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Human cortical expansion involves diversification and specialization 
of supragranular intratelencephalic-projecting neurons 

The neocortex is disproportionately expanded in human compared to mouse, both in its total volume relative 
to subcortical structures and in the proportion occupied by supragranular layers that selectively make 
connections within the cortex and other telencephalic structures. Single-cell transcriptomic analyses of 
human and mouse cortex show an increased diversity of glutamatergic neuron types in supragranular cortex 
in human and pronounced gradients as a function of cortical depth. To probe the functional and anatomical 
correlates of this transcriptomic diversity, we describe a robust Patch-seq platform using neurosurgically-
resected human tissues. We characterize the morphological and physiological properties of five 
transcriptomically defined human glutamatergic supragranular neuron types. Three of these types have 
properties that are specialized compared to the more homogeneous properties of transcriptomically defined 
homologous mouse neuron types. The two remaining supragranular neuron types, located exclusively in deep 
layer 3, do not have clear mouse homologues in supragranular cortex but are transcriptionally most similar to 
deep layer mouse intratelencephalic-projecting neuron types. Furthermore, we reveal the transcriptomic 
types in deep layer 3 that express high levels of non-phosphorylated heavy chain neurofilament protein that 
label long-range neurons known to be selectively depleted in Alzheimer’s disease. Together, these results 
demonstrate the power of transcriptomic cell type classification, provide a mechanistic underpinning for 
increased complexity of cortical function in human cortical evolution, and implicate discrete transcriptomic 
cell types as selectively vulnerable in disease.  
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Introduction 

The neocortex is responsible for many aspects of cognitive function and is affected in 
numerous neurological and neuropsychiatric diseases. Great progress has been made in 
understanding the cell types that make up functional cortical circuitry in rodents 1,2,3, but 
our understanding of cortical cell types in human is far more rudimentary due to the 
relative inaccessibility of human brain tissues. A striking feature of the neocortex is its 
disproportionate expansion in surface area, volume, and neuron number in large-brain 
mammals when compared to the expansion measured in subcortical structures 4,5. In 
addition, the basic cortical architecture in primates, including human, shows a 
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disproportionate increase in the upper or supragranular layers 6, whose glutamatergic 
(excitatory pyramidal projection) neurons make connections to other cortical and 
telencephalic brain regions.  

The supragranular cortex in human has been historically divided into layer 2 (L2) and 3 
(with further subdivision of L3 depending on the cortical area), whereas such distinctions 
are not possible in mouse cortex, where supragranular cortex is referred to as layer 2/3 
(L2/3). At the cellular level, rodent L2/3 pyramidal neurons form a relatively 
homogeneous population based on electrophysiological and morphological properties 1,2,7, 
whereas in primates there is clear heterogeneity of neuron density, size, morphology, 
electrophysiology, and gene expression as a function of cortical depth and projection 
target 8,9,10,11,12,4,13,14,15. For example two main anatomical types have been described in 
human that differ in their dendritic morphology (slender- versus profuse-tufted 13). Many 
intrinsic electrophysiological properties show striking variation as a function of depth in 
supragranular cortex, including h-channel function that may facilitate faithful transmission 
of signals for neurons with long apical dendrites 12. Finally, very large neurons in deeper L3 
of non-human primates send long-range (especially ipsilateral) corticocortical projections 
and express the non-phosphorylated form of heavy chain neurofilament protein, as they 
are immunoreactive to antibody SMI-32 (SMI-32ir) 16. This SMI-32ir neuron population is 
preferentially vulnerable to early degeneration and dramatically reduced in late-stage 
Alzheimer’s disease 17,18. Together, these observations suggest that the expansion of 
supragranular cortex in primate evolution supports increased complexity of corticocortical 
circuits, and some of these neuron types show a differential vulnerability in human 
neurodegenerative diseases. 

Single-cell and single-nucleus RNA sequencing (RNA-seq) provides a novel technological 
and conceptual approach to analyze neuronal diversity and to directly target the expanded 
supragranular layers at the level of circuit components 19,20,21. Recent studies using these 
methods provide a comprehensive taxonomy of cell types in mouse and human 
cortex 21,19 and allow the quantitative alignment of cell types across species based on 
conserved gene expression. Of the approximately 100 transcriptomically-defined cell types 
(t-types) described per cortical structure in mouse cortex, three glutamatergic neuron t-
types were found in L2/3 22. Human L2 and L3 were similarly composed largely of three 
abundant glutamatergic t-types, with one of the main types exhibiting striking variation as 
a function of cortical depth 11. Alignment of these transcriptomic cell types between species 
showed that all human supragranular glutamatergic neuron types mapped to 
intratelencephalic (IT) projection neuron types in mouse, with the three most abundant 
human and mouse types all mapping to a single type in cross-species alignment 11. In 
addition to these matched types, which we refer to as “homologous” types,  
several glutamatergic neuron types were observed in deep L3 of human cortex that were 
not found in mouse supragranular cortex. Two of these t-types were most like IT neuron 
types located in mouse L5 and L6. Three additional human t-types found in L3-5 mapped 
best to mouse L4 t-types and likely represent the diffuse boundary between L3 and L4 in 
human cortex. The increased transcriptomic diversity of glutamatergic IT types compared 
to rodent suggests that human supragranular cortex may have other divergent cellular 
properties. 
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To test whether these transcriptomically defined cell types represent functional and 
anatomical differentiation between species, we developed a robust technology platform to 
apply the Patch-seq method 23,24,25 to human cortical tissues from neurosurgical resections 
and directly characterized the physiological and morphological properties of supragranular 
neurons. We demonstrate that the transcriptomic classification is highly correlated with 
other features of human glutamatergic neurons, both for different neuron types and for 
variation as a function of cortical depth within type. Homologous supragranular 
glutamatergic neuron types are more phenotypically diversified, or specialized, from one 
another in human compared to mouse. The most abundant neuron type shows 
graded characteristics in transcriptomic, physiological and morphological properties as a 
function of cortical depth. Finally, increased supragranular glutamatergic neuron cell type 
diversity is seen in human cortex with the addition of distinctive neuron types in deep L3 
that correspond with the vulnerable neuron populations described in Alzheimer’s disease. 

Results 

Human supragranular cortex is more diverse than in mouse 

The expansion of supragranular layers of the cortex in human compared to mouse 4,26 is 
also accompanied by major differences in cell density and neuron size. Here we compare 
human middle temporal gyrus (MTG) and mouse primary visual cortex (VISp). We chose 
this mouse region because of its rich transcriptomic characterization 19,22. Although we 
would prefer to compare identical regions, the magnitude of differential gene expression 
between mouse regions is far less than the difference seen between species 11 thus these 
data facilitate an informative cross-species comparison. We first characterized 
supragranular layers of cortex based on histology. The combined thickness of the relatively 
thin L2 and very thick L3 in human cortex (1.23 ± 0.15 mm) is on average 1.16 times 
greater than the thickness of the entire mouse cortex (1.06 ± 0.01 mm; Fig. 1a). Using 
neuronal (NeuN+) labeling in 25 µm sections, the average density of human neurons was 
27.7 ± 4.5 thousand cells/mm3 (Fig. 1b; left). This distribution is not homogeneous, with 
higher density in L2 that decreases by half to reach a low point in mid L3 (Fig. 1b; right). In 
contrast, supragranular layers of mouse VISp show 6 times the neuronal density of human 
(165 ± 24.9 thousand cells/mm3) with a homogeneous distribution across cortical depth. 
These results are generally consistent with reported values and distributions for mouse 
and human 4. L3 is often divided into 3A, B, and C based on cytoarchitecture 27, but we did 
not observe sharp changes in cell density or soma size that demarcate subdivisions of L3. 
Instead, the average cross-sectional area of neuron somata doubles from L2 to deep L3 in 
human supragranular cortex in a graded fashion but in mouse is remarkably uniform 
across the depth of supraganular cortex (Fig. 1c, left). The interquartile range of mouse and 
human somata were 44 - 96µm2 and 107 - 253µm2, respectively, with the largest human 
somata exceeding 850µm2. Furthermore, variation in deep L3 neuron soma size is four-fold 
higher in human compared to mouse (Fig. 1c, right); this is clearly visible in human 
histological sections with large and small neurons co-mingling (Fig. 1a). Although NeuN 
does not distinguish glutamatergic pyramidal neurons from GABAergic inhibitory neurons, 
the largest neurons in human supragranular layers are pyramidal in shape (Fig. 1a). 
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There is a similarly higher diversity of molecularly-defined, glutamatergic t-types present 
in human compared to mouse supragranular cortex. Single nucleus RNA-seq analysis of 
human MTG identified five glutamatergic t-types (referred to in shorthand by their most 
selective gene marker) with somata predominantly located in L2 and/or L3 11. Similar 
single cell RNA-seq analysis of mouse VISp and ALM only identified three glutamatergic 
L2/3 t-types in each region that are known to be intratelencephalically projecting (IT) 22. 
Quantitative cross-species alignment mapped the three mouse L2/3 t-types 
(Adamts2, Agmat and Rrad) to three of the human t-types (LTK, GLP2R and FREM3); as 
mentioned, we therefore refer to these types as homologous t-types11. The other two 
human t-types (CARM1P1 and COL22A1) were found in deep L3. Though all five human t-
types mapped to the intratelencephalically projecting (IT) mouse subclass, consistent with 
the finding that supragranular cortex is composed solely of corticocortical- and 
telencephalon-projecting neurons, surprisingly these deep L3 human types were more 
similar transcriptomically to infragranular L5 and L6 IT types in mouse 11.  

Here we extend this result to directly compare transcriptomic heterogeneity of 
supragranular glutamatergic neurons between mouse and human. This can be visualized 
using Uniform Manifold Approximation and Projection (UMAP) for dimension reduction 28, 
where the distance between cells approximates overall differences in gene expression, and 
consequently cells from the same t-type group together (Fig. 1d-e). In human, the overall 
distribution forms an extended continuum across the LTK, GLP2R, FREM3 and CARM1P1 t-
types, with COL22A1 cells located on a separate island (Fig. 1d), while similar analysis of 
the mouse L2/3 types showed much more compact distribution (Fig. 1e). As reported 
previously 11, the largest t-type, FREM3, showed a particularly extended graded 
distribution that could be split into depth-dependent subtypes with more lenient clustering 
(Fig. 1d; top right panel) and that varied as a function of cortical layer (Fig. 1d; bottom right 
panel). This within-type heterogeneity can be quantified by comparing variance explained 
by the first principal component (PC) in real versus shuffled data, while accounting for the 
number of cells in each type. This analysis confirms high heterogeneity in FREM3, with 
lower, generally similar, values for all other human and mouse t-types (Fig. 1f). To 
complement this analysis, we calculated the distinctness (or discreteness) between clusters 
as the number of differentially expressed (DE) genes between pairs of types. Homologous 
types are similarly discrete from one another in both mouse in human, whereas the deep 
L3 CARM1P1 and COL22A1 t-types had many more DE genes when compared to the 
homologous t-types (Fig. 1g). Together these results show similar levels of gene expression 
variability between glutamatergic neurons in human L2 and superficial L3 and mouse 
L2/3, with additional within-type variation and distinctive cell types in deep L3 in human.  
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Figure 1: Comparison of human versus mouse supragranular neurons. a) NeuN IHC 
labeling of neurons in human MTG (left, layers 1-4) and mouse VISp (right, all layers). Higher 
magnification insets in upper L2 and deep L3 illustrate the much larger soma size and 
variability in human compared to mouse, particularly in L3. Scale bar: 100µm, main panels; 
50µm insets. b) Left panel: human neuron density through L2 and L3 is much lower than 
mouse. Tick marks show individual donors. Right panel: Normalized histogram of neuron 
density in mouse (red) and human (green) L2/3. The minimum density in human (arrow) 
separates superficial and deep L3. c) Mean (left panel) and standard deviation (right panel) of 
soma area are uniform throughout the depth of mouse L2/3 but increase with depth in 
human. Normalized L2/3 depth is defined as the distance from the L1 - L2 (or layer 2/3 in 
mouse) border to the soma divided by the total thickness of L2 and L3 combined. Green tick 
marks on right Y axis indicate border between L2 and 3 for each human case analyzed. Error 
bars in b and c are SD of metrics across donors. d) UMAP of 2,948 dissociated human nuclei 
collected 11 from L2 and L3 of human MTG using the top 2,000 most binary genes by beta 
score. Cells are color-coded by t-type, with only cells mapping to the five L2 and L3 
glutamatergic types included. Insets show relevant FREM3 nuclei, color coded either by 
subtype assignment 11 or by dissected layer. Note that not all FREM3 cells are assigned to a 
subtype. e) Comparable UMAP of 981 mouse cells 22 mapping to the three glutamatergic L2/3 
neuron types in VISp. f) Human FREM3 t-type shows significantly more within-type 
heterogeneity than any other human or mouse t-type. Bar plots show average variance 
explained by PC1 across 100 subsets of actual versus permuted data (see Methods). Error bars 
show SD. g) Average number of DE genes between the indicated clusters and all other 
homologous human or mouse t-types. CARM1P1 and COL22A1 have more DE genes than other 
human or mouse types.  
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 Patch-seq pipeline for human neurosurgical tissue analysis 

To measure the electrophysiological and morphological properties of living human 
neurons, it is essential to use vital tissue from neurosurgical resections. A number of 
human studies 12,14,15,29,30 have found that surgically excised human neocortical tissues can 
be extracted, sliced, and maintained long enough to perform slice patch clamp experiments 
(all recordings typically take place within ~12 hours of resection, and in some cases much 
later 31). Critically, prior work established that human MTG t-types are consistently 
identified in both post-mortem and neurosurgically resected tissue, making this a suitable 
platform to establish the correspondence between morpho-electric and transcriptomic cell 
types. Thus, we developed a robust technology platform to apply the Patch-seq 
method 23,24,25 to acute slice preparations from human neurosurgically resected cortical 
tissues (Fig. 2a), and targeted pyramidal neurons from L2 and L3. Patch-seq allowed us to 
record from individual neurons while simultaneously filling each neuron with biocytin for 
subsequent imaging and morphological reconstruction. At the end of each experiment, the 
nucleus of the neuron was captured and processed for RNA-seq, resulting in a collective 
readout of single-cell electrophysiology, morphology and transcriptome 
modalities (Fig. 2b).  

Neurons were filtered based on a series of quality-control (QC) steps for each modality (see 
Methods). A total of 385 neurons that passed transcriptomic data QC mapped with higher 
confidence to the five supragranular human glutamatergic t-types than to any other neuron 
type. Most neurons in the dataset preserved enough labeling to determine the relative 
depth of the soma with respect to the pia or the L1 - L2 border. Most neurons (283) also 
had sufficiently complete recordings to calculate electrophysiological features. The subset 
of neurons (109) with sufficient biocytin labeling and intact apical dendrites were imaged 
at high resolution, then subsequently manually reconstructed based on the image. L2/3 
pyramidal neurons from mouse visual cortex were analyzed using the same Patch-seq 
platform 32, resulting in 120 neurons with high-quality electrophysiology and 
transcriptome data mapping to the three L2/3 glutamatergic t-types, and 60 neurons with 
data in all three modalities.  

Detailed histological assessment of human surgical tissue 

A major impediment in the field regarding utilization of human neurosurgical tissue for 
functional studies has been the implicit assumption that patient-derived tissue specimens 
are inherently pathological or unhealthy, even for resected tissue distantly located from the 
pathological focus, thereby precluding basic discoveries about the healthy human brain. Yet 
prior studies have provided evidence to challenge this assumption, suggesting that 
surgically-resected cortical tissue slices were healthy and that pyramidal neuron 
morphology and physiology were largely comparable for tumor-derived versus epilepsy-
derived tissue specimens, indicating the absence of overt disease-specific cellular 
pathology 12,14,31. To address this important issue further, we established a platform for 
comprehensive histological assessment of human surgical cases and performed an 
independent quantitative analysis to test for correlations or alterations in neuronal 
properties with respect to cellular markers of pathology. 
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Figure 2: Human Patch-seq pipeline workflow and quantitative histological 
assessment of surgical tissue specimens. a) Example resected tissue specimen from human 
middle temporal gyrus is processed into a series of 350 µm-thick slices according to a 
standardized sampling plan. b) Workflow for patch clamp recording using standardized 
stimulus protocols and feature extraction code (1), followed by RNA-seq on extracted 
nucleated patches (2). Slices are stained with DAPI and biocytin-filled neurons are visualized 
with DAB as chromogen, imaged, and digitally reconstructed for morphological feature 
calculation and analysis (3). c) Immunohistochemistry and imaging on human surgical 
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specimens using a panel of cellular markers, as indicated. Images were scored independently 
by three neuropathologists (from 0-3, where 0 is normal and 3 is most pathological), and the 
scores were averaged. Full image series are shown for the donor with the lowest (top) and 
highest (bottom) average marker score, demonstrating the range of cases in the study. Insets 
reveal cellular details. Scale bars: 50 µm for all insets and 100 µm for larger panels. Individual 
marker scores are indicated below each image. d) Histograms for four cellular markers across 
all donors, and for the average score across all markers in aggregate by donor (N=number of 
cases). e) Summary of statistical analysis comparing calculated electrophysiological features 
from recorded neurons in low (0-1) vs. high (1-3) score bins for GFAP and IBA1 cellular 
markers. P-values are shown as -log10(p-value). f) Summary plots of four selected 
electrophysiological features: Time constant (tau), Resting Membrane Potential (RMP), Input 
Resistance (Ri), and Voltage sag (sag) comparing neurons in low vs. high score bins for GFAP 
(blue/cyan) and IBA1 (purple/pink). Asterisk (*) indicates p<0.05 (Bonferoni corrected). 
Boxes show median and quartiles, whiskers show trimmed range without outliers >1.5 IQR 
beyond quartiles. Individual neuron data points horizontally jittered for clarity. GFAP low: 60 
neurons; GFAP high: 125 neurons; IBA1 low: 170 neurons and IBA1 high: 15 neurons. 

We included several well-established histological markers for evaluating cellularity (Nissl), 
neuronal density and layer orientation (NeuN), astrogliosis (glial fibrillary acidic protein, 
GFAP), microglial activation state (IBA1), non-phosphorylated neurofilament-H (using 
antibody SMI-32), and cellular proliferation (Ki-67). Immunostained tissue sections were 
digitized, compiled by donor, and independently scored by three neuropathologists using a 
4-point scale, where 0 is normal and 3 is overtly pathological (see Methods). To show the 
range of surgical tissue cases included in this study, images from the case with the lowest 
average score (mean of 6 marker scores = 0.06) are contrasted with images from the case 
with the highest average score (mean of 6 marker scores = 1.83) (Fig. 2c). In the highest-
scored case, cellular abnormalities were clear, including astrogliosis, microglial activation, 
and the presence of Ki-67+ cells. However, this was rare, and most cases had average 
scores <1.0 (Fig. 2d), a range considered not overtly pathological. In addition, we found 
very low correlation of the 6 cellular markers with each other, with only Ki-67 and Nissl 
(cellularity) being modestly correlated (Extended Data Fig. 1). Taken together, the low 
correlation among the various markers and low range of average scores indicate a lack of 
pathology for the vast majority of surgically-resected cortical tissue samples in this study. 

To assess the relationship between pathological scores and physiological properties, we 
binned all supragranular glutamatergic neurons derived from cases with average scores 
between 0-1 (low) and 1-3 (high) and directly compared the electrophysiological features 
of neurons with low versus high scores. For every neuron we calculated 18 
electrophysiological features including input resistance (Ri), membrane time constant 
(tau), spike frequency adaptation (adaptation), voltage sag, resting membrane potential 
(RMP), and various spike-related features (Fig. 2e). Comparisons were made only if there 
were at least 10 neurons in low and high groups for each cellular marker. As such, our 
analysis was limited to GFAP and IBA1 markers (the markers with the widest spread of 
scores). Other markers such as SMI-32 and NeuN were highly skewed toward 0, such that 
all neurons derived from these markers would fall into the low bin, precluding further 
analysis. Among the 18 electrophysiological features analyzed for GFAP and IBA1, only one 
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feature (resting membrane potential, RMP) related to IBA1 was significantly different 
between low versus high groups. Neurons in the high IBA1 group were approximately 5 mV 
more hyperpolarized at rest than neurons in the low IBA1 group (Fig. 2f). The remaining 
17/18 features for IBA1 and all 18 features for GFAP were not statistically different 
between low and high groups, indicating that high scores for these specific cellular markers 
are overall not associated with aberrant intrinsic electrophysiological properties. This lack 
of association between pathology and electrophysiology can also be seen at the aggregate 
level in a UMAP projection of all electrophysiological features (Extended Data Fig. 2) - cells 
split by pathology (tumor/epilepsy) are distributed in an unstructured manner across the 
dataset (as are splits by other available patient characteristics including age and gender).  
 

 

Figure 3: Classification of human Patch-seq neurons from supragranular cortex based 
on transcriptomics. a) Density scatter plot showing the average expression of homologous 
genes between the three human and mouse homologous types in dissociated cells and nuclei 
(left), and between dissociated nuclei and Patch-seq cells in human (right). Dashed lines 
indicate two-fold enrichment, with number of DE genes shown in the off-diagonal corners. p~0 
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for both plots. b) Joint UMAP of dissociated human nuclei from Fig. 1d and 385 glutamatergic 
Patch-seq neurons from supragranular cortex in MTG. Patch-seq neurons are classified using 
Seurat and then displayed in the same UMAP space as dissociated nuclei. Left plot shows cells 
color-coded by collection strategy. Right plot shows only Patch-seq neurons color-coded by 
mapped t-type. c) Joint UMAP of dissociated mouse cells from Fig. 1e and 133 glutamatergic 
Patch-seq neurons from supragranular cortex in VISp, which were classified as described for 
mouse GABAergic neurons 32. Panels and labels as in b. d) Depth distribution of neurons in 
human and mouse supragranular cortex, grouped and colored by t-type. Top plot shows depth 
from pia in µm. Bottom plot shows scaled depth within L2/3. Boxes show median and 
quartiles, whiskers show trimmed range without outliers >1.5 IQR beyond quartiles. 
Individual neuron data points horizontally jittered for clarity. e) Location of t-types within the 
cortex (indicated by red dot) demonstrated using multiplex FISH. Layer boundaries indicated 
by black lines. Mouse cortex is aligned to human cortex at the L1/L2 border. T-type is 
indicated below each image along with t-type specific color bar. Scale bar: 100 µm.  

High-confidence Patch-seq neuron t-type mapping 

A key component of our Patch-seq approach is reliable mapping of Patch-seq cells to t-
types. This issue is particularly important when analyzing individual neurons from many 
human individuals (potential donor-to-donor variability) undergoing neurosurgical 
procedures (potential disease or injury signatures). Our prior report describing the t-type 
classification used here 11 demonstrated that t-types were robust across individuals and 
between acute neurosurgical and postmortem frozen tissues and could be validated in 
independent donors with multiplex fluorescence in situ hybridization (mFISH) panels 
derived from these data to confirm their laminar localization. However, neurons collected 
via Patch-seq can exhibit contamination not seen in dissociated cells 33, arising from 
adjacent neurons and/or non-neuronal cells that enter the patch pipette. Furthermore, 
capturing only a portion of a neuron’s content could lead to increased variability and false 
negatives (dropouts). Indeed, we found much more reliable mapping when the cell nucleus 
was extracted, presumably due to a more consistent amount of cellular RNA and perhaps 
also to occlusion of the pipette opening by the nucleus against contamination.  

To quantify the effect of contamination and gene dropout, we compared median gene 
expression levels of homologous t-types between platforms and between species (Fig. 3a). 
Expression data from dissociated mouse whole cells and human nuclei were moderately 
correlated (R=0.57, p~0, Fig. 3a, left), but with higher gene detection in whole cells, as 
previously shown 21. By comparison, dissociated nuclei and Patch-seq cells from matched 
human t-types were highly correlated (R=0.85, p~0, Fig. 3a, right). Relatively few genes 
(177 genome-wide) showed enriched expression in dissociated nuclei relative to Patch-seq 
cells, suggesting that high quality transcriptomes collected in this data set do not show the 
increased dropout rate reported in our previous study 32. This is likely because we are 
comparing our human Patch-seq cells to a reference of dissociated human nuclei, rather 
than dissociated mouse cells. In contrast, we identified 2,670 genes with at least four-fold 
enrichment in Patch-seq, including genes associated with extra-nuclear compartments such 
as the mitochondria (p<10-12) and ribosome (p<10-9), genes regulating cell death (p<10-18), 
RNA-binding genes (p<10-8) including immediate early genes, and markers for non-
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neuronal cells such as microglia (p<10-20). Some of the top genes in these categories 
include COX3, FOS, and IL1B, which all show >100-fold enrichment in Patch-seq cells. These 
results indicated that Patch-seq cells likely contain some RNA collected from extra-nuclear 
compartments and from nearby contaminating cells (particularly microglia) and may show 
some activity-dependent transcription. However, these effects are minor compared to 
species differences and we find overall high consistency and similar quality between Patch-
seq cells and dissociated nuclei. 

Data alignment methods have been developed to match t-types across conditions where 
variability across data sets is dramatically higher than variability between t-types 34,35,36. 
These strategies have been successful for comparisons of cells in different cortical regions 
or even in different species using the t-type classifications used in the current study 11,37,22. 
Here, human Patch-seq cells were mapped using the cell type classification workflow in 
Seurat (V3) 34,35, after first filtering out genes potentially associated with the undesirable 
sources of variation described above (also see Methods). Additionally, many neurons 
patched in mouse (but not human) supragranular cortex co-expressed GABAergic and 
glutamatergic genes; therefore, mapping of mouse neurons included an additional filtering 
step requiring expression of intronic reads that map to glutamatergic t-types as well as use 
of an extended reference data set (Methods). After alignment, Patch-seq cells intermix with 
dissociated cells and nuclei in a low-dimensional UMAP projection space in both human 
(Fig. 3b) and mouse (Fig. 3c), and cells assigned to the different t-types are generally co-
localized in distinct locations in this space, indicating good agreement between platforms. 

Biocytin staining facilitated identification of the precise cortical depth for each neuron and 
demonstrated a clear sublaminar distribution for each t-type in human L2 and L3 and in 
mouse L2/3 (Fig. 3d). In human, these sub-laminar Patch-seq distributions were 
remarkably consistent with histological mFISH-based spatial t-type distributions (Fig. 3e; 
described previously for L3 and L4 t-types 11) and layer dissections in the original studies 
that used dissociated cells and nuclei 11,22. Depth distributions were also generally 
consistent between Patch-seq and mFISH for the three L2/3 glutamatergic t-types in mouse 
(Fig. 3e). Human LTK neurons were found primarily in L2 and in the border region of L2 
and L3. GLP2R neurons were found primarily in upper L3, with some neurons found in L2. 
FREM3 neurons spanned L2 and L3, continuing into L4, consistent with their 
heterogeneous gene expression profile. CARM1P1 and COL22A1 were found almost entirely 
in deep L3 and along the L3/L4 border. Mouse L2/3 transcriptomic types also overlapped 
within sub-laminar space. Rrad and Adamts2 neurons were located closer to the L1-L2/3 
border, while Agmat neurons were more broadly distributed and had a greater frequency 
in deep L2/3. Collectively, these results indicate that Patch-seq data are consistent with 
reference classifications from dissociated cells or nuclei and that mapping can be robust 
despite many potential sources of technical noise and technical variation in human cases. 
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Figure 4: Human L2 and L3 glutamatergic t-types show greater morphological and 
electrophysiological differentiation than their homologous mouse L2/3 glutamatergic 
t-types. a) Morphology and electrophysiology descriptions of the three prominent human L2 
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and upper L3 glutamatergic neuron types: LTK, GLP2R, and FREM3. In each panel, 
morphology is described on top: Left, 4 representative examples of morphological 
reconstructions from each t-type. Scale bar = 250 µm. Right, Histogram of the average apical 
dendrite branch density (normalized to the maximum value for each t-type) for all 
reconstructed cells from each t-type. Bottom panels compare the intrinsic electrophysiological 
responses for 66 LTK, 25 GLP2R and 136 FREM3 neurons. For each panel, colored lines are 
individual neurons, solid black line represents the mean of all neurons in that t-type, dashed 
gray line represents the global mean of the other 2 homologous t-types in that species. Left is 
an overlaid response to -70 and -30 pA current injections (scale bar = 10 mV, 1.0 s), center left 
are hyperpolarizing pulses normalized to their peak deflection to allow for a sag comparison, 
shown is the range -0.5 to -1.0 (scale bar = 0.5 s). Right is a representative suprathreshold 
spiking response (top, scale bar = 20 mV, 0.5 s), and the normalized instantaneous firing rates 
for a suprathreshold pulse, demonstrating the neuron’s firing rate adaptation (bottom, scale 
bar = 0.5 s). b) Morphology and electrophysiology descriptions of the three L2/3 
glutamatergic t-types in mouse visual cortex: Adamts2, Rrad, and Agmat. Panel descriptions 
are the same as in (A). Scale bar = 250 µm. Electrophysiological responses are shown for 9 
Adamst2, 43 Rrad and 55 Agmat cells. c) and d) UMAP representation of electrophysiology 
and morphology space (left in each panel) generated from calculated features in each 
modality. Right panel in each shows the same feature space projected onto sparse principal 
components (SPCA), with contributing features listed on each axis. e) and f) Effect size 
(explained variance) for one-way ANOVA of each electrophysiology (e) and morphology (f) 
feature vs. t-type for human (green) and mouse (red). Stars indicate significance at FDR 
(False Discovery Rate) < (0.05, 0.01, 0.001). Boxplots on right show data distribution by t-type 
for the four features with the largest effect size in human. Gray bars indicate significant 
pairwise comparisons (p<0.05, FDR-corrected Mann-Whitney test). Boxes show median and 
quartiles, whiskers show trimmed range without outliers >1.5 IQR beyond quartiles. 
Individual neuron data points horizontally jittered for clarity. 

Increased morpho-electric specialization in human L2-3 t-types 

We first analyzed the three homologous L2 and L3 human and L2/3 mouse t-types, 
focusing on two main questions. Are there distinguishing morpho-electric phenotypes of t-
types, and are they more distinct from one another in human versus mouse? The morpho-
electric properties of these three t-types in aggregate were very consistent with previous 
reports of slice physiology recordings from human L2 and L3 pyramidal neurons 12,13, 
indicating that the Patch-seq method facilitates comparable analyses. However, with the 
transcriptome as the basis, human t-types showed clear qualitative morpho-electric 
differences (Fig. 4a; Extended Data Fig. 3). One of the most obvious differences between 
human t-types was cell size (e.g., dendrite height and total length), necessarily varying 
dramatically given the large thickness of human supragranular cortex and the laminar 
selectivity of different t-types with apical dendrites that extend to L1. LTK neurons were 
found primarily in L2 and upper L3. Morphologically, they were relatively short, but 
extended multiple apical branches into L1. Electrophysiologically, they exhibited a regular 
firing pattern with little firing rate adaptation and no sag. GLP2R neurons were found just 
deeper than LTK neurons, primarily in upper L3. They tended to have fewer dendritic 
branches for their longer apical extent, and often had a distinct apical tuft in L1. 
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Electrophysiologically, GLP2R neurons exhibited LTK-like electrophysiology, lacking 
adaptation and higher input resistance, but differed from LTK neurons in that they had 
pronounced sag. The FREM3 t-type represented 56.7% of supragranular glutamatergic 
neurons collected in L2 or L3 dissections 11, with a laminar distribution that spanned the 
entire distribution of LTK and GLP2R and had morpho-electric properties that were 
overlapping but distinct from those t-types. FREM3 neurons varied from small neurons in 
upper L2 to very large neurons in the deeper part of L3 and had a gradient of morpho-
electric properties like the graded transcriptional properties described above. Upper 
L2 FREM3 neurons had an apical dendrite restricted to L1 and L2 and regular firing while 
the large, deep L3 FREM3 neurons had an apical dendrite that spanned L1-3 and a heavily 
adapting firing rate (described further below). Apical dendrites of FREM3 and LTK neurons 
branched much closer to the soma than GLP2R neurons at the same depth, resulting in 
more radial branching across layers. 

Mouse L2/3 t-types also had heterogeneous electrophysiological and morphological 
properties, but in general were more like one another than the human t-types (Fig. 4b; 
Extended Data Fig. 4). As mentioned, each of the three t-types had distributions spanning 
all of L2/3, although there was a trend for Adamts2 and Rrad to be more superficial (Fig. 
3e). Similarly, each of these t-types contained neurons with wide and tufted 
branching 2,38,39. Since we are comparing non-homologous brain regions between species, 
we verified that the electrophysiological differences between L2/3 glutamatergic neurons 
in mouse visual cortex compared to mouse temporal association area (TEa), a region of 
rodent cortex previously used for human temporal cortex comparisons 12,40,41,42, were far 
smaller than those seen between mouse VISp and human temporal cortex (Extended Data 
Fig. 5).   

To quantify the magnitude of differences between and within transcriptomic types, we 
calculated 18 electrophysiological features that characterize passive, single action 
potential, and suprathreshold properties as well as 60 morphological features that capture 
the extent and complexity of basal and apical dendrites, their distribution across cortical 
layers and soma position. In UMAP representations of the combined human and mouse 
electrophysiology and morphology data (Fig. 4 c and d), human and mouse neurons occupy 
separate islands, reflective of the number and magnitude of differences in morpho-electric 
properties (Extended Data Table 1). A sparse principal component analysis (SPCA) 
projection of the electrophysiological features (Fig. 4c right) was used to select small 
groups of features that determine two axes of greatest variability across the dataset. The 
first (y-axis) is dominated by features largely related to passive properties (e.g., dendrite 
surface area and membrane composition), including membrane time constant and input 
resistance. Variability along the second (x-axis) principally differentiates between human 
neurons and is explained by properties like adaptation rate and sag that are less clearly 
related to neuron size. Likewise, an SPCA projection of morphological features (Fig. 4d 
right) shows that features related to the total size of apical dendrites (length, volume, and 
surface area) and the spatial extent of apical and basal dendrites best explain the species 
differences, while additional basal dendrite size features capture further variability 
between human neuron t-types. 
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To quantify the degree of separation or overlap in different features between mouse and 
human t-types, we ran a one-way ANOVA for the effect of t-type on each calculated 
electrophysiology and morphological feature. For electrophysiological features (Fig. 4e), 
3/18 showed differences between t-types that explained >10% of feature variance (R2>0.1) 
for both human and mouse (FDR<0.05 for mouse features, <10-5 for human). However, the 
mouse types were distinct in input resistance and two related AP shape features (width 
and downstroke) with a maximum R2 =0.12, while the human types showed distinct firing 
properties (f-I slope and rheobase) in addition to input resistance, with a maximum R2 
=0.16. For morphological features (Fig. 4f), 16/60 features had R2 >0.15 between the 
human t-types (FDR<10-3), compared to 12/60 for the mouse t-types (with 10/12 
significant at FDR<0.05). This quantitative analysis confirms the qualitative observation 
that the main supragranular human t-types are more morpho-electrically specialized from 
one another than their mouse homologues, primarily in terms of morphology, but with a 
moderate contrast in electrophysiology as well.  

Finally, we also quantified to what degree this morpho-electric differentiation can be used 
to differentiate among the human t-types and mouse t-types, training a random forest 
classifier to predict t-type identity using electrophysiological or morphological features. 
Homologous human t-types were predicted with 67% accuracy using 
electrophysiological features, while mouse t-types were predicted with 54% 
accuracy. Classifying based on morphological and electrophysiological features combined 
resulted in slightly improved performance of 69% for human neurons and 60% for mouse 
neurons (Extended Data Fig. 6). This moderate cross-species contrast in predictability 
reinforces the contrast in t-type differentiation from ANOVA, although the overall accuracy 
is low, limited in part by low cell numbers for some human and mouse t-types. 
Additionally, in both analyses the between-type variability in the human t-types may be 
partially obscured by the significant variability within the FREM3 t-type, as discussed 
below. 

Human FREM3 t-type exhibits depth-dependent morpho-electro-
transcriptomic variation 

As described above, the FREM3 t-type displays graded features as a function of cortical 
depth. Anatomically, FREM3 neurons span the full depth of L2 and L3 and send apical 
dendrites to L1, at distances of > 1 mm, which is greater than the entire thickness of mouse 
VISp (Fig. 3d, 5b). Transcriptomically, FREM3 is also the most heterogeneous t-type among 
the human L2/3 glutamatergic t-types, exhibiting graded gene expression that correlates 
with the cell’s inferred laminar location based on relatively coarse laminar dissections (Fig. 
1d and 11). Patch-seq laminar positions confirm this depth vs. transcriptome relationship 
directly. UMAP plots of the FREM3 neuron population generated based on transcriptomic 
data reveal a clear relationship between soma depth and gene expression (Fig. 5a). 
Superficial neurons with somata in L2 and upper L3 (<500 µm from the border of L2 and 
L3) mostly appear at the top of the transcriptomic UMAP space and transition gradually 
into neurons with somata located 500-1000 µm from this border (Fig. 5a). Deep L3 
neurons (1500 µm) all appear at the bottom of the transcriptomic UMAP space with a 
partial separation between the superficial and deep sub-regions. Similarly, multiple 
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electrophysiological and morphological features (apical and basal dendrites) vary 
continuously with depth (Fig. 5b, c) in agreement with previous findings 13,14,12. Graded 
change in morphological phenotype across the cortical depth is shown in the 
representative morphological reconstructions in Figure 5b. Graded change in 
electrophysiological properties, including sag and action potential latency, is shown in the 
raw traces colored by soma depth in Figure 5c. 

To explore the full range of depth-related variation across all data modalities, we calculated 
correlations with normalized L2/3 depth for each electrophysiological, morphological and 
gene feature. Nine out of 18 physiological features were significantly correlated with depth 
(FDR<0.05, 7/18 FDR<0.01; Supplementary Data 1). The three strongest electrophysiology 
correlations with depth were the increase in sag and AP (Action Potential) upstroke / 
downstroke ratio and the decrease in AP latency at rheobase (Fig. 5c). 37 out of 58 
morphological features were correlated with depth (FDR<0.05, 28/58 FDR<0.01). While 
features like apical height are effectively constrained to follow the distance from the soma 
to L1, many functionally independent features were also strongly correlated, including the 
maximum length of basal dendrites (Fig. 5b) and soma radius (Extended Fig. 11; 
Supplementary Data 1). 790 genes were correlated with depth (FDR<0.05) and GO (gene 
ontology) enrichment analysis on this gene set revealed a variety of significantly enriched 
functional categories (Fig. 5d, Supplementary Data 1) that predict functional variation in 
different neuronal phenotypes. Graded genes were enriched for genes associated with 
synaptic transmission, and developmental processes like cell migration and neuron 
projection morphogenesis. For example, the receptor tyrosine kinase gene MET is 
implicated in neuronal growth, synaptic function and cortical circuit function, while Netrin-
G1 (NTNG1) is involved in axonal and dendritic outgrowth associated with specific circuit 
formation. These molecular differences suggest differences in neuronal connectivity 
in FREM3 neurons as a function of their laminar position.  

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 2, 2020. ; https://doi.org/10.1101/2020.03.31.018820doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.31.018820
http://creativecommons.org/licenses/by-nd/4.0/


18 
 

 

Figure 5: Morpho-electric-transcriptomic features of FREM3 neurons vary according to 
laminar depth. a) FREM3 neurons plotted in transcriptomic UMAP space (as in Fig. 3c). Each 
cell is colored based on its relative position within L2-3. Depth color scale shown at 
right. b) FREM3 neurons exhibit a range of sizes for morphologies spanning L2-3. Scale bar = 
250 µm. Apical height and basal maximum (max) branch distance are positively correlated 
with depth. For (b-d), all regressions shown are significant at FDR<10-7. c) Top, 
electrophysiology data traces colored based on each neuron’s relative position within L2-3 
(scale at right). Top left, hyperpolarizing pulses normalized to their peak deflection to allow 
for a sag comparison (N=124). Top middle, overlaid first action potential during a rheobase 
current injection (scale bar = 25 mV, 1.0 ms, traces aligned to the time of threshold), as well as 
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the corresponding phase plots (x axis, mV; y axis, mV/ms). Top right, Initial action potentials 
at rheobase for FREM3 neurons (N = 141) aligned to the time of stimulus onset. Bottom, 
summary plots show in FREM3 neurons that sag and action potential (AP) upstroke / 
downstroke ratio are positively correlated with depth while latency to AP firing at rheobase is 
negatively correlated with depth.  d) Representative gene examples for three GO categories 
with pronounced depth dependence of expression in FREM3 neurons, chemical synaptic 
transmission, neuron projection morphogenesis, and regulation of cell migration.  

Deep L3 human glutamatergic t-types are morpho-electrically distinct 

The CARM1P1 and COL22A1 human t-types do not have homologous types in mouse 
supragranular cortex, although they were shown to be most like glutamatergic IT types in 
deeper infragranular layers of mouse cortex 11. This could be interpreted as a species 
difference in cellular migration of conserved types to different laminar positions; however, 
the deeper L3 FREM3 neurons taken alone also map best to infragranular mouse IT t-types 
(data not shown). Rather, there appears to be an overall shift in transcriptomic similarity 
by depth of human neurons to mouse neurons such that deeper L3 is more like L5 and L6 
in mouse, and CARM1P1 and COL22A1 t-types likely represent evolutionarily new types in 
human (and at least other primate species (Bakken et al., bioRxiv 2020)). This finding is 
consistent with previous work 43 that uncovered a set of genes showing a dramatic shift 
from L5 expression in mouse cortex to expression in large L3 pyramidal neurons in human 
temporal and visual cortex.  

The morpho-electric properties of CARM1P1 and COL22A1 neurons differed markedly from 
the human L2 and L3 homologous types (Fig. 4; Extended Data Fig. 7) and each other (Fig. 6 
a-d). Though CARM1P1 and COL22A1 neurons co-mingle with the largest FREM3 neurons 
and also have large somata (Extended Data Fig. 8), they are restricted to the deepest part of 
L3 where they form a highly diverse set of putative IT projection neuron types. In order to 
understand how CARM1P1 and COL22A1 differ from these deep FREM3 neurons 
specifically, we split the FREM3 t-type by depth, with the neuronal density minimum in L3 
as a dividing line (L2/3 depth = 0.575; Fig. 1c), and directly compared the morpho-electric 
properties of these deep types. In contrast to deep FREM3 neurons, the CARM1P1 t-type 
exhibited extensive proximal apical oblique and basal dendritic branching (Fig. 6a). In 
fact, CARM1P1 neurons had the largest total dendritic length of all the L2 and L3 t-types, 
despite having a shorter apical dendrite length on average. Electrophysiologically,  
CARM1P1 neurons exhibited a faster action potential upstroke than the other deep types 
(Fig. 6c). This extensive dendritic branching did not predict a lower input resistance, which 
was higher than deep FREM3 neurons (Fig. 6c).  

COL22A1 differed notably from CARM1P1 and deep FREM3 neurons. COL22A1 had very 
sparse dendritic branching (Fig. 6a). The primary apical dendrite branched near the soma 
and extended just one or two branches into superficial layers. Minimal L1 branching was a 
consistent feature of the deepest L3 glutamatergic neurons across multiple t-
types. COL22A1 neurons exhibited very high input resistance (Fig. 6c) and thus were the 
most responsive to current injection, displaying a steeper firing frequency to current input 
gain relative to the other deep L3 t-types. Interestingly, COL22A1 neurons showed a smaller 
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amount of sag than CARM1P1 neurons (Fig. 6b) located at an equivalent distance from pia, 
indicating that this property is t-type-specific rather than depth-specific.  

Repeating the ANOVA analysis of electrophysiological and morphological features with 
these three deep types showed that as a group they are quantitatively as well as 
qualitatively more distinct than the three human homologous L2 and L3 types described in 
Fig. 4. ANOVA differences were seen in 15 out of 18 electrophysiological features and 24 
out of 60 morphological features (FDR<0.05) (Supplementary Data 1). Many of these 
features showed very large effect sizes, with the variance explained by type surpassing 
40% (R2>0.4) for 4 electrophysiological and 20 morphological features, while no features 
met this threshold for the three homologous types (maximum R2 =0.26).  

To understand transcriptional differences that may be predictive of phenotypic differences 
between CARM1P1, COL22A1, and deep FREM3 neurons, we used genesorteR 44 with 
slightly relaxed parameters (quant = 0.7) to identify DE genes selective for one or two of 
these three t-type sets, and found 219 such marker genes (Extended Data Fig. 9). Since 
dissociated nuclei were not collected using sublaminar dissections, deep FREM3 neurons 
were defined as FREM3 neurons dissected from L3 or L4 that were assigned to subtype f73 
(Fig. 1), which colocalizes with deep FREM3 Patch-seq neurons in UMAP space (Fig. 3c, 5a). 
Furthermore, 77 of these 219 marker genes (including four genes shown in Fig. 6e) were 
also defined as marker genes by Patch-seq, where cortical depth was explicitly measured, 
suggesting the selection of deep FREM3 neurons in dissociated nuclei was reasonable.  

Differences in morpho-electric properties of the three deep L3 t-types were reflected in DE 
genes enriched for GO terms associated with neuronal connectivity, structure, and synaptic 
signaling, including axon (p=3.5 10-6; Bonferroni corrected), synapse (p=5.3 10-5), calcium 
ion binding (p=0.008), and extracellular matrix organization (p=0.00002). For example, 
cannabinoid receptor type 1 (CNR1) is highly expressed in the COL22A1 t-type but not in 
the CARM1P1 t-type (Fig. 6e), implying a cell-type specific difference in the effects of 
cannabinoid compounds. In contrast, both PHLDB2 and COBLL1 are highly expressed 
in COL22A1 and CARM1P1 t-types, with PHLDB2 displaying slightly more specific 
enrichment of expression in these t-types. COBLL1 is a morphogenesis-associated gene that 
has been shown to promote dendrite branching and the formation of actin filament 
membrane ruffles 45. Similarly, PHLDB2 localizes to dendritic spines of hippocampal 
neurons where it plays an important role in regulation of long-term potentiation by 
affecting the density of glutamate receptors, and knockout of this gene impairs the 
formation of memories in mice 46. KCNK2, which shows relatively selective expression in 
COL22A1 neurons, is a potassium channel, which can convert between voltage-insensitive 
potassium leak current and voltage-dependent outward rectifying current depending on 
phosphorylation 47, and knockdown of this gene in mice impairs the migration of late-born 
neurons destined to become glutamatergic neurons in L2/3 48.  

Differential connectivity patterns of glutamatergic neurons have been described in L3 of 
macaque temporal cortex based on immunolabeling for the SMI-32 antibody that 
recognizes non-phosphorylated epitopes of the neurofilament heavy chain 16. SMI-32ir 
neurons preferentially make long-range ipsilateral projections, whereas neurons that are 
not SMI-32ir tend to make more proximal local projections 16. Furthermore, the SMI-32ir 
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L3 neurons show selective vulnerability in AD 17,18. These observations in monkey are 
consistent with our finding that connectivity-related genes vary between t-types. To assess 
the relationship between deep L3 t-type and projection phenotypes we combined SMI-32 
immunoreactivity with mFISH for markers of FREM3, CARM1P1 and COL22A1 neurons (Fig. 
6f). The large FREM3 and CARM1P1 neurons were SMI-32ir, while COL22A1 neurons were 
not SMI-32ir. Furthermore, the gene coding SMI-32, NEFH, also shows increased expression 
in deep FREM3 and CARM1P1 relative to COL22A1 and all the superficial glutamatergic t-
types (Fig. 6e). This finding creates a putative link between transcriptomically-defined cell 
types, long-range target specificity, and vulnerable neuron populations in AD.  
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Figure 6 (previous page): Human deep L3 glutamatergic t-types are morphologically 
and electrophysiologically distinct. a) Top panels, representative morphological 
reconstructions of the two deep human L3 glutamatergic t-types, CARM1P1 and COL22A1 
neurons, compared to the deep FREM3 neurons. Scale bar = 250 µm. Bottom panels, 
histogram of average apical dendrite branch length (normalized to the maximum value for 
each t-type) for all reconstructed neurons from each t-type. b) Electrophysiological 
description of the intrinsic electrophysiology responses of 21 deep FREM3, 17 CARM1P1 and 
37 COL22A1 neurons. For each panel, colored lines are individual cells, solid black line 
represents the mean of all neurons in that t-type, dashed gray line represents a global mean 
across the other two deep human t-types. Top left is an overlaid response to -70 and -30 pA 
current injections (scale bar = 10 mV, 1.0 s); bottom left are hyperpolarizing pulses 
normalized to their peak deflection to allow for a sag comparison (scale bar = 0.5 s), shown is 
the range -0.5 to -1.0. Center top shows overlaid first action potential during a rheobase 
current injection (scale bar = 25 mV, 1.0 ms), center bottom is the corresponding phase plot (x 
axis, mV; y axis, mV/ms). Top right is a representative suprathreshold spiking response (scale 
bar = 20 mV, 0.5 s), and bottom right are the normalized instantaneous firing rates for a 
suprathreshold pulse, demonstrating adaptation of firing rate (scale bar = 0.5 s). Bottom: 
histogram of rheobase current injections (left axis) and frequency to current relationships for 
each neuron (right axis), normalized to the mean rheobase current for each t-type. c and d) 
Summary of electrophysiology (c) and morphology (d) features that discriminate the three 
deep t-types from each other. Features shown were selected from significant ANOVA results 
(FDR<10-7 in c, FDR<10-2 in d). Gray bars indicate significant pairwise comparisons (p<0.05, 
FDR-corrected Mann-Whitney test). Boxes show median and quartiles, whiskers show 
trimmed range without outliers >1.5 IQR beyond quartiles. Individual neuron data points 
horizontally jittered for clarity. e) A selection of five marker genes that are differentially 
expressed in the deep L3 human t-types. f) SMI-32 immunostained MTG tissue. FREM3  
and CARM1P1neurons that are SMI-32ir indicated by pink dots and those not SMI-32ir 
indicated by blue dots. Layer boundaries indicated at left of image, Scale bar = 100 µm. 
Representative SMI-32 immunoreactivity photomicrographs, along with mFISH for t-type 
specific genes shown for FREM3 (top) and CARM1P1 (middle) t-types. At right, representative 
mFISH composite images showing labeling for DAPI, neurofilament H, CARTPT and RORB in 
the same cell. White box indicates region of image shown at right where  CARTPT  
and RORB are shown separately and then combined.  At bottom, representative mFISH 
composite images showing labeling for DAPI, neurofilament H, and t-type-specific genes 
for LTK t-type (LAMP5 and LTK), GLP2R t-type (CUX2 and GLP2R) and COL22A1 t-type 
(COL22A1 and RORB) Scale bar = 10 µm. Marker gene expression in Extended Data Fig. 10).  

Discussion 

Understanding the fundamental cellular components of cortical circuits has been a major 
goal of neuroscience from the time of Ramón y Cajal 49. However, a robust, quantitative, 
widely agreed upon definition of cell types and delineation of cellular diversity has been 
elusive due to the high degree of cellular complexity and low-throughput techniques 
available for cellular analysis that lead to underpowered statistical analyses. This challenge 
is compounded in human cortex, where limited access to tissue, high variation across 
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individuals, and lack of reliable genetic tools have severely limited progress. Recent 
advances in single-cell or single-nucleus transcriptomics have revolutionized our 
understanding of cellular diversity. Recent studies involving tens of thousands of cells from 
single cortical regions in mouse and human have derived cellular classifications, based on 
similar patterns of gene expression, that appear to mirror many aspects of cellular 
cytoarchitecture, function, and developmental origins 22,11. In principle, the transcriptome 
represents the complete set of genes coding for cellular phenotypes, but for the most part 
the high degree of neuronal diversity described by transcriptomics analyses remains to be 
validated as meaningful by demonstrating correlation with other structural and functional 
properties. Furthermore, transcriptomics provides evidence both for discrete cell classes as 
well as more continuous variation within cell classes 11,22,50,51 whose functional relevance 
has not yet been demonstrated in the adult nervous system. This transcriptomic landscape 
provides a powerful framework for bounding the problem of cellular diversity, allowing 
targeted analysis of transcriptomically-defined cell types coupled with analysis of other 
neuronal phenotypes using techniques such as the triple modality Patch-seq method used 
here. 

A consistent critique of cellular and molecular studies using neurosurgically resected 
tissues is that there must be huge variation associated with disease state and 
neuropathology that will obscure any coherent results. Indeed, many studies have used 
human surgical tissue from the pathological focus to identify disease-related phenomena 
52,53,54,55,56. However, a growing number of studies have shown highly consistent 
results using neocortical tissues distal to the sites of frank pathology 14,57,15,29,12,13. To 
rigorously explore this variability, in the current study we implemented a standardized 
histological analysis with markers for neurons, astrocytes and microglia to look for neuron 
loss, glial proliferation or inflammatory responses, along with blinded neuropathologist 
scoring. Importantly, we found little evidence for consistent disease- or pathology-related 
alterations of the physiological features measured when using cortical tissues from MTG 
(predominantly epilepsy cases) or frontal cortex regions (predominantly tumor cases) with 
no obvious gross pathology.  These findings indicate that typical cellular properties can be 
robustly studied in surgically resected human neocortical tissues. Indeed, a remarkable 
result from the current study is the stereotypy of neuron types, measured 
transcriptomically, morphologically and physiologically, across human neurosurgical 
specimens from 90 different tissue donors with many uncontrolled axes of variation such 
as age, gender, ethnicity, disease condition and severity. This indicates that the basic 
cellular blueprint is highly robust across individuals and can be studied routinely using 
surgically-excised tissues from hospitals around the world. The magnitude of differences 
observed between human and mouse here highlight the importance of taking advantage of 
such clinical tissues to gain a strong understanding of the details of human brain functional 
organization in health and disease.  

A principal result of the current study is that the transcriptomes of neurons in human 
supragranular cortex are well-correlated with morphological and physiological features, as 
well as cortical depth. Many morpho-electric features vary between transcriptomic cell 
types. The LTK t-type contains the smallest neurons and is largely restricted to L2, while 
the GLP2R t-type is found in L2 and superficial L3 with fewer dendrites and minimal 
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branching in L2. The FREM3 t-type found throughout L2 and the full depth of L3 has small 
to large neurons across this depth. The CARM1P1 and COL22A1 t-types are highly 
distinctive and found exclusively in deep L3 with wide, highly branched apical dendrites 
and tall, very sparse apical dendrites, respectively. In addition, the most abundant FREM3 t-
type shows strong continuous variation as a function of cortical depth transcriptomically; 
this molecular variation is correlated with continuous variation of the morphological and 
physiological features of these neurons. For example, apical and basal dendritic length both 
increase with depth. Multiple other physiological features also vary with depth such as 
input resistance and sag. Together these results suggest that the transcriptome serves as 
something of a Rosetta stone for understanding supragranular glutamatergic neurons and 
reveals several organizational principles. First, morpho-electro-transcriptomic neuron 
types occupy different depths in supragranular cortex, which has more diversity than 
previously described. Second, cortical layers are enriched for specific neuron types, but are 
also highly heterogeneous with multiple neuron types that cross laminar boundaries. 
Finally, continuous variation of a single (FREM3) t-type through the full ~1mm-depth of 
human supragranular cortex is a major axis of functional organization. 

New analytical techniques aligning transcriptomic datasets 34,58 have enabled mouse and 
human transcriptomic databases to be related 11. These analyses indicated a general 
conservation of cortical cell types but with substantial species differences. In supragranular 
cortex, neurons from all three mouse and the three most abundant human glutamatergic 
types all mapped to a single cross-species superset, rather than at the finest level of 
resolution in either species. Neuronal diversity increased in deep L3 and L4 (whose 
boundaries are not sharp), and these human types mapped either to mouse L4 types, or, 
surprisingly, to deep layer mouse neurons. Importantly, in mouse the relationship between 
axonal projection class and transcriptomic types has been established, and the distinction 
between IT neuron types and locally or deep subcortically projecting neurons is very 
robust. All the human deep L3 types map to IT types, suggesting that (as in mouse and 
monkey) the neurons that make up supragranular cortex are all part of the IT class. 

Comparative analysis of the anatomical and physiological properties of mouse and human 
supragranular neurons substantiate and extend the previous transcriptomic results and 
illustrate that the evolutionary expansion of supragranular cortex is accompanied by many 
changes in glutamatergic neuron types. These differences can be summarized as 1) 
increased phenotypic differentiation of conserved transcriptomic types, 2) increased 
degree of graded variation as a function of depth in the cortex within the most abundant 
type, and 3) increased neuronal diversity with addition of new types in deep L3.  

On the first point, a prominent result predicted by cytoarchitecture is that the main IT 
types that make up L2 and L3 in human are much more different from one another than 
their L2/3 homologues in mouse. One aspect of this is simply the anatomical positioning of 
cell bodies, which has become more spread out in the ~1 mm depth of human L2 and L3 
compared to the ~250 µm depth of mouse L2/3. There is an easily definable L2 in human 
cortex where the majority of L2 LTK neurons are located, whereas GLP2R neurons extend 
deeper into L3, and FREM3 neurons are found throughout L2 and L3. As discussed above, 
many other physiological features and anatomical features vary among these human 
neuron types; in contrast, although there is some variation in depth within L2/3, mouse 
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supragranular neurons appear to be quite homogeneous and very few features differ 
among the three mouse types. 

The second notable difference between mouse and human is the high degree of depth-
dependence for features of the most abundant FREM3 t-type compared to mouse. A variety 
of anatomical features vary as a function of depth in this type, and the variance as a whole 
can be quite large; for example, the maximum basal dendritic path length varies from 100 
to 300 µm from L2 to the deepest part of L3, and the soma diameter from 8 to 28 µm. 
Physiological features, including sag, latency, and spike shape (upstroke/downstroke 
ratio), also vary as a function of depth and differ significantly between mouse and human. 
These features may work in concert with previously reported distinctive human intrinsic 
membrane properties to mediate between-species differences in spatial-temporal synaptic 
integration 15,40,42,12.  

Finally, the deep part of human L3 contains a greater diversity of neuron types than 
observed in mouse L2/3. As described previously using only transcriptomics, these 
neurons map best to mouse L5 and L6 infragranular IT neurons 11. As described here, these 
two t-types, CARM1P1 and COL22A1, are highly distinctive transcriptomically, anatomically, 
and physiologically. The CARM1P1 neurons are very large with profuse basal and oblique 
dendrites, similar to the largest FREM3 neurons in deep L3 but most often with apical 
dendrites that conspicuously do not reach L1. The COL22A1  neurons are very different, 
with elongated somas and simple untufted apical dendrites that frequently do not reach L1. 
How should this species difference be interpreted? At least two plausible explanations 
exist. One possibility is that these human supragranular types are homologous to the best 
transcriptomically matching mouse infragranular types but have migrated to different 
cortical locations in development. This idea is supported by transcriptomic similarity and 
earlier observations that many mouse infragranular layer genes are instead found 
predominantly in human supragranular layers 43. In this interpretation, this increased 
supragranular neuron diversity represents an anatomical (and functional) reorganization 
of the cortical microcircuit. Another possibility is that these represent evolutionarily 
distinct neuron types that are similar to mouse infragranular IT types. Because this 
homology alignment is based on transcriptomic similarity, new types that have coopted 
preexisting transcriptional programs will appear similar. Indeed, even the deeper half of 
the conserved FREM3 t-type, if mapped to mouse types independently from the more 
superficial FREM3 neurons, align best with deep layer mouse IT neuron types. A 
parsimonious explanation may come from developmental biology. The cortex is generated 
in an inside-out fashion with neurons destined for more superficial layers generated 
sequentially from a common progenitor pool over time. Transcriptomically, this 
developmental sequence is reflected in the adult, with neurons in adjacent layers showing 
greatest similarity; single cell transcriptomics has extended this to show a general depth-
dependence to similarities that may reflect developmental origin. Human excitatory neuron 
corticogenesis is dramatically extended compared to mouse, and it could be that the overall 
progression along this developmental trajectory is shifted such that the expanded L2 and 
L3 occur at different times along this trajectory. 

By whichever mechanism, the outcome is that the deeper part of L3 contains a greater 
diversity of IT neurons in human relative to mouse cortex. Neurons in this area have long 
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been an area of focused study in non-human primate species, where large deep L3 
pyramidal neurons have been shown to selectively express (along with pyramidal neurons 
in L5 and L6) the non-phosphorylated form of heavy chain neurofilament protein 16,59. 
Neurons in the non-human primate expressing this protein in L3c are known to make long-
range, predominantly ipsilateral projections compared to more locally projecting neurons. 
We show here that the deeper L3 FREM3 and CARM1P1 neurons, but not 
the COL22A1 neurons, express the mRNA for NEFH and label with antibody SMI-32 in 
human L3. SMI-32 immunolabeling has been shown to be depleted in L3 magnopyramidal 
neurons in AD progression 18,17, indicating a selective vulnerability of the largest long-range 
association neurons and consequent disruption of cortical networks affected in AD 
pathology. The current results add to this finding by showing that neurofilament-H maps 
onto the transcriptomic, morphological, and physiological classification, labeling some 
types but not others. This refined cellular perspective serves as a new roadmap for future 
studies investigating selective neuron vulnerability and resistance, and for exploring the 
functional implications of loss of those connections in AD. 

Methods 

Detailed descriptions of all experimental data collection methods in the form of technical 
white papers can also be found under ‘Documentation’ at http://celltypes.brain-map.org. 

Human tissue acquisition 

Surgical specimens were obtained from local hospitals (Harborview Medical Center, 
Swedish Medical Center and University of Washington Medical Center) in collaboration 
with local neurosurgeons. All patients (Extended Data Table 2) provided informed consent 
and experimental procedures were approved by hospital institute review boards before 
commencing the study. Tissue was placed in slicing artificial cerebral spinal fluid (ACSF) as 
soon as possible following resection. Slicing ACSF was comprised of (in mM): 92 N-methyl-
D-glucamine chloride (NMDG-Cl), 2.5 KCl, 1.2 NaH2PO4, 30 NaHCO3, 20 4-(2-hydroxyethyl)-
1-piperazineethanesulfonic acid (HEPES), 25 D-glucose, 2 thiourea, 5 Na-L-ascorbate, 3 Na-
pyruvate, 0.5 CaCl2.4H2O and 10 MgSO4.7H2O 60. Prior to use, the solution was equilibrated 
with 95% O2, 5% CO2 and the pH was adjusted to 7.3 by addition of 5N HCl solution. 
Osmolality was verified to be between 295-305 mOsm/kg. Human surgical tissue 
specimens were immediately transported (15-35 min) from the hospital site to the 
laboratory for futher processing. 

Mouse breeding and husbandry 

All procedures were carried out in accordance with the Institutional Animal Care and Use 
Committee at the Allen Institute for Brain Science. Animals (<5 mice per cage) were 
provided food and water ad libitum and were maintained on a regular 12 hour light–dark 
cycle. Animals were maintained on the C57BL/6J background, and newly received or 
generated transgenic lines were backcrossed to C57BL/6J. Experimental animals were 
heterozygous for the recombinase transgenes and the reporter transgenes.  
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Tissue processing 

For mouse experiments, male and females were used between the ages of P45 and P70 
were anesthetized with 5% isoflurane and intracardially perfused with 25 or 50 ml of 0-4°C 
slicing ACSF. Human or mouse acute brain slices (350 μm) were prepared with a 
Compresstome VF-300 (Precisionary Instruments) or VT1200S (Leica Biosystems) 
vibrating microtome modified for block-face image acquisition (Mako G125B PoE camera 
with custom integrated software) before each section to aid in registration to the common 
reference atlas. Brains or tissue blocks were mounted for slicing with the optimal 
orientation for preserving intactness of apical dendrites of cortical pyramidal neurons. 

Slices were transferred to an oxygenated and warmed (34 °C) slicing ACSF for 10 min, then 
transferred to room temperature holding ACSF of the composition (in mM): 92 NaCl, 2.5 
KCl, 1.2 NaH2PO4, 30 NaHCO3, 20 HEPES, 25 D-glucose, 2 thiourea, 5 Na-L-ascorbate, 3 Na-
pyruvate, 2 CaCl2.4H2O and 2 MgSO4.7H2O 60 for the remainder of the day until transferred 
for patch-clamp recordings. Prior to use, the solution was equilibrated with 95% O2, 5% 
CO2 and the pH was adjusted to 7.3 using NaOH. Osmolality was verified to be between 
295-305 mOsm/kg.  

Patch-clamp recording 

Slices were bathed in warm (32-34°C) recording ACSF containing the following (in mM): 
126 NaCl, 2.5 KCl, 1.25 NaH2PO4, 26 NaHCO3, 12.5 D-glucose, 2 CaCl2.4H2O and 2 
MgSO4.7H2O (pH 7.3), continuously bubbled with 95% O2 and 5% CO2. The bath solution 
contained blockers of fast glutamatergic (1 mM kynurenic acid) and GABAergic synaptic 
transmission (0.1 mM picrotoxin). Thick-walled borosilicate glass (Warner Instruments, 
G150F-3) electrodes were manufactured (Narishige PC-10) with a resistance of 4–5 MΩ. 
Before recording, the electrodes were filled with ~1.0-1.5 µL of internal solution with 
biocytin (110 mM potassium gluconate, 10.0 mM HEPES, 0.2 mM ethylene glycol-bis (2-
aminoethylether)-N,N,N′,N′-tetraacetic acid, 4 mM potassium chloride, 0.3 mM guanosine 
5′-triphosphate sodium salt hydrate, 10 mM phosphocreatine disodium salt hydrate, 1 mM 
adenosine 5′-triphosphate magnesium salt, 20 µg/ml glycogen, 0.5U/µl RNAse inhibitor 
(Takara, 2313A) and 0.5% biocytin (Sigma B4261), pH 7.3). The pipette was mounted on a 
Multiclamp 700B amplifier headstage (Molecular Devices) fixed to a micromanipulator 
(PatchStar, Scientifica). 

The composition of bath and internal solution as well as preparation methods were made 
to maximize the tissue quality, to align with solution compositions typically used in the 
field (to maximize the chance of comparison to previous studies), and modified to reduce 
RNAse activity and ensure maximal recovery of mRNA content. 

Electrophysiology signals were recorded using an ITC-18 Data Acquisition Interface 
(HEKA). Commands were generated, signals processed, and amplifier metadata were 
acquired using MIES (https://github.com/AllenInstitute/MIES/), written in Igor Pro 
(Wavemetrics). Data were filtered (Bessel) at 10 kHz and digitized at 50 kHz. Data were 
reported uncorrected for the measured (Neher 1992) –14 mV liquid junction potential 
between the electrode and bath solutions. 
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Prior to data collection, all surfaces, equipment and materials were thoroughly cleaned in 
the following manner: a wipe down with DNA away (Thermo Scientific), RNAse Zap 
(Sigma-Aldrich) and finally with nuclease-free water. 

Neuron targeting: For human slices, pyramidal shaped neurons in L2 and 3 were targeted 
to recording. For mouse experiments, pyramidal neurons in L2/3 were targeted, either 
tdTomato- pyramidal neurons when recording from a transgenic line that labels 
interneurons, or tdTomato+ neurons when recording from a line that labels different 
populations of L2/3 glutamatergic neurons, specifically Oxtr-T2A-Cre and Penk-IRES2-Cre-
neo, each crossed to the Ai14 tsTomato reporter line. 

After formation of a stable seal and break-in, the resting membrane potential of the neuron 
was recorded (typically within the first minute). A bias current was injected, either 
manually or automatically using algorithms within the MIES data acquisition package, for 
the remainder of the experiment to maintain that initial resting membrane potential. Bias 
currents remained stable for a minimum of 1 s before each stimulus current injection. 

To be included in analysis, a cell needed to have a >1GΩ seal recorded before break-in and 
an initial access resistance <20 MΩ and <15% of the Rinput. To stay below this access 
resistance cut-off, cells with a low input resistance were successfully targeted with larger 
electrodes. For an individual sweep to be included, the following criteria were applied: (1) 
the bridge balance was <20 MΩ and <15% of the Rinput; (2) bias (leak) current 0 ± 100 pA; 
and (3) root mean square noise measurements in a short window (1.5 ms, to gauge high 
frequency noise) and longer window (500 ms, to measure patch instability) <0.07 mV and 
0.5 mV, respectively. 

Upon completion of electrophysiological examination, the pipette was centered on the 
soma or placed near the nucleus (if visible). A small amount of negative pressure was 
applied (~-30 mbar) to begin cytosol extraction and attract the nucleus to the tip of pipette. 
After approximately one minute, the soma had visibly shrunk and/or the nucleus was near 
the tip of the pipette. While maintaining the negative pressure, the pipette was slowly 
retracted in the x and z direction. Slow, continuous movement was maintained while 
monitoring pipette seal. Once the pipette seal reached >1GΩ and the nucleus was visible on 
the tip of the pipette, the speed was increased to remove the pipette from the slice. The 
pipette containing internal solution, cytosol and nucleus was removed from pipette holder 
and contents were expelled into a PCR tube containing the lysis buffer (Takara, 634894). 

 cDNA amplification and library construction  

We performed all steps of RNA-processing and sequencing as described for mouse Patch-
seq cells 32. We used the SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing (Takara, 
634894) to reverse transcribe poly(A) RNA and amplify full-length cDNA according to the 
manufacturer’s instructions. We performed reverse transcription and cDNA amplification 
for 20 PCR cycles in 0.65 ml tubes, in sets of 88 tubes at a time. At least 1 control 8-strip 
was used per amplification set, which contained 4 wells without cells and 4 wells with 10 
pg control RNA. Control RNA was either Universal Human RNA (UHR) (Takara 636538) or 
control RNA provided in the SMART- Seq v4 kit. All samples proceeded through Nextera XT 
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DNA Library Preparation (Illumina FC-131-1096) using either Nextera XT Index Kit V2 Sets 
A-D(FC-131-2001,2002,2003,2004) or custom dual-indexes provided by IDT (Integrated 
DNA Technologies). Nextera XT DNA Library prep was performed according to 
manufacturer’s instructions except that the volumes of all reagents including cDNA input 
were decreased to 0.2x by volume. Each sample was sequenced to approximately 1 million 
reads.   

RNA sequencing data processing  

Fifty-base-pair paired-end reads were aligned to GRCh38.p2 using a RefSeq annotation gff 
file retrieved from NCBI on 11 December 2015 for human and to GRCm38 (mm10) using a 
RefSeq annotation gff file retrieved from NCBI on 18 January 2016 for mouse 
(https://www.ncbi.nlm.nih.gov/genome/annotation_euk/all/). Sequence alignment was 
performed using STAR v2.5.3 61 in two pass Mode. PCR duplicates were masked and 
removed using STAR option “bamRemoveDuplicates”. Only uniquely aligned reads were 
used for gene quantification. Gene counts were computed using the R Genomic Alignments 
package summarizeOverlaps function using “IntersectionNotEmpty” mode for exonic and 
intronic regions separately 62. Expression levels were calculated as counts of exonic plus 
intronic reads. For most analyses, log2(counts per million [CPM] + 1) transformed values 
were used.  

Morphological Reconstruction 

Biocytin histology  

A horseradish peroxidase (HRP) enzyme reaction using diaminobenzidine (DAB) as the 
chromogen was used to visualize the filled cells after electrophysiological recording, and 
4,6-diamidino-2-phenylindole (DAPI) stain was used identify cortical layers as described 
previously 2.  

Biocytin labeled neuron imaging 

Mounted sections were imaged as described previously 2. Briefly, operators captured 
images on an upright AxioImager Z2 microscope (Zeiss, Germany) equipped with an 
Axiocam 506 monochrome camera and 0.63x optivar. Two-dimensional tiled overview 
images were captured with a 20X objective lens (Zeiss Plan-NEOFLUAR 20X/0.5) in 
brightfield transmission and fluorescence channels. Tiled image stacks of individual cells 
were acquired at higher resolution in the transmission channel only for the purpose of 
automated and manual reconstruction. Light was transmitted using an oil-immersion 
condenser (1.4 NA). High-resolution stacks were captured with a 63X objective lens (Zeiss 
Plan-Apochromat 63x/1.4 Oil or Zeiss LD LCI Plan-Apochromat 63x/1.2 Imm Corr) at an 
interval of 0.28 µm (1.4 NA objective) or 0.44 µm (1.2 NA objective) along the Z axis. Tiled 
images were stitched in ZEN software and exported as single-plane TIFF files.  
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Morphological reconstruction 

Reconstructions of the dendrites and the full axon were generated for a subset of neurons 
with good quality transcriptomics, electrophysiology and biocytin fill. Reconstructions 
were generated based on a 3D image stack that was run through a Vaa3D-based image 
processing and reconstruction pipeline 63. Images were used to generate an automated 
reconstruction of the neuron using TReMAP (Zhou 2016). Alternatively, initial 
reconstructions were created manually using the reconstruction software PyKNOSSOS 
(Ariadne-service) or the citizen neuroscience game Mozak (Mosak.science)64. Automated or 
manually-initiated reconstructions were then extensively manually corrected and curated 
using a range of tools (e.g., virtual finger, polyline) in the Mozak extension (Zoran Popovic, 
Center for Game Science, University of Washington) of Terafly tools 65,66 in Vaa3D. Every 
attempt was made to generate a completely connected neuronal structure while remaining 
faithful to image data. If axonal processes could not be traced back to the main structure of 
the neuron, they were left unconnected. 

Before morphological feature analysis, reconstructed neuronal morphologies were 
expanded in the dimension perpendicular to the cut surface to correct for shrinkage 13,67 
after tissue processing. The amount of shrinkage was calculated by comparing the distance 
of the soma to the cut surface during recording and after fixation and reconstruction. A tilt 
angle correction was also performed based on the estimated difference (via CCF 
registration) between the slicing angle and the direct pia-white matter direction at the 
cell’s location 2.  

Slice Immunohistochemistry 

Immunohistochemistry 

Tissue slices (350 µm-thick) designated for histological profiling were fixed for 2-4 days in 
4% paraformaldehyde (PFA) in phosphate-buffered saline (PBS) at 4°C and transferred to 
PBS + 0.1% sodium azide for storage at 4°C. Slices were then cryoprotected in 30% sucrose, 
frozen and re-sectioned at 30 µm using a sliding microtome (Leica SM2000R). Sections 
were stored in PBS+azide at 4°C in preparation for immunohistochemical and Nissl 
staining. Specific probes (vendor, dilution) used were: Neu-N (Millipore #MAB377, 
1:2000); SMI-32 (Biolegend #801704, 1:2000); GFAP (Millipore #MAB360, 1:1500); 
Parvalbumin (Swant #PV235, 1:2000); Iba-1 (Wako #019-19741, 1:1000); Ki67 (Dako 
#M724001-2, 1:200). Full immunohistology protocol details available at http://help.brain-
map.org/download/attachments/8323525/CellTypes_Morph_Overview.pdf?version=4&modif
icationDate=1528310097913&api=v2 

Slide imaging 

Colorimetric IHC and other histologically-stained whole slides (i.e. Nissl-stained 
preparations) for brightfield imaging were scanned using an Aperio ScanScope XT slide 
scanner (Leica Biosystems, Germany). The samples were illuminated using a 21DC Halogen 
Lamp (Techniquip, USA). Brightfield images were acquired using ScanScope Console 
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(v101.0.0.18) and controller (ve101.0.4.446) at 10x magnification (objective lens 20x/0.75 
NA Plan Apo, 0.5x magnifier) resulting in a pixel size of 1.0 µm/pixel. 

Multiplex fluorescent in situ hybridization (FISH) 

Fresh-frozen human postmortem brain tissues were sectioned at 14-16 μm onto Superfrost 
Plus glass slides (Fisher Scientific). Sections were dried for 20 minutes at -20°C and then 
vacuum sealed and stored at -80°C until use. The RNAscope multiplex fluorescent v1 kit 
was used per the manufacturer’s instructions for fresh-frozen tissue sections (ACD Bio), 
except that fixation was performed for 60 minutes in 4% paraformaldehyde in 1X PBS at 
4°C and protease treatment was shortened to 10 minutes. For combined RNAscope and 
immunohistochemistry, primary antibodies were applied to tissues after completion of 
mFISH staining. Primary mouse anti-Neurofilament H (SMI-32, Biolegend, 801701) was 
applied to tissue sections at a dilution of 1:250. Secondary antibodies were goat anti-mouse 
IgG (H+L) Alexa Fluor conjugates (594 or 647). Sections were imaged using a 60X oil 
immersion lens on a Nikon TiE fluorescence microscope equipped with NIS-Elements 
Advanced Research imaging software (version 4.20). For all RNAscope mFISH experiments, 
positive cells were called by manually counting RNA spots for each gene. Cells were called 
positive for a gene if they contained ≥ 3 RNA spots for that gene. Lipofuscin 
autofluorescence was distinguished from RNA spot signal based on the larger size of 
lipofuscin granules and broad fluorescence spectrum of lipofuscin. The following probe 
combinations were applied to label cell types of interest: (1 - LTK) LTK (NM_002344.5), 
LAMP5 (NM_012261.3); (2 – GLP2R) GLP2R (NM_004246.2), CUX2 (NM_015267.3); (3 – 
FREM3) RORB (NM_006914.3), FREM3 (NM_001168235.2); (4 – CARM1P1) RORB, 
CARTPT NM_004291.3); (5 – COL22A1) RORB, COL22A1 (NM_152888.3); (6 – Adamts2) 
Cbr3 (NM_173047.3), Neurod1 (NM_010894.2), Cdh13 (NM_019707.4); (7 – Rrad) Nr4a3 
(NM_015743.3), Cux1 (NM_009986.4), Cdh13; (8 – Agmat) Pou3f2 (NM_008899.2), Igfbp7 
(NM_001159518.1), Coch (NM_001198835). Experiments were repeated on at least N=2 
donors per probe combination for both mouse and human. 

Quantification of human and mouse soma size  

Images of NeuN+ stained sections from human MTG (1 section per donor for 5 donors) and 
mouse VISp (1 section per animal for 3 animals) (described above) were imported into 
ImageJ for processing. ROIs were drawn around cell bodies and exported as “.roi” files for 
downstream processing. In both species, L4 is defined as a band of densely packed, small 
granular cells, and the upper bound of this band (which includes overlying large pyramidal 
cells) is treated as the border between L3 and 4. The border between L1 and 2 is defined as 
the sharp boundary between the cell-sparse zone of L1 and the is a cell-dense zone of L2. In 
mouse, the border between L2 and 3 is indistinguishable and not defined. In human MTG, 
the boundary between L2 and 3 can be closely approximated as transition from densely 
packed small pyramidal cells to less densely packed larger pyramidal cells, which is largely 
consistent among donors.  

Soma areas were defined as the number of pixels contained in each ROI, scaled by the 
number of pixels per µm. Cortical depth was defined for each cell as the position of that cell 
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centroid relative to pia (absolute depth) or relative to the L1/2 and L3/4 boundaries 
(scaled depth) at that position in the tissue. The number of neurons per mm2 of L2/3 cortex 
(absolute density) is the number of neurons per image scaled by the area of the image 
where cell counts were assessed. For measuring surface density and cell area across L2/3 
cortical depth, L2/3 was split into 20 evenly size bins and the relevant measurements 
within each bin were calculated independently per section (one section per donor) and the 
average and standard deviation across sections were reported. The first and last bins are 
omitted from plots as they display boundary effects. Relative (scaled) neuron density scales 
to 1 for each donor and is defined as the fraction of total neuron count in each bin. In 
human, a nadir of scaled density was identified at -0.575, which we define as a quantitative 
boundary between superficial and deep L3 in this manuscript.  

Analysis of data from dissociated cells/nuclei  

Reference data used in this study include dissociated excitatory cells (mouse) or nuclei 
(human) collected from human MTG 11 and mouse VISp 22, and are all publicly accessible at 
the Allen Brain Map data portal (https://portal.brain-map.org/atlases-and-data/rnaseq). In 
human, cells from the five previously identified L2/3 glutamatergic types were retained, 
subsampling to match the laminar distribution of neurons included in the Patch-seq data 
set as closely as possible, leaving a total of 2,948 neurons from LTK, GLP2R, FREM3, 
CARM1P1, and COL22A1 t-types. In mouse, all neurons from the three L2/3 glutamatergic t-
types (Adamts2, Rrad, and Agmat) were retained. Data sets were visualized as follows. 
First, the top 2,000 most binary genes by beta score 11, which is defined as the squared 
differences in proportions of cells/nuclei in each cluster that expressed a gene above 1, 
normalized by the sum of absolute differences plus a small constant (ε) to avoid division by 
zero. Scores ranged from 0 to 1, and a perfectly binary marker had a score equal to 1. 
Second, the Seurat pipeline 34,35 (more details below) was used to scale the data, reduce the 
dimensionality using principal component analysis (30 PCs). These PCs were then used to 
generate a Uniform Manifold Approximation and Projection (UMAP) 28. Finally, data and 
metadata such as cluster, subcluster, layer, and gene expression are then overlaid onto this 
UMAP space with using different colored or shaded points.  

Cluster heterogeneity is defined as average observed variance explained by the first PC 
compared with permuted data after accounting for differences in the number of cells per 
cell type. To get this, we i) randomly selected 80 cells from each cell type, ii) identified the 
80 most variable genes using the “FindVariableFeatures” Seurat function with 
selection.method=”vst”, iii) performed PCA after removing outlier cells, iv) calculated the 
percent of variance explained by the first PC, v) repeated i-iv for 100 sets of data where the 
expression levels for each gene are shuffled across the 80 cells to break gene correlations 
but retain other gene statistics, and vi) identify the average and standard deviation of PC1 
for observed vs permuted data. Cluster discreteness is defined as the average number of DE 
genes between a given type and each of the remaining homologous t-types (LTK, GLP2R, 
and FREM3 t-types in human; Rrad, Agmat, and Adamts2 t-types in mouse). In this case 
pairwise differential expression is defined using the de_score function in the 
“scrattch.hicat” R library 22 after subsampling each cluster to 80 cells, and only the genes 
with higher expression in the relevant cluster are considered. The getMarkers function 
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from the genesorteR R library (https://github.com/mahmoudibrahim/genesorteR) 44 was 
used to identify genes differentially expressed genes between deep FREM3 (f73 subtype; 
collected from L3 or L4 dissection), COL22A1, and CARM1P1 neurons, using all default 
parameters except quant=0.7. To validate the cell selection for deep L3 (since sublaminar 
dissection was not performed on the dissociated nuclei data), this analysis was repeated on 
Patch-seq neurons from these three types collected in deep L3 (scaled depth < -0.575). 
Gene ontology (GO) enrichment analysis was performed using ToppGene 68 with default 
settings, and Bonferroni corrected p-values are reported unless stated otherwise.  

Dataset curation  

Patch-seq cells were included in this data set if they met the following criteria. All neurons: 
1) had high-quality transcriptomic data, measured as the normalized summed expression 
of “on”-type marker genes (NMS, adapted from the single-cell quality control measures 
in 33) greater than 0.4; and 2) retained a soma through biocytin processing and imaging 
such that an accurate laminar association could be made. In addition, mouse neurons were: 
1) located within VISp; 2) either tdTomato- or tdTomato+ from a line known to label 
glutamatergic neurons (i.e. tdTomato+ neurons from known inhibitory mouse lines were 
excluded); 3) mapped to L2/3 IT VISp Rrad, L2/3 IT VISp Agmat, or L2/3 IT VISp Adamts2 
using Seurat mapping (as described below); and 4) mapped to L2/3 IT VISp Rrad, L2/3 IT 
VISp Agmat, L2/3 IT VISp Adamts2, or L4 IT VISp Rspo1 in a separate Seurat mapping 
analysis where only reads located within gene introns are considered for both data sets. 
This final filter removes Patch-seq cells that jointly express markers for GABergic and 
glutamatergic cells, likely representing L2/3 GABAergic neurons contaminated with 
adjacent glutamatergic cells. We do not find examples of such cells in human, possibly due 
to a much smaller sampling of GABAergic cells than in the mouse. 

Identifying transcriptomic types  

Due to the differences in gene expression between Patch-seq and dissociated cells (see Fig. 
3a and 32), we used transcriptomes of dissociated human nuclei from 11 or cells from 22 as 
reference dataset for human and mouse, respectively, and mapped Patch-seq 
transcriptomes to the reference data to identify their cell types. Prior to data transfer, we 
filtered genes potentially related to technical variables. X- and Y-chromosomes were 
excluded to avoid nuclei mapping based on sex. Many mitochondrial genes have expression 
correlated with RNA-seq data quality in dissociated nuclei data 11, so nuclear and 
mitochondrial genes downloaded from Human MitoCarta2.0 69 were excluded as well. We 
also find that Patch-seq cells often have high expression of non-neuronal marker genes, so 
any genes most highly expressed in a non-neuronal cell type are excluded. Finally, any 
genes showing at least four-fold higher expression in dissociated nuclei vs. Patch-seq cells 
in the included cell types (or vice versa) were excluded as potentially platform dependent. 
In total 23,129 of 50,281 genes (46%) remained in human and a comparable fraction for 
mouse. Variable genes for mapping were selected as described above for dissociated nuclei 
data visualization, by using the top 2000 remaining genes by beta score as input into the 
procedure described below.   
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For both species, we mapped Patch-seq data sets to the relevant dissociated cells or nuclei 
reference using Seurat V3 (https://satijalab.org/seurat/) 34,35 following the tutorial for 
Integration and Label Transfer with default parameters for all functions, except when they 
differed from those used in the tutorial, and replacing variable gene selection with the 
genes described above. More specifically, we first define a low (30) dimensional PCA space 
of the dissociated cells or nuclei data set and then project this onto the Patch-seq data set. 
We then found transfer anchors (cells that are mutual nearest neighbors between data 
sets) in this subspace. Each anchor is weighted based on the consistency of anchors in it’s 
local neighborhood, and these anchors were then used as input to guide label transfer (or 
batch-correction), as proposed previously 70. We then scaled the data, reduced the 
dimensionality using principal component analysis, and visualized the results with Uniform 
Manifold Approximation and Projection (UMAP) 28. This process is done using the 
“FindTransferAnchors” and “TransferData” R functions, which provides both the best 
mapping cell type and a confidence score. For mouse data, the three homologous types did 
not provide a heterogenous enough reference data set, and therefore a larger set of 
glutamatergic and GABAergic cell types was used as reference. Cell type assignments for 
most cells were robust to choice of reference data set and to changes in parameter settings. 
Some cells with expression levels intermediate to two cell types changed calls between 
different runs; however, the cell type-level results presented are robust to these small 
changes.  

Gene expression of Patch-seq cells was visualized by projection into the UMAP space 
calculated from dissociated nuclei using a combination of Seurat and the R implementation 
of the “umap” library (https://github.com/tkonopka/umap). More specifically, the Seurat 
data integration pipeline (functions “FindIntegrationAnchors” and “IntegrateData”) was 
used to calculated a scaled data for both data sets and PCA was performed on this 
integrated space. The first 30 PCs from both data sets, as well as the UMAP coordinates 
calculated for dissociated nuclei above were input into the umap pipeline and the “predict” 
function was used to project the Patch-seq cells into UMAP coordinates. As above, data and 
meta-data were then overlaid on these umap coordinates.   

Comparison of gene expression between species  

Gene orthologs between mouse and human were pulled from the gene orthologs table on 
NIH (https://ftp.ncbi.nlm.nih.gov/gene/DATA/gene_orthologs.gz) on 22 November 2019. 
Only genes with unique orthologs between mouse and human were included in cross 
species analyses.   

Electrophysiology feature analysis 

Electrophysiological features were measured from responses elicited by short (3 ms) 
current pulses and long (1 s) current steps as previously described (Gouwens et al., 2019). 
Briefly, APs were detected by first identifying locations where the smoothed derivative of 
the membrane potential (dV/dt) exceeded 20 mV/ms, then refining based on several 
criteria including threshold-to-peak voltage and time differences and absolute peak height. 
For each AP, threshold, height, width (at half-height), fast after-hyperpolarization (AHP), 
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and interspike trough were calculated (trough and AHP measured relative to threshold), 
along with maximal upstroke and downstroke rates dV/dt and the upstroke/downstroke 
ratio (i.e., ratio of the peak upstroke to peak downstroke). Additional features from 
supratheshold sweeps included the rheobase and slope of the firing rate vs. current curve 
(f-I slope); the first spike latency initial firing rate (inverse of first ISI), measured at 
rheobase; and the mean firing rate and spike frequency adaptation ratio (mean ratio of 
consecutive ISIs), measured at ~50 pA above rheobase. Subthreshold features included the 
resting membrane potential (RMP), time constant (tau) from responses to short pulses, 
input resistance from responses across hyperpolarizing long steps, and sag ratio from 
response at ~ -100 pA. All feature calculation used the IPFX package (Intrinsic Physiology 
Feature Extraction, https://github.com/AllenInstitute/ipfx).  

Morphology feature analysis 

Morphological features were calculated as previously described2. Briefly, feature 
definitions were collected from prior studies1,71. Features were calculated using the version 
of neuron_morphology package 
(https://github.com/alleninstitute/neuron_morphology/tree/dev). Reconstructed neurons 
were aligned in the direction perpendicular to pia and white matter. Additional features, 
such as the laminar distribution of axon, were calculated from the aligned morphologies. 
Shrinkage correction was not performed (see above), features predominantly determined 
by differences in the z-dimension were not analyzed to minimize technical artifacts due to 
z-compression of the slice after processing. 

Analysis of features by t-type and species  

Combined datasets of electrophysiological and morphological features across homologous 
t-types from mouse and human were visualized by an analysis pipeline of data imputation 
and standardization, followed by projection to two dimensions using UMAP or 
SPCA (sklearn and umap python packages) 72,73. Cells with more than 3/18 
electrophysiological features missing were dropped, the remaining missing 
features were imputed as the mean of 5 nearest neighbors (“KNNImputer”), 
and features were centered about the median and scaled by IQR (“RobustScaler”). The 
SPCA regularization parameter was adjusted to minimize nonzero features while 
preserving dataset structure. All features with coefficients over 0.05 were reported directly 
in the case of electrophysiology or summarized by feature categories for morphology. 

For each feature, differentiation by t-type was assessed by running a one-way ANOVA for 
the feature by t-type, using the statsmodels package 74. This analysis was repeated 
separately for the 3 mouse and human homologous t-types, as well as the 3 deep human t-
types (with the subset of deep FREM3 cells only). Results were reported as fraction of 
variance explained (𝜂2 or R2) and heteroscedasticity-robust F test p-value (“HC3”), 
corrected for false discovery rate (Benjamini-Hochberg procedure) across all features for 
each data modality. Post-hoc Mann-Whitney rank tests were run across pairs of t-types in 
each group (human and mouse homologous types and deep human types) for top-ranked 
features from ANOVA, and results FDR-corrected. 
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For classification of t-types, features were normalized using the standard scaler scalar in 
sklearn (“StandardScalar”), and the data was randomly assigned with stratification to 
training (70%) and testing sets (30%). The random forest classifier was trained using the 
sklearn package with 600 decision trees. The classification performance was estimated 
after averaging the results of the classifiers trained on 1000 stratified random data splits 
and compared against performance for data with shuffled t-type labels. Confusion matrices 
shown are for a single representative train/test split. 

Analysis of features by depth for FREM3 t-type  

For each electrophysiology, morphology, and gene feature, the depth-related 
variability was assessed by a linear regression of the feature against relative L2/3 depth, 
using the statsmodels package 74. Results were reported as fraction of variance explained 
(R2), Pearson correlation r, and heteroscedasticity-robust F test p-value (“HC3”), corrected 
for false discovery rate (Benjamini-Hochberg procedure) across all features for each data 
modality. Due to the large number of morphology and genes tested, results were 
summarized by calculating GO term enrichment in ToppGene 68 for the set of depth-
correlated genes (FDR<0.05), followed by subselection of representative GO terms using 
REViGO 75. Groups of features were ranked by the group’s highest  R2 , and the features with 
highest correlation shown for the top groups.  

Data and software availability  

The custom electrophysiology data acquisition software (MIES) is available 
at https://github.com/alleninstitute/mies. The Vaa3D morphological reconstruction 
software, including the Mozak extension, is freely available at www.vaa3d.org and its code 
is available at https://github.com/Vaa3D. Code for reproducing most of the analyses 
presented in this work are available on GitHub 
https://github.com/AllenInstitute/patchseq_human_L23.  
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Extended Data Figures 

 

 

Extended Data Figure 1: Correlation between the pathology scores: Pearson correlation 
coefficient between various pathology scores: GFAP, IBA1, SMI-32, Ki-67, NeuN and Nissl.  
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Extended Data Figure 2: Effects of patient metadata on electrophysiology. UMAP 
projection of 18 electrophysiological features, with data points for each neuron colored by t-
type (upper left) and by patient characteristics. In particular, cells split by medical condition 
(upper right) show a lack of correspondence between pathology and electrophysiology.  
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Extended Data Figure 3: Human L2 and L3 excitatory neuron dendritic reconstructions. 
All human L2 and L3 excitatory neuron dendritic reconstructions ordered by t-type and 
aligned by layer to an average cortical template. Apical dendrites are in darker colors, basal 
dendrites in lighter colors.    
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Extended Data Figure 4: Mouse L2/3 excitatory neuron dendritic reconstructions. All 
mouse L2/3  excitatory neuron  dendritic reconstructions ordered by t-type and aligned by 
layer to an average cortical template. Apical dendrites are in darker colors, basal dendrites in 
lighter colors.   
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Extended Data Figure 5: Differences in electrophysiology properties between mouse 
areas is smaller than those seen between mouse and human neurons. Selection of key 
electrophysiological features recorded from L2/3 of mouse VISp and TEa, compared to L2 and 
L3 of human cortex.  
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Extended Data Figure 6: Random forest classification of t-types. (a, b) Confusion matrix 
of the random forest classifier for human and mouse neurons based on electrophysiological 
features. All matrices are normalized by row. (c, d) Confusion matrices of random forest 
classifiers for morphological data for mouse and human neurons. (e, f) Confusion matrix for 
the combined morpho-electric classifier. Classification performance is shown over random 
performance. For human ephys features the most important features were: Rin, tau, AP 
threshold, sag and adaptation. For mouse ephys features were: AP up/down, AP height, int. 
ISI, RMP and AP up. For human morpo classifier the most important features 
were: apical_dendrite_extent_y, basal_dendrite_extent_x_over_y, basal_dendrite_total_volume, 
basal_dendrite_soma_surface, basal_dendrite_emd_with_apical_dendrite. For mouse morpho 
classifier the most important features were: apical_dendrite_pct_intersect_basal_dendrite, 
apical_dendrite_early_branch, apical_dendrite_bias_x, apical_dendrite_soma_percentile_x, 
apical_dendrite_over_basal_dendrite_ratio_xy.  

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 2, 2020. ; https://doi.org/10.1101/2020.03.31.018820doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.31.018820
http://creativecommons.org/licenses/by-nd/4.0/


45 
 

 

Extended Data Figure 7: Visualization of all t-types in combined feature spaces. 
Projection of full electrophysiology (top) and morphology (bottom) feature spaces into two 
dimensions using UMAP (left) and SPCA (right).   

 

 

Extended Data Figure 8: Somata radius by depth and t-type. (a) Soma radius vs. 
normalized L2,3 depth. Each soma is colored by t-type. (b) Average soma radius by t-type for 
human and mouse.  
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Extended Data Figure 9 (previous page): DE genes selective for one or two of 
the CARM1P1, COL22A1, and deep FREM3 t-types, selected using genesorteR.    

 

 

 

 

Extended Data Figure 10: Marker gene expression shown for all five human t-types, 
normalized by gene.  
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Extended Data Tables 
 

 

Feature p-value (FDR-BH) Cohen’s d (human - mouse) 

adaptation 4.6e-15 0.8 

mean firing rate 6.68e-09 -0.61 

AP downstroke rate 0.0 -0.47 

AP fast AHP 6.39e-35 -1.87 

f-I slope 1.2e-05 -0.46 

initial firing rate 3.5e-05 0.75 

input resistance 1.86e-17 1.05 

latency 3.5e-05 -0.43 

AP height 0.0 0.26 

rheobase 1.53e-09 -0.65 

sag 9.67e-14 0.8 

time constant 5.75e-35 1.62 

AP threshold 4.08e-05 -0.46 

AP trough 0.0 0.38 

AP upstroke/downstroke ratio 3.23e-31 -1.81 

AP upstroke rate 1.27e-19 -1.18 

resting membrane potential 9.11e-16 0.97 

AP width 0.08 0.11 

Extended Data Table 1: Cross-species comparison of electrophysiology. For 
homologous t-types, results are shown for unpaired t-tests across species for each feature: 
FDR-corrected p-values as well as Cohen’s d effect size (positive if human values are 
larger). 17out of 18 features are significant at FDR<0.05. 
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Extended Data Table 2: Donor attributes

Donor Gender Age (yr) Ethnicity Medical Condition Hemisphere Lobe Patch-seq IHC scoring

H15.03.006 F 24 Caucasian Epilepsy L Temporal X
H15.06.016 F 27 Caucasian Tumor R Frontal X
H15.06.017 M 65 Asian Epilepsy R Temporal X
H15.06.018 F 19 Caucasian Epilepsy R Temporal X
H16.03.001 M 39 Caucasian Epilepsy L Temporal X
H16.03.002 F 41 not specified Epilepsy L Temporal X
H16.03.003 M 25 not specified Epilepsy R Frontal X
H16.03.005 M 27 not specified Epilepsy R Temporal X
H16.03.006 F 33 not specified Epilepsy R Temporal X
H16.03.007 F 28 Caucasian Epilepsy L Temporal X X
H16.03.008 M 31 not specified Epilepsy R Temporal X
H16.03.009 M 37 not specified Epilepsy L Parietal X
H16.03.010 M 48 Caucasian Epilepsy R Temporal X
H16.03.011 M 42 not specified Epilepsy R Temporal X
H16.06.002 F 35 Caucasian Epilepsy R Temporal X
H16.06.003 F 31 Caucasian Epilepsy L Temporal X
H16.06.004 M 37 Caucasian Epilepsy R Temporal X
H16.06.006 M 42 Caucasian Tumor R Frontal X
H16.06.007 M 26 Caucasian Tumor L Frontal X
H16.06.008 F 24 Hispanic/Latino Epilepsy L Temporal X
H16.06.009 F 48 Caucasian Epilepsy L Temporal X
H16.06.010 M 67 Caucasian Epilepsy L Temporal X
H16.06.011 F 24 Caucasian Epilepsy R Temporal X X
H16.06.012 M 83 not specified Tumor R Frontal X
H16.06.013 F 34 African American Epilepsy L Temporal X
H17.03.002 M 61 not specified Epilepsy R Temporal X X
H17.03.005 M 60 not specified Epilepsy R Temporal X X
H17.03.006 F 67 not specified Epilepsy L Temporal X X
H17.03.007 F 27 not specified Epilepsy R Temporal X X
H17.03.008 F 60 Caucasian Epilepsy R Temporal X X
H17.03.009 M 18 Caucasian Epilepsy R Temporal X X
H17.03.010 F 38 not specified Epilepsy L Temporal X X
H17.03.011 M 30 not specified Epilepsy R Temporal X
H17.03.013 F 41 not specified Epilepsy L Temporal X
H17.03.014 M 20 not specified Epilepsy L Temporal X X
H17.03.015 M 72 not specified Tumor R Temporal X
H17.03.016 M 36 not specified Epilepsy R Temporal X X
H17.06.003 F 23 not specified Epilepsy L Temporal X X
H17.06.004 F 71 not specified Tumor L Parietal/occipital X
H17.06.005 M 38 African-American Epilepsy L Temporal X X
H17.06.006 M 35 not specified Epilepsy L Temporal X X
H17.06.007 F 42 not specified Tumor R Frontal X X
H17.06.009 M 52 Caucasian Tumor L Temporal X X
H17.06.012 M 23 Alaskan Native Epilepsy R Temporal X X
H17.06.013 M 29 Caucasian Epilepsy R Frontal X
H17.06.015 M 19 Caucasian Epilepsy R Temporal X X
H17.06.016 F 55 Caucasian Tumor R Frontal X
H17.26.001 F 58 not specified Tumor R Temporal X
H17.26.002 F 57 not specified Tumor L Temporal X
H17.26.003 M 25 not specified Tumor R Temporal X X
H17.26.004 M 34 Asian Tumor L Temporal X
H17.26.005 F 27 not specified Tumor L Frontal X X
H18.03.002 F 48 not specified Epilepsy L Frontal X
H18.03.003 M 21 not specified Both L Temporal X X
H18.03.004 M 28 not specified Epilepsy L Temporal X X
H18.03.005 F 49 Caucasian Epilepsy R Temporal X X
H18.03.006 F 24 not specified Epilepsy L Parietal X X
H18.03.007 F 59 Caucasian Epilepsy R Temporal X X
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Extended Data Table 2: Donor attributes

H18.03.008 F 19 not specified Epilepsy L Temporal X X
H18.03.009 M 19 not specified Epilepsy R Temporal X X
H18.03.010 M 31 not specified Epilepsy R Temporal X X
H18.03.012 M 22 not specified Both L Temporal X X
H18.03.313 F 23 Caucasian Epilepsy R Temporal X X
H18.03.314 M 31 Caucasian Epilepsy R Temporal X X
H18.03.315 M 40 not specified Epilepsy R Temporal X X
H18.03.316 F 45 not specified Epilepsy L Temporal X X
H18.03.317 M 51 not specified Epilepsy R Temporal X X
H18.03.318 M 60 not specified Epilepsy R Temporal X X
H18.03.319 M 36 not specified Epilepsy R Temporal X X
H18.03.320 M 34 not specified Epilepsy L Temporal X X
H18.03.322 M 38 not specified Epilepsy R Temporal X X
H18.03.323 M 24 not specified Both R Frontal X X
H18.06.001 M 69 Caucasian Tumor L Frontal X X
H18.06.004 F 69 Caucasian Tumor R Temporal X X
H18.06.005 F 57 Caucasian Tumor L Temporal X X
H18.06.358 F 38 Caucasian Tumor R Frontal X X
H18.06.359 M 47 Caucasian Tumor L Frontal X X
H18.06.362 F 63 not specified Tumor R Frontal X X
H18.06.363 M 22 Caucasian Epilepsy R Temporal X X
H18.06.365 F 31 not specified Tumor L Frontal X X
H18.06.366 M 38 not specified Tumor L Temporal X X
H18.06.367 M 58 not specified Tumor R Temporal X X
H18.06.368 M 59 Caucasian Epilepsy L Temporal X X
H18.06.371 M 28 Caucasian Epilepsy L Temporal X X
H18.25.001 M 85 not specified Postmortem R Temporal X
H18.26.001 F 60 not specified Tumor L Parietal X
H18.26.002 M 71 not specified Tumor R Temporal X
H18.26.403 F 68 not specified Tumor R Frontal X X
H18.26.404 M 68 not specified Tumor L Temporal X X
H18.26.405 F 68 not specified Tumor R Temporal X X
H18.28.001 F 50 Caucasian Tumor L Temporal X
H18.28.009 M 41 Caucasian Tumor L Frontal X
H18.28.010 M 33 Caucasian Tumor L Frontal X
H18.28.012 M 72 Caucasian Tumor R Temporal X
H18.28.013 M 45 Caucasian Tumor R Frontal X
H18.28.015 M 51 Caucasian Tumor L Frontal X
H18.28.017 F 72 Caucasian Encephalomyelitis R Frontal X
H18.28.018 F 50 Caucasian Hydrocephalus R Temporal X
H18.28.019 M 68 Caucasian Hydrocephalus R Temporal X
H18.28.020 F 35 Caucasian Tumor R Temporal X
H18.28.025 M 21 Caucasian Tumor R Temporal X
H18.28.026 M 32 Caucasian Tumor R Temporal X
H18.29.124 M 44 not specified Epilepsy R Temporal X
H18.29.125 M 28 not specified Epilepsy L Temporal X
H18.29.126 F 47 not specified Epilepsy L Frontal X
H18.29.127 M 28 not specified Epilepsy L Parietal X
H18.29.134 M 58 not specified Epilepsy R Temporal X
H19.03.301 M 46 not specified Epilepsy L Temporal X
H19.03.302 M 36 not specified Epilepsy R Temporal X
H19.03.304 M 36 not specified Epilepsy R Temporal X
H19.03.305 M 42 not specified Epilepsy L Temporal X
H19.28.001 M 48 Caucasian Tumor R Frontal X
H19.28.003 F 69 Caucasian Hydrocephalus R Occipital X
H19.28.004 F 66 Caucasian Tumor R Frontal X
H19.28.005 M 73 Caucasian Tumor L Temporal X
H19.28.007 M 68 Caucasian Hydrocephalus R Occipital X
H19.29.142 F 65 not specified Tumor L Frontal X

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 2, 2020. ; https://doi.org/10.1101/2020.03.31.018820doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.31.018820
http://creativecommons.org/licenses/by-nd/4.0/


51 
 

References 

1.Markram, H. et al.. Reconstruction and Simulation of Neocortical Microcircuitry.. Cell 163, 
456–92 (2015). 

2.Gouwens, N. W. et al.. Classification of electrophysiological and morphological neuron 
types in the mouse visual cortex.. Nat Neurosci 22, 1182–1195 (2019). 

3.Ascoli, G. A. et al.. Petilla terminology: nomenclature of features of GABAergic 
interneurons of the cerebral cortex.. Nat Rev Neurosci 9, 557–68 (2008). 

4.DeFelipe, J., Alonso-Nanclares, L. & Arellano, J. I. Microstructure of the neocortex: 
comparative aspects.. J Neurocytol 31, 299–316 (2002). 

5.Hofman, M. A. Size and shape of the cerebral cortex in mammals. II. The cortical volume.. 
Brain Behav Evol 32, 17–26 (1988). 

6.DeFelipe, J. The evolution of the brain, the human nature of cortical circuits, and 
intellectual creativity.. Front Neuroanat 5, 29 (2011). 

7.Staiger, J. F., Bojak, I., Miceli, S. & Schubert, D. A gradual depth-dependent change in 
connectivity features of supragranular pyramidal cells in rat barrel cortex.. Brain Struct 
Funct 220, 1317–37 (2015). 

8.Chang, Y.-M. & Luebke, J. I. Electrophysiological Diversity of Layer 5 Pyramidal Cells in the 
Prefrontal Cortex of the Rhesus Monkey: In Vitro Slice Studies. Journal of Neurophysiology 
98, 2622–2632 (2007). 

9.Duan, H., Wearne, S. L., Morrison, J. H. & Hof, P. R. Quantitative analysis of the dendritic 
morphology of corticocortical projection neurons in the macaque monkey association 
cortex. Neuroscience 114, 349–359 (2002). 

10.Mohan, H. et al.. Dendritic and Axonal Architecture of Individual Pyramidal Neurons 
across Layers of Adult Human Neocortex. Cerebral Cortex 25, 4839–4853 (2015). 

11.Hodge, R. D. et al.. Conserved cell types with divergent features in human versus mouse 
cortex.. Nature 573, 61–68 (2019). 

12.Kalmbach, B. E. et al.. h-Channels Contribute to Divergent Intrinsic Membrane 
Properties of Supragranular Pyramidal Neurons in Human versus Mouse Cerebral Cortex.. 
Neuron 100, 1194–1208.e5 (2018). 

13.Deitcher, Y. et al.. Comprehensive Morpho-Electrotonic Analysis Shows 2 Distinct 
Classes of L2 and L3 Pyramidal Neurons in Human Temporal Cortex.. Cereb Cortex 27, 
5398–5414 (2017). 

14.Mohan, H. et al.. Dendritic and Axonal Architecture of Individual Pyramidal Neurons 
across Layers of Adult Human Neocortex.. Cereb Cortex 25, 4839–53 (2015). 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 2, 2020. ; https://doi.org/10.1101/2020.03.31.018820doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.31.018820
http://creativecommons.org/licenses/by-nd/4.0/


52 
 

15.Gidon, A. et al.. Dendritic action potentials and computation in human layer 2/3 cortical 
neurons.. Science 367, 83–87 (2020). 

16.Hof, P. R., Nimchinsky, E. A. & Morrison, J. H. Neurochemical phenotype of corticocortical 
connections in the macaque monkey: quantitative analysis of a subset of neurofilament 
protein-immunoreactive projection neurons in frontal, parietal, temporal, and cingulate 
cortices.. J Comp Neurol 362, 109–33 (1995). 

17.Bussière, T. et al.. Progressive degeneration of nonphosphorylated neurofilament 
protein-enriched pyramidal neurons predicts cognitive impairment in Alzheimer’s disease: 
stereologic analysis of prefrontal cortex area 9.. J Comp Neurol 463, 281–302 (2003). 

18.Hof, P. R., Cox, K. & Morrison, J. H. Quantitative analysis of a vulnerable subset of 
pyramidal neurons in Alzheimer’s disease: I. Superior frontal and inferior temporal cortex.. 
J Comp Neurol 301, 44–54 (1990). 

19.Tasic, B. et al.. Adult mouse cortical cell taxonomy revealed by single cell 
transcriptomics.. Nat Neurosci 19, 335–46 (2016). 

20.Habib, N. et al.. Massively parallel single-nucleus RNA-seq with DroNc-seq.. Nat Methods 
14, 955–958 (2017). 

21.Bakken, T. E. et al.. Single-nucleus and single-cell transcriptomes compared in matched 
cortical cell types.. PLoS One 13, e0209648 (2018). 

22.Tasic, B. et al.. Shared and distinct transcriptomic cell types across neocortical areas.. 
Nature 563, 72–78 (2018). 

23.Földy, C. et al.. Single-cell RNAseq reveals cell adhesion molecule profiles in 
electrophysiologically defined neurons.. Proc Natl Acad Sci U S A 113, E5222–31 (2016). 

24.Cadwell, C. R. et al.. Electrophysiological, transcriptomic and morphologic profiling of 
single neurons using Patch-seq.. Nat Biotechnol 34, 199–203 (2016). 

25.Fuzik, J. et al.. Integration of electrophysiological recordings with single-cell RNA-seq 
data identifies neuronal subtypes.. Nat Biotechnol 34, 175–183 (2016). 

26.Hutsler, J. J., Lee, D. G. & Porter, K. K. Comparative analysis of cortical layering and 
supragranular layer enlargement in rodent carnivore and primate species.. Brain Res 1052, 
71–81 (2005). 

27.von Economo, C. Cellular Structure of the Human Cerebral Cortex (1927); (Translated by 
L.C. Triarhou, S. Karger AG, Basel, 2009). doi:10.1159/isbn.978-3-8055-9062-4. 

28.McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold Approximation and 
Projection. arXiv 1802.03426, (2018). 

29.Beaulieu-Laroche, L. et al.. Enhanced Dendritic Compartmentalization in Human Cortical 
Neurons.. Cell 175, 643–651.e14 (2018). 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 2, 2020. ; https://doi.org/10.1101/2020.03.31.018820doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.31.018820
http://creativecommons.org/licenses/by-nd/4.0/


53 
 

30.Szabadics, J. et al.. Excitatory effect of GABAergic axo-axonic cells in cortical 
microcircuits.. Science 311, 233–5 (2006). 

31.Ting, J. T. et al.. A robust ex vivo experimental platform for molecular-genetic dissection 
of adult human neocortical cell types and circuits.. Sci Rep 8, 8407 (2018). 

32.Gouwens, N. W. et al.. Toward an integrated classification of neuronal cell types: 
morphoelectric and transcriptomic characterization of individual GABAergic cortical 
neurons. (2020) doi:10.1101/2020.02.03.932244. 

33.Tripathy, S. J. et al.. Assessing Transcriptome Quality in Patch-Seq Datasets. Frontiers in 
Molecular Neuroscience 11, (2018). 

34.Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell 
transcriptomic data across different conditions, technologies, and species.. Nat Biotechnol 
36, 411–420 (2018). 

35.Stuart, T. et al.. Comprehensive Integration of Single-Cell Data. Cell 177, 1888–1902.e21 
(2019). 

36.Johansen, N. & Quon, G. scAlign: a tool for alignment integration, and rare cell 
identification from scRNA-seq data. Genome Biology 20, (2019). 

37.Hodge, R. D. et al.. Transcriptomic evidence that von Economo neurons are regionally 
specialized extratelencephalic-projecting excitatory neurons. Nature Communications 11, 
(2020). 

38.Larkman, A. & Mason, A. Correlations between morphology and electrophysiology of 
pyramidal neurons in slices of rat visual cortex. I. Establishment of cell classes.. J Neurosci 
10, 1407–14 (1990). 

39.Larsen, D. D. & Callaway, E. M. Development of layer-specific axonal arborizations in 
mouse primary somatosensory cortex.. J Comp Neurol 494, 398–414 (2006). 

40.Eyal, G. et al.. Unique membrane properties and enhanced signal processing in human 
neocortical neurons.. eLife 5, (2016). 

41.Verhoog, M. B. et al.. Mechanisms underlying the rules for associative plasticity at adult 
human neocortical synapses.. J Neurosci 33, 17197–208 (2013). 

42.Testa-Silva, G. et al.. High bandwidth synaptic communication and frequency tracking in 
human neocortex.. PLoS Biol 12, e1002007 (2014). 

43.Zeng, H. et al.. Large-scale cellular-resolution gene profiling in human neocortex reveals 
species-specific molecular signatures.. Cell 149, 483–96 (2012). 

44.Ibrahim, M. M. & Kramann, R. genesorteR: Feature Ranking in Clustered Single Cell Data. 
(2019) doi:10.1101/676379. 

45.Izadi, M. et al.. Cobl-like promotes actin filament formation and dendritic branching 
using only a single WH2 domain.. J Cell Biol 217, 211–230 (2018). 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 2, 2020. ; https://doi.org/10.1101/2020.03.31.018820doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.31.018820
http://creativecommons.org/licenses/by-nd/4.0/


54 
 

46.Xie, M. J. et al.. PIP<sub>3</sub>-Phldb2 is crucial for LTP regulating synaptic NMDA 
and AMPA receptor density and PSD95 turnover.. Sci Rep 9, 4305 (2019). 

47.Bockenhauer, D., Zilberberg, N. & Goldstein, S. A. KCNK2: reversible conversion of a 
hippocampal potassium leak into a voltage-dependent channel.. Nat Neurosci 4, 486–91 
(2001). 

48.Bando, Y., Hirano, T. & Tagawa, Y. Dysfunction of KCNK potassium channels impairs 
neuronal migration in the developing mouse cerebral cortex.. Cereb Cortex 24, 1017–29 
(2014). 

49.Ramón y Cajal, S. La Textura del Sistema Nervioso del Hombre y de los Vertebrados.. 
Nicolás Moya, Madrid (1899-1904). 

50.Cembrowski, M. S. & Menon, V. Continuous Variation within Cell Types of the Nervous 
System.. Trends Neurosci 41, 337–348 (2018). 

51.Gokce, O. et al.. Cellular Taxonomy of the Mouse Striatum as Revealed by Single-Cell 
RNA-Seq.. Cell Rep 16, 1126–1137 (2016). 

52.Bordey, A. & Sontheimer, H. Properties of human glial cells associated with epileptic 
seizure foci.. Epilepsy Res 32, 286–303 (1998). 

53.Calcagnotto, M. E., Paredes, M. F., Tihan, T., Barbaro, N. M. & Baraban, S. C. Dysfunction of 
synaptic inhibition in epilepsy associated with focal cortical dysplasia.. J Neurosci 25, 9649–
57 (2005). 

54.DeFelipe, J. et al.. Selective changes in the microorganization of the human epileptogenic 
neocortex revealed by parvalbumin immunoreactivity.. Cereb Cortex 3, 39–48 (1993). 

55.Huberfeld, G., Blauwblomme, T. & Miles, R. Hippocampus and epilepsy: Findings from 
human tissues.. Rev Neurol (Paris) 171, 236–51 (2015). 

56.Stegen, M. et al.. Adaptive intrinsic plasticity in human dentate gyrus granule cells 
during temporal lobe epilepsy.. Cereb Cortex 22, 2087–101 (2012). 

57.Goriounova, N. A. et al.. Large and fast human pyramidal neurons associate with 
intelligence.. eLife 7, (2018). 

58.Johansen, N. & Quon, G. scAlign: a tool for alignment, integration, and rare cell 
identification from scRNA-seq data.. Genome Biol 20, 166 (2019). 

59.Hof, P. R. & Morrison, J. H. Neurofilament protein defines regional patterns of cortical 
organization in the macaque monkey visual system: a quantitative immunohistochemical 
analysis.. J Comp Neurol 352, 161–86 (1995). 

60.Ting, J. T., Daigle, T. L., Chen, Q. & Feng, G. Acute brain slice methods for adult and aging 
animals: application of targeted patch clamp analysis and optogenetics.. Methods Mol Biol 
1183, 221–42 (2014). 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 2, 2020. ; https://doi.org/10.1101/2020.03.31.018820doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.31.018820
http://creativecommons.org/licenses/by-nd/4.0/


55 
 

61.Dobin, A. et al.. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 
(2012). 

62.Lawrence, M. et al.. Software for Computing and Annotating Genomic Ranges. PLoS 
Computational Biology 9, e1003118 (2013). 

63.Peng, H., Ruan, Z., Long, F., Simpson, J. H. & Myers, E. W. V3D enables real-time 3D 
visualization and quantitative analysis of large-scale biological image data sets.. Nat 
Biotechnol 28, 348–53 (2010). 

64.Roskams, J. & Popović, Z. Power to the People: Addressing Big Data Challenges in 
Neuroscience by Creating a New Cadre of Citizen Neuroscientists.. Neuron 92, 658–664 
(2016). 

65.Peng, H., Bria, A., Zhou, Z., Iannello, G. & Long, F. Extensible visualization and analysis for 
multidimensional images using Vaa3D.. Nat Protoc 9, 193–208 (2014). 

66.Bria, A., Iannello, G., Onofri, L. & Peng, H. TeraFly: real-time three-dimensional 
visualization and annotation of terabytes of multidimensional volumetric images.. Nat 
Methods 13, 192–4 (2016). 

67.Egger, V., Nevian, T. & Bruno, R. M. Subcolumnar dendritic and axonal organization of 
spiny stellate and star pyramid neurons within a barrel in rat somatosensory cortex.. Cereb 
Cortex 18, 876–89 (2008). 

68.Chen, J., Bardes, E. E., Aronow, B. J. & Jegga, A. G. ToppGene Suite for gene list enrichment 
analysis and candidate gene prioritization. Nucleic Acids Research 37, W305–W311 (2009). 

69.Calvo, S. E., Clauser, K. R. & Mootha, V. K. MitoCarta2.0: an updated inventory of 
mammalian mitochondrial proteins.. Nucleic Acids Res 44, D1251–7 (2016). 

70.Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell RNA-
sequencing data are corrected by matching mutual nearest neighbors. Nature 
Biotechnology 36, 421–427 (2018). 

71.Scorcioni, R., Polavaram, S. & Ascoli, G. A. L-Measure: a web-accessible tool for the 
analysis, comparison and search of digital reconstructions of neuronal morphologies.. Nat 
Protoc 3, 866–76 (2008). 

72.Pedregosa, F. et al.. Scikit-learn: Machine Learning in Python. Journal of Machine 
Learning Research 12, 2825–2830 (2011). 

73.McInnes, L., Healy, J., Saul, N. & Grossberger, L. UMAP: Uniform Manifold Approximation 
and Projection. The Journal of Open Source Software 3, 861 (2018). 

74.Seabold, S. & Perktold, J. statsmodels: Econometric and statistical modeling with python. 
in 9th Python in Science Conference (2010). 

75.Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO Summarizes and Visualizes Long 
Lists of Gene Ontology Terms. PLoS ONE 6, e21800 (2011). 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 2, 2020. ; https://doi.org/10.1101/2020.03.31.018820doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.31.018820
http://creativecommons.org/licenses/by-nd/4.0/

