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Abstract 

Recently a novel coronavirus (SARS-CoV-2) emerged from Wuhan, China and has infected more 

than 571000 people leading to more than 26000 deaths. Since SARS-CoV-2 genome sequences 

show similarity with those of SARS, we sought to analyze all the available SARS-CoV-2 genomes 

based on the insights obtained from SARS genome specifically focusing on non-coding RNAs. 

Here, results are presented from the dual approach i.e identifying host encoded miRNAs that might 

regulate viral pathogenesis as well as identifying viral encoded miRNAs that might regulate host 

cell signaling pathways and aid in viral pathogenesis. Analysis utilizing first approach resulted in 

the identification of 10 host encoded miRNAs that could target the genome of both the viruses 

(SARS-CoV-2 and SARS reference genome). Interestingly our analysis revealed that there is 

significantly higher number of host miRNAs that could target SARS-CoV-2 genome as compared 

to the SARS reference genome. Results from second approach involving SARS-CoV-2 and SARS 

reference genome identified a set of virus encoded miRNAs which might regulate host signaling 

pathways. Our analysis further identified a similar “GA” rich motif in SARS-CoV-2 genome that 

was shown to play a vital role in lung pathogenesis during severe SARS infections. Hence, we 

successfully identified human and virus encoded miRNAs that might regulate pathogenesis of both 

these coronaviruses and the fact that more number of host miRNAs could target SARS-CoV-2 

genomes possibly reveal as to why this virus follows mild pathogenesis in healthy individuals. We 

identified non-coding sequences in SARS-CoV-2 genomes that were earlier reported to contribute 

towards SARS pathology. The study provides insights into the overlapping sequences among these 

viruses for their effective inhibition as well as identifying new drug targets that could be used for 

development of new antivirals. 
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Introduction 

Coronaviruses are the group of enveloped viruses with positive-sense single stranded RNA as the 

genetic material. These viruses cause mild to severe respiratory and intestinal infections in immune 

compromised individuals. They were not considered to be pathogenic until the outbreak of Severe 

Acute Respiratory Syndrome (SARS) in China and Middle East Respiratory Syndrome Coronavirus 

(MERS-CoV) in Middle East countries in 2002 and 2012 respectively when the viral infection led 

to significant deaths among the infected individuals [1]. Human coronaviruses have been shown to 

be rapidly evolving due to high genomic nucleotide substitution rate as well as recombination [2]. 

Apart from evolution, viral transmission is further fuelled by rapid urbanisation and close animal 

human encounters. One of the examples of pathogenicity and transmission of coronavirus is its 

recent outbreak in Wuhan city, China. Since the outbreak of the virus in December 2019, in Wuhan, 

China, people infected with this mysterious new coronavirus are escalating fast. As of 30 March 

2020, more than 693000 people were infected and around 33100 people died around the globe [3]. 

Based on phylogenetic and taxonomy data, SARS-CoV-2 was recently shown to form a sister clade 

with SARS coronavirus [4]. Since SARS-CoV-2 and SARS genomes have been shown to be 

similar, we sought to investigate the pathogenesis of SARS-CoV-2 by predicting miRNAs 

regulating their pathogenesis as well as taking clues from the published study on SARS encoded 

non-coding RNAs [5]. 

MicroRNAs are known to regulate diverse biological pathways including various steps in viral 

replication [6]. Hence, we studied the role of host miRNAs in regulating viral replication by 

predicting the host miRNA binding sites among the genome of these viruses. In order to gain in 

depth understanding into the pathogenesis of SARS-CoV-2, we analysed all genomes of SARS-

CoV-2 (n=52) that were available for download till 07 March 2020 (Supplementary figure 1). 

SARS reference genome was used for comparison and the analysis was performed on both the 

forward and reverse sequences of viral genomes. For prediction of host miRNAs that could bind to 

viral genomes, miRDB algorithm was used [7-8]. The analysis was performed in custom mode 

where user defined sequences can be uploaded and processed. All the analysis were done at default 

settings and only those miRNAs were studied further that had a target score >= 80. Using this 

approach, around 263 and 196 host miRNAs were identified that could target each of the forward 

and reverse SARS-CoV-2 genomic sequences (Fig1a, Supplementary table 2). Similar analysis on 

SARS reference genome identified 174 and 120 host miRNAs that could bind to forward and 

reverse sequences respectively (Fig1a, Supplementary table 2). The analysis further revealed that 

number of host miRNAs targeting SARS-CoV-2 genomes (both forward and reverse genomes) 

were significantly higher as compared to number of miRNAs targeting SARS reference genome. 

Despite the dissimilarity among number of host miRNAs targeting viral genomes, we observed that 
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86 common host miRNAs could target all the SARS-CoV-2 forward and SARS forward reference 

genome whereas 61 common host miRNAs were found to be targeting all the SARS-CoV-2 and 

SARS reverse genome (Supplementary table 3). Comparison of all the forward and reverse 

sequences of SARS-CoV-2 and SARS reference genome revealed 10 host miRNAs that could target 

all the genomes being studied and hence could be potentially used as broad acting antivirals  (Fig 

1b, 1c).  

Several viruses have been shown to regulate host signaling pathways by encoding miRNAs in their 

genomes. Hence, in order to gain insights into various miRNAs encoded by genomes of SARS-

CoV-2 and SARS coronaviruses, a set of computational tools were used to predict miRNAs 

encoded by these viruses. Since hairpin loops forms the precursor of small RNAs, miRNAFold 

algorithm was used first to predict loops in viral genomes [9,10]. The algorithm predicted around 

574 and 550 hairpin loops in each SARS-CoV-2 forward and reverse genomes respectively, 573 

and 575 hairpin loops in SARS forward and reverse genome respectively. Since all hairpin loops 

does not result in functional miRNAs, miRBoost algorithm was then used to identify whether the 

hairpin structures could yield functional microRNA or not [11]. The algorithm successfully 

predicted around 66 miRNAs in each of SARS-CoV-2 forward genome, 64 miRNAs in each of 

SARS-CoV-2 reverse genome, 89 miRNAs in SARS forward genome and 79 miRNAs in SARS 

reverse genome. Using the above mentioned algorithms we successfully identified some of the 

potential viral encoded miRNAs which can be used by the viruses to modulate host signaling 

pathways. Then we utilized mirBase algorithm to study whether our predicted miRNAs had any 

similarity to human encoded miRNAs or not [12-16]. Interestingly, we observed that out of 65 

sequences that were predicted by miRBoost, mirBase identified 56 miRNAs in SARS-CoV-2 

forward genome sequence that matched to human specific miRNAs. Similarly out of 64 miRNAs 

predicted in SARS-CoV-2 reverse genome, 39 matched to human specific miRNAs. The algorithm 

further matched 66 and 33 miRNAs to humans from a repertoire of 89 and 79 predicted miRNAs 

among forward and reverse SARS genomes (fig 1d, Supplementary sheet 4). We then compared all 

the genomes of SARS-CoV-2 and SARS for identification of any common virus encoded miRNA. 

Contrary to our expectation, we did not find any virus encoded miRNA which was common to 

forward and reverse genomes of SARS and SARS-CoV-2 (fig 1e). 

Recently, deep sequencing based approaches were used to identify SARS encoded non-coding 

RNAs which were then shown to play a critical role in SARS induced lung pathology [5]. The 

authors successfully identified a set of non-coding RNAs that were produced during SARS 

infections. The authors further characterized a “GA” rich region that was enriched in non-coding 

RNAs produced during SARS infection. Hence, we aimed to analyse SARS-CoV-2 genomic 

sequences for the identification of similar non-coding RNAs with a rationale that presence of 
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similar sequences in SARS-CoV-2 might predict about the pathogenesis of the virus. Our approach 

revealed presence of a very similar “GA” stretch in SARS-CoV-2 which was reported in be 

enriched in SARS encoded non-coding RNAs. We then analyzed SARS-CoV-2 genomes for the 

presence of non-coding RNAs that were shown to be produced in during SARS pathology. Our 

comparative analysis of both viral genomes revealed that SARS-CoV-2 had very similar stretches 

compared to SARS encoded non-coding RNAs (figure 2). Interestingly, it was also observed that all 

the 52 SARS-CoV-2 genomes were highly conserved in the regions that encoded non-coding RNAs 

suggesting their critical role in viral pathology. 

To summarize, our study identified various host and viral encoded miRNAs that could potentially 

regulate viral pathogenesis. We further observed that SARS-CoV-2 genomes had binding sites for 

more number of host miRNAs as compared to SARS genomes which might translate to low 

pathogenicity of SARS-CoV-2 in healthy individuals. Similarly, though SARS-CoV-2 and SARS 

genomes differed in terms of miRNA targets, however, there was a stark similarity among virus 

encoded non-coding RNAs in both the genomes thereby suggesting towards a possible overlap 

among pathogenesis of SARS-CoV-2 and SARS viruses and providing an opportunity to develop 

new therapeutics that might successfully regulate both the viruses. 
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Figure 1. Prediction of host and viral encoded miRNAs (A) Table showing number of host miRNAs 

targeting various SARS-CoV-2 and SARS genomes. (B) Figure depicting various miRNAs among 

SARS-CoV-2 and SARS genomes. (C) Table showing the list of common miRNAs. (D) Table 

showing number of SARS-CoV-2 and SARS encoded miRNAs. (E) Figure depicting various 

common SARS-CoV-2 and SARS encoded miRNAs. (F) Figure showing comparison of SARS 

encoded "GA" rich region and other non-coding RNAs with that of all SARS-CoV-2 genomes. 
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