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Abstract

The morphology of the mammalian brain cortex is highly folded. For long it has been known that specific
patterns of folding are necessary for an optimally functioning brain. On the extremes, lissencephaly, a
lack of folds in humans, and polymicrogyria, an overly folded brain, can lead to severe mental retardation,
short life expectancy, epileptic seizures, and tetraplegia. The construction of a quantitative model on how
and why these folds appear during the development of the brain is the first step in understanding the
cause of these conditions. In recent years, there have been various attempts to understand and model the
mechanisms of brain folding. Previous works have shown that mechanical instabilities play a crucial role in
the formation of brain folds, and that the geometry of the fetal brain is one of the main factors in dictating the
folding characteristics. However, modeling higher-order folding, one of the main characteristics of the highly
gyrencephalic brain, has not been fully tackled. The effects of thickness inhomogeneity in the gyrogenesis of
the mammalian brain are studied in silico. Finite-element simulations of rectangular slabs are performed.
The slabs are divided into two distinct regions, where the outer layer mimics the gray matter, and the inner
layer the underlying white matter. Differential growth is introduced by growing the top layer tangentially,
while keeping the underlying layer untouched. The brain tissue is modeled as a neo-Hookean hyperelastic
material. Simulations are performed with both, homogeneous and inhomogeneous cortical thickness. The
homogeneous cortex is shown to fold into a single wavelength, as is common for bilayered materials, while
the inhomogeneous cortex folds into more complex conformations. In the early stages of development of
the inhomogeneous cortex, structures reminiscent of the deep sulci in the brain are obtained. As the cortex
continues to develop, secondary undulations, which are shallower and more variable than the structures
obtained in earlier gyrification stage emerge, reproducing well-known characteristics of higher-order folding
in the mammalian, and particularly the human, brain.
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1. Introduction

One of the most striking features of the human
brain is its highly folded structure. Indeed, neu-
roscientists have for a long time pondered about
its importance and origin (Bischoff, 1868; Cunning-
ham, 1890). However, the process by which folds
form is not yet fully understood, neither as a me-
chanical (Bayly et al., 2014) nor as a molecular pro-
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cess (Sun and Hevner, 2014). One of the main hy-
potheses to explain the convoluted nature of the
cortex, commonly called the differential tangen-
tial growth hypothesis (Richman et al., 1975) posits
that the buckling of the brain is created by a mis-
match of growth rates in the cortical plate and
the white matter substrate. The main contention
with this hypothesis, however, is its requirement of
a large difference between the stiffness of the two
regions (Bayly et al., 2014). In order to obtain
the wavelengths compatible with the gyral width
of the human brain, the initial form of the differ-
ential growth hypotheses requires the stiffness ratio
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between the gray and white matter to be in the or-
der of 10 (Richman et al., 1975). This is a major
hurdle, as currently there is no consensus if the gray
matter is indeed stiffer than the white matter, and if
so, by how much. There is a solid body of evidence
supporting the two possibilities, i.e., that the gray
matter is indeed stiffer than the white matter (Bud-
day et al., 2015; Green et al., 2008; Johnson et al.,
2013), and vice-versa (Manduca et al., 2001; Mc-
Cracken et al., 2005; van Dommelen et al., 2010).
A second issue with the differential growth hypothe-
ses is the shape of the sulci. This model results in
smooth sinusoidal patterns, while the brain is char-
acterized by smooth gyri and cusped sulcii (Tallinen
et al., 2014).
The study of layered systems has been exten-

sively conducted in the field of engineering, where
it was used to model the buckling of sandwich-
type panels (Hoff and Mautner, 1945), the Earth’s
crust (Biot, 1957; Ramberg, 1970), etc. These
works, however, deal mostly with stiff materials and
large stiffness ratios. In recent years, there have
been a surge in the number of works dealing with
soft materials, with special focus in bio-compatible
applications (Budday et al., 2017; Vandeparre et al.,
2010) which provides an important tool in the un-
derstanding of the role of mechanics in the folding
of the mammalian cortex.
Much work has been done to solve the issues with

differential growth, specially on the sulci formation.
For instance, Tallinen et al. (2014, 2016) performed
large simulations to understand how the geometry
and constraints affect the cortical folding, where
they showed that the size and shape of the folds are
dictated by the geometry of the early fetal brain.
Other hypotheses have also been proposed to ex-
plain cortical gyrification. Perhaps best known in
the medical community, van Essen (1997) conjec-
tured that axonal traction is the driver of folding.
Reaction-diffusion models, where the concentration
and diffusion of growth-activator chemicals are ex-
plicitly modeled, have also been suggested as a way
to explain both the gyrogenesis process, as well as
the growth profile itself (Hinz et al., 2019; Verner
and Garikipati, 2018).
Despite all these efforts, an aspect of brain fold-

ing that still remains elusive is the phenomenon
of hierarchical folding, an important feature of the
brain development, which must be included in order
to understand the driving forces behind the com-
plex folding patterns observed in the human brain.
Recent studies have analyzed the influence of

growth and stiffness inhomogeneities along the cor-
tex. A few years ago, Toro et al. performed stud-
ies on the effect of cortical inhomogeneity and cur-
vature (Toro and Burnod, 2005). More recently,
Budday et al. (Budday et al., 2015; Budday and
Steinmann, 2018) performed similar inhomogene-
ity studies on rectangular geometries. In these
works, structures with resemblance to the higher-
order folding were obtained, but they lacked the
complex spectrum of folding present in the human
brain.

It has been shown that the thickness of cortex of
the brain impacts the width and structure of brain
folds (Armstrong et al., 1995; Budday et al., 2014;
Heuer and Toro, 2019; Mota and Herculano-Houzel,
2015; Richman et al., 1975; Toro and Burnod,
2005). However, evidence on how competition be-
tween the different thicknesses in the cortex affect
folding has been lacking. In this paper, the differen-
tial tangential growth hypothesis is augmented with
an inhomogeneous cortical thickness field, yielding
realistic folded structures, which could help explain
formation of the deep sulci in the mammalian brain,
hierarchical folding, as well as its consistent local-
ization.

2. Material and Methods

White
Matter

Gray 
Matter

Fg

FeF=FeFg

Figure 1: (Color online) Schematic representation of the
model. The purple layer atop mimics the gray matter and
is grown tangentially, while the pink substrate underneath
mimics the white matter and does not grow. Growth is
mathematically represented by the growth tensor Fg , which
can be discontinuous. In order to keep the compatibility
with the attachment constraints between the gray and white
matter, the system is subject to residual stress, described in
this framework by the Fe tensor.

We analyze two-dimension systems composed of
two layers: a purely elastic, non-growing, softer
substrate in the lower region, mimicking white mat-
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ter, and a growing stiffer region on the top, emu-
lating the cortical gray matter (see Fig. 1). The
simulations are performed using a custom written
finite element Method code to solve the continuum
mechanics equations1.

2.1. Theoretical background
Due to the large-strain, nonlinear nature of the

human brain, the framework of continuum mechan-
ics (Bonet et al., 2016) is used. In order to distin-
guish between the original and deformed configura-
tions, the following notation is introduced: The vec-
tor X denotes the coordinates of the original con-
figuration, x the coordinates of the deformed con-
figuration, and u = x−X denotes the displacement
field. The deformation gradient tensor is written as

F = ∂u
∂X + I,

where I is the identity matrix. Growth is intro-
duced using Rodriguez theoretical framework (Ro-
driguez et al., 1994), where the deformation gradi-
ent tensor F is decomposed into F = FeFg (see
Fig. 1), where , Fe describes the elastic part of
the deformation and Fg the growth contribution.
The energy and stress are calculated from the elas-
tic part of the deformation gradient tensor alone.
Thus, in this framework, the energy-density (and
all quantities derived) is defined in terms of Fe.
The soft tissue of the brain is modeled by

the compressible Neo-Hookean energy-density func-
tion (Bonet et al., 2016)

ψ(Fe) = µ

2

(
tr(FT

e Fe)− 2 log(Je)− 2
)

+λ

2 log2(Je)
(1)

where Je = det(Fe), and µ and λ are the
Lamé parameters. This energy-density family has
been shown to appropriately model the brain tis-
sue (Budday et al., 2015, 2017).
Due to the relatively long time scale of cortical

development when compared to the elastic response
of brain tissue, the quasi-static approximation is
used. At every value of Fg the displacement field u
is calculated, obeying the equilibrium equation

∇ ·P = 0, (2)

1The simulations were written using the deal.II li-
brary (Alzetta et al., 2018; Bangerth et al., 2007), and par-
allelized using MPI via PETSc (Balay et al., 2019a,b).

where P is the first Piola-Kichhoff stress tensor,
related to the energy-density ψ by

P = ∂ψ

∂Fe
. (3)

Both, Eq. 2 and Eq. 3 retrieve the functional form
of their classical continuum mechanics counterparts
in the limits of no growth, i.e., Fg = I. The values
of λ and µ are chosen such that in the linear (i.e.,
small strain) regime, the Young moduli ratio be-
tween the gray matter (GM) and the white matter
(WM) is EGM/EWM = 3, consistent with previous
models (Budday et al., 2015) and the Poisson ratio
ν = 0.35 on both layers. Due to the nonlinear na-
ture of Eq. 1, the value of the Poisson ratio ν and
Young modulus are dependent on the current dis-
placement in the system. Specifically, they depend
on the determinant Je (Bonet et al., 2016) as

ν = 1
2

λ

λ[1− log(Je)] + µ
,

and

E = µ− 3λ log(Je)
Je

2µ+ λ(3− 2 log(Je))
2µ+ λ(1− log(Je)) .

Notably, the energy-density in Eq. 1 has no inher-
ent length scale. Thus, only the ratios between the
elastic moduli are important for the phenomenology
presented in this paper.

2.2. Simulation details

The cortical layer is grown linearly, i.e., the
growth tensor is described by

Fg(θg) = θgI + (1− θg)X̂y ⊗ X̂y

where the growth parameter θg measures the degree
of elongation in the cortex. For instance, at θg = 2
the gray matter would have expanded to twice its
lateral size if it were not constrained. To mimic dif-
ferential growth, θg is varied in the interval [1.0, 2.5]
in the gray matter region, while it is kept at unity
in the white matter region. The growth parameter
θg is increased in small steps of 0.01.
At every growth step, Eq. 2 is solved using the fi-

nite element method, with boundary conditions of
zero displacement on the bottom surface Xy = 0
and zero stress on the top surface Xy = Lb. In or-
der to minimize boundary effects, periodic bound-
ary conditions are imposed on the sides of the sur-
face, Xx = 0 and Xx = Lb. The box lengths Lb will
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be specified in each section. The system being two
dimensional, corresponds to an infinite system in
the z-axis, with the constraint of no displacements
in the z-axis.
Due to the nonlinear nature of the energy de-

scribed in Eq. 1, the divergence of the first Piola-
Kichhoff stress tensor will also be nonlinear. To find
the roots of this function, the Newton method aug-
mented by a backtracking algorithm (Bonet et al.,
2016; Nocedal and Wright, 2006) is used. In order
to avoid overlaps, collisions are detected and re-
solved using the approach introduced by McAdams
et al. (2011). As any collisions will be initiated in
the cortical region, calculations are optimized by
only detecting collisions in the gray area elements.
This generates no artifacts, as due to the structure
of the mesh, collisions are initiated in the gray area,
and are resolved before any white matter elements
are involved.
In order to allow the system to overcome

metastable states, a small force field pointing in
the Xy direction is introduced. The forces are
drawn from a uniform random distribution between
[−7 × 10−2, 7 × 10−2)×EGM . Each simulation has
been repeated three times with different seeds. No
significant difference is observed between runs with
different seeds, or when the forces are doubled or
halved.

3. Results

3.1. Homogeneous Thickness of Cortical Ribbon
We analyze the folding of a slab with con-

stant cortical thickness T throughout, in the range
[0.1, 0.5]cm. In this case, it is expected that the
system will fold into well defined wavelengths, with
no localization (Groenewold, 2001). In order to
avoid finite-size effects, the simulation box is set to
Lb = 100cm � λF , where λF is the folding wave-
length.
Initially (i.e., for little growth) even though the

growth happens tangentially, the cortex does not in-
crease in length, but rather in thickness due to the
confinement and resulting stress (see Fig. 2). Even-
tually, at a critical growth θC

g , the stress exceeds the
critical buckling threshold, and the system buckles
in a well defined, almost sinusoidal wave pattern
(see Fig. 3). As growth continues, the wavelength
of the pattern and the average thickness remain al-
most unchanged, while the amplitude increases. In-
terestingly, the thickness of the cortex is no longer
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Growth θg
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〉
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m
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Total Gyrus Sulcus

Figure 2: (Color online) Spatial averages of several observ-
ables in the system with initial thickness T = 0.250 cm, as a
function of the growth parameter θg . In (a), the dependence
of the average thickness with growth are shown, as well as
the average cortical thickness of the sulci and the gyri, as
defined in the text. In (b) and (c) the contour length of the
top layer of the system and squared curvature of the system
are shown, respectively. This last quantity is specially useful
to characterize the onset of folding, as will become clear in
Sec. 3.2.

homogeneous. Sulci (regions of positive curvature)
are significantly thinner than gyri (regions of nega-
tive curvature). As growth continues post buckling,
the difference in thickness continues to increase.

(a) T = 0.10cm (b) T = 0.20cm 

(c) T = 0.30cm (d) T = 0.40cm 

Figure 3: (Color online) Folded system for the thickness in-
dicated within the figure. In order to improve visualization,
only the region y > 95cm is shown here.

In each simulation the Fourier transform of the
function uy(Xx) (i.e., the displacement in the y di-
rection as a function of the material coordinates) is
calculated along the top layer of the system. The
weighted average wavenumber and wavelength are
then obtained as
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〈k〉 =
∑

k k|h2
k|∑

k |h2
k|

〈λF 〉 = 2π
〈k〉

,

where hk is the coefficient of Fourier expansion for
the mode with wavenumber k. In order to obtain
the weighted average wavelength for each cortical
thickness T , the simulations are repeated with in-
ceasing number of mesh cells, ranging from 212 to
220 cells. The value of the weighted average wave-
length is then obtained by wavelength via a linear
extrapolation to the infinitely refined mesh.
The weighted average wavelength increases lin-

early with initial thickness T (see Fig. 4). The lin-
ear dependency can be obtained from simple dimen-
sional analysis: As the elastic equations have no
inherent length scale, the cortical thickness is the
only relevant length scale, as long as system size
is not limiting. Thus, changing the homogeneous
cortical thickness can be seen as a change of mea-
surement units, or progressive zooming in on the
same base system (see Fig. 5). It is possible to esti-
mate the slope for a linear elastic substrate through
analytical calculations as (Groenewold, 2001)

λF (T ) = πT

(
2

1− ν2
EGM
EWM

)1/3
≈ 5.96T. (4)

Such slope presents a weak dependence on the
stiffness ratios between the gray and white matter,
obeying a weak power law. Thus, the specific value
of the ratio EGM/EWM plays only a minor role in
the determination of the folding wavelength.
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Figure 4: (Colors Online) Weighted wavelength of the system
as function of the cortical thickness T . The orange circles
indicate extrapolation results, while the broken blue lines
represent the linear fit 〈λF 〉 = 6.04T cm with R2 = 0.98.

T = 0.05cm

T = 0.10cm

T = 0.20cm

Figure 5: (Color online) Schematic representation of scaling
of the system. Due to the lack of inherent length scale in the
elastic equations, systems with thicker cortices can be seen
as subregions of systems with thinner cortices. Here, each
broken rectangle highlights a region which is equivalent to
a system with the cortical thickness T indicated within the
figure.

3.2. Inhomogeneous Thickness of Cortical Ribbon
The cortical thickness of the brain is spatially

inhomogeneous. In order to emulate this inhomo-
geneity, a variable cortical thickness T (Xx) is in-
troduced. Specifically, as a generic form of thick-
ness variation, a sinusoidal thickness variation of
the form

T (Xx) = A sin(2πXx/Lt) + T0

is chosen. This inhomogeneity introduces two new
length scales beyond the base thickness T0: the in-
homogeneity amplitude A and the period of the in-
homogeneity Lt. Thus, in contrast to the previous
results, it is possible to choose any one of the three
as the fixed length scale, and vary the remaining
two independently. In this study, the thickness pe-
riod Lt = 10 cm is chosen as the fixed scale. The
folding pattern for a different periodicity L′t can
be obtaining by rescaling the spatial quantities by
L′t/Lt, or a suitable power thereof.
Note that any form of thickness variation can be

written as a sum of sinusoidal variations. When
deformations are small, even the resulting folding
patterns can be obtained by simple superposition.
In the brain, however, deformations are large and
nonlinear, and each thickness field must be studied
independently.

Simulations are performed for base thickness in
the same range as before, [0.1, 0.5] cm, and for
each T0, the amplitude A was varied in the range
[0, 0.9] × T0. The inhomogeneity creates a much
more localized deformation, thereby reducing pos-
sible artifacts created by finite-size effects. Thus,
in order to maximize computational efficiency, the
simulation box is chosen as Lb = Lt.
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If the natural folding wavelength λF of the lo-
cal thickness is much smaller than the periodicity
length, the system behaves essentially like the ho-
mogeneous systems studied in Section 3.1, i.e., the
folding wavelength obeys Eq. 4, with T = T (Xx).
Here, the system folds into well defined waves, but
with the spatially dependent wavelength commen-
surate with the cortical thickness of the underlying
region (see Fig. 6 (a), (c)). Accordingly, these sys-
tems also present the constant length - constant
thickness stress-relief mechanism.

T0 = 0.144cm

T0

A = 0.5 

T0

A = 0.9 

(a) (b)

(c) (d)

T0 = 0.278cm

Figure 6: (Color online) Simulations with varying inhomo-
geneities amplitudes A at growth parameter θg = 2.5. The
simulations have a base thickness T0 as indicated within the
figure.

However, when the folding wavelength becomes
comparable with the periodicity length, a second
form of folding arises, characterized by complex
folding patterns. In these conformations, several
wavemodes are simultaneously obtained (see Fig. 6
(b), (d)), presenting similarities with the further
regions of the gyrencephalic brain.
This new shape has distinct developmental steps,

which differ from those described in Sec. 3.1. For
small growth, a initially flat system (see Fig. 7 (a))
forms a single, deep, sulcus in an otherwise planar
cortex, in the region surrounding the thickness min-
imum (see Fig. 7 (b)). The depth of this sulcus soon
saturates, and due to the underlying white matter,
it is energetically favorable to form additional sulci
rather than to increase the depth of the exist sulcus
as growth continues (see Fig. 7 (c)). The matura-
tion of the new sulci occur concurrently with the
formation of shallow sulci in the regions of highest
thickness.(see Fig. 7 (d))
It is expected that the folding starts on the region

of thinnest cortex. In the limit of small deforma-
tions, the system can be analysed by the theory of
thin plates. In this domain, the bending rigidity
depends on the cube power of the thickness of the

(a) 𝜃g = 1.0 (b) 𝜃g = 1.5

(c) 𝜃g = 2.0 (d) 𝜃g = 2.5

Figure 7: (Color online) Growth evolution of system with
T0 = 0.45cm and A = 0.315 cm. The growth parameters are
indicated within the figure.

plate (Ventsel and Krauthammer, 2001). Thus, the
large differences in thickness create a stress imbal-
ance in the region, leading to the buckling of the
region with small thickness. This is specially no-
ticeable in the formation of the deep sulci observed
in Fig. 7. Here, the thick parts of the cortex com-
press laterally, which leads to stress condensation
in the thin parts of the cortex. The thin region
has then to absorb the compression of the whole
system.

The simulations are in qualitative agreement
with the results from linear stability analysis. The
details how this theory is applied to our model are
outlined in Appendix A. In short, the lowest-energy
mode of a bilayer system is calculated, where we in-
troduce a thin plate as the top layer, and an elastic
substrate underneath. The upper plate has a sinu-
soidally varying bending rigidity

κ(x) = κ0 + κ1 sin
(

2π
L
x

)
,

where L is the periodicity length. The system is
then subject to a spatially constant compressive
surface tension γ. The bending rigidity plays a sim-
ilar role in this model as the thickness plays in the
simulations, and the surface tension plays a similar
role to growth.

According to the analytical model, homogeneous
systems (i.e., κ1 = 0) will fold into a single,
well-defined wavenumber, as expected (see Fig. 8
(a)) (Hornung, 2019). However, as the bending
rigidity ratio κ1/κ0 is increased, the folding gets
more localized around the bending rigidity mini-
mum. This phenomenon is qualitatively consistent
with what was observed in the simulations. For
the case with κ1/κ0 = 0.9, for instance, the lin-
ear stability analysis predicts the formation of a
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Figure 8: (Color online) Analytical prediction of vertical dis-
locations η. (a) Varying bending rigidity ratios at buckling
point. (b) Varying values of surface tension γ, while the
bending rigidity ratio is kept constant as κ1/κ0 = 0.5. For
γ > −286.08κ0/L, no buckling is predicted. Note the ap-
pearance of higher order folding for γ < −1000κ/L. In
both cases, the effective Young Modulus used was Ê =
2000κ0/L3. As the curves are normalized, the predicted dis-
locations can only be compared within the same curve, but
not between curves calculated with distinct parameters.

deep sulcus surrounding the bending rigidity min-
imum, similarly to the finite-element simulations
(see Fig. 7 (b)). The analytical model predicts
that as the cortical plate gets more compressed,
the system develops secondary sulci, as can be no-
ticed in region x/L ≈ 0.25 in the system with
γ = −1000κ0/L (see Fig. 8 (b))
It is possible to compare the structures obtained

to histological sections of the human brain, as
shown in Fig. 9. The results from our simula-
tions present a striking similarity to some regions
of the human cortex, showing a wide range of sul-
cal depths and widths, in qualitative agreement
with the ones observed in regions with higher-order
folding. For instance, the superior parietal lobe
presents a plethora of small, shallow folds, simi-
lar to those observed in the simulations with thin

Figure 9: Illustrative comparison between simulation results
(top) and sections of the cortex (bottom; adapted from HBP
BigBrain (Amunts et al., 2013)). From left to right, the sim-
ulations are performed with T0 = 0.189 cm, A = 0.102 cm;
T0 = 0.500 cm, A = 0.180 cm; T0 = 0.367 cm, A = 0.198
cm. In the same order, extracts of the left superior parietal
lobule (sagittal plane), the right postcentral gyrus (coronal),
and the right posterior middle temporal gyrus (coronal) are
shown. Due to the arbitrary choice in the value of Lt, the
thicknesses between the simulation and the histological sec-
tion are not quantitatively comparable.

cortices. Regions presenting a more complex fold-
ing pattern, such as the postcentral gyrus, or the
posterior middle temporal gyrus are reproduced by
simulations with thicker cortices. Furthermore, the
gyral height-to-width ratio resulting from the sim-
ulations are similar to those observed in the histo-
logical sections.

Next, we turn our attention to the onset of buck-
ling, i.e. the critical amount of growth θC

g above
which the system starts to fold, broadly indicat-
ing when the constant-length regime ceases, and
the constant-thickness starts. The critical growth
θC

g is defined somewhat arbitrarily as the growth
where the averaged squared curvature of the system
reaches 2cm−2. The results do not change consid-
erably for choices of critical curvature square

〈
C2〉

in the range [1, 3]cm−2. The transition points are
shown in Fig. 10, where it is possible to observe that
the critical growth θC

g is strongly affected by inter-
play between the inhomogeneity amplitude and the
base thickness of the cortical plate, with a noted de-
crease in the value of θC

g as the inhomogeneity am-
plitude A increases. In light of these results and of
the differences between the folding of thin and thick
systems (see Fig. 6), we conjecture that the relevant
parameter to cortical convolution is not solely the
ratio between the maximal and minimal thickness,
but that the local gradient of the cortical thickness
also plays a fundamental role.
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Figure 10: (Color online) Critical growth θC
g for the emer-

gence of folding for various combinations of cortical thickness
and inhomogeneity amplitudes.

4. Conclusion

We have analyzed the effects of the cortical in-
homogeneity in the formation of brain folds. To
this end, two closely related systems were stud-
ied. First, analyses was carried out by simulat-
ing a rectangular bilayer slab where the top layer
grows tangentially. It was observed that the fold-
ing pattern follows well-defined wavelengths, which
depended on the thickness of the top layer, consis-
tent with previous work (Biot, 1937; Budday et al.,
2014; Groenewold, 2001). According to Bok’s prin-
ciple, the thickness differences between the sulci
and gyri are created as a consequence of the cur-
vature of the brain. During gyrogenesis, the high
curvature in the sulci spreads the cortical mantle,
decreasing its thickness. The gyral crowns are not
affected as strongly due to their relatively small cur-
vature (Bok, 1929). Our simulations are consistent
with this principle, showing that an initially homo-
geneous cortex can develop cortical inhomogeneities
through buckling, coherent with prior observations
on homogeneous systems (Holland et al., 2018; Ric-
cobelli and Bevilacqua, 2020; Welker, 1990).
Second, the effects of wavelength competition

were studied through the introduction of inhomo-
geneities in the cortical thickness. In these systems,
phenomena closely related to the mammalian gyro-
genesis, such as the emergence of hierarchical fold-
ing in systems with thick cortices, were observed.
Indeed, the results shown here indicate that inho-
mogeneities in the cortical thickness might play an
important role in the localization and formation of

hierarchical folding patterns of the brain. Specifi-
cally, it was shown that these inhomogeneities are
sufficient to break the simple wave-like patterns ob-
served in the homogeneous system. Further, our
observations indicate that thickness inhomogeneity
leads to earlier folding compared to systems with
homogeneous cortical thickness. Lastly, the results
obtained in silico were proved to be consistent with
those obtained from analytical models derived from
thin plate theory. Similar approaches have been
taken in other studies, where other cortical inho-
mogeneities were studied both in circular (Toro and
Burnod, 2005) and rectangular (Budday and Stein-
mann, 2018) geometries. Our results are in line
with those findings, but exhibiting a more complex
folding pattern, as well as the emergence of multiple
sulci within each inhomogeneity period.

The computational model used to explain the hi-
erarchical folding patterns of the mammalian brain
is very general, utilizing only the fundamental elas-
tic nature of brain tissue. The absolute values of the
elastic moduli play no role, with only their ratios
being important. This model is agnostic to all sorts
of structural properties of the brain, such as its vol-
ume, eccentricity, functional connectivity, etc. The
results derived here are thus applicable to the brains
of other mammalians, after a suitable scaling of the
thickness, growth, and periodicity lengths.

While the comparisons presented here focus
mostly on smaller regions of the human brain, we
conjecture that more extreme forms of inhomogene-
ity can lead to the formation of the deep sulci ob-
tained in the mature human brain. Larger simula-
tions are required to gauge the influence of thick-
ness inhomogeneity on the full brain. Based on our
current results, the mutual influence of the different
kinds of inhomogeneity (e.g., thickness and growth)
can also be studied.

We have shown the consequences of cortical
thickness inhomogeneities to brain folding. What
drives the development of these inhomogeneities
is still a matter of ongoing research. Features
of a given brain area, such as its cortical thick-
ness are related to its function (Geyer and Turner,
2013). Biomolecular and mechanical factors con-
tribute to that (Kriegstein et al., 2006; Sun and
Hevner, 2014), and, based on our current approach,
could additionally be included in future models of
brain folding.

It can also be shown that viscoelastic properties
can affect the buckling wavelength of bilayered sys-
tems (Biot, 1957). Thus, it would be interesting
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to further refine the current model with the vis-
coelastic characteristics of growing tissues in gen-
eral (Ranft et al., 2010), and of the brain in par-
ticular (Budday et al., 2017). Finally, structural
connectivity, i.e., axons within the white-matter
fiber tracts, have been conjectured to be one of
the drivers of folding (van Essen, 1997). How they
would influence the conformations found in this
work could be investigated further to understand
the mutual influence of differential growth and ax-
onal tension in gyrogenesis.
This paper’s focus was the developing brain, but

in virtue of generality of the model used, its results
are extensible to other fields. For instance, it has
been shown that microscopic corrugated surfaces
give rise hyperhydrophobic surfaces, in the so called
Lotus effect (Gao and McCarthy, 2006; Marmur,
2004). Our results can provide further insight into
the self assembly of these corrugations, and in the
control of their properties.
Soft layered systems can be realized experimen-

tally by gel slabs coated with gels with different
properties (Auguste et al., 2014; Budday et al.,
2017). These systems have been used as simu-
lacra for brain folding (Holland et al., 2018; Talli-
nen et al., 2016), where they were able to mimic
the folding a 3D-printed human brain. Thus, the
production of samples with sinusoidal variation of
the top-layer thickness would allow for the experi-
mental testing of our predictions.
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Appendix A. Simplified Analytical Model

In order to understand the buckling of the sys-
tem, we use a simplified model which can be solved
analytically. Here, a thin plate with a spatially
varying bending rigidity is studied. This plate is at-
tached to a linear elastic substrate, filling the whole
of the half-space y < 0. In the limit of small de-
flections and disregarding shearing, it is possible to
write the displacement of the system in the Monge
representation as

u(x, 0) = (0, h(x)).

Here, h(x) indicates the local height of the plate
along the x axis. The free energy of this system is
composed of three terms:

F = Fbend + Fstretch + Fsubs, (A.1)

where Fbend is the free energy of bending the thin
plate, Fstretch is the energy required in order to
stretch the plate and Fsubs is the energy of the de-
formed underlying substrate. Explicitly,

Fbend =
L∫

0

κ(x)
(
∇2h(x)

)2
dx

Fstretch =
L∫

0

|∇h(x)|2γdx

Fsubs = 1
2

∞∫
0

L∫
0

∑
ij

σijuijdxdy

where κ(x) describes the space-dependent bending
rigidity, γ is the surface tension on the superficial
plate, σij are the components of the Cauchy stress
tensor, and uij are the components of the strain
tensor uij = 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
. In order to keep the

simplicity of the model the bending rigidity of the
plate, rather than its thickness, varies sinusoidally.
That is,

κ(x) = κ0 + κ1 sin
(

2π
L
x

)
= κ0 + κ1 sin(k∗x),

where k∗ is the characterstic wavenumber of the
inhomogeneity. Due to the periodic nature of our
system, the stability analysis is easier to carry out
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in Fourier space. Thus, the height function h(x) is
expanded into

h(x) = 1
L

∑
k

hk exp(ixk), k ∈ 2π
L

Z

hk = rk exp(iφk)

with φk = φ−k. In this decomposition, whole-plate
dislocation(i.e., h0 = 0) were disregarded.

To obtain the energy of the elastic substrate in
the Fourier space, one has to solve the problem of
a linear elastic substrate with given surface defor-
mation in Fourier space, as derived in Ref. (Groe-
newold, 2001). With this solution, the free energy
described in Eq. A.1 is written as

F =
∑

k

(
1
2(Ê|k|+ γk2 + κ0k

4)r2
k +

κ1

2 k
2(k + k∗)2rkrk+k∗ sin(φk − φk+k∗)

)
(A.2)

with
Ê = E

2ν2 − 10ν + 5
2(4ν − 3)2(ν + 1) .

We search for the buckling modes that are most
unstable. That is, those with wavenumber k which
minimize the energy in Eq. A.2. Due to the bound
properties of the sinus, it is clear that the condition
φk−φk+k∗ = 3/2π+2πn is necessary to obtain this
minimum. Thus, the energy is written as

F =
∑

k

(
1
2(Ê|k|+ γk2 + κ0k

4)r2
k

− κ1

2 k
2(k + k∗)2rkrk+k∗

)
.

(A.3)

Unstable modes can then be obtained by stan-
dard stability analyses. Eq. A.3 is recast into its
matricial form

F = 1
2r

THr,

where r is a vector with components r = rk, and H
is the Hessian matrix. Explicitly,

Hij =4g(ki)δki,kj − 2f(ki)δkj ,ki+k∗

− 2f(−ki)(δkj ,k∗−ki − δkj ,ki−k∗)

with

g(k) = 1
2(Ê|k|+ γk2 + κ0k

4),

f(k) = κ1

2 k
2(k + k∗)2.

In this form, the unstable modes are obtained as
those states with negative eigenvalues for the Hes-
sian matrix, corresponding to modes with negative
energy. For homogeneous systems (i.e., κ1 = 0), the
energy contribution of each mode is independent
(i.e., the Hessian matrix is diagonal), and modes
that minimize the energy can be obtained analyt-
ically (Hannezo et al., 2011; Hornung, 2019). In
the inhomogeneous case, the various wavemodes are
coupled, and it is necessary to solve the eigenprob-
lem numerically. Fig. 8 shows the results of these
calculations. Each curve corresponds to the eigen-
functions with lowest eigenvalues for different elas-
tic parameters, as indicated therein.

This analytical theory gives results which are
qualitatively similar to those obtained in our sim-
ulations. In order to obtain quantitative compar-
isons, a more complex theory is necessary, which
takes into account the lateral displacements during
gyrification.
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