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Abstract
Perceptual decisions often require the integration of noisy sensory evidence over time. This

process is formalized with sequential sampling models, where evidence is accumulated up to a
decision threshold before a choice is made. Although intuition suggests that decision formation
must precede the preparation of a motor response (i.e., the action used to communicate the
choice), neurophysiological findings have suggested that these two processes might be one and
the same. To test this idea, we developed a reverse-correlation protocol  in which the visual
stimuli that influence decisions can be distinguished from those guiding motor responses. In three
experiments, we found that the temporal weighting function of oculomotor responses did not
overlap with the relatively early weighting function of stimulus properties having an impact on
decision formation. These results support a timeline in which perceptual decisions are formed, at
least in part, prior to the preparation of a motor response.
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Introduction

When making quick decisions about uncertain sensory stimuli, humans and other animals
display speed-accuracy trade-offs, indicating that they can accumulate information over time to
improve their performance. Indeed, computational models positing the accumulation of evidence
up to a decision threshold can account for both response time and accuracy in many forced-
choice  tasks  (Ratcliff  et  al.,  2016).  Beyond  their  usefulness  for  analyzing  and  interpreting
behavioral data, such models have important implications for the neural mechanisms underlying
the decision process (Gold and Shadlen, 2007). For instance, in addition to neurons that encode
the instantaneous sensory evidence, many models postulate the existence of neural accumulators,
i.e., neurons or neuronal populations that perform the integration of sensory evidence over time
(Gold and Shadlen, 2001; Mazurek et al., 2003). While the instantaneous evidence is thought to
be represented in sensory processing areas, such as in the middle temporal area (MT) for motion
stimuli, correlates of evidence accumulation have been identified in frontal (Hanes and Schall,
1996) and parietal areas (Roitman and Shadlen, 2002; Shadlen and Newsome, 2001) of primate
brain,  which are also involved in the planning and execution of the motor response used to
communicate the decision. 

The finding of neural correlates of evidence accumulation in motor and pre-motor areas has
led  to  the  influential  “intentional”  framework  (Shadlen  et  al.,  2008),  according  to  which,
‘perceptual  decision-making  is  implemented  in  the  brain  as  a  process  of  choosing  between
available motor actions rather than as a process of representing the properties of the sensory
stimulus” (Shushruth et al., 2018). This implies that during decision-making there would be a
continuous flow of information from sensory to motor areas, producing graded levels of readiness
to execute motor responses that are proportional to the time integral of the sensory evidence.
Support for the intentional framework comes from neurophysiological investigations of the lateral
intraparietal area (LIP), which seems to implement both sensorimotor transformation for eye
movements (e.g., Duhamel et al., 1992) as well as accumulation of sensory evidence in tasks
that  require  oculomotor  responses  (Roitman  and  Shadlen,  2002;  Shushruth  et  al.,  2018).
Nonetheless, there are a number of caveats to bear in mind. While some neurons in LIP may
represent accumulated evidence for some perceptual tasks, it is clear that other neurons in LIP
represent (unaccumulated) instantaneous evidence for other tasks (Schall, 2019). Furthermore,
motion discrimination was found to be unimpeded by reversible inactivation of LIP (Katz et al.,
2016),  despite LIP neurons’  clear  accumulator-like  properties  in  this  task.  Reconciling these
seemingly  inconsistent  results  are  suggestions  of  independence  between  decision-related  and
oculomotor signals in LIP (Bennur and Gold, 2011) and multiplexing of decision-related and
decision-irrelevant signals in LIP (Huk et al., 2017; Meister et al., 2013; Yates et al., 2017). 

In order to refine our understanding of information processing during speeded perceptual
decisions, we designed a reverse-correlation paradigm in which the time course of a perceptual
decision can be disentangled from the time course of saccadic preparation. Key to our paradigm
is the stochastic resampling of stimulus properties, including the saccadic target position, during
decision formation (at a rate of 15 samples per second). If decision making were implemented in
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the brain as a process of choosing between motor actions, then we would expect the relative
impact of each interval on the perceptual decision to be similar to the relative impact of each
interval on the saccadic endpoint. However, to anticipate our results, across 3 experiments we
find that the temporal weighting functions for decision-formation and motor-preparation were
distinct and largely non-overlapping. Whereas early samples predicted the perceptual decision,
later  samples  (approximately  200 to 50 ms before  the onset  of  the saccade)  predicted  the
parameters of the saccade but not the decision. Since our results are based only on behavioral
measurements,  they  do  not  speak  against  the  idea  that  the  motor  system implements  the
accumulation of sensory evidence. However, by showing that the precise parameters of the eye
movement were determined by information sampled after the decision, our results demonstrate
that the motor response was not yet ready to launch when the decision process terminated. This
suggests that perceptual decisions and speeded, oculomotor responses rely on temporally distinct
streams of evidence.

Material and Methods

Participants.  4 observers (2 authors and 2 naive observers) participated in Experiment 1; 5
observers participated in Experiment 2 (1 author and 4 naive observers); finally, 1 author and 3
naive observers participated in Experiment 3. These sample sizes were chosen in accordance with
similar  psychophysical  reverse  correlation  studies  in  the  literature  (see  Murray,  2011,  for  a
review). All had normal or corrected-to-normal vision. Participants gave their informed consent
in  written  form;  the  protocol  of  the  study  received  full  approval  from the  Research  Ethics
Committee of the School of Health Sciences of City University of London.

Apparatus.  The experiments were run in a quiet, dark room. Right eye gaze position was
recorded with a video-based eye tracker (Eyelink 1000, SR Research Ltd., Mississauga, Ontario,
Canada). The participant’s head was placed on a chinrest with adjustable forehead rest. Visual
stimuli were presented on a gamma-linearized LCD monitor, 51.5cm wide, placed at 77cm of
viewing  distance.  The  monitor  resolution  was  1920×1200.  An  Apple  computer  controlled
stimulus  presentations  and  response  collection.  The  experimental  protocol  was  implemented
using MATLAB (The MathWorks Inc.,  Natick,  Massachusetts,  USA) and the Psychophysics
(Brainard,  1997;  Kleiner  et  al.,  2007;  Pelli,  1997)  and  Eyelink  (Cornelissen  et  al.,  2002)
toolboxes.

Stimuli. Stimuli were 2-D blobs with a Gaussian luminance profile presented on a background
made of squares (side 0.08 deg), with random luminance drawn from a Gaussian distribution≈
(RMS contrast 10%). The space constant of each blob was set to 0.3 deg and their peak≈
luminance was  147 cd/m≈ 2. The position of each blob kept changing at 15Hz (every 4 monitor
refresh cycles, corresponding to 67ms) and was drawn randomly from a 2D uniform distribution.
The size of the distribution was adjusted so that the standard deviation of position samples was
1.5 deg (thus yielding  distances from the mean up to 2.6 deg). In addition to the peripheral
Gaussian blobs, Experiment 2 included also two small squares presented near fixation (side 0.8≈
deg, centered at 0.8 deg to the left and right side of the fixation point). Each square was≈
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divided in 4 vertical  bars,  and the luminance of  each bar  kept changing at  15 Hz, from a
Gaussian distribution with standard deviation of 10 cd/m2 and mean equal either to the mean
background luminance ( 46 cd/m≈ 2) or to a higher value set according to a staircase procedure
(details in the Procedure section).

Procedure

Experiment 1. In our protocol, observers were asked to make a speeded discrimination and to
report their choice by means of a saccadic eye movement. In  Experiment 1 they were presented
with  two peripheral  targets  (Fig.  1A),  whose positions  were  re-sampled at  15Hz from two
generative distributions (see Stimuli section), and asked to decide which of the two distributions
was closer to the central fixation point (i.e., which had the statistical expectation closer to the
center).  They were asked to respond by shifting their  gaze as quickly as possible  onto the
chosen, closer target. Observers were simply asked to ‘look at the target’: we did not explicitly
require them to move to the mean of the generative distribution, nor to intercept the target’s
current location (we did not enforce an acceptance window; all saccades were included in the
analysis as long as they left the fixation area and reduced the distance between gaze and one of
the  two  distribution  of  target  positions).  Fig.  1A  (left  sub-panel)  illustrates  one  trial
schematically: the observer is looking at the center of the screen (red trace), when the two
targets  appear  and  continue  changing  positions.  Each  trial  started  when gaze  position  was
maintained within 2 deg from the central fixation point at least 200 ms. If the trial did not start
within 2 seconds, the program paused, allowing participants to take a break and re-calibrate the
eye-tracker. To prevent the use of monitor edges as stable landmarks for the localization of the
peripheral targets, the position of the fixation point was jittered across trials: each trial a new
position was drawn from a 2-D Gaussian distribution centered on the screen center,  with a
standard deviation of 0.2 deg on both horizontal and vertical dimension, and zero covariance.
The position of the distributions from which the positions of the peripheral targets (the Gaussian
blobs) were drawn was always clamped with respect to the trial-by-trial position of the fixation
point. In any trial, the average distance of the centers of the two generative distributions was
always 10 deg, but it differed across left and right targets, so that the for one of the targets
(the near target) it was always <10 deg, and for other >10 deg (see video S1 for an example).
The difference in distance between the two distributions was adapted over the course of the
experiment according to a two-down, one-up staircase procedure to achieve a similar level of
performance ( 70% correct response) across participants. A 50-ms beep (F5, 698.46Hz) was≈
delivered as feedback after correct choices. Each participant ran a minimum of 20 blocks of 50
trials each, distributed over the course of several testing session on separate days. See Table S1
for information about the performances of individual observers.

Experiment 2.  Experiment 2 followed a similar procedure to Experiment 1,  but with the
following differences. The generative distributions of target positions were always both placed at
the same distance, 10 deg of eccentricity. The perceptual decision was not based on the position
of  the  targets,  but  on  the  average  luminance  of  2  squares,  presented  parafoveally,  each
containing 4 bars of varying luminance, resampled in sync with the peripheral target positions
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(see video S2 for an example). Participants were instructed to decide which of the two squares
had higher average luminance and to communicate their decision in the same way as Experiment
1, that is by making a saccade to the target on the corresponding side of the screen. The
luminance values of the bars were drawn from a Gaussian distribution (see Stimuli section), and
the mean luminance of the brightest square was initialized at 8 cd/m2 above the background
luminance, and then adjusted according to a two-up one-down staircase procedure (step size 2
cd/m2). Each participant ran a minimum of 13 blocks of 50 trials each, distributed over the
course of several testing session on separate days. Information about performances of individual
observers is reported in Table S2.

Experiment  3.  Experiment  3  followed  a  procedure  similar  to  Experiment  1,  with  some
differences in instructions, feedback, and distribution of target locations. As in Experiment 1,
observers were required to identify the nearest target, and direct their gaze to it. However, in
this case, they were explicitly instructed to direct their gaze to the mean of the distribution of
the Gaussian blob locations (hereinafter referred to as the ‘centroid’) on the chosen side.  All
naive participants in this experiment were experienced psychophysical observers, and before the
beginning of the experiment they were briefed about the notions of ‘mean’ and ‘centroid’, and
they were told explicitly  that their  task was to shift  their  gaze as close as possible  to  the
centroid of the distribution of the nearest target’s locations. In order to facilitate and encourage
saccadic targeting of the centroid, we provided trial-by-trial feedback on the saccadic accuracy:
after each trial, eye movement recordings were immediately analyzed to identify the endpoint of
the primary saccade (defined as the first saccade that moved gaze by 2.5 deg or more away
from the central fixation). We then displayed the estimated saccadic landing point alongside with
the centroid location. Additionally, the saccadic landing point was colored in green whenever the
distance from the centroid was equal to or less than 1.25 deg, and red otherwise. Observers were
asked to obtain as many ‘greens’ as possible (see Fig. S1b for examples of eye movements
feedback). Finally, we also increased the external uncertainty about the centroid location, by
adding some random trial-by-trial variations in the positions of the targets relative to fixation.
Specifically,  centroid  positions  were  sampled  along  iso-eccentric  semicircles  (with  small
differences in the eccentricity of the left and right circles, adjusted by means of the two-down,
one-up staircase procedure), with one position being antipodal to the other along a line that
passed through fixation and was tilted with a random angle uniformly distributed within ±30°
from horizontal.
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Analysis

Pre-processing of gaze recordings.  Saccadic onsets and offsets were detected offline using
MATLAB and an algorithm based on 2-D eye velocity (Engbert and Mergenthaler, 2006). More
specifically, eye movements were identified as saccades if their velocities exceeded the median
velocity by 5 standard deviations for at least 8 ms. Once saccadic parameters were measured,
further statistical analyses were made using the open-source software R (R Core Team, 2020).
For each trial, we selected as the primary saccade the first saccade that started after the onset
of the target, from within a circular area of 2.5 deg around the initial fixation point, ended
outside of that circular area. We excluded trials where the primary saccade had a latency shorter
than 100 ms ( 0.5% of total trials in Experiment 1, 0.3% in Experiment 2, and 0.1% in≈ ≈ ≈
Experiment 3) and trials where the amplitude of the primary saccade was less than 2.5 deg
( 5% of total trials in Experiment 1, 20% in Experiment 2, and 2% in Experiment 3).≈ ≈ ≈

Estimation of weighting functions.  In order to estimate the weighting functions for saccade
planning, we regressed the centers of gaze (with vertical and horizontal positions denoted  and

)  at  saccadic  termination  against  the  spatio-temporal  coordinates  of  the  Gaussian  blobs
(temporally aligned with respect to the saccadic onset). We restricted our analysis to the 900 ms
proceeding the onset of the eye movement. Since the granularity of saccadic onset detection was
on the order of one millisecond, this yields 900 time points and thus, in principle, 900 parameters
to  estimate  simultaneously.  To make  the  estimation  more  tractable,  we  pooled  the  spatial
coordinates  into  (100)  9-ms  bins.  Whenever  changes  in  the  position  of  the  Gaussian  blob
occurred within a bin, we took the average of the two positions, weighted by the relative fraction
of time in which the blob occupied each position within the bin. This procedure yields for each
trial  vectors of target positions  and , each of length 100. The trial-by-trial coordinates of
saccadic endpoint were modelled as

where  is the vector of linear coefficients determining which of the position
samples  are  correlated  with  the  saccadic  landing  position  (assumed  to  be  the  same  across
vertical and horizontal saccadic components, up to a scaling factor ) and ‘ ’ is the dot product.
Note that the linear coefficients are not independent from one another. Due to the temporal
structure  of  the stimulus,  contiguous  coefficients  often  represent  the influence of  the same
stimulus  sample.  This  introduces  autocorrelation  in  the  coefficient  vector,  such  that  the
difference between neighboring coefficients  is  likely  to  be smaller than that of more distant
coefficients. To account for this, we fit our model within a Bayesian framework and adopted a
random-walk prior (Chiogna and Carlo Gaetan, 2002) to enforce smoothness:
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Note that the random-walk proceeds in reverse  – starting by assigning a regularizing (zero-
centered) Gaussian prior to the last coefficient. This is because the last coefficient lies within 9
ms from the saccade onset, and thus is unlikely to have a large influence on the saccadic vector.
The remaining parameters were assigned the following priors

This modeling approach was used in both experiments.  For each participant the model  was
estimated using MCMC sampling in Stan and its R interface (Carpenter et al., 2017). We ran 4
chains of 4000 samples each, and verified convergence by checking that there were no divergent
transitions and the variance between and within chains did not differ significantly:  for all
parameters (Gelman and Rubin, 1992). 

A similar approach was used to estimate the weighting function for the decision, with the
difference  that  we used  a generalized  linear  model  instead  of  a  simple  linear  regression,  to
account for the dichotomous nature of the dependent variable. Formally,  in this model,  the
probability of choosing the stimulus on the right can be expressed as

where, for Experiment 1 and Experiment 3,

is the vector of differences between the two targets’ distances from the central fixation point.
This vector contains 100 values for each trial (for clarity we omitted the trial subscript ). The
notation ’ ‘ in the exponents indicates that the power operations are applied elementwise (also
known as Hadamard power). The same approach was used in the analysis of Experiment 2,
however in this case the perceptual decision was based on the difference in luminance between
the right and left patch,

where  indicates the vectors of luminances of either the left or right parafoveal patch (each 
value represents the average of the 4 vertical bars within the patch). 

To introduce smoothness we used, for both experiments, the same random-walk prior used in 
the analysis of saccadic weighting functions. The remaining parameters were given the following 
priors

This model was also estimated using MCMC sampling as implemented in Stan. 
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Statistical tests. The ordered vector of 100 coefficients represents an estimate of the weighting
function used by participants to make the decision and to plan the eye movement. In order to
estimate the onsets and offsets of the temporal integration windows, for each participant we
used samples drawn from the posterior distribution to estimate the Bayesian highest posterior
density  (HPDI)  credible  intervals  around  each  of  the  100  coefficients.  This  allowed  us  to
determine  the  temporal  integration  windows as  the temporal  intervals  in  which the  credible
interval did not include zero. To control further for the possibility that these intervals were due
to chance, we estimated their probability under the null hypothesis using the cluster test (Cao
and Worsley, 2001; Friston et al., 1994). For this test, each coefficient was transformed into a t
statistic by dividing it by the standard deviation of its posterior distribution. The number of
resolution elements or resels (which determines the resolution of the random field assumed by
the cluster test) was taken to be the number of distinct stimulus samples presented during the
900 ms interval before the saccade: 13.5. For all the clusters included in the analysis the p-value
resulting from this procedure was smaller than 0.01. To determine onsets and offsets of the
integration windows at the group level, we averaged the onset and offset of the integration
windows of individual participants (see Fig. 1).
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Results

In order to identify the timing of visual influences on decision making and motor planning in
Experiment 1, we aligned noisy position samples with respect to the saccadic onset time, and
correlated them with either the binary choice (left vs. right target) or to the endpoint of the
saccadic eye movement. This allowed purely temporal characterizations of the target position’s
influence, not only upon the choice (i.e. the saccade’s direction: right or left; black trace in Fig.
1B) but its eventual endpoint as well (blue trace in Fig. 1B). We estimated the evolution of
these effects as a function of the temporal distance from saccade onset by using a Bayesian
approach to reverse correlation (see Material and Methods for details). This analysis allowed us
to reconstruct  the temporal  weighting functions underlying the decision and the oculomotor
response. The results (Fig. 1E) revealed temporal weighting functions that were distinct and
largely  non-overlapping;  whereas  choices  were  correlated  only  with  relatively  early  samples,
saccadic endpoints were correlated with later samples. Our analysis thus revealed that decision-
formation and motor-preparation in Experiment 1 accrued the visual input that guided them over
distinct temporal intervals.

The display of Experiment 1 differed from that of the most common paradigms used in the
literature  because  it  required  monitoring  two  peripheral  locations  instead  of  a  single,  more
central location (see Discussion for the caveats that apply in the interpretation of Experiment 1).
The results thus leave open the possibility that integration of visual evidence could proceed in
parallel  under  different  conditions  where the perceptual  decision does not involve judgments
about the peripheral saccadic targets. This possibility was addressed with Experiment 2, in which
two patches of varying luminance were presented to opposite edges of the fovea. The perceptual
decision involved choosing which was brighter  on average (see Fig.  1C).  We estimated  the
temporal  weighting functions using the same approach as  in Experiment 1 and found again
distinct,  largely  non-overlapping  temporal  weighting  functions  (Fig.  1F).  The  results  of
Experiment 2 thus indicate that visual input does not inform simultaneously decision formation
and the preparation of the motor response, regardless of the particular visual feature that needs
to be processed for the perceptual decision (position vs. brightness) or on the location of the
visual signals (peripheral vs. parafoveal).

One possible concern for the interpretation of the results obtained in Experiments 1 and 2 is
that while integrating visual information over time is required by the perceptual decision task, it
is not required by the saccadic task – observers could have simply made a saccade toward the
last target position that they registered on the side that they had chosen. According to this
account, the difference we observe in the temporal weighting function would be due to different
task  demands.  Although  this  explanation  cannot  fully  account  for  the  pattern  seen  in
Experiments 1 and 2 (see Discussion), we ran an additional experiment to test this directly. In
Experiment 3, observers were explicitly instructed to shift their gaze toward the mean of target
locations  (the  centroid),  and  were  given a trial-by-trial  feedback  on their  accuracy  of  their
saccades (see Figure S1b). We also increased the positional uncertainty of the centroids, by
introducing additional random variations relative to the fixation (see Methods for detail). This
was done to motivate observers to estimate the centroids on a trial-by-trial basis, rather than
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simply making a saccade to stereotypical locations to the left and right of the fixation point.
Despite the additional uncertainty induced by this manipulation, observers achieved a similar or
even slightly  smaller average saccadic error  than in Experiment 1.  The mean saccadic error
(relative to the centroid) in Experiment 3 was 2.07 deg (SD 0.34), while it was 2.44 (SD 0.76)
in Experiment 1. A comparison of saccadic variability in this experiment with previous data that
used the same target (Lisi,  Solomon & Morgan, 2019)  supported the notion that observers
averaged more than 1 position samples to direct their  saccades (see Figure S2 for details).
Importantly, despite the differences in design and task instructions, the results of Experiment 3
fully replicate the pattern seen in the previous experiments (see Figure S1a).

Finally, we assessed whether the total duration of the pre-saccadic interval influenced the
overlap  of  the  temporal  weighting  functions.  We  split  trials  (pooling  data  from  all  three
experiments) into 4 bins according to individual quartiles of saccadic latency,  and estimated
weighting functions separately  for  each latency bin (Fig.  2).  Across  the 4 bins we found a
relationship between speed and accuracy (Fig. 3), whereby slow responses were less likely to be
accurate. This is likely due to trial-by-trial fluctuations in decision difficulty due to the staircase
procedure. Most interestingly, we found a very similar pattern with little/no overlap between
weighting  functions  in  each  latency  bin,  including  those  with  faster  responses.  Thus,  the
dissociation between the accrual of information for a perceptual decision and the accrual of
information  for  motor  planning  is  robust  and  present  even  when  the  decision  and  motor
preparation unfold over a very short time (mean latency in the fastest bin was 473 msec; SD
across participants, 76 msec).
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Figure 1. Experimental protocols and estimated temporal weighting functions. In Experiment 1 (panel a) observers
began each trial by looking at a central fixation dot, then two peripheral luminance targets appeared, with their
positions changing at 15Hz. The horizontal positions of the two targets in one trial are plotted as a function of time
in the left facet of panel  b. These distances form the basis of decisions regarding which of the two targets was
closer to the fixation point. Their differences are plotted in the right facet of panel b. Observers were required to
report their decisions by looking at the closer target, and precise estimates for saccadic onset times were obtained
offline from gaze recordings. Vertical dashed lines in panels b, d, e, and f indicate saccade onset. In Experiment 2
(panel c) the observers were required to judge which of two patches, composed of four vertical bars and presented
at the edge of the fovea, had the greatest average luminance.  Panel d shows the average luminance difference as a
function of time in one example trial. In this case the two distributions from which target positions were sampled
always had the same distance from fixation (10 deg) and observers were asked to look, as quickly as possible, at the
target placed on the side of the brightest patch. Reverse-correlation analyses revealed temporally distinct weighting
functions for perceptual decisions and oculomotor responses (Experiment 1, panel  e; Experiment 2, panel  f). The
weighting functions  reveal  the influence of  visual  information  on perceptual  decisions  (black line)  and saccade
planning (blue lines). Thin lines represent weighting functions of individual observers, thick lines represent the group
average, and the error bands represent the standard error of the mean across observer. Underneath the curves, the
horizontal straight lines represent intervals (integration windows) in which the estimated weights were different from
zero  (each  line  representing  a  participant).  The  thicker  horizontal  bars  at  the  bottom represent  the  average
integration windows, obtained by averaging the onset and offset of the integration window for each participant (see
Material and Methods for details). The horizontal thin lines represent the bootstrapped standard errors on the onset
and offset of the group-level integration window.
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Figure 2. Temporal weighting functions and saccadic latency. This figure represents temporal weighting functions as
a function of saccadic latency. The latency of the responses is represented in the upper panels as the time of target
onset relative to the saccade onset, thus slower trials  (right-hand panels) show distributions centered on more
negative values. To estimate these functions, we pooled together data from Experiments 1,2, and 3, and split the
data according to the quartiles of individual distributions of saccadic latency. Different shades of grey represent
different participants. The lower panels represent the weighting functions with the same conventions used in Figure
1. Note that for some participants, in some latency bins, the horizontal line representing the integration windows are
lacking. These indicate cases in which, after binning the data, there was not enough information to determine
reliably the integration windows, as revealed by broad 95% Bayesian credible intervals that encompassed zero at all
time points. These cases have been excluded from the calculation of the group-level integration windows (bottom,
thick lines), but were nevertheless included in the calculation of the average weighting functions. 

Figure 3. Relationship between speed and accuracy.  Across the 3 experiments, participants displayed a  negative
correlation between the accuracy (on the vertical axis) and the latency of the responses (horizontal axis). In the
figure gray dots and lines represents individual participants, and black lines the group averages. Data have been
binned according to quartiles of individual latency distributions. All error bars are bootstrapped standard errors.
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Discussion

We investigated whether  sensory information accrued during speeded perceptual  decisions
could  simultaneously  inform  the  decision  process  and  the  motor  preparation  of  a  saccadic
response used to communicate the choice. We designed an experimental protocol in which both
the evidence for the perceptual decision as well as the position of the saccadic target was varied
over time. By using reverse-correlation on both choices and saccadic endpoints, we identified the
temporal integration windows of decision formation and motor preparation, and found that they
were  largely  distinct  and  non-overlapping.  The  different  time  courses  of  visual  influence  on
decision  formation  and  eye-movement  preparation  point  to  distinct  accruals  of  sensory
information for these two processes, possibly having a serial or cascaded organization. 

In Experiment 1 participants were asked to judge which of the 2 peripheral targets was on
average  closer  to  the central  fixation point.  Although the results  suggested  that  perceptual
decisions and oculomotor responses  were supported by distinct accruals of information,  it  is
possible that the specific characteristics of the paradigm used in Experiment 1 encouraged a
serial strategy that resulted in non-overlapping weighting functions. While the perceptual decision
required observers to compute the difference in distance from fixation between the two targets,
the oculomotor response required only the gaze-centered coordinates of the chosen target. Thus,
is  possible  that  the  requirement  of  computing the  difference  in  position interfered  with  the
processing of the gaze-centered coordinates, forcing observers to program an appropriate eye
movement  only  after  having  selected  the  appropriate  target.  Moreover,  using  a  dual-task
manipulation, a previous study showed different time courses for peripheral and foveal processing
of visual information before an eye movement: while peripheral processing stopped 60-80 ms
before the saccade was launched, foveal processing continued until saccade onset (Ludwig et al.,
2014).  Accordingly,  when decoupling  decision-relevant  stimulus  properties  from the  saccadic
targets in Experiment 2, we ensured that the former would appear close to the fovea (see Fig.
1C). Nonetheless, the temporal weighting functions collected in Experiment 2 were similar to
those in Experiment 1. Consequently, the most straightforward summary of our results is that, in
both experiments, sensory information received at any point in time contributed to either the
formation of the decision or the preparation of the motor response. Although we cannot exclude
the possibility that relatively early samples (>200 msec before the saccade) may have suggested
spatially  imprecise  motor  plans,  our  results  unequivocally  demonstrate  that  the  precise
coordinates of saccadic endpoints were determined by later samples, which did not contribute to
the formation of the perceptual decisions.

One  possible  issue  that  was  not  addressed  in  Experiments  1  and  2  concerned  task
instructions. If saccadic programming occurred simultaneously with the integration of perceptual
evidence,  then  we  would  naturally  expect  some  degree  of  overlap  between  saccadic  and
perceptual weighting functions. However, it is not clear how much overlap we should expect,
given that observers were not discouraged from aiming their saccades toward a single target
position. To address this issue, we designed Experiment 3, in which observers were instructed
explicitly to shift their gaze to the centroid (the mean of the blob’s distribution). Observers
received trial-by-trial  feedback on the accuracy of  their  saccades (see Methods for  details).
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Nonetheless, the results of this experiment fully replicated the pattern seen in Experiments 1 and
2, thus corroborating an interpretation of our findings in terms of temporally distinct streams of
evidence for perceptual decisions and oculomotor responses.

An important question is whether our findings can be generalized to other conditions, such as
free viewing of stable scenes, where fixation durations are on the order of just 300 ms (Rayner,
2009),  which is  considerably less than the sum of integration times for perceptual  decision-
making and saccade planning in our paradigm. Of course, this question cannot be answered using
our  paradigm,  which depends  on stochastic  resampling  of  stimulus  parameters.  However,  in
stable scenes, visual information can be retained and combined across multiple fixations, an idea
supported by many lines of research. For example, it has been shown that the influence of visual
information  accumulated  during  a  fixation  is  not  limited  to  the  first  saccade  following  the
fixation  but  extends  to  subsequent  saccades  (Caspi  et  al.,  2004).  Other  studies  have
demonstrated that visual information can be integrated across saccades in a near-optimal fashion
(Ganmor,  et al.,  2015; Wolf and Schütz, 2015), and that attention can be allocated stably
across eye movements in the presence of visual landmark (Lisi et al., 2015). Thus, when free-
viewing stable  scenes,  the accumulation of perceptual  evidence required to inform upcoming
decisions and motor actions does not need to be completed within a single fixation; it may
extend across multiple fixations. In contrast, in our experiments the accumulation of evidence
had to start anew at each trial and the difficulty of perceptual decisions was set to elicit a
substantial proportion of errors, resulting in relatively slow response times and long integration
windows. 

We note that the temporal weighting functions for saccadic eye-movements derived from our
data are fully consistent with previous measurements, and they replicate critical features already
reported in the literature, such as the presence of a saccadic dead time; a “point of no return”
after which afferent information is too late to influence the upcoming movement (Findlay and
Harris, 1984; Ludwig et al., 2007). Moreover, the direction of the influence of target-position
samples  on  the  saccadic  landing  was  always  positive  (i.e.,  saccadic  landing  positions  were
attracted toward each sample, not repelled away), consistent with the integration of position
information  and inconsistent  with  repulsion  by distractors,  which  usually  occurs  for  saccade
latencies longer than 200 ms (McSorley et al., 2006). Our results also reveal that despite the
relatively long presentation of the stimuli, the saccadic system integrates information over only a
relatively narrow temporal window ( 100 ≈ ms). Similarly narrow windows were found in studies
of saccades to moving targets (Etchells et al., 2010, 2011; Lisi and Cavanagh, 2015). 

As mentioned in the Introduction, a strict interpretation of the intentional framework (Gold
and Shadlen, 2000; Shadlen et al., 2008) would predict largely overlapping temporal weighting
functions  for  decision  formation  and  motor  preparation.  Recent  studies,  however,  have
questioned  whether  motor  areas  in  the  brain  actually  do  play  a  central  role  in  evidence
accumulation (Huk et al., 2017; Yates et al., 2017).  Our results contribute to this debate by
showing that visual input does not seem to simultaneously inform the formation of a perceptual
decision and the preparation of a saccadic response. This perspective is in line with a recent
study  (Chen  and  Stuphorn,  2015)  of  economic  (value-based)  decision-making,  which  found
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evidence  for  sequential  encoding  of  choice  and  action  preparation  in  the  macaque  brain.
Specifically, neurons in the supplementary eye fields (SEF) were found to encode first the value
of the chosen option and -- about 100 ms later -- the parameter of the saccadic response that
would obtain it. Although this study did not use time-varying visual stimuli, and therefore did not
involve  accumulation  of  visual  signals,  it  nevertheless  points  to  a  sequential  organization  of
decision-formation  and response-preparation  that  may  apply  also  to  non-economic  decisions.
Indeed, such a sequential organization would be fully consistent with the temporal weighting
functions estimated in our study.

Although our results challenge the idea that oculomotor responses are prepared in parallel
with the accumulation of perceptual evidence, they do not address the question of whether other
types of responses (e.g., manual) can be prepared concurrently with decision formation. Indeed,
unlike saccades, hand movements can be modified online in response to new sensory inputs and
often respond differently to stimuli or tasks that require the integration of information over time
(Issen  and  Knill,  2012;  Lisi  and  Cavanagh,  2017).  Indeed,  one  previous  study  using  motor
perturbations (Selen et al., 2012) found evidence for a continuous flow of information from the
ongoing decision process to control  system for hand movements in the brain. In that study
motor activity gradually built up with a rate that (averaged over trials) depended on the evidence
discriminability. 

In  summary,  our  results  demonstrate  that,  in  a  speeded  perceptual  decision  task,  the
integration  of  visual  signals  for  planning  oculomotor  responses  terminates  later  than  the
accumulation of evidence that inform the perceptual decision. These results are suggestive of a
serial organization of evidence accumulation and motor preparation, and they are in line with
theoretical models developed to account for psychological effects such as the refractory period
and attentional blink (Zylberberg et al., 2011, 2012), which hypothesize a temporal separation of
these processes. Such theories postulate the existence of central  bottlenecks to explain why,
despite  its  massively  parallel  architecture,  the  brain  can  be  surprisingly  slow  and  serial  at
performing certain tasks. Indeed, a recent study provided evidence for a bottleneck that prevents
incorporating  evidence  for  multiple  decisions  in  parallel  (Kang  et  al,  2021).  Sequential  and
dissociable processes for evidence accumulation and motor preparation may even facilitate the
re-calibration of behavioral responses in changing environments. Although this strategy might
carry costs, such as slower response times, the benefits coming from the increased flexibility may
outweigh the costs.

Data availability

Data and code supporting this article are available as an Open Science Framework repository
(link:  https://osf.io/embky/).
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Table S1. Summary performance statistics for individual observers (Experiment 1). The first column indicates the
mean distance between the centers of  the two generative distributions  of  target positions  averaged across  all
sessions.  Mean response times (third column) are reported with standard deviations within parentheses. The last
column indicates how many trials were included in the analysis after the exclusion criteria reported in the main text.

Mean distance
difference

Fraction correct Response time N. trials included
in analysis

sj101 1.25 deg 0.74 605 (172) ms 974

sj102 1.26 deg 0.74 631 (159) ms 1604

sj103 1.09 deg 0.74 610 (149) ms 3135

sj104 0.92 deg 0.81 723 (162) ms 860

Table S2. Summary performance statistics for individual observers (Experiment 2). 

Mean luminance
difference

Fraction correct Response time N. trials included
in analysis

sj201 2.73 cd/m2 0.82 634 (156) ms 477

sj202 2.83 cd/m2 0.77 727 (124) ms 491

sj203 1.99 cd/m2 0.80 739 (125) ms 937

sj204 1.63 cd/m2 0.71 685 (117) ms 788

sj205 1.52 cd/m2 0.75 720 (129) ms 484

Table S3. Summary performance statistics for individual observers (Experiment 3). 

Mean distance
difference

Fraction correct Response time N. trials included
in analysis

sj301 0.88 deg 0.76 644 (144) ms 907

sj302 0.82 deg 0.72 544 (137) ms 1041

sj303 0.91 deg 0.74 675 (155) ms 658

sj304 0.99 deg 0.71 446 (116) ms 977
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Figure S1. Experiment 3. Estimated weighting functions (panel a), same conventions as Figure 1 (main text). Panel
b represents two examples of the feedback. Both the top and the bottom sub-panels represent trials in which the
observers made the correct perceptual decision, as indicated by the fact that saccadic endpoints (large green and
red dots) are on the same side of the revealed centroids (white dots). However, on the top sub-panel, the saccade
endpoint is colored in green as it was less than 1.25 deg away from the centroid, whereas on the lower sub-panel it
is colored in red to indicate the subject that their saccade should have been more accurate. On both sub-panels the
smaller, darker green and red dots show all gaze samples from target onset to saccade completion. Text labels are
shown for illustration purposes but were not shown during the experiment.
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Figure S2. Saccadic precision in Experiment 3. Panel a show the distribution of saccadic errors relative to the mean
of the generative distribution. The location of distribution’s means were sampled along semi-circle, with eccentricity
determined by the staircase procedure (panel b). Observers were required to saccade to the mean of the distribution
(the centroid), therefore we attempted to estimate the effective number of blob samples averaged by the observers
to localize the centroid based on data from an experiment that used the same visual stimulus (a Gaussian blob with
same space constant, peak luminance, eccentricity and noise background) but as single, static saccade target. The
data (N=12; 803 saccades in total) is part of Experiment 1 of a previous study (Lisi, Solomon & Morgan, 2019).
Assuming that the dominating noise source is perceptual, the effective sample size in the current experiment can be
predicted as:

where  is the variance of saccadic errors measured in Lisi, Solomon & Morgan (2019) for a single target,
1.5 is the standard deviation of the generative distribution of blob position in our current experiment, and  the
saccadic variance in the current experiment. One complication in comparing the errors with previous data is that in
the current experiment the eccentricity of the target was relatively stable but the direction could vary across trials
along two semi-circles (as shown in panel  b), whereas in Lisi, Solomon & Morgan (2019) the target was always
horizontally aligned with fixation, but could vary in eccentricity (from 8 to 10 deg). Thus, while in our current
experiment  external  uncertainty  about  direction  of  the  target  was  larger  than  that  about  its  eccentricity  (as
reflected  in  the  vertically  elongated distributions  in  panel  a),  in  the previous  dataset  it  was  the  opposite.  To
circumvent this issue, we averaged variances along radial and tangential dimensions to obtain compound measures of
saccadic variance, and used the formula above to estimate the effective sample size. Panel  c shows the estimate
sample size of each observer (black dots; error bars are standard errors) as well as the average across observers
(grey  horizontal  line;  the  error  band represents  95% confidence  interval).  The estimated  duration  of  saccadic
integration  windows  in  Experiment  3  was  106  msec,  which  would  correspond  to  about  1.6  samples,  a  value
compatible with these estimates. Finally, note that these estimates could be taken as a lower bound: due to late
(motor) noise and possible averaging inefficiencies, the true sample size used by participants may be larger than our
estimates.
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