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ABSTRACT

Motivation: The majority of the previous methods for identifying cancer driver modules output
non-overlapping modules. This assumption is biologically inaccurate as genes can participate in
multiple molecular pathways. This is particularly true for cancer-associated genes as many of them are
network hubs connecting functionally distinct set of genes. It is important to provide combinatorial
optimization problem definitions modeling this biological phenomenon and to suggest efficient
algorithms for its solution.
Results: We provide a formal definition of the Overlapping Driver Module Identification in Cancer
(ODMIC) problem. We show that the problem is NP-hard. We propose a seed-and-extend based
heuristic named DriveWays that identifies overlapping cancer driver modules from the graph built
from the IntAct PPI network. DriveWays incorporates mutual exclusivity, coverage, and the network
connectivity information of the genes.
We show that DriveWays outperforms the state-of-the-art methods in recovering well-known cancer
driver genes performed on TCGA pan-cancer data. Additionally, DriveWays’s output modules show
a stronger enrichment for the reference pathways in almost all cases. Overall, we show that enabling
modules to overlap improves the recovery of functional pathways filtered with known cancer drivers,
which essentially constitute the reference set of cancer-related pathways.
Availability: The data, the source code, and useful scripts are available at: https://github.com/
abu-compbio/DriveWays
Supplementary information: Supplementary data are available at Biorxiv.

1 Introduction

Recent advances in high-throughput DNA sequencing technology have allowed several projects such as The Cancer
Genome Atlas (TCGA) to systematically generate genomic data for thousands of tumors across many cancer types [1].
A key fundamental challenge in cancer genomics is to distinguish functional mutations that drive tumorigenesis, or
drivers, from the numerous non-functional passenger mutations that occur randomly but that are not important for
cancer development. Such a challenge is further complicated by the highly interactive nature of genes/proteins, thus
necessitating the identification not only of such drivers but also of modules consisting of webs of drivers culpable in
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cancer initation and progression. Several computational approaches have been proposed for the cancer driver module
identification problem and they can be categorized according to the types of biological data they utilize and the proposed
optimization functions to model the underlying biological problem.

Early approaches for driver module analysis have primarily utilized the mutation data, in particular the frequency
of mutations [2, 3, 4] or the positional clustering of mutations [5]. These methods can provide limited results as
cancer genomes exhibit extensive mutational heterogeneity. Multiple approaches have been proposed to alleviate
this problem. Rather than using mutation frequencies directly, Hotnet2 applies a random walk strategy to diffuse the
mutation frequencies throughout the network and then identifies driver modules as strongly connected components
of the resulting network [6]. Another direction is to utilize the concept of mutual exclusivity, the fact that multiple
alterations in the same functional pathway occur less frequently because of diminished selective pressure. There exist
methods that calculate all pairwise mutual exclusion scores [7, 8]. However, most methods limit the search space by
using prior interaction knowledge. For instance, Ciriello et al. test each clique in the interaction network against random
permutations to estimate the significance of mutation overlaps [9]. Vandin et al. propose a score that rewards coverage
and penalizes mutation overlaps, and then searches for a set of genes that maximizes this score [10]. The same scoring
function is also utilized by follow-up methods with an extension on the search technique [11, 12]. Babur et al. improves
over the scoring function of [10] by fixing the bias towards highly altered genes [13]. Their proposed statistical mutual
exclusivity test is used within a greedy search to identify groups of genes with high mutual exclusivity. MEMCover is
also based on a greedy iterative seed-and-extend heuristic where a function that integrates coverage, mutual exclusivity
and confidence values of interactions in the network is maximized [14]. MEXCOWalk extends Hotnet2’s random walk
strategy by introducing edge weights that include mutual exclusity and coverage [15].

A common theme in almost all the mentioned cancer module identification methods is to search for nonoverlapping
modules. However, biological pathways often overlap since proteins may carry out more than one function or belong
to more than one protein complex [16]. Protein multifunctionality can also be considered as a means to coordinate
multiple cellular activities serving as switches between pathways. As such, current methods that ultimately aim to
provide a subset of existing biological pathways that are associated with cancer assume a problem definition that does
not reflect the nature of biological pathways. To the best of our knowledge, only two previous methods provide possibly
overlapping cancer driver modules, MEMCover [14] and ModulOmics [17]. In the former, no criteria for overlaps is
included in the main search procedure which produces nonoverlapping output modules. The possible overlaps are only
achieved via an optional post-processing step and no performance evaluations are done for this setting. ModulOmics
integrates PPI network proximity, mutual exclusivity of DNA alterations, and RNA level coregulation and coexpression,
into a single probabilistic framework, by simultaneously optimizing over all four model components. A significant
shortcoming of ModulOmics is the lack of control over the amount of overlaps between the driver modules. For instance,
for breast cancer, ModulOmics provides its top 50 modules, ranging in size 2 to 4, in the published results. Among
these top 50 modules many of them are almost the same; 402 pairs differ only by one gene.

On the other hand there are some related problems in a wide range of areas including biological networks and social
networks, such as protein complex identification or community detection, where overlapping module identification is an
important research topic; see [18] for a survey on the topic. Shih et al. propose a soft variation of regularized Markov
clustering to enable the identification of overlapping clusters in PPI networks [19]. ClusterOne uses a modularity
metric in a weighted graph to guide the search for finding possibly overlapping subgraphs that correspond to protein
complexes [20]. Bennett et al. propose a mixed integer nonlinear programming model to transform non-overlapping
modules to overlapping, and apply this method to PPI networks of multiple organisms [21]. Although the proposed
methods provide valuable insight on overlapping module constructions in the general setting, they are not designed for
finding disease-associated modules. Modeling disease association requires extensive changes both in the input data and
on the search procedure.

We propose DriveWays designed to identify potentially overlapping cancer driver modules. DriveWays uses a seed-
and-extend strategy on a PPI network where it adds or removes gene sets based on a novel scoring function that
includes coverage and mutual exclusivity of the module. The sizes of output modules can be controlled via appropriate
parameters. We show that DriveWays improves over existing methods in the recovery of known cancer genes and more
importantly in the recovery of pathways of known cancer driver genes. For the latter, we propose novel evaluation
strategies that should prove useful for further research in this area.

2 Methods

Given the mutations data from a cancer cohort and a H. Sapiens PPI network, the informal goal is to extract from the
PPI network subsets of genes (modules) that best reflect pathways related to the cancer under study. Ideally, these
should correspond to the important causal functional pathways of driver genes of the relevant cancer. We first provide a
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computational problem definition to model this biological phenomenon. We discuss the computational complexity of
the problem and provide an efficient greedy heuristic algorithm.

2.1 Problem Definition

Let G = (V,E) represent the PPI network where each vertex ui ∈ V denotes a gene gi whose expression gives rise to
the corresponding protein in the network and each undirected edge (ui, uj) ∈ E denotes the interaction among the
proteins corresponding to genes gi, gj . Henceforth assume gi denotes both the gene and the corresponding vertex ui in
G. Let Si denote the set of samples for which gi is mutated and S denote the list of all such sets. Let M ⊆ V be a set
of genes denoting a module. Let G(M) denote the subgraph of G induced by the vertices corresponding to genes in M .

Since a driver pathway tends to be perturbed in a relatively large number of patients, one of the desired properties of

each module is large coverage [14, 15, 6]. We define the coverage of M as, COV (M) =
|
⋃

∀gi∈M Si|
|
⋃

∀gj∈V Sj | . Several cancer

driver module identification methods have additionally made use of the concept of mutual exclusivity [13, 14, 15, 9, 22].
It refers to the phenomenon that for a group of genes which exhibit evidence of shared functional pathway, simultaneous
mutations in the same patients are less frequent than is expected by chance [7]. Formally, we define the mutual

exclusivity of a module M as, MEX(M) =
|
⋃

∀gi∈M Si|∑
∀gi∈M |Si| . Combining the two functions, we define the module score of

M as, MS(M) = COV (M)×MEX(M). Finally, for a set D of modules we define the overlapping driver module
set score as, ODMSS(D) =

∑
∀M∈DMS(M).

Given as input a 4-tuple ≺ G,S, δm, δs �, where δm and δs are integers, we define the overlapping driver module
identification in cancer (ODMIC) problem as that of finding a set D of possibly overlapping modules that maximizes
the ODMSS(D) and that satisfies the following:

• Connectivity: For each M ∈ D, G(M) is connected.

• Uniqueness: For each Mi,Mj ∈ D, Mi 6=Mj .

• Minimum Size: min∀M∈D|M | = δm.

• Total Size:
∑
∀M∈D |M | = δs.

We note that this definition is in part inspired by the cancer driver module identification problem definition of
MEXCOWalk [15]. One crucial difference is that the MEXCOWalk definition does not allow overlaps. Secondly, due
to the lack of overlaps, MEXCOWalk optimization score requires size normalizations in the contributions of MEX and
COV. Furthermore the ODMIC scoring function is the sum of independent scores of modules and thus allows quite a
different solution structure than that of MEXCOWalk. Finally, the size constraint of the output set of modules is with
respect to the size of the set of unique genes in MEXCOWalk, whereas our problem definition applies the Total Size
constraint which is determined by the sum of the sizes of the output modules. Such a choice allows flexible overlaps
to be realized in an optimum solution. For instance, for δs = 10, a single module of size 10, two nonoverlapping
modules of size 5 each, or two modules of size 5 with 4 common genes, all constitute legal instances in the solution
space. Regardless of the differences in the problem definitions, we show that a reduction similar to the one employed in
MEXCOWalk applies to this problem as well and that the problem in its generality is computationally intractable.

Theorem 2.1. The ODMIC problem is NP-hard.

Proof. See the Supplementary Document.

The following lemma provides further intuition on the ODMIC problem by stating a fact regarding the structure of an
optimum solution.

Lemma 2.2. There is an optimum solution D of the ODMIC problem on input instance ≺ G,S, δm, δs �, where
|M | < 2δm, ∀M ∈ D.

Proof. LetD be an optimum solution. We show that anyM ∈ D with |M | ≥ 2δm can be split into two smaller modules
M1,M2, each satisfying the δm constraint, such that MS(M1)+MS(M2) ≥MS(M). Let u1, s1 denote respectively
|
⋃
∀gi∈M1

Si| and
∑
∀gi∈M1

|Si|. Let u2, s2 denote analogous values for M2. Since u1 + u2 ≥ |
⋃
∀gi∈M Si|, we need

to show that u
2
1

s1
+

u2
2

s2
≥ (u1+u2)

2

s1+s2
, which holds trivially since (u1s2 − u2s1)2 ≥ 0.

Due to this structural property the ODMIC problem admits a pseudo-polynomial time algorithm under a certain setting.
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Theorem 2.3. The ODMIC problem is solvable in pseudo-polynomial time for constant δm.

Proof. We propose a solution based on dynamic programming. Let D be an optimum solution of a given ODMIC input
instance. By the Minimum Size constraint of the problem definition and by Lemma 2.2, we have δm ≤ |M | < 2δm, for
M ∈ D. Given a graph of n vertices, there are O(n2δm−1) induced connected subgraphs with the allowed sizes. Since
δm is constant, in an enumeration M1,M2 . . . ,Mp of all such subgraphs we have p = O(nk), for constant k. Consider
an optimum score table c, where c[i, j] indicates the optimum ODMSS score of an input instance consisting of subgraphs
M1,M2, . . .Mi and the Total Size constraint set to j. Then c[i, j] = max(c[i− 1, j], c[i− 1, j − |Mi|] +MS(Mi)).
Thus the optimum solution can be found in time O(nk × δs).

Although the above result is valuable in providing a theoretical intuition regarding the solution structure, it is not fit for
many practical settings. Efficient algorithms that may be suboptimal but that provide solutions close to optimum by
making careful design choices with respect to the optimization criteria of the ODMIC problem are necessary.

2.2 DriveWays Algorithm

We provide a polynomial-time heuristic algorithm, DriveWays, for the ODMIC problem. It is based on a greedy
seed-and-extend procedure on the input PPI network, that incorporates mutual exclusivity and coverage information.
The pseudocode is provided in Algorithm 1. There are two main steps of the algorithm: (i) rank the genes with respect
to the MS scores within the immediate neighborhoods (ii) initialize the module with the highest ranked seed and
iteratively modify it by adding or removing a set of genes. The second step is repeated multiple times until we satisfy
the ODMIC problem definition constraint regarding Total Size. Details are described in the following subsections.

2.2.1 Ranking the Seeds

Prioritizing cancer genes based on a combined score of coverage and mutual exclusivity has been employed in several
previous approaches [15, 10, 14]. In line with our ODMIC problem definition, we similarly make use of coverage and
mutual exclusivity values in the form of our module score definition. We first filter out the genes that are mutated in less
than 1 % of the cohort. Then the remaining genes are sorted in nonincreasing order with respect to the module scores of
their extended neighborhoods, that is, MS(Ne(g)), where Ne(g) denotes the set of neighbors of gene g in G, together
with g. Such a score is basically a measure of how fit a gene is for further immediate growth with the neighbors. We
note that we assessed the importance of our seed ranking procedure by rerunning DriveWays with randomly selected
seed lists. We observe that the modules obtained with randomly selected seeds perform significantly worse than our
original set of output modules, in terms of all the evaluation criteria considered in this study; see Supplementary Figures
S2 and S3 for details.

2.2.2 Constructing Set of Driver Modules

We construct the set D of possibly overlapping modules through a greedy iterative module update procedure. For
constructing a new module M to be added to D, we initialize M with the highest ranking seed that does not appear in an
already existing module. We update M by either adding or removing certain gene(s) iteratively until such modifications
no longer provide a gain to the current module in terms of the MS score. To check whether any gene additions to the
current module provide a gain, we first construct a candidate set CS(M), from which the genes to be possibly added to
M are selected. Let N(gi) denote the neighborhood of gi in G and let N(M) =

⋃
∀gi∈M N(gi). A gene gi ∈ N(M)

is added to CS(M), if it satisfies the following two conditions:

|
⋃
∀gk∈M∪{gi} Sk|∑
gk∈M |Sk|

> t (1)

deg(gi,M)

mean_deg(gi)
> 1/d (2)

Inequality 1 relates the coverages of M with or without gi to the mutual exclusivity of M . More specifically, it requires
that the new coverage of the module with gi should at least be a constant multiple t of the ratio of the old coverage
to the old mutual exclusivity. In Inequality 2, deg(gi,M) denotes the degree of gi in the subgraph of G induced by
M ∪ {gi}. On the other hand mean_deg(gi) is the average across deg(gi,Mq) values, where gi ∈ Mq, for already
existing Mq ∈ D. Thus by Inequality 2 a gene gi is a candidate to be possibly added to the current module M , if it is
well-connected to M , as compared to its connectivity to the already existing modules. Let Ma be the union of M with
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Algorithm 1 DriveWays
Input: ≺ G = (V,E), S, δm, δs �
Output: Set D of possibly overlapping modules of driver genes

//1. Ranking the Seeds
F = {g ∈ V |COV ({g}) ≥ 0.01}
L = Sort g ∈ F in nonincreasing order of MS(Ne(g))
repeat

//2. Constructing a set D of driver modules
D = ∅
for all i = 1 . . . |L| with Li /∈Mq for Mq ∈ D do

M = {Li} //Current module
while true do

Ma =M ∪ {ga|ga = argmax
gi∈CS(M)

(MS(M ∪ {gi}))}

Mr =M \ {gr|gr = argmax
gj∈M

(MS(M \ {gj}))}

if MS(Ma) > max(MS(Mr,MS(M)) then
M =Ma //Add set {ga} into M

else if MS(Mr) > MS(M) then
M =Mr //Remove set {gr} from M

else
break //Improvements on M are finished

if |M | ≥ min_size then
insert M into D

if
∑
∀Mq∈D |Mq| ≥ δs then

remove final genes from M until
∑
∀Mq∈D |Mq| == δs

break //D is an optimization instance
until ODMSS(D) is optimized

the set of genes ga ∈ CS(M) that maximize MS(M ∪ {ga}). Let Mr be the difference of M with the set of genes
gr ∈M that maximize MS(M \ {gr}). The modules Ma,Mr compete in MS improvement; if at least one improves
over MS(M), the one with larger improvement is committed on M . If no improvement is achieved, the modifications
of M are finalized and it is added into D. This procedure of module updates from a single seed are continued until the
sum of the sizes of the modules in D reaches δs.

2.2.3 Optimizing with Respect to Parameters t, d

The constant multiple t in Inequality 1 is a parameter that indirectly controls the sizes of the output modules. Note that
in the algorithm we do not explicitly control the module sizes in accordance with Lemma 2.2, since t achieves the
same goal with more flexibility. On the other hand, the parameter d of Inequality 2 indirectly controls the overlap rate
of the modules. An important feature of the algorithm is to set the parameters t, d automatically via an optimization
function which chooses the instance of D that maximizes the main optimization function, ODMSS(D), among several
instances produced through different t, d settings. The repeat loop of the main algorithm corresponds to this procedure
implemented with the Bayesian Optimization (BayesOpt) procedure of [23].

3 Discussion of Results

We implemented the DriveWays algorithm in Python. The source code, useful scripts for evaluations, and all the input
data are freely available as part of the supplementary material. We compare the results of DriveWays against those of four
alternative methods. Among these alternatives three of them are knowledge-based cancer driver module identification
methods: Hotnet2, MEMCover, and MEXCOwalk. As the fourth alternative method we employ ClusterOne, which is a
representative algorithm for community detection in networks and outputs overlapping modules without any reference to
cancer-related data. MEMCover is chosen due to its close connection to our work. It also optimizes mutual exclusivity
and coverage of modules with a greedy seed-and-extend heuristic. Moreover, MEMCover is able to provide overlapping
modules via a post-processing step. Hotnet2 is a good representative of heat diffusion based module finding algorithms
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Figure 1: ROC curves calculated for unique_genes = 100, 200, ..., 1000 from the output sets of modules of the methods
under consideration.

though it only considers coverage, whereas MEXCOwalk improves over Hotnet2 by introducing edge weights that
consider both mutual exclusivity and coverage.

3.1 Input data

All the methods except ClusterOne use the same input in the form of mutation data of available samples from TCGA and
a PPI network. ClusterOne only uses the network information. We download the somatic aberration data from TCGA
pan-cancer cohort preprocessed by [6]. The preprocessing procedure removes hypermutated samples and the genes with
low expression throughout the tumor types. After this preprocessing, the dataset contains somatic aberrations for 11,565
genes in 3,110 samples. We perform two types of evaluations; one with all pan-cancer samples and one with breast
cancer samples only. For the PPI network, we use the IntAct network downloaded from https://www.ebi.ac.uk/intact/
on Feb 11, 2019. The interactions with a confidence value less than 0.35 are filtered out. The final network contains
8,684 genes and 83,124 edges.

For evaluation purposes, three curated reference pathway sets are used: KEGG [24], Reactome [25], and BioCarta [26].
To obtain only significant cancer related pathways, we filter the reference pathways to include only known cancer genes
and then we remove any resulting pathway with size less than δm. Hereafter we denote each such set of reference
pathways asXY , whereX is the employed pathway database and Y is the database of known cancer genes employed for
filtering X . To compile known cancer genes for such filterings in pan-cancer evaluations, we use the COSMIC Cancer
Gene Census (CGC) database [27]. However the CGC list lacks a complete annotation of cancer type information. As
such, for the breast cancer evaluations, we employ the CancerMine database to construct the corresponding set [28].
CancerMine employs text-mining to catalogue cancer-associated genes through which it also extracts information about
cancer types. We compile the list of CancerMine’s breast cancer-associated genes that have at least 3 citations and call
it CM3.

Finally, for the GO term analysis of this section, we employ the go-basic.obo file from http://geneontology.org on June
26, 2019. We restrict the gene annotations to level 5 of the GO hierarchy by ignoring the higher-level annotations and
replacing the deeper-level category annotations with their ancestors at the restricted level. We call the resulting terms as
the standardized GO terms.

3.2 Parameter settings

A parameter applied commonly to all the methods under consideration is δm which is set to 3, as this constitutes a
nontrivial minimum module size compatible with the problem definition. For DriveWays we find the t and d setting
that maximizes ODMSS. We utilize the BayesOpt procedure implemented in scikit-optimize package to find these
values in a time efficient manner [23]. We use the version 0.7.4 with the following setting of the arguments: ncalls = 30
and acq_func = EI . We search for the optimal value of t in the range [0.8, 1.2] and the optimal value of d in the
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Figure 2: ODMSS values for the outputs of all the methods when δs is set to shown values.

range [2, 5]. Selected values are available in Table S5. For ClusterOne, we set the penalty term p and the overlap score
threshold w to their default values, 2 and 0.8, respectively. For Hotnet2, the recommended value of 0.4 is used for the
restart probability. Regarding MEXCOWalk, the default values are used for the restart probability (β = 0.4) and the
mutual exclusivity threshold (θ = 0.7). For MEMCover, as recommended in the original study, the mutual exclusivity
scores are obtained from type-restricted permutation test with all pan-cancer samples. Coverage parameter k is set to its
default value of 15. f(θ) is a parameter that indirectly controls the module sizes in MEMCover. It is chosen such that
the number of modules with size < δm is minimized.

3.3 Evaluations Omitting Modularity

Before performing any evaluations with respect to the specific grouping of the output genes into modules, we simply
check whether our method recovers more known drivers when each output set under comparison is considered be a
single set consisting of the union of the genes in all the output modules provided by each method. To provide a fair
comparison between the methods outputting overlapping modules (DriveWays, ClusterOne, and MEMCover) and
those providing nonoverlapping modules (HotNet2 and MEXCOWalk), rather than fixing the δs parameter for different
methods, we obtain the results by varying the total number of unique genes, named unique_genes, from 100 to 1000 in
steps of size 100. To achieve this for ClusterOne, MEMCover, and DriveWays we take the top ranking modules until
the number of unique genes is equal to the unique_genes. For Hotnet2 and MEXCOWalk, we choose an edge weight
threshold value such that removal of edges below this threshold value results in strongly connected components with
total size equal to unique_genes. For each method and for varying values of unique_genes = 100, 200, ..., 1000, we
compute the intersection of the output gene lists, that is the union of the output modules, with the reference database of
known drivers to calculate true positive and false positive rates. Figure 1 plots the Receiver Operating Characteristic
(ROC) curves obtained from each method for the pan-cancer data, taking CGC as the reference set. We observe that
DriveWays performs better than all the other methods. Hotnet2 and ClusterOne perform considerably worse than the
other methods. ClusterOne’s poor performance is expected since it does not employ any cancer-related information.
The analogous plot for the breast cancer cohort with the CM3 as the reference set can be found in Figure S5 of the
Supplementary. Different from the pan-cancer result, MEXCOWalk slightly outperforms DriveWays and MEMCover
which are tied as the second best performers.

3.4 Evaluations Based on Modularity

The goal of the cancer module identification methods is not only recovering the maximum number of known cancer
drivers but more importantly providing them as groups of genes that share the same molecular functions or pathways.
Since providing modules that cover all cancer-related pathways is critical, we set the main goal of the evaluation
procedures as recovering each set of reference pathways, that is KEGGY , ReactomeY , or BiocartaY , where Y is CGC
for the pan-cancer evaluations and CM3 for the breast cancer evaluations. Therefore for the rest of the evaluations,
δs parameter is set to

∑
∀M∈D′ |M |, where D′ indicates the corresponding set of reference pathways. This value is
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Figure 3: A) Average module sizes in the outputs of the methods under consideration for the shown δs values. B)
Corresponding average pairwise overlap scores.

1771 for KEGGCGC and 845 genes for KEGGCM3; 3368 and 1416 genes for Reactome’s respective filtrations; 1173
and 626 genes for Biocarta’s respective filtrations. The desired outputs with the corresponding δs values for different
methods can be achieved similar to the approach desribed in the previous subsection for the unique_genes. Note that
upon setting δs to match the corresponding value from a specific set of reference pathways for all the methods, each
method itself has the flexibility to choose how many unique genes it provides in its output, which in turn is correlated
with the sizes of the output modules and the degree of overlaps among them.

3.4.1 Statistics on Output Modules and the Sets of Reference Pathways

The first statistic we provide is regarding the main optimization goal of our method, that is the overlapping driver
module set score (ODMSS). Figure 2 shows that DriveWays predicted modules have significantly higher ODMSS
values than the output modules of all the other methods. Additionally, the fairly large ODMSS scores observed for sets
of reference pathways support the validity of the ODMSS as an objective function. Among the rest of the methods,
ClusterOne’s performance is impressive considering that it is not a cancer-specific module identification method; it
provides the fourth best performance surpassing Hotnet2. Rather than its module growth procedure, this performance
could in part be due to ClusterOne’s seed ranking procedure which is based on the degree of the genes in the network.
Using only this seed list as the output set of genes achieves a performance that is even better than that of ClusterOne
itself in terms of the CGC overlap evaluations of the previous subsection that considers the union of output modules;
see Supplementary Figure S4. Since most CGC genes also have high coverage scores, it is not surprising to observe that
ClusterOne modules result in a high ODMSS value. For this metric, Hotnet2 performs the worst among the considered
methods presumably due to its very large modules, as large modules are likely to show poor mutual exclusivitiy.

We next provide certain statistics on the average sizes and the overlap rates of the output modules obtained for the
methods under consideration. Figure 3-A shows the average module sizes when δs is set to KEGGCGC , ReactomeCGC ,
and BiocartaCGC sizes. The same plot also includes the average module sizes of the three sets of reference pathways
themselves for comparison. We observe that Hotnet2 has the largest average module size which is significantly larger
than those of the other methods. The second and the third largest average module sizes are obtained with ClusterOne
and MEXCOWalk outputs, respectively. MEMCover and DriveWays have similar average module sizes that are smaller
than the others. Further detailed statistics on the number of output modules and the number of unique genes in all the
output modules pertaining both to the outputs of alternative methods and also to the actual sets of reference pathways
themselves can be found in Tables S1 and S2 of the Supplementary.

We quantify the degree of overlap among the output modules by calculating a pairwise overlap score, as previously
defined in [29]. For two modules Mi and Mj , the pairwise overlap score is calculated as, |Mi∩Mj |2

|Mi|×|Mj | . We calculate the
sum of the pairwise overlap scores for all pair of modules and normalize it by dividing by the number of all such pairs.
Figure 3-B shows the resulting average pairwise overlap scores of all the methods and the sets of reference pathways.
Here, Hotnet2 and MEXCOWalk are excluded as they provide non-overlapping modules. We observe that modules
of DriveWays overlap with each other more compared to the modules of other methods and that this overlap is quite
similar to the overlap of the sets of reference pathways themselves.
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Analogous statistics regarding the δs setting with respect to the KEGGCM3, ReactomeCM3, and BiocartaCM3 pathway
sizes and the corresponding ODMSS scores on the breast cancer data show quite similar results; see Supplementary
Document for the relevant plots.

3.4.2 Recovering Sets of Cancer-associated Reference Pathways

A given set of predicted modules is evaluated by assessing how well they match and cover a set of reference pathways.
Let {M1, . . . ,Mm}, {R1, . . . , Rn} denote the set of predicted modules and the set of reference pathways, respectively.
We introduce three measures to quantify the similarity between a predicted module Mi and a reference pathway Rj .

Overlap score: We calculate the overlap score between a module and a pathway as the pairwise overlap score defined
in the previous subsection, replacing Mj with the reference pathway Rj in the formula.

Hypergeometric test q-value: A hyper-geometric enrichment test is used to evaluate the significance of the intersection
of Mi with Rj . Adjusted p-values (also called q-values) are calculated with False Discovery Rate (FDR) correction [30].

GO consistency score: This score has been previously employed for the evaluation of PPI network alignment
algorithms [31]. Let GOMi

and GORj
denote the union of the standardized GO terms obtained from the GO

annotations of the genes in Mi and Rj , respectively. GO consistency score of Mi and Rj is defined as, GO(Mi, Rj) =
|GOMi

∩GORj
|

|GOMi
∪GORj

| .

Rather than identifying the enriched pathways for each module separately, we use an evaluation procedure which
ensures that the set of predicted modules as a whole provides a good match to the whole set of reference pathways. To
this end, the first metric we use is based on Maximum Weighted Maximum Cardinality Matching (MWMCM). To identify
MWMCM, we first create a bipartite graph containing nodes corresponding to the predicted modules on the one side
and nodes corresponding to the reference pathways on the other side. The edge weights between a predicted module
Mi and a reference module Rj are computed using one of the three similarity measures defined above. The overlap
score and the GO consistency score of Mi and Rj can each be directly used as edge weights between the corresponding
nodes of the bipartite graph. To use the q-values as edge weights, we transform them by taking the −log10 of the values
so that larger ones correspond to better matches. Also, if the q-value is > 0.05, we instead assign zero as the edge
weight as this corresponds to a non-significant match. Once the bipartite graph is formed, we find the MWMCM; that
is, we find a subset of edges such that each predicted module and reference pathway is incident on at most one selected
edge, the number of such selected edges is maximum (maximum cardinality matching), and the sum of the weights
of selected edges is maximized among all maximum cardinality matchings. Lastly, we calculate the average weight
of the edges in the resulting matching. We call this score Maximum Matching Ratio (MMR), as in [20]; see Figure
S10 for a plot depicting how MMR is computed. We emphasize the fact that we employ a complete bipartite graph
where zero-weight edges are also included, since excluding such edges could provide misleading results. For instance,
consider a scenario where only one of the output modules is a perfect match to a reference pathway and the remaining
modules show no similarity under any defined measure with any member of the set of reference pathways. When there
is no similarity, the weights of edges connected to those modules would be zero. If zero-weight edges are removed
the hypothetical method providing such an output would get a perfect MMR value of 1 even though only one of its
predicted modules can be considered “good"; see Figure S11 for a toy example. On the other hand, calculation of MMR
with zero-weight edges ensures that every predicted driver module is enriched for a functional pathway important for
cancer.

Figure 4 displays the MMR results calculated with the three similarity measures. MEMCover has a slightly better MMR
score than DriveWays under the GO consistency similarity measure when ReactomeCGC is used as the reference. In all
the other evaluations, DriveWays gives higher MMR values than the competing methods. MEMCover ranks the second
in most cases except for the MMR score under the q-value similarity measure when ReactomeCGC or BiocartaCGC is
used as the reference. In these two cases, ClusterOne performs better than MEMCover. Hotnet2 performs the worst in
all evaluations. In particular, Hotnet2’s MMR scores under the q-value measure are close to zero presumably due to its
large-sized modules.

Next, we utilize the precision and recall metrics to evaluate the predicted modules. A modified version of these metrics
have been previously used in evaluating the quality of the predicted modules [32, 19]. To evaluate the precision of a
method, for each of its predicted module Mi, we find the best match in the set of reference pathways using one of
the three similarity measures, overlap score, q-value, or GO consistency score. We evaluate recall similarly, but this
time we find the best match of each reference pathway Rj among the predicted modules using one of the similarity
measures. Identification of the best match for each predicted module and for each reference pathway is illustrated with
a toy example in the Supplementary Figures S12 and S13. We plot the distribution of the best match scores across
all the predicted modules and across all the reference pathways. Supplementary Figure S1 shows these distributions
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Figure 4: MMR scores of all methods calculated with three similarity metrics: A) Overlap score B) Hypergeometric test
q-values C) GO consistency. The set of reference pathways at the x-coordinate of each plot correspond to KEGGCGC ,
ReactomeCGC , and BiocartaCGC , from left to right.

for each similarity metric, for each method, and for each set of reference pathways. We observe that the best match
scores of DriveWays-predicted modules are significantly higher than the best match scores obtained with the other
methods for all similarity metrics and for all sets of reference pathways. In terms of the best match scores of the set of
reference pathways, DriveWays performs better in the majority of the cases with few exceptions. MEMCover performs
slightly better than DriveWays under the overlap score similarity measure with respect to the ReactomeCGC set of
reference pathways. Similarly, MEMCover performs better under the GO consistency similarity measure with respect
to the ReactomeCGC and BioCartaCGC sets of reference pathways. DriveWays’s slightly worse performance in terms
of recall in these cases can be attributed to the relatively high pairwise overlaps of its output modules. Since δs is fixed,
DriveWays outputs smaller number of unique genes as compared to the other methods and also as compared to the sets
of reference pahtways. This is why some sets of reference pathways could have low best match scores since the genes
in those reference pathways do not exist in the output modules of DriveWays. However, the performance difference
between DriveWays and the rest of the methods in terms of precision dominates the performance difference between
MEMCover and DriveWays in terms of recall. To illustrate this, we also compute an aggregate score by finding the
average best match score across the predicted modules and the average best match score across the reference pathways.
F1 scores obtained by the product of these two average values are shown in Supplementary Table S3. DriveWays has
the highest F1 score in all the experiments illustrating its overall superiority with respect to precision and recall.

We repeat the same evaluations for the breast cancer data employing KEGGCM3, ReactomeCM3, and BiocartaCM3 as
the sets of reference pathways. Almost all the results regarding the pan-cancer data discussed here apply similarly in
this setting as well; see the Supplementary Document for detailed plots.

3.4.3 Top DriveWays Modules Compared to Their Matches

We next investigate our top modules and their matched reference pathways more closely. We first look at our top 10
modules and their matched KEGGCGC reference pathways in the context of MWMMC. First of all, we observe that all
top 10 modules are incident on the set of edges selected for MWMMC. We further explore the reference pathways that
are connected to the top 10 modules through these selected edges. Five of the ten such reference pathways directly
correspond to a pathway of a specific cancer type: Non small cell lung cancer, Bladder cancer, Glioma, Pancreatic
cancer and Endometrial cancer. Among the other matched reference pathways, Cell cycle pathway and the p53
signalling pathway are also strongly associated with cancer. We observe that the matches to Cell cycle and the Non
small cell lung cancer pathways have the highest edge weights. For both matches, our predicted modules consist of
five genes all of which also appear in the matched reference pathways. Another interesting match is observed between
our seventh ranking module and the Bladder cancer pathway. Our predicted module contains six genes, four of which
appear in the Bladder cancer pathway. VHL, a well known tumor-suppressor, is among the two genes that appear in our
predicted module but not in the Bladder cancer pathway. Interestingly, among the cancer types in pan-cancer cohort,
bladder cancer ranks second after renal cell carcinoma in terms of VHL’s mutation frequency.

We also explore the matches that are found within the context of precision. We explore the best matching reference
pathways of top 20 predicted modules of DriveWays. Among the best matched KEGGCGC pathways, we observe
Pathways in cancer nine times, Cell cycle four times, ERBB signaling pathway three times, p53 signalling pathway
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twice, MAPK signaling pathway and TGFB signaling pathway once. Next, we identify the top 20 modules that
contain a gene that do not appear in CGC reference. Since these genes are not in CGC, they also cannot appear in the
corresponding best matched reference KEGGCGC pathway. As such, we instead check whether these genes appear
in the unfiltered versions of the corresponding KEGG pathways. We find four such genes that belong to four distinct
predicted modules: LTBP1 appears in TGFB signaling pathway, SMC3 and SMC1A appear in Cell cycle pathway,
and FLNA appears in MAPK signaling pathway. These genes could be novel cancer drivers as they appear in our top
modules and they function in the same pathway as closely connected CGC genes in the network.

Lastly, in terms of recall, we identify the cancer related pathways in KEGGCGC and find their best matches among the
predicted modules of DriveWays and MEMCover; the two methods that can identify overlapping cancer driver pathways.
When compared with MEMCover, except for the Colorectal cancer pathway, DriveWays’s predicted modules result in a
better overlap score with cancer related KEGGCGC pathways. Overall these results show that top DriveWays modules
are enriched for cancer associated pathways in KEGG.

4 Conclusion

DriveWays is a novel method that incorporates network connectivity, mutual exclusivity, and coverage information
to identify overlapping cancer driver modules. It does not require any additional parameters, other than the desired
minimum size of a module and the sum of the sizes of all the modules, both of which should be intuitive properties for
cancer biologists. Comparing against four state-of-the-art methods, we demonstrate the ability of DriveWays to identify
modules enriched with known cancer genes, and also enriched for curated pathways containing only known cancer
driver genes. Other key contributions of our work are both the introduction of an intuitive combinatorial optimization
problem definition fairly representing the underlying biological phenomenon of identifying possibly overlapping cancer
driver module identification and that of novel evaluation metrics suitable for evaluating methods proposed for solving it.
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