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Abstract 15 

In viruses, post-translational modifications (PTMs) are essential for their life cycle. Recognizing 16 

viral PTMs is very important for better understanding the mechanism of viral infections and finding 17 

potential drug targets. However, few studies have investigated the roles of viral PTMs in virus-human 18 

interactions using comprehensive viral PTM datasets. To fill this gap, firstly, we developed a viral 19 

post-translational modification database (VPTMdb) for collecting systematic information of viral PTM 20 

data. The VPTMdb contains 912 PTM sites that integrate 414 experimental-confirmed PTM sites with 21 

98 proteins in 45 human viruses manually extracted from 162 publications and 498 PTMs extracted 22 

from UniProtKB/Swiss-Prot. Secondly, we investigated the viral PTM sequence motifs, the function of 23 

target human proteins, and characteristics of PTM protein domains. The results showed that (i) viral 24 

PTMs have the consensus motifs with human proteins in phosphorylation, SUMOylation and 25 

N-glycosylation. (ii) The function of human proteins that targeted by viral PTM proteins are related to 26 

protein targeting, translation, and localization. (iii) Viral PTMs are more likely to be enriched in 27 

protein domains. The findings should make an important contribution to the field of virus-human 28 

interaction. Moreover, we created a novel sequence-based classifier named VPTMpre to help users 29 

predict viral protein phosphorylation sites. Finally, an online web server was implemented for users to 30 

download viral protein PTM data and predict phosphorylation sites of interest.  31 

Author summary 32 

Post-translational modifications (PTMs) plays an important role in the regulation of viral proteins; 33 

However, due to the limitation of data sets, there has been no detailed investigation of viral protein 34 

PTMs characteristics. In this manuscript, we collected experimentally verified viral protein 35 
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post-translational modification sites and analysed viral PTMs data from a bioinformatics perspective. 36 

Besides, we constructed a novel feature-based machine learning model for predicting phosphorylation 37 

site. This is the first study to explore the roles of viral protein modification in virus infection using 38 

computational methods. The valuable viral protein PTM data resource will provide new insights into 39 

virus-host interaction. 40 

Introduction 41 

Post-translational modifications (PTMs) play a critical role in current proteomics research and 42 

regulate protein functions by altering protein interactions, stability, activity, and subcellular localization. 43 

Post-translation modifications of viral proteins are relevant throughout various stages of the pathogen 44 

life cycle, especially viral infections and genome replication. For example, during entry, the influenza 45 

virus carries unanchored ubiquitin chains to engage the host cell’s aggresome system [1]. Once inside 46 

the host cell, viral PTMs regulating the infecting process of HSV-1 encode ICP0 protein to degrade host 47 

proteins via ubiquitination and sumoylation [2]. In the viral life circle, the HIV-1 Tat protein ser-16 48 

phosphorylated site regulates HIV-1 transcription [3]. 49 

Therefore, knowledge of viral PTMs is of great significance to understanding the molecular 50 

mechanisms underlying viral infections and recognizing potential drug targets. In recent years, several 51 

studies have identified multiple viral PTMs [4-6]; thus, comprehensive analysing these PTM data and 52 

establishing a database to provide relevant knowledge is important. 53 

However, few databases have been developed for systematically archiving and easily accessing the 54 

PTM sites data of viruses. Also, few researchers have been able to draw on any systematic research into 55 

viral PTMs using computational methods. VirPTM [7] stores viral phosphorylation sites and used scan-x 56 
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to predict modification sites. ViralPhos [8] is a support vector machine based predictor and database that 57 

provides outdated viral phosphorylation sites. Bradley et al, studied the phosphorylation motifs in 48 58 

eukaryotes species and 2 prokaryotic species [9]. To date, no databases have collected comprehensive 59 

PTM data of viral proteins and few studies analysed the biological significance behind viral PTM data. 60 

To bridge the existing knowledge gap, we have built a viral post-translational modification database 61 

(VPTMdb) that first provides comprehensive experimentally verified viral PTM site data, including 62 

phosphorylation, sumoylation, glycosylation, acetylation, methylation, ubiquitination, neddylation, and 63 

palmitoylation, and it includes 162 studies that have been manually viewed to extract PTM sites. In total, 64 

912 PTM sites from 45 human viruses were obtained, which include 414 manual checked sites from 65 

PubMed as well as 498 sites from UniProtKB/Swiss-Prot.  66 

Secondly, by using computational methods, we investigated the PTM sequence motifs, the function of 67 

target human proteins, and characteristics of PTM protein domains. This work will generate fresh insight 68 

into viral infection mechanisms as well as identify virus PTM sites. 69 

Finally, PTM was predicted in other species with machine learning approaches [10, 11]. For viral 70 

protein serine modification site identification, we implemented a novel feature-based classifier named 71 

VPTMpre into the VPTMdb to provide users with the ability to find viral protein phosphorylation sites. 72 

The results of independent testing showed that VPTMpre represents a powerful tool to predict viral 73 

protein phosphorylation sites.  74 

The online web server is available at http://vptmdb.com:8787/VPTMdb/, and users can browse and 75 

download viral PTM data freely. Support vector machine, random forest, and naïve Bayes were 76 

integrated into VPTMpre, and users are able to choose one machine learning model to predict possible 77 

phosphorylation sites of interest. 78 
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Results 79 

Database contents 80 

Fig 1 shows that the VPTMdb web server consists of two parts: VPTM database and VPTMpre. The 81 

VPTM database currently includes 414 unique experimentally determined PTM sites with 8 82 

modification types from 45 viruses. In summary, 162 manually checked references were collected in 83 

the database. Each entry in VPTMdb includes the (i) virus name, (ii) virus protein name in the UniProt 84 

database, (iii) PTM type, (iv) viral modification site, (v) residue sequences, (vi) kinase, (vii) a short 85 

description of the PTM site extracted from the publication, and (viii) PubMed id. PTM data from 86 

UniProtKB/Swiss-Prot contain two types: 199 phosphorylation sites and 299 glycosylation sites 87 

(N-lined and O-lined). 88 

The statistics of experimentally verified sites in VPTMdb show that among eight PTM types, 89 

phosphorylation sites account for the most (484 sites, including 285 manually checked and 199 sites 90 

from UniProtKB/Swiss-Prot) at more than 50% of the total database. The top five viruses in the 91 

number of manually checked modification sites are HAdV-2 (51 phosphorylation sites), EBOV (29 92 

phosphorylation, 1 sumoylation, 2 ubiquitination, 8 acetylation sites), HIV-1 (21 phosphorylation, 4 93 

sumoylation, 2 ubiquitination, 5 acetylation and 3 glycosylation sites), H1N1 (19 phosphorylation, 3 94 

sumoylation, 2 ubiquitination, 6 acetylation and 2 glycosylation sites), and HCV (10 phosphorylation, 1 95 

sumoylation, 1 ubiquitination, 1 methylation 4 palmitoylation and 14 glycosylation sites) (S1 Fig). 96 

Human-virus PPI data were included in the VPTMdb, which are helpful to determine the potential 97 

function of PTMs during viral infections. PPI data in the VPTMdb contains 7073 interactions with 98 
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2934 proteins in 43 viruses. Fig 2 shows the distribution of modified proteins in the protein-protein 99 

interaction network. 100 

The web server involves five easy-to-use main pages: ‘Home’, ‘Browse’, ‘Prediction’, ‘Download’, 101 

and ‘Help’. Each of these pages enables users to search, browse, predict, and download data without any 102 

prerequisite knowledge. In the ‘Browse’ section, users can search the PTM data conveniently by typing 103 

keywords in the search box and download data freely, what is more, virus-human protein-protein 104 

interaction data are provided and visualized. The ‘Prediction’ page provides VPTMpre, a sequence-based 105 

machine learning predictor for phosphorylation serine site prediction. All data about virus PTM are stored 106 

in the ‘Download’ page for batched downloading. The ‘Help’ page contains a detailed tutorial to help 107 

users learn about VPTMdb. 108 

Fig 1. Overview of VPTMdb. Framework of VPTMdb web server construction. First, PTM data were 109 

collected from PubMed and UniProt/Swiss-Prot. Then, VPTMpre was constructed to predict viral 110 

protein phosphorylation sites. 111 

Fig 2. The virus-human protein-protein interaction network. Each node represents viral protein or 112 

human protein. Each edge represents virus-human or virus-virus association. 113 

Investigation of viral PTM sequence motifs 114 

Previous research has reported that most eukaryotic species have universal kinase-substrate motifs in 115 

their phosphorylation proteins [9]. The human viruses are living in the cell, and their proteins are 116 

modified by human kinase or viral protein kinase. To this end, we were interested in a question: Are 117 

the modified substrate motifs of viral proteins the same as human proteins motifs? To answer this 118 

question, we used the motif-x tool [12] to extract motifs from viruses. 119 
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As shown in Fig 3, for viral phosphorylation modified proteins, when kinases were from human 120 

proteins, the viral sequences motifs were the same as human proteins (xSPx) (“x” means any residue) 121 

[9]. For viral protein SUMOylation, we noted that the highly prevalent motif across 16 viruses was 122 

KxE, which was also enriched in human proteins [13]. What’s more, we investigated viral 123 

N-glycosylated proteins’ motifs. The results showed that NxS/T is the significant motif. 124 

We also investigated protein motifs when kinases were viral proteins. In VPTMdb, 13 amino acid 125 

residues were modified by viral protein kinases (HSV-1 US3 or HSV-2 UL13). However, there are no 126 

significant motifs when used motif-x tool. Thus, sequence logo was used to visualize PTM sequences 127 

(S2 Fig). Unlike human protein kinases, arginine (R) was enriched near the serine site modified by 128 

virus kinase. 129 

   Overall, these results suggest that the phosphorylation, SUMOylation, and N-glycosylation residues in 130 

viral PTM sequences have the consensus sequence motifs with human PTM proteins. Viruses may use 131 

those short motifs to interact with human proteins and utilize human signal pathways to regulate 132 

themselves replication. 133 

Fig 3. Viral protein PTM motifs discovered by motif-x. 134 

Function characterization of viral PTM protein target human protein 135 

To investigate how viral PTM proteins influent the human cellular activities, we created 136 

virus-human protein-protein interactions (PPI) network. The virus-human PPI data consist of 137 

virus-human and virus-virus interactions (viruses are these in VPTMdb database). PPI network 138 

includes 2934 proteins and 7073 interactions. The degree was considered as the metric to evaluate the 139 

role of viral proteins in the virus-host PPI network. 140 
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Firstly, the roles of viral PTM proteins in the PPI network were analysed. Notably, in Influenza A 141 

virus(H1N1), HPV-18, HPV-31, HPV-8, HIV-1, HTLV-1, EBOV, SARS-Cov, hRSV, and Vaccinia 142 

virus, their all PTM proteins have significant large degrees than average network degrees (S1 Table). 143 

Then, the Gene Ontology and KEGG enrichment analysis were performed to characterize the 144 

function of target human proteins, which may reflect how viral PTM proteins influent human cellular 145 

activities. It is interesting to see that the top five enriched KEGG pathways were “Ribosome”, 146 

“Spliceosome”, “Proteasome”, “RNA transport” and “Mismatch repair”. It reveals that viruses use 147 

human proteins to promote their transcription and modifications. Also, it has been observed that the top 148 

ten GO enrichment terms were related to protein targeting, translation, and localization (S3 Fig).  149 

Viral PTMs are more likely to be enriched in protein domains 150 

We analysed the domain composition of viral PTM protein. The protein domain data were extracted 151 

by HMMER, then 141 domains were obtained and 62 out of 141 domains have modified residues. 152 

These domains which have PTM sites were from 57 proteins in 30 viruses. We counted the number of 153 

modifications on proteins in the 30 viruses and found that 53.4% of the modifications were distributed 154 

in PFAM protein domains. On average, there are 1.33 modification sites per 100 amino acids for the 155 

viral PTM proteins, which increased to 2.1 modification sites per 100 amino acids for the viral PTM 156 

domains. These results indicated that viral PTMs are more probably enriched in protein domain 157 

regions. 158 

Feature-based predictor construction 159 
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For viral protein phosphorylation site prediction, we used the feature representative strategy to create 160 

a novel classifier. The first step is to compare different features and evaluate their predictive power. 161 

The data in Table 1 show that six features as well as their combinations were evaluated in SVM with a 162 

5-fold cross-validation. AUC, F1-score and MCC were used as the performance evaluation indicators. 163 

The results declare that the z-scale, which captures the physical-chemical information of amino acids, 164 

is the best among the six single features (AUC=0.957, F1-Score=0.887, MCC=0.810). For BINARY, 165 

EGAAC and CTriad, their AUC values also achieved above 90.00%. Moreover, when we fused the 166 

features, the result showed that ZSCALE combined with AAC features improved the sensitivity, 167 

F1-score and AUC by 8.40%, 1.5%, 0.1% compared with individual z-scale features.  168 

However, the combination of EGAAC, BINARY, ZSCALE and CTriad features did not significantly 169 

enhance the model’s performance, which suggests that high-dimensional features may include useless 170 

features that weaken the model performance. Among all the features, considering the three evaluation 171 

values of F1-score, MCC, AUC and dimensions, the AAC combined with the ZSCALE performed best, 172 

and the sensitivity, AUC and F1-score were higher than the single z-scale features. The independent 173 

test also shows that AAC combined with ZSCALE features significantly increased the AUC, F1-score, 174 

MCC, and Sn by 0.90%, 21.7%, 2.60%, and 25.0%, respectively (S1 Supporting Information). 175 

Now, it is important to answer two questions: (i) what is the difference between phosphorylation 176 

sites and non-phosphorylation sites and (ii) which features contribute most to the viral phosphorylation 177 

protein? To this end, we analysed the z-scale feature information between phosphorylation sites and 178 

non-phosphorylation sites. Then, we selected the most important features from the combined features 179 

with the mRMR method and using svm, random forest and naïve Bayes to perform a predictive 180 

evaluation. 181 
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Table 1. Comparison of performance between the single features and fused features with the 182 

mRMR method. 183 

Features Dim Sn Sp MCC F1 AUC 

1.AAC 20 0.738 0.739 0.479 0.738 0.821 

2.BINARY 460 0.827 0.896 0.732 0.857 0.931 

3.ZSCALE 115 0.812 0.985 0.810 0.887 0.957 

4.EGAAC 95 0.896 0.850 0.747 0.876 0.901 

5.CTDD 195 0.996 0.077 0.184 0.682 0.655 

6.CTDC 39 0.735 0.696 0.433 0.720 0.795 

7.CTDT 39 0.823 0.712 0.541 0.779 0.827 

8.CTriad 343 0.823 0.870 0.694 0.843 0.926 

{1,3} 135 0.896 0.908 0.806 0.902 0.958 

{2,3} 575 0.873 0.888 0.764 0.881 0.94 

{3,4} 458 0.835 0.904 0.743 0.866 0.944 

{3,8} 210 0.873 0.896 0.771 0.885 0.943 

{3,5,6,7} 388 0.831 0.85 0.681 0.839 0.921 

{2,3,4,8} 1013 0.85 0.908 0.762 0.876 0.947 

{1,2,3,8} 938 0.742 0.985 0.751 0.844 0.938 

Note: The first column represents the different feature extraction methods employed in this study. Dim 184 

refers to the different dimensions of every feature, and Sn, Sp, MCC, F1 and AUC represent the 185 

sensitivity, specificity, Mathews Correlation Coefficient and AUC value, respectively. 186 

Z-scale feature analysis 187 

The z-scale feature based on amino-acids’ physical-chemical properties includes five z values. 188 

The distribution of amino acid residues around serine sites is able to determine the different 189 

physicochemical properties between phosphorylation sites and non-phosphorylation sites. From Fig 4, 190 

we can see that the z3 values of the phosphorylation sites are smaller than that of the 191 

non-phosphorylation sites, implying that a more negative charge occurred around viral protein 192 

phosphorylation sites than around non-phosphorylation sites. The results also showed that the z1, z2, z4, 193 

and z5 values of the phosphorylation sites are bigger than that of the non-phosphorylation sites. Overall, 194 
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the different z-scale compositions surrounding the phosphorylated and non-phosphorylation sites 195 

indicate that it is reasonable to choose the z-scale as a feature for prediction. 196 

Fig 4. Comparison of the z-scale in positive and negative datasets. The vertical axis represents the 197 

z-scale values. The X-axis represents the five binary sequences. 198 

Performance evaluation 199 

VPTMdb provides three classifiers: support vector machine, random forest and naïve Bayes. 200 

Different dimensional features may have different impacts on different predictors. Thus, we selected 201 

features of different dimensions using the mRMR algorithm and compared the three classifiers’ 202 

performance from the 5-fold cross validation (S1 Supporting Information). 203 

Fig 5A shows that the maximum AUCs of the svm and random forest are similar. For the random 204 

forest and svm, the AUCs increased when more features were selected (random forest: 14-135 features, 205 

with AUC > 0.90; svm: 27-135 features, with AUC > 0.90). However, we observed that the AUCs of 206 

naïve Bayes (AUCs > 0.80) decreased when more features were added. From a statistical point of view, 207 

to prevent the curse of dimensionality, fewer and more meaningful features should be chosen. Taking 208 

the above results into consideration, for 68 features, the AUCs of the three predictors perform better, 209 

suggesting that 68D is the most meaningful feature among all the features. 210 

 To understand the effective of our 68-dimensional features, the T-distributed Stochastic Neighbour 211 

Embedding (t-SNE) algorithm was used to visualize the positive and negative samples. A clear 212 

distinction was observed between the positive and negative samples, implying that our features 213 

selection results are effective (Fig 5B). 214 
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To assess the robustness and performance of the svm, random forest, and naïve Bayes in 68D 215 

features, 10-fold random independent tests were performed. The model performance on independent 216 

datasets is shown in Fig 6, random forest performed better, the average AUC, MCC, F1-score of its are 217 

0.744, 0.427, 0.656 respectively. Comparing random forest and PSI-blast (S1 Supporting 218 

Information), the MCC, acc and sp values of random forest are higher than PSI-blast for 6.92%, 2.8% 219 

and 19.1%. Taking all indicators into consideration, our method is stable and better performance. We 220 

implemented svm, random forest and naïve Bayes into VPTMpre, users can choose them to predict 221 

phosphorylation sites of interest. 222 

Fig 5. Feature-based predictor construction. (A) Five-fold cross-validation performance of the three 223 

classifiers on different features. (B) t-SNE visualization of positive and negative data using 68D 224 

features. 225 

Fig 6. Independent test results. Sensitivity, specificity, AUC, MCC and F1-score of the proposed 226 

features in three classifiers. 227 

Discussion 228 

In this work, we constructed VPTMdb, which is the first database that systematically collected 229 

experimentally verified viral protein PTMs. Virus-human PPI data were also collected in the VPTMdb 230 

to determine PTM sites association functions. These viral protein PTM data provide unique insights 231 

into virus-host interactions.  232 

Firstly, viruses in VPTMdb have the same substrate motifs as human proteins in phosphorylation (37 233 

viruses), SUMOylation (16 viruses) and N-glycosylation (6 viruses). Several studies have shown that 234 

viral functional motifs play significant roles in virus life cycles and virus-host interactions [14]; For 235 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 29, 2020. ; https://doi.org/10.1101/2020.04.01.019562doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.01.019562
http://creativecommons.org/licenses/by-nc-nd/4.0/


instance, SUMOylation motifs can promote viral proteins binding and enhance viruses replication as 236 

well as immune evasion [15, 16]. Hence, these conserved sequence motifs in viral proteins may help 237 

them to hijack host PTM processes and utilize cellular substance to facilitate virus infections.  238 

Secondly, the function of the viral PTM proteins target human proteins were explored. The results 239 

showed that ten viruses PTM proteins have more degrees than the network average degrees. One 240 

possible reason is that viral proteins modification processes require the cooperation of multiple other 241 

proteins, so modified proteins have more interaction partners. Another possible reason is that PTMs 242 

regulate the state of proteins, and modified proteins can perform more functions. For instance, HCV 243 

core protein represses transcription of p21 is regulated by the phosphorylation at serine-116 site [17]. 244 

These PTMs will significantly change the function and interaction partners of viral proteins. Also, the 245 

top ten GO enrichment results of target human proteins were related to binding, which was partially 246 

validated that PTM proteins tend to bind with more human proteins.  247 

Moreover, we found that viral PTM sites are more likely to be enriched in the protein domains; 248 

Studies have shown that human modified lysines are more likely near phosphorylation sites, which 249 

form a PTM cluster region [18]. For viruses, these cluster PTMs in protein domains may form short 250 

motifs to enhance the regulate function of viral proteins. 251 

Finally, based on the analysis of viral PTM protein features, VPTMpre, a novel feature 252 

representative classifier, was developed to predict viral protein serine sites. We compared various 253 

feature extraction methods and selected the optimized features using the mRMR algorithm. The feature 254 

analysis results showed that 68D was able to distinguish the phosphorylation sites and 255 

non-phosphorylation sites in viral proteins. VPTMpre was integrated into the VPTMdb web server to 256 

provide an online phosphorylation site prediction service. Users can choose three classifiers (svm, 257 
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random forest and naïve Bayes) to predict phosphorylation sites of interests. However, because of data 258 

limitations, the prediction of VPTMpre is limited to serine sites. With a continuous collection of new 259 

viral PTM data, we expect that VPTMpre will be extended to predict more types of PTM sites and 260 

obtain a better performance. 261 

In the future, to respond to the rapid growth of viral PTM data, VPTMdb will be updated regularly 262 

and more viral PTM-related data collected to ensure that it provides the most comprehensive 263 

information to users. As the first attempt to develop the comprehensive viral PTM database, we 264 

sincerely welcome support and suggestions from the research community to improve the VPTMdb 265 

database. 266 

Methods 267 

Data collection 268 

There are three major steps in data collecting and pre-processing, which are described below.  269 

Firstly, we queried PubMed using the keyword search terms: (virus name) and (eight modification 270 

types) for studies published before Jan 01, 2020. As a result, 6052 papers were obtained, each of which 271 

was manually retrieved using the following standards: (i) the viral post-translational modifications 272 

were experimentally verified; and (ii) if two references contained the same PTM site, the earliest 273 

published study was retained. In total, 45 viruses, 162 papers and 414 PTMs were obtained.  274 

Subsequently, 498 viral PTM data points from UniProtKB/Swiss-Prot were integrated into VPTMdb. 275 

For experimentally validated virus PTM types, the sites were extracted manually from the articles 276 

mentioned above. The protein sequences, UniProt ID and PMID were mainly extracted from NCBI, 277 

UniProt and PubMed. Finally, human-virus protein-protein interactions were collected from the 278 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 29, 2020. ; https://doi.org/10.1101/2020.04.01.019562doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.01.019562
http://creativecommons.org/licenses/by-nc-nd/4.0/


VirHostNet based on viral strains in the VPTMdb. 279 

PTM data analysis 280 

The phosphorylation (37 viruses), SUMOylation (16 viruses) and N-Glycosylation (6 viruses) data 281 

were from VPTMdb. Motif-x tool was employed to extract motifs using its default parameters 282 

(score-threshold of 1 × 10−6, min-occurrences of 5, and width of 15). Proteins domains were searched 283 

by HMMER (using PFAM database) with default parameters. PPI data were downloaded from 284 

VirHostNet database. Gene Ontology and KEGG enrichment analysis used clusterProfiler [19]. 285 

Network analysis was performed using Cytoscape [20]. 286 

Overview of viral phosphorylation sites prediction 287 

Identifying viral protein PTM sites by experimental methods is still expensive and time consuming. 288 

Thus, predicting them in silico using bioinformatics approaches is necessary. To this end, a 289 

sequence-based classifier named VPTMpre was created to predict viral post-translational modification 290 

serine sites. Because threonine and tyrosine data are too few to train the model, we only predicted 291 

serine sites in this study. 292 

Five main procedures were performed to build the VPTMpre predictor. (i) a balanced benchmark 293 

dataset was constructed using the Synthetic Minority Oversampling Technique (SMOTE) [21] 294 

sampling method (S1 Supporting Information); (ii) various feature representative methods were 295 

compared to obtain an effective feature representation strategy, with support vector machine used as the 296 

base classifier in a 5-fold cross-validation approach to find the best feature groups; (iii) the predictive 297 

performance of three classifiers (svm, random forest, naïve Bayes) on different feature dimensions was 298 
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compared using the Minimum redundancy and maximum relevance (mRMR) method, and the features 299 

that performed well in all three classifiers were selected as the most meaningful and significant features; 300 

(iv) a 10-fold random independent test was performed to evaluate the predictive performance of the 301 

three different classifiers (svm, random forest, naïve Bayes); and (v) VPTMpre was implemented in the 302 

online web server. 303 

Data preparation and processing 304 

All viral phosphorylation experimentally verified serine sites in our database were used as positive 305 

samples, and those not marked by any phosphorylation information on the same protein were 306 

considered negative samples. As a result, we obtained 182 phosphorylated serine residues as well as 307 

2148 non-phosphorylated residues. Phosphorylation sites from UniProtKB/Swiss-Prot were regarded as 308 

the independent dataset, and they included 93 positive serine sites and 1878 negative serine sites. After 309 

using CD-HIT (clustering thresholds set to 0.8) [22] to remove redundant sequences, we obtained 129 310 

positive sites and 1611 negative sites. The independent dataset contained 52 positive sites and 1072 311 

negative sites (Table 2). These sequences were truncated to a 23-residue symmetrical window (-11 to 312 

11).  313 

In order to eliminate the prediction bias caused by data imbalance, we re-sampled the training data by 314 

SMOTE methods and obtained 260 positive sites and 260 negative sites, which consisted of the training 315 

dataset. The negative test set from UniProtKB/Swiss-Prot was randomly divided into twenty parts (S2 316 

Table). We randomly select ten negative subsets from the twenty parts and combined them with ten 317 

replicate positive sets to constitute ten independent test datasets (S1 Supporting Information). 318 

Table 2. Summary of training and independent datasets 319 
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Datasets Types Total number After 
 deletion 

After  
balanced 

Training set Positive 182 129 260 
Negative 2148 1611 260 

Independent set Positive 93 52 52 
Negative 1878 1072 1072 

Feature representation 320 

To achieve a better classification effect, a key step is feature extraction, which means that a protein 321 

sequence is encoded as a numeric vector for machine learning model. 322 

Amino acid composition (AAC). AAC is the frequency of 20 amino acids for a given sequence [23]. 323 

This descriptor can be denoted as follows:  324 

��� � ��1, �2, �3, . . . , �20� (1) 

where 325 

� � �
� � � �, �, �, . . . , ��� (2) 

Ri is the observed number of types i amino acid in a protein sequence. L is the length of protein. Thus 326 

20 features were obtained, and sum of which is 1. 327 

Binary profile. The binary profile transformed each amino acid into a 20-dimensional binary 328 

numerical vector. For instance, the alanine (‘A’) is deciphered as 10000000000000000000, cysteine (‘C’) 329 

is deciphered as 01000000000000000000, etc. Consequently, we obtained a 460-dimensional vector for 330 

this binary profile feature. 331 

Conjoint triad (CTriad). The conjoint triad feature is sequence information for proteins. Twenty 332 

amino acid types are clustered into seven classes to construct the C-triad feature. 333 

�����1 � ����, ���, ����, �����2 � �Ile, Leu, Phe, Pro� (3) 

�����3 � �(��, )*+, (,�, -*��, 

�����4 � �/01, �12, 3�2, (��� 
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�����5 � ����, 5�1�, �����6 � ��1�, 3���, 

�����7 � ���1� 

First, protein sequences are encoded into a numerical vector using the AA groups list above. 334 

Subsequently, any three continuous AAs are regarded as a unit, and scanning along the sequences and 335 

counting the frequencies of each triad type is performed to obtain a 343-dimensional numerical vector. 336 

For example, a protein sequence S contains L AA residues, which are expressed as follows:  337 

- � ����������. . . ��. (4) 

Then, we scan along the sequence with a slide window in three continuous residues:  338 

������, ������, ������, ������, . . . , ���������� (5) 

Finally, the C-triad feature of a protein is defined as the frequency of the corresponding triad type in that 339 

protein:  340 

�+�0�9 � :;�, ;�, ;�, ;�, . . . , ;���<	 (6) 

where,  341 

;
 � 2


5 = 2 (7) 

ni is the occurrence number of the i-th triad type (i= 1, 2, ..., 343). 342 

More detailed information about C-triad can be found in [24]. 343 

Composition-Transition-Distribution (CTD). CTD clusters 20 amino acids into three groups: 344 

hydrophobic, neutral and polar. The CTD composition (CTD-C) calculates the composition values of 345 

hydrophobic, neutral and polar groups for a given sequence. The CTD transition (CTD-T) represents the 346 

percentage frequency of an amino acid of one particular property followed by an amino acid of another 347 

property. The CTD distribution (CTD-D) represents the distribution of each property for a given 348 

sequence. Each property has five distribution descriptors, which are the first residue, 25% residues, 50% 349 
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residues, 75% residues, and 100% residues in the whole sequence of a given specific property. In this 350 

research, CTD-C, CTD-T, and CTD-D were used to encoded protein sequences and yielded 39, 39, and 351 

195 features, respectively. More detailed information about CTD can be found in the literature [25].  352 

Enhanced grouped amino acid composition (EGAAC). EGAAC was first proposed by Chen et al. 353 

[26] and is the improved version of GAAC features. GAAC divides 20 standard amino acids into five 354 

groups based on their physical and chemical properties. The formulation of GAAC is as follows: 355 

 ;��� � >���
5 , � ? ��1, �2, �3, �4, �5� (8) 

 >��

� � @ >
  , 0 ? �  (9) 

 �1 � �3��5)A�, �2 � �BCD�, (10) 

 �3 � �EF/�, �4 � �GH�, 

 �5 � �-(�I>J� 

where L is the length of sequence, N(g) is the number of amino acids in group g, and Ni is the 356 

occurrence number of i-th amino acid type.  357 

EGAAC scans along the sequence and calculates the GAAC values in a  358 

fixed-size window:  359 

B��� � >��, K02�
>�K02� , � ? ��1, �2, �3, �4, �5� (11) 

where N(g,win) is the number of amino acids in group g within a fixed-size window win and N(win) is 360 

the window size. win ranges from 1 to 17. In this study, the window size was set to 5, and we finally 361 

obtained a 95-dimensional vector. 362 

Z-Scale (ZSCALE). Z-scale is a feature descriptor that describes AAs’ physicochemical properties. It 363 

was first published by Hellberg [27], who introduced three z-scales (z1-z3), and then Sandberg et al. 364 

(Sandberg, et al., 1998) improved the original z-scale features by adding two more z-scale values, using 26 365 
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properties of 87 AAs. In this study, we employed the z-scale using five scales(z1-z5). The five z-scales are 366 

based on lipophilicity (z1), bulk (z2), polarity/charge (z3), electronegativity and heat of formation(z4), 367 

electrophilicity and hardness(z5), yielding a 115-dimensional numerical vector. 368 

Feature selection and optimization 369 

Generally, high-dimension biological features may be noisy, which led to poor prediction 370 

performance. However, feature selection is a good strategy to overcome feature redundancy. Feature 371 

selection means using a reduction algorithm to select the major features that are able to improve the 372 

performance of specific classifiers.  373 

In this work, six descriptors and their combined features’ performance were compared using 5-fold 374 

cross validation in the training data with the Support Vector Machine (SVM) method. Subsequently, the 375 

Minimum redundancy and maximum relevance (mRMR) method was chosen to select the most 376 

meaningful features. To investigate the predictive performance of three classifiers, we compared the 377 

different dimensions of features in the svm, random forest, naïve Bayes methods. The features that 378 

performed well in all three classifiers were selected as the most meaningful and significant features. The 379 

T-distributed Stochastic Neighbour Embedding algorithm was used to visualize the features[28]. 380 

Performance evaluation 381 

Sensitivity (Sn), Specificity (Sp), F1-score, and Mathews Correlation Coefficient (MCC) were applied 382 

to estimate the prediction performance (S1 Supporting Information). Besides, the receiver operating 383 

characteristic (ROC) curve and the area under the ROC curve (AUC) were used to evaluate the overall 384 

performance of the model. The ROC curve is a continuous line plotted by the false positive rate (FPR) as 385 
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the X-coordinate and true positive rate (TPR) as the Y-coordinate. The higher the AUC value, the better 386 

the performance of the classifier. 387 

Website implementation 388 

The VPTMdb web interface was written in the R programming language using the Rshiny web 389 

development framework [29]. The MySQL database management system was used to store structured 390 

PTM data. The base machine learning predictor (such as SVM) was supported by the caret R package 391 

[30]; the ROC curve was analysed using ROCR [31]; and MRMR and t-SNE were analysed using 392 

mRMRe [32] and Rtsne [33]. Software ggplot2 was used to plot beautiful pictures [34]. The website is 393 

free and can be browsed in most modern browsers. 394 
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