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Abstract 

The molecular basis of how temperature affects cell metabolism has been a long-standing question in 

biology, where the main obstacles are the lack of high-quality data and methods to associate temperature 

effects on the function of individual proteins as well as to combine them at a systems level. Here we develop 

and apply a Bayesian modeling approach to resolve the temperature effects in genome scale metabolic 

models (GEM). The approach minimizes uncertainties in enzymatic thermal parameters and greatly 

improves the predictive strength of the GEMs. The resulting temperature constrained yeast GEM uncovered 
enzymes that limit growth at superoptimal temperatures, and squalene epoxidase (ERG1) was predicted to 

be the most rate limiting. By replacing this single key enzyme with an ortholog from a thermotolerant yeast 

strain, we obtained a thermotolerant strain that outgrew the wild type, demonstrating the critical role of sterol 

metabolism in yeast thermosensitivity. Therefore, apart from identifying thermal determinants of cell 

metabolism and enabling the design of thermotolerant strains, our Bayesian GEM approach facilitates 

modelling of complex biological systems in the absence of high-quality data and therefore shows promise 

for becoming a standard tool for genome scale modeling. 
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Introduction 

Temperature is the most common environmental and evolutionary factor that shapes the physiology of living 
cells. Organisms have successfully adapted to survive in diverse temperature ranges 1–3, where minor 

deviations from the optimal temperature by merely a few degrees can dramatically impair cell growth. For 

instance, the model eukaryotic organism Saccharomyces cerevisiae has an optimal growth temperature of 

~30°C, whereas a temperature of 42°C is already lethal to the organism 4,5.  Since cell growth fundamentally 

requires all cellular components to be functional in the temperature window of cell growth, proteins, the 

most abundant group of biomolecules that carry out the majority of catalytic functions and are also the most 

sensitive to changes in temperature 5–7, are considered to have the largest effect on cell physiology in 
relation to temperature. However, despite all our knowledge of temperature effects at both the cellular and 

molecular levels, including recent breakthroughs in temperature-dependent protein folding 7–10 and enzyme 

kinetics 11,12, the temperature association between proteins and cell physiology is still poorly understood.   

Multiple studies have attempted to model the temperature effects on cell growth with very few proteome 

wide parameters. For instance, the dominant activation barrier and the number of essential proteins to cell 
growth 13, activation energy of the growth process and the free energy change of protein denaturation 14 

and others (reviewed in 15). These models showed excellent performance when describing the general cell 

growth rate at various temperatures, however, they could not pinpoint the specific rate-limiting enzymes, 

nor predict the amount of improvement in growth rate by replacing these enzymes with temperature-

insensitive homologs. 

To this end, genome-scale metabolic models (GEMs) 16–18 , which are a comprehensive mathematical 
representation of cellular biochemical reactions 19, have been used to model the thermosensitivity of 

metabolism in Escherichia coli, for instance by associating metabolic reactions with protein structures 20 or 

by modelling protein-folding networks 21. It however remains challenging to model more complex, eukaryotic 

organisms, such as S. cerevisiae, due to their metabolic complexity 16 as well as due to the lack of 

availability of the required enzymatic data 7,22, including high quality protein structures 20,21. In addition, such 

GEMs rely on thousands of parameters to describe the temperature effects on protein folding and kinetics 
16, which have to be empirically or computationally estimated 20,21. This leads to large statistical uncertainties 
in model parameters and can make the models unreliable, due to inaccurate temperature associations 

between proteins and cell physiology. Therefore, in order to enable accurate modelling of the temperature 

dependence of cell metabolism, a key requirement is to develop a modelling approach that resolves the 

issues with large uncertainties of temperature related parameters and produces accurate temperature 

constrained predictions. 

Hence, in the present study we introduce a Bayesian genome scale modelling approach to model the 

temperature effect on cellular metabolism in Saccharomyces cerevisiae, the most widely used  industrial 

organism with the availability of multiple thermal experimental data 5,23,24 and highly sophisticated GEMs 
16,18,25. We first quantify and reduce the large uncertainties in the parameters describing enzyme 

thermosensitivity using Bayesian statistical learning 26 to simulate phenotypic data. We show that the 
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resulting models are capable of reproducing various experimental datasets and provide explicit insight into 

how yeast metabolism is affected by temperature. Our approach identifies the sterol metabolism as a key 

factor in the yeast thermal adaptation, and predicts the flux-controlling enzymes in superoptimal 

temperature ranges as potential targets for future design of thermotolerant yeast strains. We then 

experimentally validate the predicted most rate-limiting enzyme by replacing it with an ortholog from a 

known thermotolerant yeast Kluyveromyces marxianus.  We hereby demonstrate the power of Bayesian 
genome scale modelling for studying complex biological systems. 
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Results 

GETCool: Using Bayesian statistical learning to integrate temperature 

dependence in enzyme-constrained GEMs 

In this study, we developed a novel approach for incorporating temperature dependence into an 

enzyme-constrained GEM (ecGEM)16 (Fig 1) with the resulting model termed enzyme and temperature 

constrained GEM (etcGEM). The approach combined the following steps: (i) etcGEM construction (Fig 
1a-d), (ii) flux balance analysis (FBA) and (iii) Bayesian statistical learning (Fig 1e). The ecGEM, which 

includes, besides the traditional stoichiometric matrix, also enzyme abundances and activities, provided 

an excellent template to directly integrate the enzyme temperature effects. Firstly, for a given reaction, 

the flux cannot exceed the capability of the enzyme, which is defined as the product of the functional 

enzyme concentration [𝐸]! and its 𝑘"#$. Secondly, the total amount of enzymes that the cell can afford 

is also limited 27. Inclusion of temperature constraints into ecGEM was thus achieved by making [𝐸]! 

and 𝑘"#$ temperature dependent, and by incorporating the additional cost of enzymes in the denatured 

state (Fig 1a, Method M1). Three thermal parameters were required for each enzyme in the resulting 

etcGEM, including (i) the melting temperature 𝑇% (Fig 1b), (ii) the heat capacity change ∆𝐶&
‡(Fig 1c) and 

(iii) the optimal temperature 𝑇(&$ (Fig 1d Method M2). Moreover, to capture the temperature effects on 

the energy cost of non-growth associated maintenance (NGAM), a temperature dependent NGAM 

expression term was estimated from experimental data and included in the model.  

To resolve the challenges arising from the uncertainties in the parameter values, we used Bayesian 

statistical learning 26, which is a probabilistic framework that has been successfully applied for 

quantifying and reducing uncertainties in various fields including deep learning 28, ordinary differential 

equations 29 and biochemical kinetic models 30. The approach uses experimental observations (𝐷) to 

update Prior distributions (𝑃(𝜃)) of model parameters to Posterior ones (𝑃(𝜃|𝐷)) (Fig 1e).  We refer to 

the model equipped with 𝜃 sampled from 𝑃(𝜃) or 𝑃(𝜃|𝐷) as a Prior or Posterior etcGEM, respectively. 

The resulting Posterior etcGEMs provided a more reliable platform to study the thermal dependence of 

cell metabolism, with an inherent benefit that the uncertainty in the interpretation and prediction from the 

improved Posterior etcGEMs could also be quantified. 
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Fig 1. Using Bayesian statistical learning to integrate temperature dependence in enzyme-constrained 
GEMs. (a) An illustration of the temperature effects on enzyme-catalyzed reactions and their integration into an 

etcGEM (see detailed description and equations in Methods M3). The metabolic network ecYeast7.6 16 is shown. 

(b) A two-state denaturation model 20,21,31 was used to describe the temperature dependent unfolding process. [𝐸]! 

is the concentration of the enzyme in native state; Topt is the optimal temperature at which the specific activity is 
maximized; Tm and T90 are temperatures at which there is a 50% and 90% probability that an enzyme is in the 

denatured state, respectively. (c) Macromolecular rate theory 32,33 describing the temperature dependence of 

enzyme turnover number 𝑘"#$. Inset shows the heat capacity difference between ground state (E+S) and transition 

state (E-TS), adapted from Hobbs J., et al 32. (d) Temperature dependence of enzyme specific activity 𝑟, which is a 

product of (b) and (c). (e) Overview the Bayesian statistical learning approach, where the problem can be formulated 

as: given a generative model (M) (etcGEM in this study) corresponding to a set of parameters 𝜃 and a set of 

measurements 𝐷(phenome data), Bayes’ theorem provides a direct way of updating the Prior distribution of 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 2, 2020. ; https://doi.org/10.1101/2020.04.01.019620doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.01.019620
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

parameters 𝑃(𝜃) to a Posterior distribution 𝑃(𝜃|𝐷): 𝑃(𝜃|𝐷) = %('|))×%(')
%(')

. 𝑃(𝜃|𝐷)is thereby a less uncertain 

description of the real 𝜃. Since 𝑃(𝐷|𝜃) is, in most applications, computationally expensive or even infeasible to 

obtain, an Sequential Monte Carlo based Approximate Bayesian Computation (SMC-ABC) 34 approach was 
implemented (Methods M3) to sample a list of parameter sets from the Posterior. 

 

Bayesian modelling improves etcGEM performance by reducing 

parameter uncertainties 

We next applied the GETCool approach to model the temperature dependence of yeast metabolism.  

This was done by incorporating temperature effects into the ecYeast7.6 16 model and the resulting model 

was termed etcYeast7.6. Enzyme 𝑇% and 𝑇(&$ parameters were either collected from literature or 

predicted by machine learning models (Methods M4). The heat capacity change ∆𝐶&
‡ was estimated as 

-6.3 kJ/mol/K by fitting the macromolecular rate theory to the yeast specific growth rate at various 

temperatures 32 and then applied for all enzymes. As a result, the etcYeast model was obtained with an 

expansion of 2,292 temperature-associated parameters for a total of 764 metabolic enzymes (Fig 1a). 
The temperature dependence of NGAM was inferred from experimental data (Methods M4, Fig S1). 

We observed that etcYeast predictions made using the initial parameter values could not correctly 

recapitulate experimental observations (Fig S2, Method M5), which included (i) the maximal specific 

growth rate in aerobic 4 batch cultivations, (ii) anaerobic 5 batch cultivations, and (iii) fluxes of carbon 

dioxide (CO2), ethanol and glucose in chemostat cultivations 23, at various temperatures. This was 

however not surprising due to the high level of uncertainty and low accuracy associated with the initial 

parameter values, as with the experimentally measured 𝑇% we estimated an average standard variance 

of 3.4 °C, whereas this increased up to 13 °C with the 𝑇(&$ values predicted by machine learning 

(Methods M4). For enzymes without experimentally measured 𝑇%, the average of the existing 

experimental values was used, where the standard variance was 5.9 °C (Methods M4). Another potential 

source of error was due to assuming the same ∆𝐶&
‡ values for all enzymes. We therefore applied the 

Bayesian statistical learning approach. Here, we first used a three-fold cross validation showing that the 

above three datasets showed both overlapped and orthogonal information between each other in the 

Bayesian modelling approach (Fig S3). We then used all three datasets to sample 100 Posterior 

etcGEMs, where each model achieved an average 𝑅) higher than 0.9 on all three datasets (Fig S4) and 

could therefore accurately describe the observed measurements (Fig 2a-c and Fig S5). The increased 

performance on all three datasets clearly demonstrated the need to update the parameter Prior 

distribution to a Posterior one.  

Next, we explored which parameters had been updated in the Bayesian approach. Principal component 
analysis of all 21,504 parameter sets generated in the approach showed how the Priori distributions 

were gradually updated to distinct Posterior distributions (Fig 2d). Further comparison between Prior 

and Posterior distributions revealed that in all three parameter categories, a reduced variance in the 
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updated parameters was more likely than a change in mean values (Fig 2e, protein-wise comparison 

shown in Fig S6). Particularly for enzyme 𝑇(&$s, a significant (Šidák adj. one-tailed F-test p-value < 0.01) 

reduction in variance was observed with 59% (449/764), whereas a significant (Šidák adj. Welch's t-test 

p-value < 0.01) change in the mean value was found with merely 26% (200/764). The average standard 

variance of enzyme 𝑇(&$s was thus reduced by almost 50% from ~11 °C to ~6 °C (Fig S6). Importantly, 

we observed that the approach tended to change the enzyme 𝑇(&$ rather than its 𝑇% and  ∆𝐶&
‡ parameters 

(Fig 2e). In addition, a machine learning approach (Methods M6) further revealed that, out of all three 

parameter types, the largest contribution to the improved Posterior etcGEM performance during the 

Bayesian approach was from enzyme 𝑇(&$s (Fig 2f).  

 

Fig 2. Bayesian modelling improves etcGEM performance by reducing parameter uncertainties. (a-b) 

Simulated (a) aerobic and (b) anaerobic growth rates in batch cultivations at various temperatures with Prior and 

Posterior etcGEMs. (c) Simulated ethanol secretion flux in chemostat at various temperatures. In (a-c), lines indicate 

median values and shaded areas indicate regions between the 5-th and 95-th percentiles. (d) Principal component 

analysis (PCA) 21,504 parameter sets (𝜃/) sampled in the Bayesian approach. Each  parameter in the set 𝜃∗ was 

standardized by subtracting the mean and then be divided by the standard deviation before PCA. 𝜃/ of 128 Prior 

and 100 Posterior etcGEMs are highlighted in blue and orange, respectively. All other 𝜃/ were termed as 

“intermediate” and marked in grey. (e) The number of enzymes, out of all 764, with a significantly changed mean 

(Šidák adj. Welch's t-test p-value < 0.01) and variance (Šidák adj. one-tailed F-test p-value < 0.01) in 𝑇-, 𝑇./$ and  

∆𝐶/
‡ between Prior and Posterior. Parameters from 128 Prior and 100 Posterior etcGEMs were used for statistical 

tests. (f) A random forest model was used to score the importance of all 2,292 parameters during the Bayesian 

approach (Methods M6). The plot shows the accumulated importance score for each of the three parameter 
categories. 
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Yeast growth rate is explained by temperature effects on its enzymes 
With the Posterior etcGEMs capable of describing various experimental observations (Fig 2a-c), we 

analysed how the temperature effects on each of the three processes - NGAM, 𝑘"#$ and the protein 

denaturation process - contribute to whole cell growth (Fig 3a). We observed that, at temperatures below 

29 °C, the temperature dependent 𝑘"#$ was the only factor that affected the cell growth rate. In the range 

between 29 and 35 °C, both 𝑘"#$ and NGAM determined the growth rate. The contribution of enzyme 

denaturation to the temperature dependence of cell growth, however, was observed only at 

temperatures higher than 35 °C, with the denaturing effect becoming the dominant effect at ~40 °C and 
lack of cell growth at 42 °C. Therefore, in contrast to previous reports indicating that an over 10-fold  

increase in NGAM cost with the temperature change from 30 °C to 33 °C  was the major limiting factor 

to cell growth 5,35, our modelling approach showed that the increased NGAM has a merely moderate 

effect on growth rate (Fig 3a).  

Interestingly, the temperature dependence of enzyme 𝑘"#$s alone could explain the temperature 

dependence of cell growth below 35 °C, including the decline in cell growth right after the optimal growth 

point defined by OGT. According to the macromolecular rate theory 32,33, 𝑘"#$ degeneration at 

temperatures above the optimal point can be attributed to the negative values of ∆𝐶&
‡ for enzyme 

catalysis. This can explain the negative curvature of enzyme specific activities in the absence of the 

denaturation process 32,33,36. Given that experimentally measured enzyme melting temperatures (𝑇%) 

are on average 20 °C higher than enzyme 𝑇(&$s collected from BRENDA 37 (Fig 3b), protein denaturation 

alone seems to be insufficient to explain the thermal mechanism underlying enzyme 𝑇(&$s. In addition, 

all posterior 𝑇(&$s showed a similar distribution as experimental 𝑇(&$s, even though the etcGEM had 

never seen those experimental 𝑇(&$s (Fig 3c), which supported our use of the macromolecular rate 

theory in the model. This indicates that 𝑘"#$ degeneration, in addition to protein denaturation, plays an 

important role in the temperature dependence of yeast cell growth.  

We further observed that, even though the model contained only 764 enzymes from a total of ~6,700 

proteins 38, protein denaturation alone could still explain termination of cell growth at 42 °C (Fig 3a). 

However, in the Posterior etcGEMs, only 9 enzymes (1%) with a mean melting temperature below 42 °C 

were present (ERG1, ATP1, ALA1, KRS1, SER1, HEM1, PDB1, ADH1 and TRP3) (Fig S7), of which 

three (ATP1, HEM1, PDB1) are located in the mitochondria 39. The other enzymes remained in the 

native state even at temperatures several degrees higher than 42°C (Fig 3d), though they were 

enzymatically active only in the temperature window of cell growth between 10 °C and 42 °C (Fig 3f), 

due to the low 𝒌𝒄𝒂𝒕 values beyond this temperature range (Fig 3e).  
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Fig 3. Yeast growth rate is explained by temperature effects on its enzymes. (a) Illustration of how the 

temperature dependence of different processes combines to affect the growth rate. Fig legend: ec - predictions with 
the enzyme constrained model; ec+NGAM(T) - incorporates the temperature effects on non-growth associated 

maintenance into the ec model (Fig SX); ec+kcat(T) - incorporates the temperature effects on enzyme kcat values 

into the ec model; ec+denaturation - incorporates the temperature effects on enzyme denaturation into the ec 

model; etc - enzyme and temperature constrained model that includes the temperature effects on NGAM, kcat and 
enzyme denaturation into ec model. The growth rate at each temperature point was simulated with all 100 posterior 

etcGEMs. Lines indicate median values and shaded areas indicate regions between the 5th and 95th percentiles. 

(b) Comparison between distributions of experimentally measured enzyme 𝑇./$s from BRENDA 37 and 𝑇-s from 

Leuenberger P et al.7 in S. cerevisiae. (c) Comparison among distributions of mean of Prior 𝑇./$s which were 

predicted by Tome 22, mean of Posterior 𝑇./$s and experimental 𝑇./$s from (b). (d) Probability of 764 enzymes in 

the native state. From top to bottom, the enzymes showed increased 𝑇-s. Each pixel represents one probability 

value of an enzyme at a specific temperature. (e) Normalized 𝑘"#$ values of 764 enzymes at different temperatures. 

Each pixel represents one normalized 𝑘"#$ value of an enzyme at a specific temperature. (f) Normalized specific 

activities of 764 enzymes at different temperatures. The values in (f) are products of (d) and (e). In (d,e,f), an equal 
ordering of enzymes is shown.  

 

Metabolic shifts are explained by temperature-induced proteome 

constraints 

Published reports show that at temperatures above 37°C in chemostat cultures with a dilution rate of 
0.1 h-1, yeast shifts its metabolism from a completely respiratory one to a partly fermentative one, which 

is also accompanied by a large increase in glycolytic flux 23. Since our updated Posterior etcGEMs are 

able to simulate this metabolic shift (Fig 2c and Fig S5), we used them to further explore the mechanisms 

behind the observed process. We observed that the shift occurs due to a proteome constraint, meaning 
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that the total protein level in the cell reaches an upper bound (Fig 4). The proteome constraint occurs 

due to the decrease in enzyme specific activities with increasing temperature (Fig 3f) and since the 

maximal protein amount in the cell is limited 27. As a result, the cell has to synthesize more enzymes to 

maintain cell growth at the given growth rate (Fig 4) until the enzyme amount hits the upper bound. This 

is also consistent with earlier studies showing that the activation of the Crabtree effect in chemostat 

cultures at 30°C is due to a proteome constraint 16,40. When the temperature increases above 36 °C, 
ATP production by glycolysis is dramatically increased, while ATP production by the mitochondria 

decreases (Fig 4). Even though the respiratory pathway produces more ATP per glucose amount, the 

fermentative pathway produces more ATP per protein mass and therefore becomes more energetically 

efficient when the cell reaches a proteome constraint 40. In addition, three key mitochondrial enzymes 

(ATP1, HEM1 and PDB1) (Fig S7) were found to be unstable, which make the respiratory pathway even 

more resource-inefficient for ATP production.  

Fig 4. Metabolic shifts are explained by temperature-induced proteome constraints. The ATP production in 
cytoplasm and the total protein amount required at different temperatures were simulated using Posterior etcGEMs 

with chemostat culture settings with a dilution rate of 0.1 h-1 (Methods M4). Lines indicate median values and shaded 

areas indicate the region between the 5th and 95th percentile.

 

etcGEM uncovers growth rate-limiting enzymes 

To investigate which enzymes limit the cell growth at superoptimal temperatures, the flux sensitivity 

coefficient of each enzyme was calculated (Methods M5). Among all the enzymes in the model, the 

squalene epoxidase ERG1 displayed an order of magnitude higher median flux sensitivity coefficient than 

other enzymes, indicating that it is the most flux-controlling enzyme at 40 °C (Fig 5a) and above (Fig S8). 
Furthermore, removal of the temperature constraint on ERG1 increased the simulated specific growth rate 
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from 0.09 to 0.14 h-1 (Fig 5b). We therefore evaluated the impact of replacing the wild-type ERG1 gene with 

ERG1 from the thermotolerant yeast Kluyveromyces marxianus (kmERG1, Methods M7). At first, at the 

lethal temperature of 42 °C, only a small improvement in growth rate (from 0.01 to 0.06 h-1) was predicted 

and no significant growth difference was detected between the wildtype and the strain with kmERG1 (Fig 

S9). However, already after 2 generations of adaptation at 40 °C, the strain with KmERG1 indeed showed 

significantly better growth than the wild type (Fig 5c).  

The reduced growth rate at 42 °C is likely caused by an impaired function of several different enzymes, and 

rescuing a single enzyme is insufficient to improve the growth rate. Therefore, in order to characterize the 

set of growth rate-limiting enzymes at 42 °C, we gradually removed the temperature constraints on enzymes 

(set kcat and denaturation temperature independent) in the order of decrescent flux sensitivity coefficient 

values in each of the Posterior etcGEMs. Interestingly, in the case of recovering the cell growth rate to 0.2 
h-1, we found an agreement among all Posterior etcGEMs that 10 enzymes are required to be fully functional 

at 42 °C (Fig 5d). Since each model predicted a different subset of such enzymes, an ensemble approach 

was used to count the number of models (votes) in which an enzyme is predicted to be one of 10 such 

enzymes (Fig 5e). In total, 82 enzymes were predicted by at least one Posterior etcGEM, and only 24 (out 

of 82) enzymes were each predicted by more than 10% of the Posterior etcGEMs (Fig 5e, inset). Among 

these 24 enzymes 12 enzymes were engaged with Glycolysis and 3 enzymes were involved in sterol 

biosynthesis: ERG1, and HMG1,2 catalyzing the flux-controlling steps in sterol biosynthesis41. The 

remaining enzymes were mainly involved in DNA or protein synthesis related pathways.     
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Fig 5. etcGEM uncovers growth rate-limiting enzymes. (a) 20 enzymes with the highest flux sensitivity 

coefficients at 40 °C. Each dot represents the prediction from one Posterior etcGEMs. (b) Predicted maximal specific 
growth rate of wide-type yeast and the one without any temperature constraints (fully functional) on ERG1 enzyme 

at 40 °C. (c) The effect of KmERG1 expression on thermo tolerance in S. cerevisiae. The strains were cultivated at 

40 °C for six generations to reach the steady state of growth. Optical densities (600 nm) are shown at 24 h. Each 
bar indicates the mean and dots represent the values of  5 replicates. p-values denote Welch's t-test. (d) Simulated 

maximum specific growth rate by removing the temperature constraints of most rate-limiting enzymes at each step 

in each Posterior etcGEM at 42 °C. Lines indicate median values and shaded areas indicate the region between 
the 5th and 95th percentiles. (e) The percentage of Posterior etcGEMs predicts an enzyme to be in the minimal 

enzyme set required to be fully functional at 42 °C in order to achieve a maximal specific growth rate of 0.2 h-1. 

Inset shows the names and pathways of genes predicted by more than Posterior etcGEMs 10% they are involved 
in.
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Discussion 
Here, we present a Bayesian genome scale modelling approach to resolve the temperature dependence 
of cellular metabolism, termed GETCool. Using an enzyme-constrained GEM16 as a template, we modelled 

the temperature effects on each individual enzyme by including temperature dependent terms for the 

independent processes of denaturation as well as catalysis (Fig 1A). Due to the high level of uncertainty 

and low accuracy associated with the initial thermal parameter values (Fig S6), which were a result of 

experimentally measured noise or variability arising from machine learning or theoretical predictions 

(Methods M5), the model predictions initially could not correctly recapitulate experimental observations (Fig 

2a-c and Fig S2). We therefore used Bayesian statistical learning that enabled updating our Prior guess of 

the highly uncertain thermal parameters to a more accurate Posterior estimation of these parameters 
according to observed phenotypic data (Fig 1e). The resulting Posterior etcGEMs accurately describe the 

experimental observations (Fig 2a-c) and thus provide a more reliable platform to study the thermal 

dependence of yeast metabolism.  

Previous studies modelling the temperature dependence of enzyme activities have relied mainly on protein 

denaturation and the Arrhenius equation, where protein denaturation explained the negative curvature for 
temperature dependence of enzyme activity 20,21. However, with the increasing amount of evidence showing 

that protein denaturation alone is insufficient to explain the decrease in enzyme specific activity above Topt, 

macromolecular molecular rate theory 32,36 has become a promising alternative. It was successfully applied 

to many enzymes 32,33,36, including its use in explaining the evolution of enzyme catalysis 36. According to 

the theory, a negative heat-capacity change (∆𝐶&
‡) exists between the transition state and the ground state 

in the enzyme catalytic process (Fig 1c), which leads to a negative curvature for temperature dependence 

of enzyme activity in the absence of denaturation 32. We found that with this theory, temperature 

dependence of kcats acts as a major contributor to the cell growth rate at all temperatures, which can 

especially explain the decline in cell growth rate right after the optimal growth temperature (Fig 3a). Yeast 

enzymes only maintain high kcats in the temperature window of cell growth (Fig 3e), which means that the 

metabolism becomes inefficient at superoptimal temperatures due to the general decrease in enzyme 
turnover without denaturations (Fig 3d-f).  

Using the Bayesian genome scale modelling approach to quantitatively depict the temperature effects on 

yeast metabolism led to insights into the long-standing discussion on the roles of different cellular factors 

in cellular fitness under heat stresses 4,5,7,23,42. For instance, protein denaturation has been suspected as 

one of the main causes of the decline in cell growth beyond the optimal growth temperature point. However, 
recent high throughput measurements of melting temperatures (Tm) for 707 S. cerevisiae proteins revealed 

a Tm distribution with a mean value of 52 °C and a minimum of 40 °C 7, which suggests that protein 

denaturation alone might not be sufficient to explain the decline of yeast cell growth between 30°C (optimal 

growth temperature, OGT) and 42°C (lethal temperature point). An alternative explanation is provided by 

the evidence of a significant increase of non-growth associated ATP maintenance (NGAM) observed with 

yeast cells grown in anaerobic chemostat cultivations at high temperatures (33-40°C) compared to ones 

grown at low temperatures (5-31 °C) 5, which suggests an imbalance in cellular energy allocation in the 
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superoptimal temperature range. Quantitative assessment using our modelling approach revealed that the 

impaired cell growth is caused by a combination of decreased kcat values, increased NGAM costs and 

protein denaturation (Fig 3). Furthermore, between 30 and 35 °C, the combined decrease in kcats and 

increase in NGAM explains the decline in cell growth, whereas with temperatures above 35 °C, protein 

denaturation becomes the dominant factor, causing cell death at 42°C. However, in accordance with 

published findings that cellular proteomes have a broad distribution of protein stability with only proteins at 
the tail of the distribution being problematic 43, using our approach we identified only ~1% unstable enzymes 

denatured at the lethal point (Tm lower than 42 °C, Fig 3d). 

We identified two interesting metabolic pathways involved in yeast thermotolerance: sterol metabolism and 

mitochondrial energy metabolism. With sterol metabolism (Fig 5d), it is known that high sterol levels help 

yeast cells survive under heat stress 44 and changes of the sterol composition of the yeast membrane from 
ergosterol to fecosterol 45 can significantly increase yeast thermotolerance. However, yeast was found to 

downregulate its whole ergosterol biosynthesis at both transcription and translation levels when increasing 

the temperature from 30°C to 36 °C (Fig S10). Our modeling approach identified three problematic enzymes 

(Fig 5d: HMG1,2 and ERG1) in the sterol metabolism, which are also flux-controlling enzymes in the sterol 

biosynthesis pathway46. We experimentally confirmed that replacement of ERG1 with its ortholog in the 

thermotolerant yeast K. marxianus can significantly improve the cell growth at 40 °C (Fig 5c). We thereby 

hypothesize that, since those three enzymes are problematic at superoptimal temperatures, there is no 

need for the cell to maintain high expression and translation levels of other enzymes in the same pathway. 
Instead, it has to downregulate its whole ergosterol biosynthesis to save resources and increase fitness. 

With mitochondria, previous studies have indicated that the mitochondrial genome plays an important role 

in yeast thermal adaptation 47–49. We found that out of the 9 unstable enzymes identified with the Posterior 

etcGEMs (with a Tm lower than 42 °C, Fig S7), three (ATP1, HEM1 and PDB1) belonged to the mitochondrial 

energy metabolism. Simulation of chemostat data (Fig 4) revealed that at superoptimal temperatures, yeast 
prefers to produce ATP via the glycolysis metabolism instead of the mitochondrial energy metabolism in 

the mitochondria. Furthermore, mitochondria only exists in eukaryotes and almost all of them have evolved 

to have an optimal growth temperature below 40 °C 3. All these findings indicate that mitochondria are not 

evolved to be functional at very high temperatures (e.g. >42 °C). Since mitochondrial energy metabolism is 

not essential for yeast cell growth, as there are alternative energy pathways (Fig 4), this also explains why 

we could not successfully predict mitochondrial enzymes to be engineering targets for the recovery of cell 

growth at 42 °C (Fig 5d), despite the existence of three unstable enzymes in the mitochondrial energy 
metabolism.  

In conclusion, we demonstrate the usefulness of a Bayesian genome scale modeling approach for 

reconciling temperature dependence of yeast metabolism. Describing the link between temperature and 

cell physiology is of industrial importance, e.g. for finding optimized production of biochemicals 24,50–52, but 

also in medicine, e.g. to understand the effects of temperature on human metabolism 53–55.  Furthermore, 
based on its success here, we foresee that our method can be integrated into genome scale modelling 

approaches in general. This approach can also become a staple of GEM modeling in order to resolve 

uncertainties present in the data, which can be important as GEMs have become a widely used platform 
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for integration of various biological data, such as  transcriptomics and proteomics data that are associated 

with large uncertainties 56. 
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Materials and Methods  

M1. A temperature dependent enzyme-constrained genome scale metabolic model (etcGEM) 

The central concepts of an enzyme constrained model 16 are: 1) the flux through each reaction cannot 

exceed the capacity of its catalytic enzyme: 		𝑣- ≤ 	𝑘"#$,- ∙ [𝐸]-	, where [𝐸]- is the concentration of enzyme 𝑖;  

2) the total enzyme amount is constrained by the experimental measurement: ∑ [𝐸]- < [𝐸]$ .Once the 

temperature dependent denaturation and 𝑘"#$ were considered, [𝐸]- 	in the first constraint should be  [𝐸]!,- 

which is the concentration of individual active enzymes. [𝐸]- in the second constraint should be 

[𝐸]$,- = [𝐸]!,- + [𝐸]/,-, which is the total concentration of enzymes in both active and denatured forms (Fig 

1a). In addition, to capture the increased expenditure for maintenance under increased heat stress, a 
temperature dependent Non-Growth Associated ATP maintenance term can be assumed from 

experimental measurements. In summary, the updated constraints constraints in etcGEM are  

                                                                                     (1) 

The effect of temperature on 𝑘"#$ values can be described with an expanded Arrhenius equation 

(macromolecular rate theory), by including a non-zero heat-capacity change (∆𝐶&
‡) between the transition 

state and the ground state of the enzyme catalytic process 32,33:  

𝑘"#$(𝑇) ∝ 	
0!1
2
𝑒3

∆#‡(&)
(&                                                                    (2) 

in which kB is the Boltzmann constant, h is Planck’s constant, 𝑅 is the universal gas constant, and ∆𝐺‡(𝑇) 

is the free energy difference between the ground state and the transition state. The latter can be expanded 
as 

∆𝐺‡(𝑇) = ∆𝐻1)
‡ + ∆𝐶&

‡(𝑇 − 𝑇4) − 𝑇 @∆𝑆1)
‡ + ∆𝐶&

‡ 𝑙𝑛 𝑙𝑛	 @ 1
1)
D	D                              (3) 

where ∆𝐻1)
‡  , ∆𝑆1)

‡  and ∆𝐶&
‡ are the differences in enthalpy, entropy and heat capacity change between the 

transition and ground states, respectively, and 𝑇4 is the reference temperature. This theory has been 

successfully applied to study the temperature dependence of enzyme activity 32,33 and evolution 36. 

Since there is not enough detailed information regarding the heat-induced denaturation process of yeast 

proteins, a simple two-state model denaturation was assumed as in many other studies 20,21,31. In such a 
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model, a protein molecule could be either in a native state (N) or a denatured state (U), and an equilibrium 

state was assumed:  𝑁 ↔ 𝑈. Thereby  

[𝐸]!,- =
5

567*
∆#+(&)
(&

[𝐸]$,-									                                                       (4) 

in which [𝐸]$,- = [𝐸]!,- + [𝐸]/,-, where [𝐸]$,-is the concentration of enzyme 𝑖 and ∆𝐺9(𝑇) is the free energy 

difference between the denatured state and the native state and can be expressed as  

∆𝐺9(𝑇) = ∆𝐻9(𝑇) − 𝑇∆𝑆9(𝑇)                                                   (5) 

where ∆𝐻9(𝑇) and ∆𝑆9(𝑇)are the enthalpy and entropy changes between the denatured and native states 

at temperature 𝑇. It has been found that convergence temperatures 𝑇:∗  (373.5 K) and 𝑇<∗ (385 K) exist for 

∆𝐻9 and ∆𝑆9respectively 42,57,58. At such temperatures, the ∆𝐻9 and ∆𝑆9 converge to a common value of 

∆𝐻∗ and ∆𝑆∗. Thereby,  

∆𝐺9(𝑇) = ∆𝐻∗ + ∆𝐶&,9(𝑇 − 𝑇:∗) − 𝑇∆𝑆∗ − 𝑇∆𝐶&,9𝑙𝑜𝑔	(
1
1,
∗)                            (6) 

in which ∆𝐶&,9 is the difference in heat-capacity change between the denatured and native states.  

In summary, the values of ∆𝐺‡(𝑇) and ∆𝐺9(𝑇) need to be determined in order to model the temperature 

dependence of enzyme activities, and they can be associated with six unknown parameters: ∆𝐻1)
‡ , ∆𝑆1)

‡ and 

∆𝐶&
‡ for ∆𝐺‡(𝑇), and ∆𝐻∗, ∆𝑆∗and ∆𝐶&,9 for ∆𝐺9(𝑇).  

M2. Computation of thermal parameters 

Since it is difficult to directly measure those six thermal parameters (∆𝐻1)
‡ , ∆𝑆1)

‡ , ∆𝐶&
‡ , ∆𝐻∗, ∆𝑆∗and ∆𝐶&,9) 

for each enzyme, indirect measurements have to be used to approximate the larger set of thermal 

parameters. As there are six free variables in the system, six different equations are required to solve for 

those parameters. 

1) At the protein melting temperature 𝑇%:  

∆𝐺9(𝑇%)=0                                                                    (7) 

2) At the enzyme optimal temperature 𝑇(&$, the enzyme activity is maximized:  

=>
=1
|1?1./0 = 0																																																																												(8) 

in which 𝑟 = 𝑘"#$[𝐸]!; 

3) 𝑘"#$ at the enzyme optimal temperature 𝑇(&$ is known:	 

𝑘"#$(𝑇(&$) =
0!1
2
𝑒3∆

#‡(&./0)
( 1./0                                                   (9) 
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4) ∆𝐶&
‡ value can be approximate from temperature dependence of cell growth rate 32  

5) We found that there is a very strong linear correlation (𝑟) = 0.998, Pearson’s correlation) between 

∆𝐻∗and ∆𝑆∗ of 116 proteins from Sawle L et al 42 (Fig S9)  

∆𝐻∗ = 299.58∆𝑆∗ + 20008 J/mol                                                  (10) 

6) For some enzymes, 𝑇A4, where a 90% possibility exists that an enzyme molecule is in the denatured 

state, is experimentally measured: 

∆𝐺9(𝑇A4)=-𝑅𝑇A4𝑙𝑛9                                                      (11) 

As a result, the six thermal parameters ∆𝐻1)
‡ , ∆𝑆1)

‡ ,  ∆𝐶&
‡ ∆𝐻∗, ∆𝑆∗and ∆𝐶&,9 can be obtained by solving the 

above equations. 

In the case of lacking  𝑇A4 or failed to obtain a positive ∆𝐶&,9, protein sequence length was used to estimate  

∆𝐻∗ and ∆𝑆∗ 42 as below: 

∆𝐻∗ = (4.0𝑁 + 143) × 1000                                                   (12) 

∆𝑆∗ = 13.27𝑁 + 448                                                      (13) 

 

M3. Sequential Monte Carlo based Approximate Bayesian Computation (SMC-ABC) 

Approximate Bayesian Computation 34 was applied to infer parameter sets from Posterior distributions. 

Given an observed dataset 𝐷 and a model specified by 𝜃/ sampled from the Prior distribution 𝑃(𝜃), if the 

distance between simulated data 𝐷U and observed 𝐷 is less than a given threshold 𝜖, then this 𝜃/ is accepted 

as the one sampled from 𝑃W𝜌W𝐷,𝐷UZ < 𝜖Z. 𝑃W𝜌W𝐷,𝐷UZ < 𝜖Z  is often used to approximate the Posterior 𝑃(𝜃|𝐷) 

when 𝜖 is sufficiently small. In case of high-dimensional parameter space and/or when the 𝑃(𝜃) is very 

different from 𝑃(𝜃|𝐷), the acceptance rate would be very low and thus this approach becomes 

computationally expensive to generate a population of 𝜃/ from 𝑃W𝜌W𝐷,𝐷UZ < 𝜖Z. In this work, a sequential 

Monte Carlo approach was designed as follows to generate a population of 𝜃/ sampled from 𝑃W𝜌W𝐷,𝐷UZ < 𝜖Z: 

Input: Observed data 𝐷, distance function 𝜌 and the distance threshold 𝜖  

Output: 100 samples from 𝑃W𝜌W𝐷,𝐷UZ < 𝜖Z 

Initialize an empty set 𝑆 to store all 𝜃/ simulated  

Initialize an empty set 𝐵 to store the best 100 𝜃/ after each step 
Repeat:  

 Sample 128 𝜃/ from Prior distribution 𝑃(𝜃) 

 Simulate observed data  𝐷 to get 𝐷U for all 𝜃/ 
 Calculate distance 𝜌W𝐷,𝐷UZ for all 𝜃/ 
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 Add those 128 𝜃/ into population set 𝑆 

 Select the best 100 𝜃/ from 𝑆 with smallest 𝜌W𝐷,𝐷UZ and replace old 𝜃/ in 𝐵 

 Update  𝜖$ with the minimal 𝜌W𝐷,𝐷UZ of 𝜃/ in 𝐵 

 If 𝜖$ ≤ 𝜖, break 

 Else: update Prior distribution 𝑃(𝜃) with 𝜃/ in 𝐵. Assume a normal distribution for each 

parameter 𝜃- in 𝜃 and use the mean and variance of 𝜃- in all 100 𝜃/ in 𝐵 as the new mean 

and variance. 

End  

 

M4. Collection and estimation of enzyme thermal parameters in etcYeast7.6  

The enzyme-constrained model for yeast with minimal medium was taken from 16.  

Melting temperatures Among the 764 enzymes included in ecYeast7, the 𝑇%  (melting temperature) and 

𝑇A4 (the temperature at which 90% of the protein is in the denatured state) for 266 yeast proteins have been 

reported previously 7. For enzymes lacking an experimentally measured 𝑇%, a melting temperature of 

51.9 °C (the average of existing 𝑇%s of 707 yeast proteins) was assumed.  In the original paper 7, the 95% 

confidence interval was reported for peptides measured in the experiments and the average standard error 

was estimated at 3.4 °C. This same value was used as the uncertainty measure for the experimentally 

determined 𝑇%s, since the standard error for protein 𝑇% was not available. The 𝑇% of the 266 enzymes was 

then described with a normal distribution 𝑁(𝑇%,- , 3.4), in which 𝑇%,- is the experimentally measured melting 

temperature of protein 𝑖. For enzymes that uses the mean 𝑇% of 707 proteins 7 as 𝑇% estimation, the 

corresponding uncertainty is described as the the standard deviation of the the 707 𝑇%s, equalling 5.9 °C. 

Thereby, a normal distribution 𝑁(51.9, 5.9) was used. 

 

Enzyme optimal temperature 𝑇(&$ values of all enzymes in this study were calculated using a previously 

described machine learning method 22, which predicts enzyme 𝑇(&$based on primary sequences. This 

model has a coefficient of determination (R2 score) of 0.5 on the test dataset. Root-mean-squared error 

(RMSE) of the prediction was then estimated with:  

𝑅) = 1 − ∑1234 (D23E2)5

∑1234 GD23DH
5 = 1 −

4
1∑

1
234 (D23E2)5

4
1∑

1
234 GD23DH

5 = 1 − I<J
K6!
5 									                              (14) 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = ^(1 − 𝑅))𝛿LM) = ^(1 − 0.5) × 337 = 13.0	°𝐶							(15) 

where 𝑓- is the predicted value and 𝑦- is the observed true value of enzyme 𝑖. Then each one of these 

predicted 𝑇(&$s was described with a normal distribution 𝑁(𝑇(&$,- , 13.0).  

Heat capacity change ∆𝐶&‡ value was approximated by assuming temperature dependence of yeast cell 

growth rate as -6.3 kJ/mol/K for all enzymes 32. Given that ∆𝐶&
‡ should be in general negative for most 
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enzymes 33, a standard variance of 2.0 was selected from testing a wide range values because it covers a 

broad range of ∆𝐶&
‡ and with a very low possibility of getting a positive value (Fig S10). A normal distribution 

of 𝑁(−6.3, 2.0)  was subsequently used to describe the ∆𝐶&
‡ of all enzymes.  

NGAM To capture the increased expenditure for maintenance under increased heat stress, an empirical 

equation (Fig S1) was constructed to estimate the Non-Growth Associated ATP Maintenance at different 

temperatures:  

𝑁𝐺𝐴𝑀(𝑇) = 0.740 + N.PAQ
56774.95)*(&*5:7.4;)

+ 6.12 × 103R × (𝑇 − 273.15 − 16.72)S               (16)  

based on the experimental data 5. Since the experimental data only covers the temperature range of 
between 5-40°C, any NGAM for temperatures lower than 5°C was set to the value at 5°C and for those 

higher than 40°C was set to the value at 40°C. The equation (16) was used for the anaerobic growth data 

as well as for aerobic growth, since no experimental data was available for this condition.  

 

M5. FBA simulations with etcYeast7.6 

At a given temperature, first the  𝑘"#$ values and 	[J]<,2
[J]<,26	[J]6,2

 were calculated and integrated into the enzyme-

constrained model and then the NGAM at this temperature was calculated and included in the model.  

Batch cultivation For batch growth simulations, unlimited substrates were used, the same as described in 
16. The enzyme saturation factor 𝜎 of 0.5 was used 40. For simulation of anaerobic growth, in addition to the 

above changes, the uptake of oxygen was blocked and fatty acids and sterols were supplied into the 

medium as described in 16. The growth associated ATP maintenance (GAM) was estimated from 

experimental data5 as 70.17 mmol ATP/gdw. Other parameters were unchanged.  

Chemostat cultivation For the simulation of fluxes at aerobic chemostat conditions, with the same model 
settings as aerobic batch condition, the simulation was carried out by first fixing the growth rate to a given 

dilution rate (0.1 h-1) and minimizing the glucose uptake rate. Then the glucose uptake rate was fixed to the 

simulated value multiplied by a factor of 1.001 (for simulation purposes). Finally, the total enzyme usage 

was minimized (same as used in 16). 

Flux Sensitivity Analysis. To get the flux sensitivity coefficient of an enzyme at a given temperature, the 

𝑘"#$ of all reactions that associated with this enzyme were perturbed by a factor of (1 + 𝛿). Then the maximal 

growth rates were simulated before (𝑢) and after (𝑢&) perturbation. Finally, the flux sensitivity coefficient of 

enzyme 𝑖 was calculated as 
+/*>
+
K

, where 𝜇 and 𝑢& are maximal specific growth rate before and after 

perturbation. 𝛿 of 10 was used in this study. 

 

M6. Analysis of models generated with the Bayesian approach 
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Distance function The observed data used in this study was the maximal specific growth rate in aerobic 4 

and anaerobic 5 batch cultivations at different temperatures, and glucose, carbon dioxide and ethanol flux 

values at different temperatures measured in chemostat cultivations with a dilution rate of 0.1 h-1 23. The 

distance function was designed as follows: first, the coefficient of determination (𝑅)) between simulated 

and experimental data was calculated for each of the above conditions. Then the average 𝑅) across these 

three conditions multiplied by -1 was used to represent the distance 𝜌W𝐷,𝐷UZ. 𝜖 of -0.9 was used in the SMC-

ABC simulation. 

 

Statistical tests for comparison between 𝑷(𝜽) and 𝑷(𝜽|𝑫) The significance test for the difference in 

mean values between Prior and Posterior was carried out by Welch's t-test 59. The significance test for 

reduced variance was carried out by the one-tailed F-test. p-values were adjusted with the correction 60 

using a family-wise error rate of 0.01. The significance cutoff was set to 0.01 (Fig 2e). 

 

Machine learning applied to score the importance of parameters 2292 parameters of 21,504 parameter 

sets were used as the input feature matrix and the average R2 scores obtained with the Bayesian approach 

were used as target labels. The dataset was split into train (80%), validation (10%) and test (10%) datasets. 
A random forest regressor with 1000 estimators was used. The train and validation datasets were used to 

optimize the hyper-parameter. The obtained model could explain in total 23% the variance in the test 

dataset. The feature importance scores were extracted directly from the obtained model.  

M7. Experimentally validate ERG1 

Genetic Manipulation. The background strain we used in this study was IMX581 derived from 

CEN.PK113-5D, which contains an integrated Cas9 expression cassette controlled by TEFp promoter 61. 

All the genetic manipulations were conducted based on the CRISPR/cas9 system. The codon-optimized 

kmERG1 were ordered from GenScript (Table S1), and the PrimerSTAR HS polymerase was utilized for 

gene amplification through PCR. Based on strain IMX581, the codon-optimized gene ERG1 from K. 

marxianus (kmERG1) was integrated to replace the native ERG1 (scERG1) using CRISPR/cas9, yielding 
HL01. All the design and construction of the plasmid follows the previously described method 61. The gRNA 

cassette for target gene scERG1 was obtained using the single-stranded oligos gRNA-ERG1-F/ gRNA-

ERG1-R, followed by assembling with the linearized backbone plasmid pMEL10, the single gRNA plasmid 

was constructed by Gibson assembly. The repair fragment containing kmERG1 with round 60bp overlap 

was amplified by primers kmEGR1-scERG1up-F/ kmEGR1-scERG1dn-R using codon-optimized kmERG1 

as template. Then the repair fragment and single gRNA plasmid were co-transformed into IMX58. All the 

strains and primers used in this study were listed in Tables S2 and S3.  

Strain Cultivation Under Different Temperatures. The thermotolerance was tested and compared 

between S. cerevisiae IMX581 and HL01. Five single colonies of each strain were selected and pre-cultured 

in YPD media at 30 °C, and cells were then transferred to flasks in 20 mL YPD media to reach 0.1 initial 
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OD600 cultured at 40 +/- 0.1 °C, 200 rpm. After that, the cells were transferred into fresh YPD media every 

24h with 0.1 initial OD600 and cultivated at 40 +/- 0.1 °C, 200 rpm.  
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Software and Code availability All simulations of genome-scale models were carried out with Cobrapy 61 

with Gurobi (Gurobi Optimization, LLC) solver.  All code is available on Github 

(https://github.com/Gangl2016/GETCool).  
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