain whether connections at these
scales were spurious due to eye movement artefacts. There-
fore it is uncertain whether this relationship would be
replicated if these were removed.

A limitation of this study is that the performance of
MRVE correlation was only compared to AEC. AEC was
chosen for comparison as it has been shown to give the
most consistent results across participants [8]. This method
was therefore the appropriate benchmark to use in a com-
parison of the number of robust connections detected by
each connectivity measure. However, it could also be in-
teresting to look at how MRVE correlation relates to con-
nectivity measured by techniques that are centred around
phase relationships. It has been suggested that the re-
duction of signal variability facilitates phase relationships
to occur between brain regions [26] so it could be investi-
gated whether there is similarity between the connections
each method can detect and how this would differ from

the relationship between MRVE correlation and AEC.
Another constraint on this analysis was the limit on

the resolution of scale frequencies that could be used to
generate MRVE timecourses. By increasing the sample
rate of the data acquisition, it would be possible to obtain
MRVE timecourses at finer temporal scales, and at more
frequencies within the frequency range investigated here.
For example, with a lowpass frequency of 300Hz, MRVE
timecourses could be calculated for all frequencies consid-
ered here, as well as for fS = 300Hz, 100Hz, 60Hz etc.
Future work could therefore choose the sample rate and
scale factors used in order to target specific frequencies of
interest.

While it is interesting that MRVE correlation has shown
promise as a measure of functional connectivity, the true
test of its usefulness will be its performance in patient
groups. Neural variability measures, such as Multi-scale
Entropy (MSE) [9], and AEC connectivity have both been
shown to be able to distinguish patient groups from con-
trols. Future work will investigate whether MRVE correla-
tion can provide understanding about connectivity changes
associated with disease, in comparison to conventional mea-
sures based on the oscillatory components of brain func-
tion.
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