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Abstract 

The activity and connectivity of inhibitory cells has a profound impact on the operation of neuronal networks. 
While the average connectivity of many inhibitory cell types has been characterized, we still lack an 
understanding of how individual interneurons distribute their synapses onto their targets and how 
heterogeneous the inhibition is onto different individual excitatory neurons. Here, we use large-scale 
volumetric electron microscopy (EM) and functional imaging to address this question for chandelier cells in 
layer 2/3 of mouse visual cortex. Using dense morphological reconstructions from EM, we mapped the 
complete chandelier input onto 153 pyramidal neurons. We find that the number of input synapses is highly 
variable across the population, but the variability is correlated with structural features of the target neuron: 
soma depth, soma size, and the number of perisomatic synapses received. Functionally, we found that 
chandelier cell activity in vivo was highly correlated and tracks pupil diameter, a proxy for arousal state. We 
propose that chandelier cells provide a global signal whose strength is individually adjusted for each target 
neuron. This approach, combining comprehensive structural analysis with functional recordings of identified 
cell types, will be a powerful tool to uncover the wiring rules across the diversity of cortical cell types. 
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Introduction 

Inhibition powerfully shapes the activity of neuronal circuits. In the mammalian neocortex, the simplest role 
of inhibition is to restrain the network from “runaway” excitation, but the diversity of inhibitory cell types, 
each with distinctive projection patterns and physiology, suggest a far richer role in cortical computation 
(Ascoli et al., 2008; Fino et al., 2013; Freund and Buzsáki, 1996; Jiang et al., 2015; Kepecs and Fishell, 

2014; Kubota, 2014). Understanding the contribution of an individual cell type to circuit function requires 
knowledge of both the underlying rules governing synaptic connectivity and the conditions under which it is 
functionally active.  For example, the finding that some vasoactive intestinal polypeptide (VIP)-positive 
interneurons preferentially inhibit somatostatin (SST)-expressing interneurons (Pfeffer et al., 2013) and are 
active during locomotion (Fu et al., 2014) strongly suggested an important role in the state-dependent 
modulation of cortical processing (McGinley et al., 2015; Reimer et al., 2014; Vinck et al., 2015). Similar 
efforts have uncovered circuit roles of other cell types, including parvalbumin (PV)-expressing basket cells 
(Packer and Yuste, 2011; Wilson et al., 2012) and SST-expressing Martinotti cells (Silberberg and Markram, 
2007; Wang et al., 2004; Wilson et al., 2012). 
 
The Chandelier cell (ChC) has unique properties that, at first glance, should cast it to be one of the better-
understood inhibitory cell types. Sometimes referred to as axo-axonal cells, ChCs are a class of GABAergic 
interneurons characterized by a number of vertical axonal “candles” or “cartridges” (Jones, 1975; Peters et 
al., 1982; Szentágothai and Arbib, 1974) that synapse exclusively with the axon initial segment (AIS) of 
excitatory pyramidal neurons (PyCs) (DeFelipe et al., 1985; Fairén and Valverde, 1980; Somogyi, 1977; 
Somogyi et al., 1982). This pattern of connectivity suggests a unique role for ChCs, as the AIS is a 
specialized compartment approximately 10–40 µm from the axon hillock whose unique ion channel 
distribution makes it the principal site of action potential generation (Kole and Stuart, 2012; Kole et al., 
2007; Palmer, 2006). Each ChC makes synapses onto 30-50% of PyCs within a 200 µm wide axonal 
domain (Wang et al., 2019), and thus a low density of overlapping of cells can potentially innervate all PyCs 
in L2/3 (Inan et al., 2013) and thus have the potential for tremendous impact on cortical activity.  
 
Despite their highly specific connectivity, the ways in which ChCs affect neuronal circuits remain surprisingly 

enigmatic (Inan and Anderson, 2014; Woodruff et al., 2010). One reason is the variability in the strength of 
ChC targeting. PyC populations in different brain regions and layers receive diverse numbers of AIS-
targeting boutons (DeFelipe et al., 1985; Veres et al., 2014; Wang and Sun, 2012). Consistent with this 
observation, activation of the ChC population in vivo has diverse effects on nearby PyCs, from strong 
inhibition to no response (Lu et al., 2017), despite nearly all PyCs likely receiving ChC input (Inan et al., 
2013). The logic underlying this variability, and thus the heterogeneity of ChC influence on the downstream 
targets, is largely unknown, although categorical differences in long-range projection targets are one 
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potential factor (Lu et al., 2017). A second reason is functional. What conditions drive ChC activity remains 
unknown. ChCs receive synaptic input from local PyCs (Jiang et al., 2015; Lu et al., 2017), Martinotti cells 
(Jiang et al., 2015), cholinergic projections from basal midbrain (Lu et al., 2017), and gap junctions from 
other ChCs (Woodruff et al., 2011), but how these and other unknown inputs conspire to drive activity in a 
behaving animal is unclear. Adding to the complexity, while GABA is typically inhibitory in mature animals, 
the biophysics of the AIS can result in ChCs depolarizing their targets (Szabadics et al., 2006; Woodruff et 
al., 2009, 2011), although ChCs are functionally inhibitory under the more typical condition of coincident 
excitatory input (Woodruff et al., 2011). 
 
To improve our understanding of both the circuit organization and function of ChCs, we took a multipronged 
approach. We used large-scale serial-section electron microscopy (EM) (Bock et al., 2011; Kasthuri et al., 
2015; Lee et al., 2016) to map AIS input across L2/3 PyCs in a volume of mouse primary visual cortex 

(Supplemental Video 1). By using automated dense segmentation and synapse detection, we obtained a 
reconstruction of ChC axons and PyCs in a volume of approximately 3.6 106 µm3. The resolution and 
completeness afforded by this approach allowed us to infer underlying principles governing not only of the 
presence, but also the structural weight of ChC connectivity. To address ChC function, we used a genetic 
line that selectively expresses in ChCs to record neuronal activity in awake behaving mice. We used these 
results to inform biophysical modeling of ChC inputs on individual pyramidal neurons to explore what makes 
such inhibition unique.  

Results 

A densely segmented EM volume of layer 2/3 primary visual cortex 
A single large EM volume of cortical tissue reveals the cellular and subcellular components, from neuronal 
morphology to synaptic connectivity and organelles. The ability to map the fine ultrastructure of all cells 
across hundreds of microns can be used to study numerous questions across neuroscience and cell 
biology. Thus, with broad utility in mind, we prepared a volumetric EM image volume of (L2/3) of mouse 
primary visual cortex (Figure 1A) spanning approximately 250 µm x 140 µm x 90 µm with 40 nm thick 
sections imaged at 3.58 x 3.58 nm/pixel with transmission EM (Figure 1B; see methods for details). 
In order to address neuronal connectivity, we needed to be able to follow a multitude of individual axons 
throughout the volume. Such circuit reconstruction at scale is intractable without intensive computational 
processing (Berning et al., 2015; Dorkenwald et al., 2017; Jain et al., 2010; Januszewski et al., 2018). We 
used a series of novel machine learning based methods to perform high-quality image alignment, 
automated segmentation, and synapse detection for the volume (Dorkenwald et al., 2019). Nonetheless, 
proofreading is still necessary for precise measurements of anatomy and connectivity. The initial 
segmentation identified small supervoxels that were agglomerated into cells, and we built a novel cloud-
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based proofreading system to edit the agglomerations to perform targeted error correction. As a basis to 
begin analysis, the 458 cell bodies in the volume were manually classified as excitatory, inhibitory, or glia 
based on morphology and ultrastructural features and all 364 PyCs were proofread to correct segmentation 
errors (Dorkenwald et al., 2019).  
 
A complete map of synaptic input to the axon initial segments of an excitatory network  
While ChCs are the only cell type to specifically target the AIS, other cell types can also form AIS synapses 
(Gonchar et al., 2002; Kisvárday et al., 1985; Somogyi, 1977). To narrow down our search for ChC inputs, 
we first mapped all synaptic input onto the AIS of all excitatory cells that had a complete AIS in the volume 
(N=153). Since we cannot robustly identify the molecular markers that define the AIS, we opted instead for 
a purely structural definition: from the axon hillock (whether it emerged from the soma or a proximal 

dendrite) to the most proximal of the first branch 

point, beginning of myelination, or the volume exit 
(if at least 40 µm of AIS was within the volume, a 
distance found to contain almost all AIS synapses, 
see Figure 2I). For each PyC, we manually marked 
these two points as the top and bottom of the AIS. 
We used these points to computationally specify 
the AIS and its synaptic input for each labeled PyC 
(Figure 1D,E, Supplemental Figure 1A) and 
proofread for false-positive synapse detections. 
This resulted in a total of 1929 AIS synapses 

Figure 1. A map of AIS input from EM. A) A block of 
tissue was selected from L2/3 of mouse V1 and 
processed in an EM pipeline. B) Serial 40 nm sections 
were imaged and computationally aligned. C) Image 
annotation pipeline. Left, images were taken at 3.58 x 
3.58 nm/pixel resolution. Ultrastructure and membrane 
staining is clear. Scale bar is 500 nm. Center, the 
neuropil was densely segmented and targeted 
proofreading was done to correct PyCs and other objects 
of interest. Right, automated synapse detection 
identified pre- and post-synaptic locations for synapses 
and was followed by targeted proofreading for false 
positives. D) For each PyC with sufficient AIS in the 
volume, we started with the full morphology and all 
synaptic inputs (cyan dots). We then computationally 
extracted the AIS (dark gray) and its synaptic inputs 
(cyan arrows). E) Soma, AIS and AIS synaptic inputs for 
all PyC analyzed. The volume is rotated so that the 
average AIS direction is downward. Note that dendrites 
and higher order axon branches are omitted for clarity. 
F) Histogram of synapses per AIS. 
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across the 153 PyCs, for a mean of 12.6 synapses per AIS. However, the mean hides a remarkable diversity 
of total input, from 1-32 synapses per AIS (Figure 1F), suggesting large differences in AIS inhibition. 
 
PyC AIS input is a mix of Chandelier and non-Chandelier synapses 
We next sought to identify which AIS inputs came from ChCs and which did not (Figure 2A). Using the 
dense segmentation, we examined the morphology (Figure 2B) and ultrastructure (Figure 2C,D) of every 
axon presynaptic to any AIS synapse. All but two axons that targeted AISs were orphan fragments (i.e. they 
did not connect to a cell body within the volume). However, using the EM reconstructions, we distinguished 
ChC axons from non-ChC using the degree of AIS-selectivity, propensity to form multi-bouton cartridges, 
and fine scale anatomy (see Methods). ChC axons were extensively proofread to extend their morphology 
to be as complete as possible within the volume. Non-ChC axons were proofread only to the extent 
necessary to classify them. 

 

Figure 2. Characterization of AIS inputs. A) Classification and proofreading workflow. Across AIS synaptic 
inputs, morphology and connectivity were used to distinguish ChC from non-ChC axons. ChC axons were 
extensively proofread to get as-complete-as-possible arbors. For non-ChC inputs, all AIS-targeting boutons were 
proofread to ensure there were no falsely merged ChC axons. B) 3d morphology of a typical AIS and the axons 
that innervate it. Non-ChC axons are in shades of purple, ChC axons are in shades of red. Different colors indicate 
distinct axons. Note that ChCs form chains of boutons and cluster together on the AIS. Numbers correspond to 
the panels in C and D. C and D) In single sections, both non-ChC (C, purple) and ChC  (D, red) boutons are 
unambiguous synapses, but can look similar from local imagery alone. E) Histogram of fraction of automatically 
detected AIS synapses onto analyzed PyCs for each presynaptic axon before synapse proofreading. Note that 
almost all non-AIS synapses from ChCs were false positives (see text). For clarity, axons with three or more 
synapses are shown. F) Breakdown of AIS synapse count by axon class. G) Morphology of all distinct ChC objects 
(red) and PyCs (gray). Note two ChC somata in the volume, with the rest being orphan axon fragments of varying 
sizes. H) Distribution of output synapses per distinct ChC object. I) Distribution of the distance from the soma of 
AIS synapses by axon class. J) Distribution for ChCs of the number of AIS synapses per connection (i.e. synapse 
count from an axon object to an AIS). Inset shows the same data on a semilog-y scale with a geometric fit (black 
dashed line). K) Distribution for non-ChCs of the number of AIS synapses per connection. 
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We validated our classification by looking at how AIS-targeting axons synapsed onto PyC compartments. 
Since every PyC input could be labeled AIS or non-AIS, we considered all automatically detected synapses 
from AIS targeting axons onto the PyCs (n=15,376). As expected, ChC axons consistently and 
overwhelmingly formed AIS synapses, while non-ChC axons preferred other compartments (Figure 2E). 
Many non-ChC axons had morphology and connectivity consistent with soma-targeting basket cells. Our 
automated synapse detection also found ChC synapses onto other compartments, but most were found to 
be false positives (42/49, i.e. not a synapse), while for the remainder the ultrastructure was ambiguous. 
 
In total, we found 1127 AIS synapses from 124 ChC axon fragments and 802 AIS synapses from 612 non-
ChC axon fragments (Figure 2F, G). Individual ChC axons ranged in size, with between 1–150 presynaptic 
sites in the volume (Figure 2H). We found that ChC synapses were preferentially located on the AIS in a 
region between 10–40 µm from the axon hillock, while non-ChC synapses were widely distributed but more 

common nearest to the soma (Figure 2I). It is thus likely that much of the non-ChC inputs were located 
within the transition between the somatic and AIS compartments, while ChCs have more specialized 
targeting (Tai et al., 2019). 
 
Given the low density of ChC cells in cortex, we were surprised to find two Chandelier soma with both axon 
and dendrites in the volume (Figure 2G). Connections from other neurons within the volume onto both ChC 
cells were observed, including synaptic input from both local PyCs and a putative L2/3 Martinotti cell, as 
well as putative dendro-dendritic gap junctions between the ChC cells (Supplementary Figure 2).  
 
Distribution of AIS inputs by cell type 
An AIS can have inputs from many different ChCs, with each connection typically thought to be a multi-
bouton “cartridge”. For clarity, we use “synapse” to refer to a single anatomical synapse and “connection” 
to indicate the collection of synapses between a given presynaptic and postsynaptic neuron, comprising 
one or more synapses. Here, the ability to discriminate each presynaptic axon gives the unique opportunity 
to consider the properties of how a complete map of synapses is organized by connection. While it is 
possible for a single ChC to use multiple axonal branches to target a given AIS, whole-cell reconstructions 
suggest this is rare (Blazquez-Llorca et al., 2015; Gouwens et al., 2019). We therefore assume that each 
ChC fragment targeting the same AIS comes from a distinct cell. 
 
We first asked about the properties of the connections between a presynaptic axon and an AIS. The 
synapse count for individual ChC connections ranged from one to nine and was well-fit by a geometric 
distribution (exponent: 0.44, Figure 2J). Notably, this included both standard multi-synapse connections 
that characterize ChC axon morphology, as well surprisingly numerous single-synapse connections. 
Counting only cartridges would have undercounted total ChC synapses by 20%. In contrast, non-ChC 
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inputs were found throughout the AIS, but most commonly near the soma. Many non-ChC axons also 
targeted the same cell’s soma, and we speculate that this initial AIS region is often treated by basket cell 
axons as a continuation of the somatic compartment. Non-ChC connections comprised only a single 
synapse in 94% of examples (no non-ChC connection had more than 3 synapses). While they could 
potentially contribute to AIS inhibition, individual non-ChC connections are on average much weaker than 
ChC connections. 
 
Chandelier cell input to pyramidal cells is highly variable and correlates with other forms of 
inhibition 
We next asked how ChC input was distributed across the population of L2/3 PyCs. Because different PyCs 
had different amounts of axonal arbor in the volume, we restricted our analysis to a consistent initial region 
that would both cover the typical molecularly defined AIS and include as many synapses as possible. Based 

on the distribution of ChC synapses (Figure 2I), we settled on using the first 37 µm of structural AIS for all 
cells, which contained 97% of ChC synapses (Figure 3A). 
 
ChC inputs were found on 95% of PyCs (144/151), but there was striking variability in the total ChC input 
(Mean: 7.4 ± 5.4 synapses) with individual PyCs receiving between 0–25 ChC synapses (Figure 3B, C). 
Effectively, some L2/3 PyCs escape ChC inhibition entirely while others have the potential to be strongly 
inhibited. This was not the case for other sources of perisomatic inhibition. Using similar methods as we 
used to find AIS synapses, we computationally identified the synapses onto the PyCs’ soma. All PyCs had 
numerous somatic inputs (47–113 synapses, Figure 3D). 
 
To explore the logic of this heterogeneity, we asked if the amount of ChC input that a PyC receives could 
be associated with other structural properties of the cell. We focused on properties relating to the soma and 
the AIS, as those could be completely observed for most PyCs (n=114, see Methods and Supplemental 
Figure 1). Specifically, for each PyC we measured its depth within L2/3, mean AIS radius, number of non-
ChC AIS synapses, number of synaptic inputs onto the soma, soma surface area, and soma synapse 
density. Strikingly, we found significant correlations between the number of ChC inputs and each property 
other than non-ChC AIS synapses (Figure 3D,E). However, we also found that various size and synaptic 
input properties of each PyC were significantly correlated among themselves (Figure 3E). To disentangle 
these correlations, we performed Independent Components Analysis (ICA), yielding three interpretable 
mixtures of variables representing the soma depth, somatic inhibition (i.e. soma synapses, soma synapse 
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density, and non-ChC AIS synapses) and soma size (i.e. soma area and AIS radius) (Figure 3F). 
Importantly, as a mathematical consequence of ICA, these PyC structural components are fully 
uncorrelated with one another (Supplemental Figure 3). 

To gain insight into ChC input variability, we performed multivariate ordinary least-squares regression (OLS) 
on the number of ChC synapses against the three PyC structural components. Despite the simplicity of the 
approach, linear combinations of perisomatic structural properties explained 45% of the variance in ChC 
input, with significant effects for all three components (Figure 3G, H). We report coefficients from z-scored 
variables. First, deeper PyCs received less ChC inhibition (Coefficient: -0.47), which is consistent with the 
observation that some ChC axons have denser axonal arbors in upper L2/3 (Wang et al. 2019) and our 

Figure 3. Structural factors affecting ChC input on PyCs. A) Schematic of AIS analysis. To compare all PyCs 
evenly, we focused only on those synapses within the first 37 microns from the axon hillock. Inset: Fraction of all 
observed synapses included in analysis by threshold. B) Soma location and ChC synapse count for each analyzed 
PyC, with volume boundary (gray outline). Pia is up. C) Histogram of ChC synapse count per PyC. D) ChC synapse 
count versus somatic and AIS structural properties: soma depth (measured from the shallowest cell analyzed), 
average AIS radius, non-ChC AIS synapse count, Soma synapse density, Soma surface area, and soma synapse 
count. E) Pearson correlation between ChC synapse count and structural properties, as well as structural properties 
with one another. White dots indicate p<0.05 to be different from zero after Holm-Sidak multiple test correction. F) 
ICA components for PyC structural properties. Note that each component has most of its contribution from an 
interpretable combination of properties. G) Regression coefficients of ChC synapse count (z-scored) on ICA 
components. Bars indicate 95% confidence interval before multiple correction, stars indicate significance after Holm-
Sidak multiple test correction. ***: p<0.001. H) Scatterplots and linear fit for each structural property versus the residual 
of ChC synapse count after fitting the other two properties. Shaded region is the 95% confidence interval from 
bootstrapping. 
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observation of a higher number of ChC synapses in the upper part of our volume than the lower 
(Supplemental Figure 4). Second, perisomatic inhibition was positively correlated with ChC synapses 
(Coefficient: 0.33), meaning that PyCs with more ChC input also received more input from other, non-ChC 
cells at their soma. Third, larger cells received more ChC synapses (Coefficient: 0.34). Taken together, the 
magnitude of ChC input is extremely diverse and influenced by multiple aspects of the target cells. 
 
Cell-specific factors influence the number of Chandelier synapses on the axon initial segment 
We next sought to better understand the nature of the wide variability in ChC input. We first considered the 
different biologically distinct scenarios that can yield the same overall number of ChC inputs onto a PyC. 
The same number of ChC synapses onto a single PyC can be produced by different combinations of 
number of connections and number of synapses per connection. (Figure 4A). Since each ChC axon was 
individually segmented in the EM data, we were able to measure both components for every PyC. While 

variability in total synapses could be due to either factor individually, we found that both ranged widely (1-
9 connections and 1-7 synapses per connection). However, a similar OLS approach as above found no 
significant relationship between synapses per connection and PyC structural properties (Figure 4B, C), 
while the number of connections had a similar relationship to all PyC structural properties as total ChC 
synapses (Figure 4D,E). This suggests that the number of connections and the number of synapses per 
connection are regulated by different processes. 
 
Variability in the number of connections could be due to geometry alone, for example if there were more 
ChC axons per AIS in some parts of the volume than others. To test this, we used a simple model to account 
for spatial effects based on (Stepanyants et al., 2002). We define “potential connections” as those ChC-
PyC pairs where a ChC axon and AIS come within a given distance, and “connectivity fraction” as the 
fraction of potential connections that are associated with synapses (Figure 4F). The number of connections 
can then be decomposed into the number of potential connections times the connectivity fraction. If input 
variability were determined only by local abundance of ChC axons, then we would expect potential 
connections but not connectivity fraction to be related to PyC structural properties.  
 
Using the geometry of every ChC axon fragment that innervates any of the AISs, we computed both 
potential connections and connectivity fraction for each PyC. To account for unobserved ChC axons past 
the edge of the volume, we omitted those AISs too close to volume boundaries (see Methods). Since these 
measurements depend on the distance threshold and we lack a detailed understanding of ChC axon 
guidance or target finding, we looked for distance thresholds that had a wide span of connectivity fractions 
between 0–1. We show results for a distance threshold of 7.5 µm (Figure 4G), although the same results 
hold for thresholds between 5-10 µm (Supplemental Figure 5). Using the same OLS approach as above, 
we found that while both potential connections and connectivity fraction showed significant relationships 
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with PyC structural properties, different properties mattered for each. The number of potential connections 
decreased with depth but had no significant relationship with soma size or soma inhibition (Figure 4H,I). In 
contrast, connectivity fraction was not significantly affected by soma depth, but was positively modulated 
by soma size and soma inhibition components (Figure 4J,K). Together, these results indicate that while 
soma location modulates the local abundance of ChC axons around a given AIS, there are also additional 
cell-specific factors that affect the recruitment of ChC axons to an AIS. 
 

Figure 4. Breaking ChC input into constituent aspects. A) The total ChC synapse count for an AIS is, trivially, the 
product of the number of connections and the mean number of synapses per connection. Either or both aspects could 
correlate with PyC structural properties to modulate ChC input. B) Regression coefficients of the average number of 
synapses per connection against PyC structural components. No values are significant after multiple testing correction. 
C) Scatterplots and linear fit for each structural property versus the residual of mean synapses per connection after 
fitting the other two properties. Note that trends match those of the overall synapse count. D) OLS analysis for the 
number of ChC connections. E) Residuals as in C, for the number of ChC connections. F) To measure the geometric 
effect on number of connections, we measure potential connections as those within a distance d of an AIS and the 
connectivity fraction as the number of potential connections actually connected. G) Histogram of connectivity fraction 
for d=7.5µm, the distance threshold used in H–K. See Supplemental Figure 5 for higher and lower distance thresholds. 
H,I) OLS analysis for potential connections. Note that potential connections are only associated with depth. I) Residuals 
as in C, for potential connections. J) OLS analysis for connectivity fraction. Note that connectivity fraction is only 
associated with the soma inhibition and soma size components, but not depth. K) Residuals as in C, for connectivity 
fraction. In the OLS coefficient plots, the lines indicate the 95% confidence interval. Stars indicate significance after 
Holm-Sidak multiple test correction. **: p<0.01, ***: P<0.001. For residual plots, the shaded region is the 95% confidence 
interval after bootstrapping. 
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Chandelier connections show no evidence of target selectivity beyond spatial proximity 
So far, we have implicitly considered all ChC axons to be part of a uniform population. However, groups of 
ChC axon fragments could show clustered connectivity, showing a tendency to co-innervate the same set 
of PyC AISs. If so, it would suggest that ChCs are forming specific inhibitory subnetworks and are not, in 
fact, a uniform population. While there are numerous clustering measures and community detection 
algorithms for abstract graphs (Fortunato, 2010), we have the additional need to account for the spatial 
relationships between neurons, otherwise proximity alone can introduce clustering that is irrelevant to our 
question (Figure 5A). To account for both clustering and geometry, we measured the connectivity fraction 
of potential edges only for those that could complete a bifan motif, i.e. one where two ChCs target the same 
two PyCs (Figure 5B). If ChC input were clustered, this probability should be higher than that observed in 
networks where ChC connections are randomly shuffled amongst all the potentially connected ChC axons 
while holding fixed the number of ChC connections for each PyC. The observed probability we measured 

Figure 5. No evidence of clustering of ChC targets based on geometrically-constrained motif analysis. A) 
Connectivity matrix from ChC axons onto PyC targets. Each black dot represents one potential connection for a 
distance threshold of 7.5 µm (see Supplemental Figure 6 for alternative thresholds)) and each red dot represents 
one actual connection with any number of synapses. Elements are clustered by the potential connectivity matrix, 
suggesting that most of the structure of the network comes from geometry alone. B) Cartoon of a potential bifan 
motif. In a bifan motif, two ChCs would target the same pair of PyCs. In a potential bifan motif, three of those 
connections are present and the fourth is a potential connection. We consider the probability p that this potential 
edge is connected. C) Observed connectivity probability for the potential bifan motif in our dataset (red line) compared 
to shuffled networks that preserve PyC in-degree and potential connectivity. We see no evidence of excess clustering 
of ChC targets beyond geometry. D) Cartoon of a biased bifan shuffle, where potential connections that complete a 
bifan motif are given a different weight in the shuffle probability. E) Observed connectivity (red line) probability versus 
shuffled networks with different bias weights based on the shuffle step shown in D (gray violin plots, N=1000 per bias 
weight value). Red stars indicate bias weights where the observed value is above (p>) or below (p>) 95% of the 
shuffled distribution. Even with the geometric constraints, we can rule out strong clustering or anti-clustering within 
the data. 
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was well within the range of values obtained by shuffling (Figure 5C), and thus there is no evidence that 
ChC axons are coordinated beyond geometrical factors that constrain potential connectivity.  
 
To understand how strong a propensity for co-targeting we could detect given our dataset, we performed a 
power analysis that added a motif-dependent bias to the shuffle. During the shuffle, potential edges that 
could complete a bifan motif were selected with a weight 𝛼, while those that did not were selected with 
weight 1. Thus, 𝛼 > 1 produces networks with increased clustering, 𝛼 < 1 biases against clustering, and 
𝛼 = 1 is random (as above). Our simulations found that the observed data would deviate significantly from 
randomized data for 𝛼 < 0.4 or 𝛼 > 1.5, and thus the data is only consistent with, at most, a modest targeting 
bias. Larger reconstructions, which would more completely fill in the potential connectivity graph, would 
likely constrain these bounds further.  
 

In vivo function of Chandelier Cells shows collective activity during periods of arousal 
The synapse count between ChCs and PyCs only determines their potential to influence their targets. The 
functional effect of inhibition depends also on the typical pattern of ChC activity during behavior. If all ChC 
cells were active at the same time, total synapse count would offer a good approximation of net functional 
strength (Veres et al., 2014) while if subpopulations of ChCs were activated at different times, the exact 
pattern of ChC co-activation would be important. 
 
To label chandelier cells in vivo, we used a mouse line in which recombinase CRE was coexpressed with 
Vipr2, a genetic marker expressed specifically in ChCs (Vipr2-IRES2-Cre, Daigle et al., 2018). Full 
transgenic strategies do not label ChCs in mouse primary visual cortex effectively, likely due to off-target 
expression during development (Tasic et al., 2018). To circumvent this shortcoming, we injected an AAV 
viral vector containing a CRE-dependent calcium indicator gene GCaMP6f (Chen et al., 2013) into V1 of 
adult Vipr2-IRES2-Cre mice. Histological examination showed this strategy specifically labelled neurons at 
the layer1/layer 2 border with arbors characteristic of ChC morphology (Figure 6A), indicating a faithful 
labeling of ChCs.  
 
Using this strategy, we measured the in vivo calcium activity of ChCs by two photon imaging (in mice not 
imaged for EM). To simultaneously acquire imagery from sparsely distributed cells (Figure 6A), we used a 
multi-plane imaging system (Liu et al., 2018) that allowed near-simultaneous monitoring across a range of 
cortical depth (Figure 6C). The imaging procedure followed a standardized awake behaving paradigm (de 
Vries et al., 2020), during which head-fixed mice were presented with a screen with uniform luminance and 
allowed to engage in spontaneous behavior. In all imaging sessions, we observed striking seconds-long 
bouts where all ChCs were active at the same time. This suggested that not only can ChCs be 
spontaneously active, but they are often active (or inactive) as a uniform population (Figure 6D). To quantify 
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this, we calculated the average cell-cell correlation between ChC cells during spontaneous behavior (Figure 
6E, correlation coefficient, ChC-ChC: 0.49±0.30, 68 pairs). The spontaneous correlation among ChCs was  
notable even compared to other common interneuron cell types (correlation coefficient, PV-PV: 0.34±0.24, 
4640 pairs; VIP-VIP: 0.18±0.16, 5717 pairs; SST-SST: 0.07±0.20, 2837 pairs), as estimated from Allen 
Brain Observatory data (de Vries et al., 2020) (Figure 6E). 

 
When comparing ChC activities with animals’ 
behavior states, we noticed that coordinated ChC 
activities always occurred during periods of dilated 
pupils and locomotion, indicative of an active 
arousal state (McGinley et al., 2015; Reimer et al., 
2014; Vinck et al., 2015). There were some pupil 

dilation events in the absence of locomotion that 
showed concurrent ChC activation (Figure 6E, 
gray bar). Indeed, ChC cell activities were more 
strongly correlated with pupil diameter than with 
locomotion speed (Figure 6G, correlation 
coefficient, ChC-pupil vs. ChC-locomotion: 
0.40±0.14 vs. 0.16±0.11, 34 pairs, T=3.0, 
p=4.8x10-7, Wilcoxon signed-rank test). From 
these observations, we conclude that during 
periods of high arousal, L2/3 PyCs receive input 
from all or nearly all of their ChC synapses. 
 

Figure 6. Functional imaging of ChCs reveals a correlated response to arousal state. A) Maximum projection 
image in upper layers of V1 showing ChC-specific GCaMP6f expression in Vipr2-IRES2-Cre mice injected with AAV-
Flex-GCaMP6f. Note cell bodies at the L1/L2 border, characteristic cartridges, and L1 dendrites. B) Cartoon of 
experimental design. Mice expressing GCaMP6f in V1 ChCs were placed on a treadmill and imaged with multiplane 
two photon microscopy while subject to a uniform luminance visual stimulus. C) An experiment with simultaneous 
three plane imaging (depth shown to left) with five distinct ChC ROIs, each measured from its best plane. Scale bar 
is 50 µm. D) GCaMP6f responses (z-scored from baseline) for the same five ROIs as in C. Note extremely correlated 
large events. E) Simultaneous behavioral measurements for the same experiment as in D. Increased pupil size, a 
measure of arousal state, and running bouts correspond to periods of high ChC activity. Note that there are periods 
where ChC activity and pupil area increase in the absence of running (e.g. the period noted by the gray box). F) 
Pairwise Pearson correlation for spontaneous activity traces for different interneuron classes. ChC cells measured 
from two imaging sessions each for three mice show high spontaneous correlation compared to other classes of 
interneurons, as computed from comparable observations in public Allen Institute Brain Observatory data. Number 
of distinct pairs is shown. G) Pairwise correlations between ChC activity traces and behavioral traces shows that ChC 
are significantly more correlated with pupil area than with running. Number of distinct pairs is shown. Statistical 
significance for cell-cell correlations was computed with the Mann-Whitney U test, while for matched cell-behavior 
correlations significance was computed with the Wilcoxon signed rank test. ***: p<0.001. 
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Biophysical simulations of ChC inhibition on pyramidal neurons 
Given that the activity of ChCs is highly correlated and their synapses are tightly clustered together on the 
AIS, we wondered how the innervation pattern of multiple ChCs on an AIS affects the activity of PyCs. To 
address these questions, we used computational single-neuron models, instantiated excitatory and 
inhibitory input along their detailed morphology, and asked how synaptic properties affect their input-output 
transformation. We generated biophysically detailed models of V1 pyramidal neurons utilizing an 
optimization procedure based on whole-cell patch-clamp experiments and associated reconstructed cellular 
morphology (see Methods). Importantly, the single-cell models developed contain active Na-, K- and Ca-
dependent conductances along their entire morphology, including the AIS. This, in turn, results in these 
models reproducing a number of physiological properties of real neurons such as action potentials initiated 
at the AIS that are back-propagated to the soma and the dendritic arbor (Figure 7A–C). We used two 
models from layer 2/3 neurons and two models from layer 4 neurons in order to test if the postsynaptic cell 

type affected any of our conclusions. 
 
To assess the impact of the temporal coordination of ChC inhibition along the AIS, we considered four 
scenarios: one with excitation only and three with different temporal patterns of inhibition (Figure 7D). First, 
in the synchronous inhibition case, all ChC synapses were activated by the same realization of a Poisson 
process resulting in perfect inhibitory input synchrony. Second, in the asynchronous inhibition case, each 
ChC synapse was activated by an independent realization of the Poisson process, resulting in co-active 
ChC input with uncorrelated spike times. Third, in the biologically-inspired inhibition case, clusters of ChC 
synapses activated synchronously, but each cluster was activated by a different realization of a Poisson 
process, simulating the activity of multiple presynaptic ChC (each with one or more synapses) converging 
onto the same AIS. As expected, in the presence of excitatory synaptic input onto PyC dendrites, ChC 
inhibition reduced spiking (Figure 7E). Asynchronous ChC input was most effective at suppressing PyC 
activity, while the synchronous ChC input was least effective. The biologically inspired scenario presented 
an intermediate case between the most and least efficient case of inhibition. These trends remain robust 
across neurons and when altering the number of ChC synapses along the AIS across PyC models. These 
results suggest that the observed innervation of the AIS by multiple ChCs is stronger than if all the synapses 
were provided by a single ChC.  
 
How does the location of ChC synapses affect the integration properties of pyramidal neurons? Intuitively, 
the fact that ChC synapses are located along the AIS, the location where action potentials are initiated, 
puts them in a position to heavily influence the input-output relationship of pyramidal neurons, however 
previous simulations have shown that this effect is mild (Douglas and Martin, 1990). As previous simulations 
were with morphologies from a different species, we performed simulations over multiple model neurons of 
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mouse V1 neurons described above. To assess the impact of the spatial constellation of ChC inhibition, we 
chose the biologically inspired connectivity pattern and compared how inhibition alters integration properties 

depending on whether it is placed along the AIS or at the soma. We simulated Gaussian barrages of 
dendritic excitation and either somatic or AIS inhibition with different temporal offsets, from inhibition leading 
excitation by 100 ms to inhibition trailing excitation by 100 ms (Figure 7G). We observe that temporal 
disparity between the excitatory and inhibitory barrage leads to overall higher spike output compared to 
when the two barrages coincide, signifying that inhibition along the AIS dampens excitatory drive (in 

Figure 7. Biophysical modeling of ChC inhibition. A, Reconstructed morphologies for four PyCs from mouse V1. 
B, Biophysically-detailed, all-active models were fit for each cell constrained by its electrophysiological features and 
reconstructed morphology. Panels show model neuronal response and observed data for one cell (#2 in A). Left, F/I 
curve; middle-top, subthreshold voltage responses; middle-bottom, suprathrehold voltage response; right, mean 
spike shape.  C, Average z-scored training errors for the four models for physiological parameters. D, Left, schematic 
for different configurations of ChC synapses. Right, example simulated functional traces for excitation only (green) 
and observed inhibition (red) in response to a step function stimulus. E, Mean F/I curves for each synapse 
configuration for 9 total ChC synapses and 15 total ChC synapses for one cell (#2). F, Average PyC firing rate at 
fixed excitation across the four synapse configurations. G, (Left) We compared the effect of the same number of 
synapses at the soma and the AIS in a biologically-inspired configuration as a function of excitatory/inhibitory timing. 
(Right) Raster plot for a representative cell for each case at different temporal offsets between excitatory and 
inhibitory barrages. H, (Top) The spike count for inhibition at soma and at the AIS, (Bottom) The differential effect 
in inhibition as computed by the difference between Soma and AIS spike counts divided by the sum of the spike 
counts. The ratio ranges between -1 and 1, with 1 representing inhibition at the axon being 100% more effective 
than at the soma and 0 meaning no differential effect. 
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agreement with Figure 7F). Moreover, the location of ChC synapses affected pyramidal output. While for 
low and high numbers of inhibitory synapses, the location of synapses did not change pyramidal output, for 
intermediate amounts of inhibition the AIS was on average more effective in suppressing pyramidal spiking 
(by approximately 25%) (Figure 7H). These results indicate that when the incoming excitation and inhibition 
barrages are co-active, the axo-axonic inhibition modulated ChC are more effective than the basket-cell-
like somatic projections. One of the strengths of our approach is that we used models of multiple neurons, 
and while the results were significant and align well with the functional recordings, we also find substantial 
variability from model to model. Given this variability and that the effect of chandelier inhibition on the spiking 
of PyCs depends on the level of concurrent excitation (Douglas and Martin, 1990), we therefore wonder if 
there were other reasons for the specific targeting of the AIS besides preventing the activation of sodium 
conductances. 
 

Preferential targeting of ChC synapses to cisternal organelles on the AIS 
Unlike more typical somatic and dendritic inhibitory synapses, ChC synapses interact with the unique 
biophysics of the AIS (reviewed in Leterrier, 2018), giving them the potential to have qualitatively different 
effects than other inhibitory synapses. While AIS-specific chloride transporter and its effect on the GABA 
reversal potential has been carefully studied with respect to ChC input (Szabadics et al., 2006; Woodruff et 
al., 2009, 2011), another interesting but less well-studied factor is calcium. The presence of calcium in the 
AIS can affect the action potential generation and timing (Bender and Trussell, 2009). Moreover, T-type 
voltage gated Ca2+ channels are present at the AIS (Bender and Trussell, 2009) and are de-inactivated by 
hyperpolarization. The AIS hosts unique calcium-storing structures called cisternal organelles (CO), 
stacked endoplasmic reticulum specializations associated with a complex assortment of molecular 
components, including ryanodine receptors and Kv2.1 ion channels (King et al., 2014). The co-localization 
of GABAergic synapses and COs has been suggested from qualitative observations (Benedeczky et al., 
1994; King et al., 2014), however this could occur by chance, since COs and ChC synapses necessarily 
occupy a limited space.  
 
The detailed 3D reconstructions and images available from EM allowed us to investigate the relationship 
between these COs and circuit structure more rigorously. We annotated stacked cisternae (Figure 8A), the 
ultrastructural hallmark of COs (Peters et al., 1968), on ten PyCs chosen to span the observed variation in 
ChC synapse number. For each PyC, we manually generated a point cloud covering the extent of each CO 
and computationally mapped these points to the surface of the AIS. Combining this data with the synapse 
detection, we computed the depth and angular orientation of both COs and ChC synapses for each AIS 
(Figure 8B, C). COs were typically found only within the initial 30 µm of the AIS (Figure 8D, E), and appeared 
to frequently co-localize with ChC synapses in multi-synapse clusters (Figure 8D), although there were 
some COs without synapses and some synapses without COs. To test if the observed proximity could occur 
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by chance, we measured the distances between each ChC and its closest CO point and performed two 
types of shuffle test. First, we used depth and orientation measurements to simulate the same configuration 
of CO positions on other AISs and compared mismatched CO/synapse configurations to those observed 
(Figure 8E). We found that matched configurations had significantly smaller distances between COs and 
synapses than shuffled configurations. To single out the effect of angular orientation without changing 
depth, for each AIS we computationally rotated the orientation of its CO points and again computed 
synapse-to-CO distances (Figure 8F). Zero degrees of rotation had the minimal median distance, and 

Figure 8. ChCs preferentially target cisternal organelles on the AIS. A) Electron micrograph showing the stacked 
ER of a cisternal organelle (CO) in an AIS, adjacent to two ChCs. Scale bar is 1 µm. B) Left, 3d view of an AIS (gray) 
with COs (cyan dots) and ChC synapses (red dots) shown. Right, higher magnification of the same AIS from the 
region indicated. Depth is measured as the distance from the axon hillock and orientation as the angle around the 
AIS, with 0 set to the same arbitrary direction for all AISs. C) Representation of the AIS in B in depth and orientation. 
The COs are shown as cyan point clouds, and the center of ChC synapses are shown as red dots. The plots wrap in 
orientation at π/-π (gray dashed lines). D) COs and ChC synapses for all ten AISs with mapped COs. Note that AIS 
7 corresponds to the example in B. E) Histogram of CO density along AIS depth. Almost all COs are in the initial 30 
µm. F) Minimum distance from ChC synapses to COs within the same AIS and where ChC synapses are 
computationally mapped to the same depth and orientation on each other AIS. Solid lines are median, dashed lines 
are interquartile intervals. G) Minimum distance from ChC synapses to COs from the same AIS, but where ChC 
synapses are rotated in orientation. The solid line is the mean value across all AIS, the shaded line is the 95% 
confidence interval from bootstrapping. Stars indicate significance of a t-test measuring difference from zero rotation. 
In F and G, comparison is by t-test. *: p<0.05, **: p<0.01, ***: P<0.001. 
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rotations greater than 90º were significantly different than this baseline state. Taken together, this 
demonstrates that ChC synapses are preferentially located at COs. 

Discussion 

In this study we analyzed the chandelier input to pyramidal cells from the fine anatomy of the subcellular 
organization of their synapses to the structure of their network architecture and their functional role in vivo. 
Both structural and functional results suggest that chandelier cells act collectively to deliver a common 
inhibitory signal to their targets. This global inhibitory signal covaries with arousal and it is distributed 
differentially to each individual pyramidal cell with connectivity rules governed by at least three independent 
factors. These results indicate that this cell-type specific connection is likely regulated by a multitude of 
rules that we are just beginning to understand. 
 
Structured variability and implications for function 

In agreement with previous observations in mouse somatosensory cortex (Inan et al., 2013), we find that 
ChCs formed synapses with nearly all PyCs in L2/3. However, the degree to which a PyC received input 
from chandelier axons exhibited strong postsynaptic heterogeneity. This wide distribution was already 
noted in early studies from cat and monkey (DeFelipe et al., 1985; Fairén and Valverde, 1980), but has 
remained largely unexamined. We found that three basic structural properties relating only to a PyC 
perisomatic region could explain approximately half the variance in the number of synaptic connections. 
These properties fell into two categories: those that affected the density of nearby ChC axons, and those 
that affected the connection likelihood to those nearby axons. How might each of these properties reflect 
the functional effect of ChC on cortical circuits? 
 
The density of ChC axons within L2/3 decreased with depth, and this was reflected in a reduced ChC 
synapse count onto deeper PyCs. A similar result was also found in mouse prelimbic cortex using 
electrophysiology from ChCs and PyCs labeled by long-range projection target (Lu et al., 2017). In that 
work, shallow amygdala-projecting PyCs had a higher connection probability with nearby ChCs than deeper 
cortical-projecting PyCs. In mouse V1, graded differences in the projections of L2/3 PyCs to higher order 
visual areas have also been observed (Kim et al., 2018). Depth-dependent variability in ChC inhibition could 
thus be well-posed to allow differential state-dependent inhibition of distinct long-range excitatory 
subnetworks. 
 
Increased ChC input was associated with two structural factors: larger PyCs soma size and increased total 
somatic synapse count. The effect of size is consistent with a compensatory effect. If a particular target 
inhibitory postsynaptic potential is desired by the PyC, more ChC synapses would be necessary to balance 
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the lower input resistance of a larger cell. Such a homeostatic target point for ChC inhibition has been 
suggested by experiments that manipulated PyC activity and observed compensatory changes in the 
number of ChC boutons (Pan-Vazquez et al., 2020) as well as the location and size of the AIS (Wefelmeyer 
et al., 2015). The relationship between somatic and AIS input also suggests a cell-specific target point for 
inhibition, potentially to appropriately match excitation on a cell-by-cell level (Vogels and Abbott, 2009; 
Vogels et al., 2011). Since somatic input is principally GABAergic and ChCs do not target the soma, this 
suggests that different inhibitory cell types respond to the same (or correlated) inhibitory target points. As 
different interneurons are active at different times, this would be an effective way to ensure that the 
appropriate amount of inhibition is available across conditions and states. Interestingly, both factors relating 
to target point manifest as increased connection probability with nearby ChC axons, raising the possibility 
that both structural factors engage similar mechanisms to form or prune connections.  
 

One limitation of the dataset is that all cells and neuronal processes were truncated by the boundaries of 
the imaged volume, although this volume is among the largest cortical datasets of its kind currently 
available. We took care to account for this truncation throughout our analysis by only studying neurons and 
compartments which we could map completely. However, this could introduce some biases or faulty 
assumptions. First, we have undersampled the deeper part of L23, since those axons left the volume closer 
to the soma. PyCs in deep L3 could have different properties that we did not measure here. It is also 
possible that the decrease in ChC input with depth is more of a categorical step than a linear decline, but 
this would require additional data in L3. Second, we assumed that every ChC axon targeting the same AIS 
came from a different ChC. Light-level morphology suggests it is rare for multiple axonal branches of a ChC 
to target the same AIS, but it is possible. This would not affect the overall synapse count analysis, but it 
could overestimate the number of distinct connections. However, given the strong correlation between the 
number of distinct connections and overall ChC synapse count, the interpretation of the data would be 
largely unchanged. Future work in a larger dataset could help not only resolve these issues but allow the 
use of richer data about both whole-cell morphology and a more complete synaptic network. Moreover, 
given that simple perisomatic features already accounted for approximately half the variance in ChC 
synapse count, we suspect that such information would reveal additional factors related to ChC input, for 
example functional activity, PyC subtypes, or excitatory network structure. 
 
Functional role of ChCs 
The functional role of ChCs has been far less studied than their structure and it is not known what conditions 
drive ChC activity. Whether in neocortex or in the hippocampus, Chandelier cells have been shown to fire 
in a brain-state dependent manner in anesthetized animals (Klausberger et al., 2003; Massi et al., 2012), 
however their function in awake animals has not been described before. Here, we used functional imaging 
of ChCs in awake behaving animals and observed strong, synchronous bouts of activity during periods of 
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pupil dilation, a key sign of an active arousal state (McGinley et al., 2015; Reimer et al., 2016; Vinck et al., 
2015). Interestingly, during pupil dilation ChCs are tonically active, as are layer 1 cholinergic axon 
projections (Reimer et al., 2016), which are known to innervate ChC dendrites (Lu et al., 2017). Activity in 
visual cortex changes significantly during arousal, with PyCs generally reducing their spontaneous activity 
and increasing their signal to noise ratio (Vinck et al., 2015). A subclass of VIP interneurons that are active 
during locomotion have been strongly implicated in this modulation (Fu et al. 2015). Our data suggest that 
ChC also contribute to the high arousal state. Assuming ChCs have an inhibitory role under these 
conditions, this suggests that ChCs add a significant extra source of inhibition to some — but not all — 
PyCs during the high arousal state, in contrast to the combination of disinhibition (Fu et al., 2014; Karnani 
et al., 2016) and direct inhibition (Kuljis et al., 2018) from VIP neurons. L2/3 PyCs in visual cortex show a 
broad diversity of activation and suppression of activity during dilations of the pupil (Stringer et al., 2016; 
Vinck et al., 2015). The heterogeneity of ChC inhibition strength could be one circuit mechanism underlying 

this diversity if, for example, adjusting the amount of ChC input a PyC receives would modulate the degree 
to which it is sensitive to arousal-driven depolarizations. 
 
A role for global inhibition in recurrent cortical circuits 
As we show here, ChCs are active during arousal states, which are known to be associated with an increase 
in the signal to noise ratio in pyramidal cells (Vinck et al. 2015). One hypothesis lies on the connectivity 
motif that we extracted from the anatomy, where the recurrently connected excitatory network receives a 
common signal from a pool of inhibitory ChCs. In addition, ChCs also receive input from the same local 
excitatory network, a connectivity arrangement that resembles the soft winner-take-all (sWTA) motif 
originally proposed by (Amari and Arbib, 1977) and others (Douglas et al., 1995; Hahnloser et al., 2000; 
Maass, 2000). A basic feature of the sWTA motif is its ability to amplify the response of the subset of 
neurons that receive the strongest input, while the responses of the others are suppressed due to the 
shared common inhibition (which can, in addition, be dynamically regulated by either the local excitatory 
network or additional external inputs). When on top of an input signal one adds a common excitatory signal 
(such as arousal) to all the neurons of the network, this common signal acts as a gain modulator that 
selectively increases the overall signal to noise (Douglas and Martin, 2007). 
 
Subcellular targeting at the AIS 
The result that ER cisternae are colocalized with synapses on a lateralized portion of the AIS, raises the 
possibility that ChC inputs are located on the AIS in order to biochemically separate them from other 
perisomatic synapses. This biochemical separation could facilitate the implementation of alternative 
plasticity rules (Pan-Vazquez et al., 2020; Schlüter et al., 2017), through different calcium dynamics 
influenced by the ER (reviewed in Berridge, 1998), or through differential sorting of molecular components 
into the AIS (reviewed in Leterrier, 2018). The functional significance of the lateralization of the ER cisternae 
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and synaptic input remains unclear, but could relate to distinct mechanisms that affect neuronal excitability 
via calcium mediated modulation of ion channels. There is much evidence that different ion channels have 
precise regulation in terms of location along the AIS (reviewed in (Leterrier, 2018)), but there is little 
exploration of their distribution around its circumference. 
  
A framework to map cell type connectivity rules 
We are only beginning to understand the logic of connectivity between cortical cell types. The underlying 
rules of connectivity between neurons depend not only on pre- and postsynaptic cell types, but geometry, 
morphology, and function, as well as, as we have shown here, various intrinsic properties of the cells 
involved. Indeed, it is likely that connections between different cell types will depend in different ways on 
different factors. Large-scale cortical connectomics (Bock et al., 2011; Kasthuri et al., 2015; Lee et al., 2016; 
Motta et al., 2019), particularly in the context of physiological measurements (Bock et al., 2011; Lee et al., 

2016), offers the promise to examine the connections between identified cell types in the context of other 
structural, functional, and network measurements. The use of electron microscopy is crucial, as it is the 
only way to densely map synaptic connectivity with simultaneous measurements of the detailed morphology 
and individual anatomical features for any cell. The connection from ChCs to L23 PyCs is a model case for 
investigating the nuances of cell-type specific connectivity, as the strong anatomical specificity makes a 
complete map easier to acquire. We anticipate that this approach, applied to the upcoming generation of 
millimeter-scale EM volumes, will be a powerful tool to uncover the wiring rules across the complete 
diversity of cortical cell types. 
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Supplemental Figures 

Supplemental Figure 1, related to Figure 1 and Figure 3. Computational steps involved in defining the AIS and 
soma compartments and their synapses. A, AIS extraction. From left to right:  (1) We start with a full soma mesh 
(gray) with all automatically detected inputs (cyan) and a pair of manually annotated AIS points (red). (2) We find the 
initial axonal mesh region that is near a direct path the two points along the surface of the mesh and keep that mesh 
region and the synapses on it (Mesh region: grey, synapses: cyan dots), while filtering out the rest of the mesh and its 
synapses (red). (3) We specify the initial region of the AIS up to a maximum distance by computing a simple 
“skeleton”, i.e. the shortest path along the mesh from the top-most (i.e. shallowest) point of initial axonal mesh to the 
bottom-most (i.e. deepest) point. We measure the distance along the skeleton from the top. For every point of the 
axonal mesh, we find the closest point on the skeleton path and remove those mesh points (and their associated 
synapses) whose closest skeleton point is beyond the maximum distance (red). B, Soma Extraction. From left to 
right: (1) Starting from the same whole mesh, we manually identified the approximate centroid of each PyC soma and 
defined a 15 µm radius sphere around it (red), which is sufficient to capture the soma of all neurons. (2) We filtered 
out the mesh outside of the sphere and algorithmically omitted artifacts and components from axonal or dendritic 
branches that come into the sphere from outside. The remaining soma mesh and its synapses (gray, cyan dots 
respectively) includes proximal neurites. (3) The computational vision package CGAL identifies regions with 
substantial changes in radius. We used this to define the mesh region at the soma and keep the associated 
synapses.
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Supplemental Figure 2, related to Figure 2. Dendritic input into ChCs. A, We found two ChCs (denoted A and B, 
respectively) with cell bodies and substantial dendrites in the volume, shown here individually for clarity. Axons and 
dendrites are both incomplete, as they leave the imaged volume boundaries. Both dendrites and soma are covered 
with synaptic input (cyan dots). Note that the synapse-free region on the soma of cell A is exactly where it is directly 
apposed to another cell body. B, Both ChCs receive synaptic input from the pyramidal cells (black dots) in the volume 
across their dendrites. Individual PyCs placed between 1-4 synapses on target ChCs, although that is a lower bound. 
C, In total, 26 PyCs made 42 synapses with the two ChCs, suggesting widespread feedback from the local excitatory 
network. D, Putative gap junctions between ChCs. We found five contact points (gray circles) with electron-dense 
membrane structures between ChC dendrites, four at terminal points. E, Detailed 3d contact morphology (top) and 
EM imagery of the two contacts. Scale bar is 500 nm. Note the dense clouds at the contact sites. F, Graph 
representation of the putative gap junction contacts. H, A putative L2/3 Martinotti cell (based on morphology) makes 
synapses across both ChC dendrites. J, Graph representation of connections onto each ChC from the Martinotti cell 
(M). In panels B, D, H, and I the red/green/blue 3d axes are shown to specify rotation angle (green is towards white 
matter). Each line of the axis is 10 µm. 
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Supplemental Figure 3, related to Figure 3. ICA finds uncorrelated structural components for the PyCs. Each dot 
represents one PyC. Lines indicate least squares linear fit, shaded region is a 95% confidence interval estimated 
from bootstrap resampling. 
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Supplemental Figure 4, related to Figure 3. Distribution of ChC synapses in L2/3. A) All output synapses from 
measured ChCs (red), whether onto measured AISes or not), within the volume. Gray outline indicates the 
approximate segmentation boundary, pia is up. B, Distribution of all outputs synapses from observed non-ChC cells 
(grey), onto any target, as in A. We use this as an estimate of where synapses could reasonably fall in the dataset 
conditional on having any synapses on one of the AISs that we considered. C, Density of synapses as a function of 
depth for the ChCs (left) and non-ChCs (right). D, Red line, fraction of observed synapses in a given depth bein 
above that are from ChC (i.e. # ChC Syn. / (# ChC Syn. + # non-ChC Syn.) ). Black line: Same fraction, measured 
across all depths. Stars indicate a significant difference from the overall average (*: p<0.05, **: p<0.01, ***: p<0.001, 
Fisher exact test). ChC synapses are overrepresented in a band between 30–60 µm from the top of the dataset, 
approximately at the L1/L2 border). 
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Supplemental Figure 5, related to Figure 4. OLS analysis of potential connectivity for alternative distance 
thresholds. For d=5 µm : A), OLS coefficients for number of potential connections, as in Figure 4H. B), Each 
component plotted against the residuals for potential connections after fitting the other two components, as in Figure 
4I. Black line indicates least squares fit, gray shade indicates a 95% confidence interval based on bootstrapping. C), 
OLS coefficients for connectivity fraction, as in Figure 4J. D), Each component plotted against the residuals for 
connectivity fraction after fitting the other two components, as in Figure 4K. E–H), same as A–D but for a potential 
connection distance threshold of 10 µm. 
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Supplemental Figure 6, related to Figure 5. Robustness of potential motif analysis for different potential distance 
thresholds. Using a distance threshold of 5 µm: A), Bipartite adjacency matrix of potential (black) and actual (red) 
connections, using the same node ordering as Figure 5A. B), Observed potential bifan motif probability (red line) 
compared to shuffled graphs (equivalent to Figure 5C). C), Comparison of observed motif connection probability (red 
line) with shuffled graphs with different weightings (equivalent to Figure 5E). For a distance threshold of 10 µm: D), 
E), and F) follow as in A, B, and C respectively.  
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Supplemental Video 1, related to Figure 1. A rendering of the EM reconstructions from this dataset demonstrating 
the mapping of ChC inputs onto L2/3 PyCs. Video begins with four gray PyCs with only their somatic regions and AIS 
region shown. An individual pink ChC fragment is slowly revealed over time, as the reconstruction is followed along to 
all the locations that it synapses onto. Note, portions of that axon which are far from the four PyCs are excluded from 
the rendering for clarity. Then a second, purple axon fragment is revealed in the same fashion. Third, all the ChC 
fragments which synapses onto these four PyCs are revealed simultaneously, each with their unique color. Finally, 
the scene pans out to reveal all the PyCs in this structural dataset, and all of the ChCs reconstructed in the dataset 
are revealed in red. 
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Methods 

Animal preparation for electron microscopy 
All animal procedures were approved by the Institutional Animal Care and Use Committee at the Allen 
Institute for Brain Science. 
 
Neurophysiology data acquisition was conducted at Baylor College of Medicine. To aid in registration of 
optical physiology data to EM data, a wide field image of the cranial window visualizing the surface 
vasculature was provided in addition to a volumetric image stack of the vasculature, encompassing the 
region of tissue where the neurophysiology dataset was acquired. The vasculature was imaged by injecting 
a red fluorescent dye into the bloodstream of the mouse, allowing blood vessels and cell bodies to be 
imaged simultaneously by 2-photon microscopy. Mice were then transferred to the Allen Institute in Seattle, 
where they were kept in a quarantine facility for 1 to 3 days after which they were euthanized and perfused.  

 
Perfusion 
After induction of anesthesia with isoflurane, the appropriate plane of anesthesia was checked by a lack of 
toe pinch reflex and the animals were transcardially perfused with 15 ml 0.15 M cacodylate  buffer (EMS, 
Hatfield, PA,  pH 7.4) followed by 30 ml fixative mixture containing 0.08 M cacodylate (pH 7.4), 2.5% 
paraformaldehyde (EMS), 1.25% glutaraldehyde (EMS) and 2 mM calcium chloride (Sigma). The perfusion 
solution was based on the work of (Hua et al., 2015).  Once the brain was removed it was placed into the 
same fixative solution to post-fix for 16 to 72 hours at 4 °C.  
 
Identifying neurophysiological region for further electron microscopy processing 
To accurately identify and isolate the region of cortical tissue where the neurophysiology dataset was 
imaged, we labeled and imaged the surface and descending vasculature. After perfusion of the animals 
and excision of the brain, the surface of the cortex was imaged using differential contrast lighting to visualize 
the surface vasculature of visual cortex where the cranial window had previously been. We manually 
marked fiduciary points around this region of cortex to aid identification of the previously imaged cortical 
site after vibratome sectioning. The brain was washed in CB (0.1 M cacodylate buffer pH 7.4) and 
embedded in 2% agarose. The agarose was trimmed and mounted for coronal sectioning in a Leica 
VT1000S vibratome; successive 200 μm thick slices were taken until the entire region of cortical tissue 
previously demarcated by manual markings was sectioned. During this procedure, we also acquired 
blockface images of each brain slice. 
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After vibratome sectioning, the wide field image of the cranial window and the vasculature stack were co-
registered with the images of the surface vasculature from the brain surface using TrakEM2 (Cardona et 
al., 2012). From the blockface images, we could readily identify the fiduciary marks made on the brain 
surface. A volumetric representation of the cortical surface of the blockface images and the fiduciary marks 
was constructed in TrakEM2 and the orientation and position of the vibratome sections were aligned to the 
surface vasculature images by affine registration of the fiduciary points. This allowed for determination of 
the vibratome slices that contained the previously imaged region of cortical tissue. 
 
To map the neurophysiology imaged site within the coronal slice, we next mounted the slices under 
coverglass in CB and acquired 10x images of the entire hemisphere of the slice, and 20x image stacks 
covering the cortical tissue surrounding the potential imaged site using a Zeiss AX10 ImagerM2 upright 
light microscope. These 10x and 20x stacks were co-registered in trakEM2, and these images allowed us 

to visualize the descending vasculature within the coronal sections. We next generated a volumetric 
rendering of the vasculature stack provided by Baylor College of Medicine using microView (Parallax 
Innovations). From this rendering, we could reslice and visualize the descending vasculature from the 
previously imaged site. Corresponding vasculature landmarks were identified between the in-vivo imaged 
site and the light microscopy coronal slice stacks. These landmarks were used to map the extent of the 
previously imaged tissue site to the coronal slice. The coronal sections containing the imaged site were 
then selected for histological processing (see below).  
 
Electron microscopy Histology 
The histology protocol used here is based on the work of (Hua et al., 2015), with modifications to 
accommodate different tissue block sizes and to improve tissue contrast for transmission electron 
microscopy (TEM).  
Following several washes in CB (0.1 M cacodylate buffer pH 7.4), the vibratome slices were treated with a 
heavy metal staining protocol.  Initial osmium fixation with 2% osmium tetroxide in CB for 90 minutes at 
room temperature was followed by immersion in 2.5% potassium ferricyanide in CB for 90 minutes at room 
temperature.  After 2 x 30 minute washes with deionized (DI) water, the tissue was treated with freshly 
made and filtered 1% aqueous thiocarbohydrazide at 40 °C for 10 minutes.  The samples were washed 2 
x 30 minutes with DI water and treated again with 2% osmium tetroxide in water for 30 minutes at room 
temperature. Double washes in DI water for 30 min each were followed by immersion in 1% aqueous uranyl 
acetate overnight at 4°. The next morning, the samples in the same solution were placed in a heat block to 
raise the temperature to 50° for 2 hours. The samples were washed twice in DI water for 30 minutes each, 
then incubated in Walton's lead aspartate pH 5.0 for 2 hours at 50 °C in the heat block. After double washes 
in DI water for 30 minutes each, the slices were dehydrated in an ascending ethanol series (50%, 70%, 
90%, 3 x 100%) 10 minutes each and two transition fluid steps of 100 % acetonitrile for 20 minutes each. 
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Infiltration with acetonitrile:resin dilutions at 2p:1p (24 h), 1p:1p (48 h) and 1p:2p (24 h) were performed on 
a gyratory shaker. Samples were placed in 100% resin for 24 hours, followed by embedment in Hard Plus 
resin (EMS, Hatfield, PA). The samples were cured in a 60 °C oven for 96 hours. 
In order to evaluate the quality of samples during protocol development and before preparation for large 
scale sectioning, the following procedure was used for tissue mounting, sectioning and imaging. We 
evaluated each sample for membrane integrity, overall contrast and quality of ultrastructure.  For general 
tissue evaluation, adjacent slices and tissue sections from the opposite hemisphere, processed in the same 
manner as the ROI slice, were cross-sectioned and thin sections were taken for evaluation of staining 
throughout the block neighboring the region of interest.  
 
Ultrathin Sectioning 
The tissue block was trimmed to contain the neurophysiology recording site which is the region of interest 

(ROI) then sectioned to 40 nm ultrathin sections. For both trimming and sectioning a Leica EM UC7 
ultramicrotome was equipped with a diamond trimming tool and an Ultra 35 diamond knife (Diatome USA) 
respectively. Sectioning speed was set to 0.3 mm/sec. Eight to ten serial thin sections were cut to form a 
ribbon, after which the microtome thickness setting was changed to 0 nm in order to release the ribbon from 
the knife edge. Then, using an eyelash superglued to a handle, ribbons were organized to pairs and picked 
up as pairs to copper grids (Pelco, SynapTek, 1.5 mm slot hole) covered by 50nm thick LUXFilm support 
(Luxel Corp., Friday Harbor, WA). 
 
Electron microscopy imaging 
The imaging platform used for high throughput serial section imaging is a JEOL-1200EXII 120kV 
transmission electron microscope that has been modified with an extended column, a custom scintillator, 
and a large format sCMOS camera outfitted with a low distortion lens. The column extension and scintillator 
facilitate an estimated 10-fold magnification of the nominal field of view with negligible impact on resolution.  
Subsequent imaging of the scintillator with a high-resolution, large-format camera allows the capture of 
fields-of-view as large as 13x13um at 4nm resolution.  As with any magnification process, the electron 
density at the phosphor drops off as the column is extended.  To mitigate the impact of reduced electron 
density on image quality (shot noise), a high-sensitivity sCMOS camera was selected and the scintillator 
composition tuned in order to generate high quality EM images within exposure times of 90 - 200 ms (Yin 
et al., 2019). 
 
Proofreading and Annotation of Volumetric Imagery Data 
We used a combination of Neuroglancer (Maitin-Shepard, https://github.com/google/neuroglancer) and 
custom tools to annotate and store labeled spatial points. In brief, we used Neuroglancer to simultaneously 
visualize the imagery and segmentation of the 3d EM data. A custom branch of Neuroglancer was 
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developed that could interface with a “dynamic” segmentation database, allowing users to correct errors 
(i.e. either merging or splitting neurons) in a centralized database from a web browser. Neuroglancer has 
some annotation functionality, allowing users to place simple annotations during a session, but does not 
offer a way to store them in a central location for analysis. We thus built a custom cloud-based database 
system to store arbitrary annotation data centered associated with spatial points that could be propagated 
dynamically across proofreading events. Annotations were programmatically added to the database using 
a custom python client and, in relevant cases, after parsing temporary Neuroglancer session states using 
custom python scripts. These spatial points and their associated data (e.g. synapse type, cell body ID 
number, or cell types) were linked to stored snapshots of the proofreading for querying and reproducible 
data analysis. All data analyzed here came from the “v183” snapshot. 
 
Visualization and Analysis of Mesh Data 

Neuronal meshes were computed by Igneous (https://github.com/seung-lab/igneous) and kept up to date 
across proofreading. Meshes were analyzed in a custom python library, MeshParty 
(https://github.com/sdorkenw/MeshParty), that extends Trimesh (https://trimsh.org) with domain-specific 
features and VTK (https://www.vtk.org) integration for visualization. In cases where skeletons were used, 
we computed them with a custom modification of the TEASAR algorithm (Sato et al., 2000) on the vertex 
adjacency graph of the mesh object implemented as part of MeshParty. In order to associate annotations 
such as synapses or AIS boundary points with a mesh, we mapped point annotations to the closest mesh 
vertex after removing artifacts from the meshing process.  
 
AIS Identification and Extraction 
To get a handle on the contents of the EM volume, we manually identified every cell body in the dataset 
manually (N=458) and assigned a unique point at the approximate center of the soma for each. We then 
manually assigned a coarse cell type (excitatory, inhibitory, or glia) to each based on morphology. To 
identify the AIS of excitatory neurons, we manually placed points at the top and bottom of excitatory neurons 
that were thought to have a largely completely AIS in the volume. To extract the mesh vertices associated 
with the AIS, we computed the path distance between each mesh vertex and the top and bottom points 
(𝑑!"# and 	𝑑$"!!"%, respectively), the distance between top and bottom points (𝑑&'(), and kept those vertices 

that satisfied 𝑑!"#) + 𝑑$"!!"%) < (𝑑&'( + 1000)). Distances were measured in nm using Dijkstra’s algorithm 

as implemented in SciPy (https://www.scipy.org). The constant padding term allows the mesh definition to 
wrap around the AIS smoothly. 
 
To extract the initial 37 microns of the AIS, we skeletonized each AIS (see previous section) and computed 
which mesh vertices were closest to each skeleton vertex. We filtered out all mesh vertices associated with 
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the skeleton vertices more than 37 microns of the top skeleton tip. The threshold was chosen to balance 
keeping as many distinct PyCs as possible while covering as much of the ChC input domain as possible. 
 
Chandelier Cell Type Classification and Proofreading 
Cell typing of AIS inputs was performed across several rounds of proofreading and annotation. Every 
neurite presynaptic to an AIS was evaluated starting from its synapses. The main step was to evaluate 
other synapses from the same axon. The compartment (AIS, dendrite, or soma) was trivial to determine via 
manual inspection from the automated segmentation, even without labels or proofreading. If any of those 
synapses targeted dendrites or soma at subsequent points along the axon, the axon was labeled non-ChC 
at the seed synapses. Attaching the annotation to this point would allow any potential distant splitting of the 
axon due to proofreading to remain unlabeled. In contrast, axons that exhibited multi-bouton cartridges 
characteristic of ChCs and only targeted AISs were labeled as ChCs and proofread completely, extending 

tips and splitting segmentation errors. Because of the large number and size of these cells, comprehensive 
proofreading of non-ChC was beyond the scope of the project. However, to account of the possibility of 
ChC axons that had been erroneously merged into non-ChC axons by the automated segmentation, we 
evaluated every non-ChC synapse after completing an initial round of axon classification. Non-ChC axons 
forming multi-synaptic contacts onto any AIS were also given additional scrutiny. A small number of axonal 
fragments that targeted AIS near the edge of the volume had few synapses overall and were more difficult 
to classify. In those cases, we used bouton morphology, tight clustering with established ChC boutons, and 
in some instances following the axonal process in imagery outside the segmented region to cartridges. 
 
Soma and AIS Mesh Structural Properties 
The automated meshing process introduced artifacts that made measuring spatial properties like surface 
area require special processing. For example, if part of the nucleus was segmented separately, this would 
introduce extra mesh faces to the neuron. In order to extract a clean surface for cell somata, we extracted 
a cutout of the voxel segmentation within 15 microns of the approximate cell body center that contained 
both the soma and initial part of proximal neurites. Boundary expansion and contraction for the 
segmentation was performed to fill small gaps caused by image and segmentation artifacts and the mesh 
was recomputed using the marching cubes algorithm. We then used CGAL (https://www.cgal.org) surface 
mesh segmentation to identify proximal neurites and leave only the core soma mesh for measurements. 
Manual quality control of resulting meshes was done to ensure that the analysis only included cell bodies 
that were completely contained in the volume and were free of remaining artifacts. Surface area was 
computed by summing the area of mesh faces. Synapse count was computed from those synapses 
associated with the core soma mesh. 
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We computed AIS radius from the mesh via ray tracing. From each point on the AIS skeleton, a ray was 
sent toward the opposite side and the intersection with the opposite point was used to determine the 
diameter at that point. The AIS can emerge from either the soma or a dendrite, which could influence the 
radius of the most proximal part of the AIS due to the transition between compartments. To avoid being 
affected by transition, we ignored the initial 5 µm and averaged the radius based on skeleton vertices 
between 5-38 µm along the AIS. 
 
The imagery dataset was sectioned so that the y-axis was approximately aligned with the pia-to-white-
matter dimension, but exact alignment was not possible at the data collection stage. To more accurately 
measure depth within the data, we rotated the coordinate system to align with the average vector from AIS 
top to AIS bottom across all cells. 
 

Structural Components Analysis 
We could compute complete AIS and soma features for 113 cells in the data. Most cells that were excluded 
had soma that touched the edge of the volume and thus were only partially reconstructed. Pearson 
correlations between structural features were found using Scipy with a Holm-Sidak multiple test correction. 
To address the underlying correlations, we used the FastICA implementation in scikit-learn to do a 
components analysis of the structural properties. We selected three components, as the first three 
components of a principal components analysis (an approximation and bound on ICA explained variance) 
account for 84% of the variance and three ICA components were clearly interpretable. FastICA is a 
stochastic algorithm, so we ran it many times and selected the most robust solution. Components were 
multiplied by -1 if needed to make the largest element positive. 
 
To look at the relationship between structural components and ChC input, we used ordinary least squares 
regression on z-scored counts of synaptic input, number of connections, and average synapses per 
connection. Coefficients and confidence intervals were computed with Statsmodels (citation) and p-values 
were adjusted with a Holm-Sidak multiple test correction. 
 
Potential Synapse Analysis 
We defined a potential connection as a ChC axon whose mesh came within a given distance threshold of 
a truncated AIS mesh (as described above). Distances were measured with the Scipy implementation of 
the k-d tree data structure. We tested distance thresholds between 5–15 µm and saw qualitatively similar 
results for 5-10 µm. Since the number of true connections was irrespective of distance, connectivity 
threshold was strictly non-increasing with increased distance. For a distance threshold of 15 µm, 
connectivity fraction showed a negative trend with depth, suggesting that the influence of depth on potential 
connections became a factor at that length scale due to density of nearby axons, and we report only the 
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results from the lower range of thresholds. For some AISs near the edge of the volume, the region around 
them might reach beyond the edge of the segmentation, resulting in a potential undercounting of potential 
connections. To avoid including these AIS in our analysis, we computed the fraction of voxels within the 
distance threshold that were within the segmented data. If more than 10% of the voxels were outside of the 
segmentation for a given distance threshold, the cell was omitted from that analysis. 
 
Network Motif Analysis 
Based on the definition of potential connection above, we generated two bipartite networks from ChCs onto 
PyCs, one based on the potential connectivity and one based on actual synaptic connectivity. By definition, 
the actual connectivity network is a strict subset of the potential network. To investigate the clumpiness of 
ChC targeting, we looked at the bifan motif in the bipartite network from ChC to PyCs. A bifan is defined as 
the motif comprising two source nodes (ChCs) and two target nodes (PyCs) and four edges, here such that 

two ChC target the same two PyCs. We generalized the concept to include the concept of potential synapse, 
defining a “potential bifan” as a bifan where one edge was a potential connection and the other three were 
actual connections. For every potential connection, we evaluated if it was part of a potential bifan and then 
if it was an actual bifan. The bifan connectivity fraction was then the ratio of these two numbers. 
 
We next developed a method to randomize the actual network within the potential network. Starting from 
the observed actual network, we iterated through each actual connection in a random order and at each 
step we: 1) removed the actual connection from the graph, leaving it only a potential connection and 2) for 
the target AIS, picked a new potential, but not already connected, ChC (including the just-disconnected 
one). Each step preserves the degree distribution of the AIS, but not the ChC, which we chose to reflect 
the apparent postsynaptic influence on ChC input and relative uniformity of ChC axons. We iterate through 
the network five times, shuffling each edge each time. To add a bias to the shuffling, at the step of picking 
a new actual connection we evaluated which potential connections could complete a bifan motif. For each 
ChC connection 𝑖 it was given a weight 𝑤* = 𝛼 if it was a potential bifan and 𝑤* = 1 otherwise. A connection 
was then selected with probability proportional to its weight. The result is that for 𝛼 > 1, connectivity will be 
clumpier with bifans being generated more often than chance, while for 𝛼 < 1, connectivity will be more 
dispersed, with bifans being generated less often than chance. 
 
Cisternal Organelle Annotation and Analysis 
To annotate the COs, we selected ten PyCs from intentionally from across the distribution of total ChC 
synapse count. An expert neuroanatomist worked through every 3-4 sections of the data, placing annotation 
points on ER with stacked cisternae. Cisternae points were placed within the extent of the organelle every 
several sections, creating a point cloud throughout. 
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To compute the location of the COs, we mapped the stacked cisternae points to the closest mesh index on 
the AIS. This left both clear clumps associated with COs and a few diffuse outliers due to ambiguous 
ultrastructure and the mapping procedure. To filter the data down to just the clumps, we used a density-
based clustering algorithm DBSCAN (citation) as implemented in scikit-learn, where the distance between 
points was computed along the mesh vertices and edges. 
 
While synapse detection associated a location with every synapse, we found that there was a bias in this 
location away from en face parts of the synapse active zone and onto the transversely cut, resulting in an 
axis-aligned bias of AIS synapse locations. To more accurately assign a location to each synapse, we 
associated each synapse with the contact site between the presynaptic ChC mesh and the postsynaptic 
AIS mesh. The contact site was computed by finding nodes of the AIS mesh within 150 nm of the ChC 
mesh and clustering with DBSCAN (Ester et al., 1996) using precomputed distances along the mesh 

surface, which generated puncta-like clusters for each bouton contact. Each synapse could then be 
associated with a given puncta, and the center of the puncta was computed by identifying the node with the 
highest average distance along the mesh surface from other nodes within the puncta. 
 
For each synapse, we computed its depth and orientation of the mesh vertex associated with it. Depth was 
measured as the distance along the skeleton from the top to the skeleton node closest to the synapse mesh 
vertex. Orientation was measured by computing a slice of the AIS mesh centered at the synapse and 
spanning 400 nm along the pia-to-white matter direction (the y-axis of the dataset). The AIS mesh points in 
this slice were projected into 2d and their convex hull was used to estimate the local outline of the AIS. The 
angle of the vector from the center of the convex hull to the synapse was used for the orientation, with an 
orientation angle of 0 corresponding to the positive x-axis direction. To map vertices across AISes, we used 
their depth and orientation values of each synapse to compute the vertex on the target AIS with the most 
similar orientation that was also within 200 nm of the same depth. 
 
Generating biophysically detailed all-active models  
The Allen Cell-Types database (http://celltypes.brain-map.org) contains 1920 in vitro whole cell patch 
clamp recordings and 485 biocytin filled digital reconstructions from neurons in mouse primary visual cortex 
for a variety of transgenic lines. The all-active single neuron models are constrained by these two data 
modalities from the same cell, namely, electrophysiology – voltage responses under standardized set of 
protocols and morphology – diameter and length of each segment within the tree. We distribute voltage 
gated Sodium (Na+), Potassium (K+) and Calcium (Ca++) conductances across the entire morphology, 
specifically, we use the following channels Ih, NaT, NaP, KT, KP, Kv2, Kv3.1, SK, Im , CaLVA , CaHVA, 
with the assumption that these ion channels are expressed uniformly along each major morphological 
sections: soma, axon, apical and basal dendrites. These parameters and the passive membrane properties 
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(membrane capacitance cm, axial resistance Ra, leak conductance g_pas, reversal potential e_pas) 
construct the multicompartmental model of the neuron, thereby forming the variable vector (n = 43) for the 
optimization. To avoid inconsistencies in the axonal reconstructions such as isolated segments (or absence 
of axon altogether), we replace the axon with a 60 µm long, 1 µm diameter initial  segment.  We use 
a multiobjective optimization framework (Druckmann et al., 2007) where features such as action potential 
(AP) amplitude, width, spike frequency, steady state voltage etc., are extracted from individual traces and 
the deviation (z-score) between experiment and model feature at a specific stimulus becomes one of the 
objectives. For our purposes we have used python toolbox BluePyOpt (Van Geit et al., 2016) that offer 
evolutionary algorithms (Fortin et al., 2012) to solving multiobjective optimization problems, with NEURON 
7.5 (Hines and Carnevale, 1997) under the hood to simulate each model spawned out of the parameter 
explorations. To get a handle on the computation we have designed a 3 stage workflow where we 
progressively introduce new channels to the circuit, i.e., first only fit the passive parameters with features 

from subthreshold experimental traces, next add hyperpolarization activated channel Ih with sag (Hogan 
and Poroli, 2008) related features to the objective, and finally equip the circuit at its full complexity by 
introducing the rest of the channels and fit the conductance densities with both spiking and subthreshold 
trace features. Throughout the workflow the Indicator based evolutionary algorithm (IBEA) adds 512 
new offsprings (new models) to the population at each generation with Stage 0,1 evolved up to 50 
generations with 1 seed and Stage 2 continued for 200 generations with 4 independent seeds. On a 256 × 
2.2 GHz Intel Xeon E5-2630v4 distributed cluster with 150 Gb of maximum process memory the 
optimization of a single cell takes 26 ± 11 hours. Overall we have used 15 distinct features across the three 
stages extracted with the eFEL library (Van Geit et al., 2018). Our models capture axonal AP initiation, an 
important aspect of biophysical realism. To add this constraint, we append 
the boolean feature checkAISInitiation, part of the eFEL library, at the final stage of the optimization. This 
involves calculating the AP onset at axon and soma and adding a heavy penalty to the models for which 
somatic AP precedes axonal AP. This also requires allowing a less restrictive maximal density for the 
transient Na+ current and lower action potential threshold at the axon compared to the soma. At the 
conclusion of the 3 stages, the workflow outputs 40 models sorted according to the sum of all objectives, 
for each experiment. We use the ‘best model’, i.e., the model with least training error for downstream 
analysis of synaptic integration properties. 
                    
Simulating single neuron models under synapses   
For simulating the single neuron models under synaptic inputs, we have used Brain Modeling Toolkit (bmtk) 
(Gratiy et al., 2018) with NEURON 7.5 simulation environment. In this study we have used all-active models 
for 4 cells with ids : 477127614, 571306690, 584254833, 382982932 from the Allen Cell-Types database. 
For Figure 7E,F we have simulated each model for 1 sec with 50 excitatory synapses over 25 connections 
(2 synapses per connection) with Poisson spike train rates ranging from 0 to 500 Hz. The number of 
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inhibitory synapses on the axon initial segment (AIS) of the modeled PyC and their distribution is adopted 
from EM data and the frequency of the incoming inhibitory spike train is held constant at 100 Hz. For each 
cell and number of inhibitory synapses to evaluate the resultant ‘fi curve’ (e) we run 8 different repetitions 
at each excitation rate. We aggregate the spike count output for these simulations and group them 
according to the amount of inhibition and perform one sided pairwise Wilcoxon signed-rank test at 5% false 
discovery rate. 
 
For the simulations in Figure 7G both excitatory and inhibitory spike trains are sampled from a gaussian 
rate function with the maximal rate of 500 Hz and 200 Hz respectively. The peak of the excitation is varied 
at 5 ms intervals with 10 repetitions to capture the variability in response and the total simulation window is 
1 sec. The number of excitatory synapses and their distribution (25*2) remains unchanged. For the pairwise 
comparison, we once again use one-sided Wilcoxon signed-rank test at 5% FDR. The free parameters in 

these simulations, such as the maximal excitation, inhibition rate, or number of 
excitatory synapses, are selected such that the cells represented by the biophysical models operate at a 
similar activation regime. 
 
Surgery and animal preparation for in vivo imaging 
In total, three Vipr2-IRES2-Cre mice (1 male, 2 female) were used in this study. The surgery included a 
stereotaxic viral injection and a cranial window/head-plate implantation. During the injection, a glass pipette 
back-loaded with AAV virus was slowly lowered into the superficial layer of left V1 (3.8 mm posterior 2.7 
mm lateral from bregma, 0.3 mm below pia) through a burr hole. 5 minutes after reaching the targeted 
location, 50 or 100 nL of virus was injected into the brain over 10 minutes by a hydraulic nanoliter injection 
system (Nanoject III, Drummond). The pipette then stayed for an additional 10 minutes before it was slowly 
retracted out of the brain. AAV1 (or AAV5)-CAG-FLEX-GCaMP6f (addgene: 100835-AAV1 or AAV5, titer 
2x1013 vg/ml) were used for functional imaging and AAV9-CAG-FLEX-eGFP (addgene: 51502-AAV9, titer 
2.28x1013 vg/ml, 1:10 dilution) was used for structure imaging.  Immediately after injection, a titanium head-
plate and a 5 mm glass cranial window were implanted over left V1 following the Allen Institute standard 
procedure protocol (de Vries et al., 2020; for detailed protocol see Goldey et al., 2014) allowing in vivo two-
photon imaging during head fixation.  
After surgery, the animals were allowed to recover for at least 5 days before retinotopic imaging with intrinsic 
signal during anesthesia (for detailed retinotopic protocol, see (Juavinett et al., 2017)). After retinotopic 
mapping, animals were handled and habituated to the imaging rig for two additional weeks before in vivo 
two-photon imaging (de Vries et al., 2020).  
All experiments and procedures were approved by the Allen Institute Animal Care and Use Committee.  
 
Histology for viral expression 
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To characterize the Cre expression pattern, Vipr2-IRES2-Cre mice injected by Cre-dependent eGFP or 
GCaMP viruses were perfused and brains collected. Briefly, mice were anesthetized with 5% isoflurane 
and 10 ml of saline (0.9% NaCl) followed by 50 ml of freshly prepared 4% paraformaldehyde (PFA) was 
pumped intracardially at a flow rate of 9 ml/min. Brains were immediately dissected and post-fixed in 4% 
PFA at room temperature for 3-6 hours and then overnight at 4 °C. After fixation, brains were incubated in 
10% and then 30% sucrose in PBS for 12-24 hours at 4 °C before being cut into 50 µm sections by a 
freezing-sliding microtome (Leica SM 2101R). Sections from V1 were mounted on gelatin-coated slides 
and cover-slipped with Prolong Diamond Antifade Mounting Media (P36965, ThermoFisher). For GCaMP 
labeled tissue, sections were processed with antibody staining before mounting. During antibody staining, 
sections containing LGN and V1 were blocked with 5% normal donkey serum and 0.2% Triton X-100 in 
PBS for one hour, incubated in an anti-GFP primary antibody (1:5000 diluted in the blocking solution, 
Abcam, Ab13970) for 48-72 hours at 4 °C, washed the following day in 0.2% Triton X-100 in PBS and 

incubated in a Alexa-488 conjugated secondary antibody (1:500, 703-545-155, Jackson ImmunoResearch) 
and DAPI.  
The sections were then imaged with Zeiss AxioImager M2 widefield microscope with a 10x/0.3 NA objective. 
Fluorescence from antibody enhanced GCaMP and mRuby3 were extracted from filter sets Semrock GFP-
1828A  (excitation 482/18 nm, emission 520/28 nm, dichroic cutoff 495 nm) and Zeiss # 20 (excitation 
546/12 nm, emission 608/32 nm, dichroic cutoff 560 nm), respectively. A subset of sections was imaged 
with 2-photon microscope (Scientifica 2PIMS, objective: Nikon 16XLWD-PF, 16x/0.8 NA, laser: Coherent 
Chameleon Ultra II, excitation wavelength: 920nm, emission filter: 470-558 nm band-pass) to obtain 3d 
axon morphology with high resolution (pixel size: 0.47 µm). 
 
In vivo two-photon imaging 
When recovery, retinotopic mapping, habituation was finished (usually more than three weeks after initial 
surgery), V1 cells labeled with GCaMP6f were evident in superficial layers (50 – 200 µm) through the cranial 
window. Calcium activities from those cells were imaged by two-photon excitation using a custom 
microscope and 940 nm illumination by a Ti:sapphire laser (a Spectra-Physic Insight X3), focused with a 
16×/0.8 NA objective (Nikon N16XLWD-PF). This scope has the ability to correct optical aberration 
(adaptive optics) and quickly switch focal depth by modulating the beam wavefront with a liquid crystal 
spatial light modulator (SLM, Meadowlark Optics, HSP-512, Liu et al., 2018). With this scope, we recorded 
calcium activities from planes at 3 different depths (16 or 32 µm apart in depth) in single imaging sessions. 
The plane at each depth was sequentially imaged at about 37 Hz and the volume rate was about 12 Hz 
and aberrations out of the objective were corrected (with 512 x 512 pixels resolution at LSM). Emitted light 
was first split by a 735 nm dichroic mirror (FF735-DiO1, Semrock). The short-wavelength light was filtered 
by a 750 nm short-pass filter (FESH0750, Thorlabs) and a 470-588 nm bandpass emission filter (FF01-
514/44-25, Semrock) before collected as GCaMP signal. Image acquisition was controlled using Vidrio 
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ScanImage software (Pologruto et al., 2003). To maintain constant immersion of the objective, we used gel 
immersion (Genteal Gel, Alcon). 
All imaging sessions were performed during head fixation with the standard Allen Institute Brain 
Observatory in vivo imaging stage (de Vries et al., 2020). 
 
2-photon Image preprocessing 
The recorded 2-photon movies for each imaging plane were motion-corrected using rigid body transform 
based on phase correlation by a custom-written python package 
(https://github.com/zhuangjun1981/stia/tree/master/stia, (Zhuang et al., 2017)). To generate regions of 
interest (ROIs) for boutons, the motion-corrected movies were further downsampled by a factor of 3 and 
then processed with constrained non-negative matrix factorization (CNMF) (Pnevmatikakis et al., 2016), 
implemented in the CaImAn python library (Giovannucci et al., 2019). These ROIs were further filtered by 

their size (ROIs smaller than 23.4 µm2 or larger than 467.5 µm2 were excluded), position (ROIs within the 
motion artifacts were excluded). Since the labeled cells distributed sparsely, there were no overlapping 
pixels among ROIs. For each retained ROI, a neuropil ROI was created as the region between two contours 
by dilating the ROI’s outer border by 1 and 8 pixels excluding the pixels within the union of all ROIs. The 
calcium trace for each ROI was calculated by the mean of pixel-wise product between the ROI and each 
frame of the movie, and its neuropil trace was calculated in the same way using its neuropil ROI. To remove 
the neuropil contamination, the neuropil contribution of each ROI’s calcium trace was estimated by a linear 
model and optimized by gradient descendent regression with a smoothness regularization (Zhuang et al., 
2017; de Vries et al., 2020).  
 
Pupil area and locomotion speed extraction 
During each imaging session, the locomotion speed and a movie of the animal’s right eye were 
simultaneously recorded following the Allen Brain Observatory standard protocol (de Vries et al., 2020, 
Zhuang et al., 2017). To extract pupil area, the contour of pupil in each frame was extracted with adaptive 
thresholding (Zhuang et al., 2017) by custom-written python package “eyetracker” 
(https://github.com/zhuangjun1981/eyetracker).  
For each imaging session, a comprehensive collection of data including metadata, visual stimuli, all 
preprocessing results, final calcium traces, locomotion speed, and pupil area was generated in Neurodata 
Without Borders (nwb) 1.0 format with “ainwb” package (https://github.com/AllenInstitute/nwb-api). The 
analysis pipeline (imaging preprocessing, pupil/locomotion analysis, and nwb packaging) were performed 
by a custom-written python package “corticalmapping”  
(https://github.com/zhuangjun1981/corticalmapping). 
 
Correlation Analysis 
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We computed pairwise correlations between the activities of all recorded cells for each imaging session 
during spontaneous periods. For the chandelier cell recordings, we analyzed cells across the three different 
imaging planes. For the non-chandelier cell types (VIP, SST, and PV), we used data recorded from a single 
imagine plane in visual area VISp. This data was downloaded through the publicly available Allen Brain 
Observatory using the AllenSDK (0.16.3). We first downsampled the corrected fluorescence traces from 30 
Hz to 12 Hz (using the scipy resample function) to match the sampling rate of the chandelier cell recordings. 
We show the distribution of correlation coefficients across all simultaneously recorded cell pairs separated 
by cell type, and report summary statistics comparing the mean correlation coefficients by cell type. We 
compute statistical significance between the chandelier and non-chandelier cell correlation values using 
the non-parametric Mann-Whitney U test. 
 
To compute correlations between cell activity and other behavioral covariates, for each cell, we computed 

the correlation between its calcium activity and pupil area / locomotion speed. We compute statistical 
significance between the mean correlation values for running and pupil diameter using the Wilcoxon signed-
rank test. 

Resources 

Segmented and annotated EM data will be available online upon submission, as will all analysis scripts. 
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