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Abstract: 10 

Today an unprecedented amount of genetic sequence data is stored in publicly available repositories.  11 

For decades now, mitochondrial DNA (mtDNA) has been the workhorse of genetic studies, and as a 12 

result, there is a large volume of mtDNA data available in these repositories for a wide range of 13 

species.  Indeed, whilst whole genome sequencing is an exciting prospect for the future, for most 14 

non-model organisms’ classical markers such as mtDNA remain widely used.  By compiling existing 15 

data from multiple original studies, it is possible to build powerful new datasets capable of exploring 16 

many questions in ecology, evolution and conservation biology.  One key question that these data 17 

can help inform is what happened in a species’ demographic past.  However, compiling data in this 18 

manner is not trivial, there are many complexities associated with data extraction, data quality and 19 

data handling.  Here we present the mtDNAcombine package, a collection of tools developed to 20 

manage some of the major decisions associated with handling multi-study sequence data with a 21 

particular focus on preparing mtDNA data for Bayesian Skyline Plot demographic reconstructions. 22 
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Introduction: 25 

Understanding a species’ demographic past can help inform many questions in ecology, evolution 26 

and conservation biology.  Consequently, there is a lot of interest in methods that are able to infer 27 

how a population’s size may have changed through time.  Traditional methods relied on insight from 28 

the fossil record [1–3].  However, although fossils are informative about many species, including our 29 

own, they remain a limited resource with coarse geographic and temporal resolution.  In contrast, 30 

genetic methods have the potential to offer better resolution and are now established as the primary 31 

means by which a population’s past can be interrogated.   32 

 33 

Mitochondrial DNA (mtDNA) has been used widely for demographic reconstruction.  The haploid 34 

nature of mtDNA along with its rapid rate evolution [4], lack of recombination [5] and uniparental 35 

mode of inheritance [6] make it more sensitive to capture changes in population size than slower 36 

evolving nuclear genes [7] (Fig. 1).  MtDNA therefore has the temporal resolution to capture the 37 

impacts of relatively recent events that might be of interest, such as the Last Glacial Maximum 38 

(LGM).  In combination with coalescent-based reconstruction methods such as Bayesian Skyline Plots 39 

(BSPs) [8], mtDNA can be used to estimate a detailed population profile that stretches back tens, or 40 

even hundreds, of thousands of years.  On the negative side, since the mtDNA genome does not 41 

recombine, it acts as a single locus and thus is subject to high levels of stochasticity, necessitating 42 

larger sample sizes of individuals than if multi-locus data were available.  43 
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Figure 1. Utility of different loci for reconstructing different periods of population history. 

 

With the falling costs of whole genome sequencing (WGS) and the growing interest in large scale 44 

sequencing projects, such as the Bird 10,000 Genomes Project (B10K) [9], the availability of WGS data 45 

is rapidly increasing.  Using a single, high quality, diploid genome sequence, the pairwise sequentially 46 

Markovian coalescent (PSMC) method [10] can reconstruct a profile of population size through time 47 

for that species.  However, PSMC is limited in its ability to capture details of population history more 48 

recently than ~1,000 generations ago [11].  The multiple sequential Markovian coalescent (MSMC), a 49 

method that builds on the PSMC framework, somewhat resolves this issue, using data from multiple 50 

individuals to improve the resolution of PSMC by an order of magnitude to more recent times [11].  51 

However, this method is costly, requiring multiple, phased, high-quality genomes from the species of 52 

interest.  Whilst phasing data may get easier as average sequenced read lengths increase, this is still 53 

a non-trivial step and phased data is frequently too difficult or costly to obtain for non-model 54 

species. 55 
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 56 

Whilst WGS is an exciting prospect for the future, for most non-model organisms’ classical markers 57 

such as mtDNA remain widely used [12].  Indeed, the falling costs of high throughput DNA 58 

sequencing, coupled with routine deposition of project data into public databases such as the 59 

National Centre for Biotechnology Information’s (NCBI) GenBank [13], has created a burgeoning 60 

resource of mtDNA sequence data.  For the first time, these databases contain sufficient sequence 61 

data to allow users to build quality meta-datasets.   Although individual studies may only be able to 62 

undertake spatially and temporally restricted sampling efforts, by creatively using pre-existing 63 

resources from multiple studies, it is now feasible to improve sampling strategy, range coverage and 64 

sample sizes without additional sampling.  As the workhorse of population genetics studies for many 65 

decades, public domain mtDNA data are available in large numbers for a wide range of species across 66 

most higher taxa.     67 

 68 

Although sequence databases are normally curated, data input is generally not standardised or error 69 

checked.  Studies differ greatly in the length and identity of target sequence, the quality of sequence 70 

curation and, while some studies upload all sequences obtained, others merely upload unique 71 

haplotypes.  There are also instances of incorrect sample assignation.  Altogether, this means that to 72 

compile a comparable set of sequences from multiple studies requires extensive data processing.  In 73 

the current paper, we consider the practicalities and problems faced by a meta-analysis of publicly 74 

available data and present the mtDNAcombine package.  The mtDNAcombine package is a collection 75 

of tools developed to manage some of the major decisions associated with handling multi-study 76 

sequence data with a particular focus on preparing mtDNA data for BSP population demographic 77 

reconstructions (Fig. 2.). 78 
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Figure 2. Flow diagram of mtDNAcombine pipeline showing decisions and steps supported by the 
package.  
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Methods:  79 

Data preparation 80 

Raw data – Step one is to search annotated DNA databases to determine how many data sets are 81 

available.  We focus on GenBank, which is the main public repository for mtDNA datasets.  Their 82 

website is intuitive, and it is easy to set up a search for a given taxon.  In mtDNAcombine, we import 83 

information (e.g. title of associated paper and sequence length) about relevant accessions into a 84 

dataframe with the ‘build_GB_dataframe’ function.  We then proceed to explore and clean up this 85 

information to make it comparable across studies, and thus allow us to merge data for the any given 86 

species and create comparable datasets for multiple species. 87 

It should be noted that, although GenBank staff review all submissions to GenBank, and quality 88 

control checks are performed before release, there is no standardised format for entering descriptive 89 

information.  As a result, features such as alternative abbreviations for gene names, deprecated 90 

species names, subspecies names, and simple misspellings are all common.  When nomenclature 91 

does not match between entries, filtering a large database for comparable samples is complex so, 92 

the mtDNAcombine pipeline includes two functions (‘standardise_gene_name’, 93 

‘standardise_spp_name’) that allow the user to re-set common alternatives / errors in species and 94 

gene names to a chosen standard value.                                 95 

 96 

Avoiding duplicate sequence entries – As BSP analysis draws information from haplotype frequency, 97 

it is important to try to avoid inclusion of duplicate entries because these can skew estimates of 98 

effective population size (Ne) and alter the reconstructed timings of demographic events.  Repeated 99 

entries for a single sample can come from multiple sources, for example, the NCBI Reference 100 

Sequence (RefSeq) project [14] aims to curate records and associated data, providing a set of 101 

reference standards.  As these data are drawn from the International Nucleotide Sequence Database 102 
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Collaboration (INSDC, which consists of GenBank, the European Nucleotide Archive (ENA), and the 103 

DNA Data Bank of Japan (DDBJ)) databases, a basic search can recover two accessions for the same 104 

sample; the RefSeq accession and the source record(s).  In this instance, the duplicates can be 105 

distinguished because all RefSeq records include an underscore (“_”) in their accession number, 106 

while simple repository accessions never have this character.  Our code (‘load_accession_list’ 107 

function, called within ‘build_GB_dataframe’) will automatically (and silently) remove any RefSeq 108 

record if the original accession is also found to be present in the dataset; however, users should be 109 

aware that these exclusions are being made.  110 

Duplications can also arise from re-uploaded / re-sequenced samples.  This occurs most frequently 111 

when multiple studies sample a single museum specimen, though there are other scenarios which 112 

can lead to a single individual being sequenced by multiple studies.  Re-sequenced samples are often 113 

hard to identify and recognising repeated use of published alternative ID numbers (such as specimen 114 

numbers) are sometimes the only indications that the same individual has been sequenced by 115 

multiple studies.  Although an occasional duplicate entry in a moderate sample size of around 100 116 

sequences is unlikely to cause a significant skew in the recovered population history, authors should 117 

be conscious that this source of duplicate entry exists and needs to be avoided whenever possible. 118 

Unfortunately, there is no simple programmatic way to avoid it given the information provided in 119 

GenBank.   120 

 121 

Alignment – After sequence data have been obtained, they must be aligned.  A number of public 122 

domain software programs are available that can achieve this, including T-Coffee [15], MUSCLE 123 

[16,17] and MAFFT [18].  In mtDNAcombine, we chose to use ClustalW [19], implemented through 124 

the R package ‘msa’. [20].  Though BEAST can handle missing / ambiguous bases [21], we consider it 125 

best to use alignments without gaps or ambiguities.  Whilst some insertions or deletions may be 126 
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genuine, when working with sequences from multiple sources, the data are likely to have been 127 

sequenced with different techniques to varying standards.  Inclusion of basic sequencing errors could 128 

drive miscalculations in later analyses and the volume or type of errors will not be consistent across 129 

all studies, nor across all taxa.  We therefore recommend that, to ensure consistent sequence quality, 130 

all sites with ambiguities, insertions, deletions and missing data should be removed.  This is done 131 

automatically within the ‘align_and_summarise’ function in mtDNAcombine. 132 

 133 

Diagnostic plots – Compiling data from multiple studies produces a series of known challenges which 134 

we tackle individually in the following sections.  The ‘align_and_summarise’ function draws a series 135 

of key diagnostic plots for each species dataset being handled.  These plots are designed to help the 136 

user quickly visualise the data, enabling rapid identification of any problems in the aligned data.  If 137 

these diagnostic plots look problematic, it is then possible to return to the original input files and 138 

revaluate the raw sequence data on a case-by-case basis.  The user can then decide to proceed with 139 

the analysis, return to the pipeline with an edited set of samples, or choose to drop the dataset 140 

entirely if too many samples / studies have to be excluded. 141 

 142 

Sequence length - For any group of studies there will be numerous reasons the samples were original 143 

collected and sequenced.  Each project will have had, among other things, a different budget, time 144 

constraints, target area of the mitochondrial genome, and available sequencing technology, meaning 145 

that different lengths of the genome / target gene will have been sequenced.  In some instances, 146 

only very short sections of the gene of interest will have been sequenced.  If the number of base 147 

pairs (bp) is too low, the sample is unlikely to hold enough information to be informative for 148 

population demographic reconstruction.  The ‘align_and_summarise’ function will drop individual 149 

accessions that are below a user-set threshold before processing the data.  There can be no out-of-150 
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the-box value for this ‘minimal length’ as the most appropriate size will vary with a wide range of 151 

factors such as the gene under investigation, mutation rate, absolute gene length, and the available 152 

sample size.  However, excluding any samples that clearly hold insufficient information before 153 

aligning and cropping sequences to the maximum overlapping area prevents an excessive loss of 154 

information if one very short sequence were included.   155 

Equally, above the minimal length that has been set, there can still be a wide variance in the number 156 

of base pairs, or region of the focal gene sequenced by different studies.  Automatically cropping all 157 

the sequences to the maximum overlap length may result in the loss of a large amount of data 158 

unbeknownst to the user.  Therefore, in order that the process of alignment and sequence trimming 159 

is transparent, one of the diagnostic plots mtDNAcombine produces is a histogram showing the 160 

original variation in sequence length as well as the length of the trimmed, maximum overlap, dataset 161 

(Fig. 3, vignette section ‘Diagnostic plots’).  This plot flags instances where a large number of base 162 

pairs have been removed in order to include a shorter sequence.  Sequence length versus sample size 163 

is a trade-off that individual users may want to weight differently depending on the data available.  164 

By presenting the information, mtDNAcombine allows the user to go back, review, and revise the 165 

input data if they want. 166 
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Figure 3. Example of diagnostic plot for sequence trimming in the ‘align_and_summarise’ function.  
Histogram shows that, in order to trim all sequences to the maximum overlapping length (red line), 
the majority of samples have had to be heavily cropped.  

 

Haplotype frequency - Studies differ in the ways they deposit data.  Some upload a single copy of 167 

each haplotype they found, while others upload sequences for each individual sampled.  Datasets 168 

built exclusively of unique haplotypes are not suitable for a BSP analysis [22].  Where only unique 169 

haplotypes have been uploaded, it is vital to find the number of samples these haplotypes represent, 170 

or the study must be excluded.  Routinely checking every source publication to see whether they 171 

uploaded only a single copy would be tedious and may become impractical for larger analyses.  To 172 

guide this process, the ‘align_and_summarise’ function flags studies in which all haplotypes are 173 

unique (i.e. there are no replicates) as candidates for further investigation.  A text file of individual 174 

accession numbers is also produced, including a column for the user to input new frequency 175 

information.  Once satisfied that the sampled frequency for each haplotype has been recorded 176 

correctly within this document, the table can be read back into R, and the function 177 
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‘magnify_to_sampled_freq’ will build the dataset up to correct sample sizes.  See vignette section 178 

‘Haplotype frequency’ for a worked example. 179 

 180 

Population Structure – Population sub-structure is known to cause problems for demographic 181 

reconstructions methods and BSP analysis is no exception [23–26].  BSP analysis, like other 182 

coalescent methods, is founded on the Wright-Fisher model and hence assumes panmixia [27].  This 183 

assumption is violated by population sub-structure [23,28], which acts to reduce the probability that 184 

lineages from different demes coalesce.  In practice, depending on the sampling strategy employed, 185 

sub-structure can lead to inflated population size estimate in older parts of the reconstructed history 186 

but can also noticeably reduce apparent population size at the present [23].  Accurate demographic 187 

reconstruction therefore requires careful consideration of whether sub-structure is or might be 188 

present. 189 

Once DNA sequences have been identified, downloaded, aligned, and multiplied up to sampled 190 

frequency, the level of population structure can be assessed.  One of the most intuitive approaches is 191 

to visualise the haplotype network diagram for each dataset.  To maintain a streamlined approach, 192 

we draw network diagrams within R using the package ‘pegas’ [29].  These network diagrams are one 193 

of the diagnostic plots created by the ‘align_and_summarise’ function (vignette section ‘Network 194 

diagram’). 195 

Depending on the level of supplementary detail available for each sample, the decision to split a 196 

population for analysis can be simple.  For example, in instances where sampling location data are 197 

available and clear geographic divisions coincide with major genetic clades, datasets can be 198 

separated and multiple sequence files handled as individual datasets.  However, it is important not to 199 

over-split the data.  Clades are a natural feature even of fully homogeneous populations, so if any 200 

obvious clades are removed, what is left will tend to be star-like haplotype clusters.  Such clusters 201 
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will often yield a signal of population expansion which may or may not be real.  Deciding if and where 202 

to divide datasets remains one of the more subjective and difficult challenges and it can be worth 203 

investing time into running data sub-sets to determine the impact of alternative splitting decisions.   204 

 205 

Outliers – We frequently found instances of extreme outliers, single haplotypes that were separated 206 

from all others by many base changes.  Such outliers may be genuine but equally may reflect 207 

immigrant individuals, sample mislabelling [30], amplification of integrated nuclear copies, incorrect 208 

accession codes, or even result from poor-quality sequencing.  We feel that the benefits of including 209 

these outliers in case they are genuine are far outweighed by the risk that they distort the process of 210 

inference.  We therefore recommend that outliers are identified and removed, although it is useful 211 

to retain copies of the original files so that the impact on inferred demographic histories can later be 212 

investigated if necessary.  Within the ‘outliers_dropped’ function, any “extreme outliers” are 213 

removed from the working dataset.  We recognise that factors such as species life history, species 214 

population history, data availability, and data quality will influence the criteria for data inclusion. 215 

Therefore, the degree of separation from other haplotypes necessary for a sample to be classified as 216 

an “extreme outlier” is something that can be set by the user.   217 

 218 

Setting up and running BEAST  219 

BEAST input – In large comparative studies, as many steps as possible should be kept constant.  This 220 

minimises the chance that the analysis becomes prohibitively time-consuming and helps to make the 221 

outputs as directly comparable as possible.  The process of setting up and parameterising a BSP 222 

analysis in BEAST is well-described in several papers as well as in the accompanying textbook [21] so 223 

we will not go into detail here.  Briefly, BEAST requires values for a range of parameters of which 224 

arguably the most important is mutation rate.  Selection of an appropriate mutation rate is a 225 
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persistent problem in genetic studies.  With BSP analyses, mutation rate influences the scaling of 226 

both inferred population size and timing of events, but it does not affect the overall profile shape.  227 

Both the mutation rate itself and its associated confidence will vary between taxa and it is necessary 228 

for the user to consider how best to standardise this to maximise consistency across profiles.  For 229 

certain groups, attempts have been made to provide rates for a large number of taxa [31], though 230 

this kind of resource is far from universal as yet.  231 

To maximise the probability that a given run converges, it can be a good idea to use fairly tight 232 

constraints on initialising parameters such as the number of population size changes.  This decision 233 

will be study-specific with no one-size-fits-all approach.  Moreover, changing priors and parameter 234 

values can alter outputs and should be done in accordance with best Bayesian practices [21].  Bearing 235 

this in mind, we suggest that a loss of resolution in some profiles may be a necessary trade-off if the 236 

maximum number of species is to be included.  237 

The mtDNAcombine package function ‘setup_basic_xml’ utilises the ‘babette’ package [32] to build 238 

basic XML files form the data set processed earlier in the pipeline.  The skeleton XML files will need 239 

editing (e.g. defining mutation rate, model choice, output names) but their creation minimises the 240 

number of steps the user needs to perform manually, speeding up the process and reducing the 241 

opportunity for the introduction of human error.  Once parameterisation decisions have been made 242 

and the XML input files finalised, whenever possible, we encourage use of the BEAGLE library [33] 243 

when running BEAST2, since this can significantly improve the speed of a run.  244 

 245 

BEAST output – Interpretation of BEAST outputs has been covered well in the literature e.g. [22,23]  246 

and by those who designed and built the software [34–38].  As with any statistical model, checks 247 

need to be done to confirm the reliability of the output.  In BEAST2 these are generally undertaken 248 

using the software package Tracer [39] and focus on appropriate convergence of the Markov chain.  249 
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As a rule of thumb, outputs should be treated with caution wherever the effective sample sizes (ESS) 250 

for a given parameter drops below 200.  Similarly, duplicate runs should be used to confirm that the 251 

posterior probability distributions stabilise at similar values.  Whilst ESS values can be captured 252 

directly through the package ‘babette’ [32], we think that a visual inspection of each run in Tracer is 253 

best practice.  Whilst doing so, it is then possible to export extensive summary data from the 254 

‘Bayesian Skyline Reconstruction’ tab (found under ‘Analysis’ in Tracer).   These Tracer exports are 255 

detailed, informative, and concise to work from, ideal for tasks such as downstream data 256 

visualisation as we do in mtDNAcombine.  257 

 258 

Plotting profiles in R – BSPs can be drawn using the programme Tracer [39].  However, for more 259 

flexibility, and to facilitate exploration of the profiles in greater detail, we chose to visualise the 260 

reconstructed profiles in R.  Within the mtDNAcombine package vignette, we present example code 261 

for plotting Tracer output data as BSP profiles (section ‘Exploring outputs’).  However, it is 262 

anticipated that data presentation will be highly project specific, therefore this code is not tied up in 263 

functions, enabling easy editing and adaptation by the user. 264 

 265 

Cautions – Skyline plots offer a powerful tool set but are easily over-interpreted.  Although covered 266 

in several recent reviews [22,40], over-interpretation continues to be an issue and hence its dangers 267 

are worth re-iterating.  Unsurprisingly, problems are greatest with weaker data: smaller sample sizes, 268 

uneven sampling strategy, and / or when drawn from a species with strong population substructure 269 

[22,23].  For example, an investigation of the same species, the common rosefinch, based on two 270 

mtDNA datasets with very different sample sizes gives us contrasting results (Fig. 4.).  The smaller 271 

sample set, cytb, suggest a weak linear increase in size over time but the larger dataset, ND2, 272 
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uncover a rapid, almost 100-fold increase in size.  This clearly indicates that interpretation of BSP 273 

plots must be done with appropriate consideration for the data quality. 274 

 

Figure 4. Comparison of two dissimilar BSP profiles drawn from different mtDNA datasets of the 
common rosefinch.  a) Red line is median value for cytb BSP profile, blue line is median value for ND2 
BSP profile. The cytb dataset includes 15 samples, ND2 dataset 190 samples. The varying levels of 
information available for inferences to be drawn from are clearly shown in b) the median joining 
network (MJN) for cytb dataset, and c) MJN for ND2 dataset.  

 

Uploading sequence data – When assembling large annotated DNA databases using published data, 275 

many sequences are ‘lost’ due to inaccuracies or inconsistencies in how the data are uploaded to 276 

repositories.  Unless the accession process becomes more standardised, idiosyncrasies and errors will 277 

continue to render an appreciable proportion of the potential data unusable.  We therefore 278 

encourage people who wish to upload data to take the time to complete as many supplementary 279 

fields as possible and to be sure they undertake basic formatting checks such spell-checks, correct 280 

capitalisation and use of standard abbreviations.  Where accompanying information is not uploaded 281 

to repositories, we urge authors to make this information easily accessible to readers.  For example, 282 

downstream use will be facilitated by providing haplotype frequency data or detailed sampling 283 
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location data as supplementary files (ideally well formatted text files which are easy to process) 284 

rather than embedded tables or images within manuscripts.  285 

 

Conclusions  286 

With the exponentially expanding volume of data in public DNA sequence repositories, there is now 287 

more genetic information available than ever before.  Building large meta-data sets by combining 288 

existing data offers the opportunity to explore new and exciting avenues of research e.g. [41–43].  289 

However, compiling multi-study datasets still remains a technically challenging prospect.  Unknown 290 

sequence quality, little to no control over sampling structure, potential errors in species 291 

identification, and limited control of sample size are all factors that can negatively affect a 292 

comparative study if not carefully handled. 293 

Here we present the mtDNAcombine package, providing a pipeline to streamline the process of 294 

downloading, curating and analysing mitochondrial sequence data (Fig. 2).  At the moment, the lack 295 

of standardisation in the data upload process exacerbates the inevitable complexities of combining 296 

data from multiple origins.  Whilst some samples, sequenced early in the molecular era, are 297 

allowably poorly documented we urge people to be careful when uploading data today.  The more 298 

information about a sample that is included online, alongside sequence data, the more likely that 299 

sequence will be usable by others.  Equally, with the volume of data available today the accuracy of 300 

associated meta-data and sequence tags / labels is vital for ensuring the data are retrievable when 301 

broad, automated, searches are used.  We suggest that a focus on quality control for additional 302 

information about each sample will make a noticeable difference to the ease with which public 303 

databases can be mined for relevant information and this exceptional resource exploited.  We hope 304 

that our discussion, whilst highlighting common pitfalls, provides solutions and suggestions to guide 305 

the process of compiling data sets from online databases. 306 
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