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Abstract 
Parkinson's disease (PD) is a neurodegenerative disease with an often complex genetic 
component identifiable by genome-wide association studies (GWAS). The most recent large 
scale PD GWASes have identified more than 90 independent risk variants for PD risk and 
progression across 80 loci. One major challenge in current genomics is identifying the causal 
gene(s) and variant(s) from each GWAS locus. Here we present a GWAS locus browser 
application that combines data from multiple databases to aid in the prioritization of genes 
associated with PD GWAS loci. We included 92 independent genome-wide significant 
signals from multiple recent PD GWAS studies including the PD risk GWAS, age-at-onset 
GWAS and progression GWAS. We gathered data for all 2336 genes within 1Mb up and 
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downstream of each variant to allow users to assess which gene(s) are most associated with 
the variant of interest based on a set of self-ranked criteria. Our aim is that the information 
contained in this browser (https://pdgenetics.shinyapps.io/GWASBrowser/) will assist the PD 
research community with the prioritization of genes for follow-up functional studies and as 
potential therapeutic targets. 
 

Introduction 
Parkinson's disease is a multifactorial disease where both genetic and environmental risk 
factors play a role. In the past decade, approximately 20 genes have been associated with 
PD or parkinsonism in families [1]. Over 90 common variants have been associated with the 
sporadic PD risk, onset and progression using genome-wide association studies (GWAS) 
[2–4]. 
One major challenge remaining after GWAS identification of risk loci is the localization and 
characterization of specific causal variant(s) and gene(s) at each locus. A common 
misconception is that the most significant GWAS variant exerts an effect on the nearest 
gene (as commonly reported in GWAS manuscripts), but this is unlikely to be the case. First, 
the GWAS variant is not necessarily causative on its own, but is instead likely to tag a 
functional region or variant in high linkage disequilibrium (LD). Second, variants in non-
coding regions containing regulatory sequences may impact distant genes by altering the 
three dimensional chromatin conformation and therefore those genes may be located 
outside of the predefined LD region [5,6]. Several different approaches can be taken when 
prioritizing genes for each significant variant. For PD, these approaches include using single 
cell RNA-seq to determine gene expression in relevant cell populations [7], transcriptome-
wide association studies [8], and quantitative trait loci (QTL) [3]. Others have functionally 
prioritized a single locus (SNCA [9] and TMEM175 [10]) but these functional single locus 
experiments often do not scale up to loci with many genes. Other non-disease specific 
pipelines have been developed using epigenetic and chromatin conformation datasets in 
addition to expression QTL (eQTL) data [11,12], however some disease specific 
interpretation will be needed. Therefore, we have aggregated multiple datasets from several 
sources to create a versatile and user-friendly tool to prioritize specific genes and variants 
for additional PD GWAS and functional studies that aim to identify potential therapeutic 
targets. (Figure 1) https://pdgenetics.shinyapps.io/GWASBrowser/. 
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Figure 1. Flowchart of data gathered for the browser. Summary of the variants, genes 
and datasets included in the browser to prioritize genes for each locus. Datasets include 
genome wide association study (GWAS) summary statistics, known coding variants, META5 
(Nalls et al 2019) nominated genes, online Mendelian inheritance in man (OMIM) and human 
gene mutation database (HGMD) disease genes, expression quantitative trait locus data 
(eQTL), variants from the GWAS catalog, known Parkinson’s disease genes, pubmed 
literature data, Genotype-Tissue Expression (GTEx) and single cell expression data, burden 
test data and constraint data. 
 

Methods 
GWAS loci and gene selection 
All GWAS loci and summary statistics were gathered from our recent PD GWAS studies [2–
4,13,14]. We selected all genes 1 Megabase (Mb) up and downstream of each significant 
variant from the hg19 reference genome [15]. This resulted in 2336 unique genes of interest. 
Genes in this 2Mb range were included in locus zoom plots created for each variant [16]. 
 
Gene expression data 
The Genotype-Tissue Expression (GTEx) portal was accessed on 02/12/2020 to obtain v8 
gene expression data. Transcript per million (TPM) data was averaged across all available 
brain and substantia nigra (SN) samples individually for each gene. Average single cell RNA 
sequencing expression data was also included for SN astrocytes, SN dopaminergic neurons, 
SN endothelial cells, SN GABAergic cells, SN microglial cells, SN oligodendrocyte cells 
(ODC) and SN oligodendrocyte progenitor cells (OPC) (GSE140231, Agarwal et al 2020 
under review). An arbitrary value of five TPM was chosen as the cut off point for significance 
in brain tissue, SN tissue and SN dopaminergic neuron averages. Genes with greater than 
five TPM in any of these three datasets were given a value of one in the evidence table in 
the “Brain Expression”, “Nigra Expression”, or “SN-Dop. Neuron Expression” column. Genes 
with no available expression data were set to “NA” in these columns.  
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Expression quantitative trait loci data 
Expression quantitative trait locus (eQTL) data was collected from the summary-data-based 
Mendelian randomization (SMR) website for brain tissues [17] and processed using SMR 
software tools [18]. Blood tissue eQTL data was collected from the eQTLGen consortium 
[19]. Additional brain tissue data was collected from the PsychENCODE project [20]. Locus 
compare plots were generated using GWAS data and the appropriate eQTL data to compare 
the distribution of eQTL and GWAS data [21]. Plots were omitted if they contained neither 
the locus risk variant nor a good proxy variant. Proxy variants were obtained using the 
LDlinkR library in R (https://www.r-project.org/) to find variants with r2 > 0.7 with the risk 
variant. Genes were given a value of one in the “QTL-brain” column in the evidence table if 
there was sufficient data to create brain locus compare plots using Qi et al. eQTL data, 
PsychENCODE eQTL data or PsychENCODE isoQTL data. Genes were given a value of 
one in the “QTL-blood” column in the evidence table if there was sufficient data in the blood 
tissue eQTL data to create a locus compare plot. Pearson correlation coefficients between 
GWAS and blood or brain eQTL/isoQTL p-values were calculated using R for each gene 
with sufficient data. The “QTL-correl” column in the evidence table was given a value of one 
if the magnitude of the correlation coefficient was greater than 0.3 in any of the gene’s locus 
compare plots. This column was given a value of “NA” if there were fewer than thirty 
datapoints in the locus compare plots for the gene.  
 
Literature search 
Automated literature searches were performed in pubmed using the search term “[Gene 
Name][Title/Abstract], Parkinson’s[Title/Abstract]” and “[Gene Name][Title/Abstract]” to 
search for the respective gene and its occurence in PD literature using the rentrez package 
in R [22]. The number of search results were collected for all the genes in each locus to 
create a bar plot of pubmed hits for each locus. Genes with five or more search results in the 
PD and gene name search were given a score of one in the “Literature Search” column in 
the evidence table. A word cloud was generated for each gene using the PubMedWordcloud 
package in R [23]. Lastly, gene descriptions were obtained from GeneCards [24].  
 
Constraint data 
Constraint data, a score describing how resistant to variation a gene is predicted to be, was 
downloaded from the gnomAD browser (https://gnomad.broadinstitute.org/downloads) [25]. 
Constraint z scores were included for synonymous variants and missense variants. A 
probability of being loss-of-function intolerant (pLI) score was included for loss of function 
variants. Observed/Expected variant values were included for these three variant types, 
along with the 90% confidence interval for each value.  
 
Burden data 
Burden summary statistics were obtained from the most recent GWAS [3] and an exome 
sequencing study in PD (manuscript in process). In total, forty different burden tests on 
exome sequencing data and two different burden tests on imputed GWAS data were 
performed using only missense and loss-of-function variants using minor allele frequency 
cut-offs of 0.05 and 0.01. The minimum p-values of all forty exome burden tests were 
included for each gene in the burden table of the browser. The minimum p-value for the two 
burden tests on imputed data for each gene was included in the same table. These two 
minimum p-values were Bonferroni corrected by the number of genes with data in the 
burden test to determine significance (1466 genes for exome and 1014 genes for imputed). 
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Genes with significant burden results in either exome or imputed data were given a value of 
one in the “Burden” column in the evidence table. Genes with no available burden data were 
given a value of “NA” in this column. 
 
Nalls et al 2019 Nominated Genes 
The 2019 PD GWAS [3] used four QTL datasets to determine causal genes for each GWAS 
signal in the study. This data was obtained from Supplementary Table 1 of the Nalls et al 
2019 GWAS paper. 70 of the 90 variants from this study were found to be associated with a 
putative causal gene. These genes were given a value of one in the “Nominated by META5” 
column of the evidence table.  
 
Parkinson’s disease and other disease genes 
Genes known to be monogenic for PD or parkinsonism in the literature [1] were given a 
value of one in the “PD Gene” column in the evidence table. Disease gene data was 
gathered from the Human Gene Mutation Database [26] and OMIM [27]. For HGMD, only 
genes with variants classified as “DM” (disease causing mutations) were included. These 
genes were given a value of one in the “Disease Gene” column in the evidence table.  
 
Coding Variants 
Coding variants in linkage disequilibrium (LD) with risk variants were obtained from internal 
databases. R2 and D’ LD scores were calculated using plink [28]. Combined annotation 
dependent depletion (CADD) scores were obtained from the CADD database using 
ANNOVAR [29]. Frequencies were obtained from the gnomAD database also using 
ANNOVAR [25,29].  
 
Associated Variant Phenotypes 
Phenotypes of variants in LD with risk variants were obtained from the GWAS catalog v1.0.2 
[30]. R2 and D’ LD scores were calculated using PLINK (v1.9) [31] from a large PD case-
control reference set including over 40,000 individuals. Frequencies were obtained from the 
gnomAD database using ANNOVAR [25,29].  
 
Fine-Mapping: 
Variants in the PD meta-analysis summary statistics [3] were re-annotated to GRCh38p7 
build positions using dbSNP build 151. If a variant’s dbSNP rs-id was not present in dbSNP 
build 151 it was excluded from further analysis. The summary stats were partitioned into risk 
regions or loci based on physical distance. Per chromosome these partitions were generated 
iteratively by finding the variant with the smallest P-value and extracting this variant and 
those variants within 1 Mb of it. The region of extracted proximal variants was checked 
against other extracted regions and if their edges were within 100 Kb the regions were 
merged. These iterations continued until no variant with a GWAS p-value less than 5e10-8 
remained within the PD meta-analysis summary statistics.  
 
The FINEMAP tool [3,32] was used to fine map these PD risk locus regions. Finemap uses 
Shotgun Stochastic Search [33] and Bayesian Model Averaging [34] to identify casual 
configurations of risk variants. The max number of causal variants within the configuration 
per locus was based on the number of independent risk signals detectable per locus. This 
number of independent risk signals per locus was estimated using the stepwise model 
selection procedure implemented in GCTA-COJO. Both the Finemap and GCTA-COJO 
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[35,36] tools require linkage disequilibrium (LD) information for their search and modeling. 
For this purpose TOPMed freeze5b samples of European ancestry, available from dbGaP, 
were used as a LD reference panel; this panel included 16,257 samples. 
 
Browser Design 
The GWAS locus browser is an R shiny application. Data was pre-compiled and loaded onto 
the application’s server and is not obtained from external databases in real time. The GWAS 
locus browser is an open source project. The code is available on our github 
https://github.com/neurogenetics/GWAS_locus_browser. 
 

Results 

Data-browser 
The PD GWAS locus browser (https://pdgenetics.shinyapps.io/GWASBrowser/) is an online 
platform to assist researchers with the prioritization of genes located within PD GWAS loci. It 
includes multiple layers of data, including: GWAS statistic, eQTL, burden, expression, 
constraint, and literature data, and a flexible scoring system that users may configure for 
their own needs. In total we included 92 GWAS variants located on 80 GWAS loci and a total 
of 2336 genes. Interestingly, several PD GWAS hits show high correlation and overlap 
(R2>0.8 and D’>0.9) (Supplementary Table 1) with other disease risk signals including 
disease such as inflammatory bowel disease (Locus 2) [37,38], neuroticism (Loci 29, 62, 69 
and 73) [39–41], body mass index (Loci 4, 11, 61) [42,43] and insomnia (Locus 73) [44]. 
Below we describe two use-case scenarios on how this application could be used for 
prioritizing genes from PD GWAS loci. 
 
Use case scenario 1, locus 16, rs11707416:  
A possible use case for the browser exists on locus 16 for the risk variant rs11707416. This 
variant was discovered in the most recent PD GWAS (P=1.13E-10, OR=0.94, SE=0.0097) 
[3] and the closest gene is MED12L. The locus zoom plot shows a clear GWAS signal for 
this region (Figure 2A) however, no genes in this locus were prioritized using current 
methods in the PD GWAS. Using the PD GWAS browser default settings, P2RY12 
(Purinergic Receptor P2Y) has the highest conclusion score (7) in the evidence per gene 
table, meaning it has the highest sum of dataset scores for that locus. Locus compare eQTL 
plots show some correlation in both brain and blood, indicating there is some overlap in the 
distribution of eQTL and GWAS data for this gene (Figure 2B). There is one common coding 
variant at this locus, but it is located within MED12L (Mediator complex subunit 12-like; 
NM_053002:exon25:c.G3629A:p.R1210Q) and not P2RY12. MED12L has a lower 
conclusion score (3) than P2RY12, suggesting that even with this coding variant, MED12L is 
not the primary candidate in this locus. This is a very complex and unusual locus, in that 
there are multiple genes encoded within an intron of an isoform of MED12L (P2RY12, 
P2RY13, P2RY14, GPR171), and even more interesting is that the missense variant which 
changes an amino acid of MED12L is located in an intron of the much smaller gene P2RY12 
(Figure 2A). Despite the uniqueness of the locus structure, we will focus on P2RY12 as the 
primary candidate nominated by the PD GWAS browser datasets.  
Expression of P2RY12 was significant in all included databases (GTEx brain, GTEx SN and 
single cell dopaminergic neuron data). However, it appears that P2RY12 has much higher 
expression in astrocytes and microglia than neurons (Figure 3). The disease gene section 
shows that P2RY12 has been linked to platelet type-8 bleeding disorder [45]. This disorder 
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appears to be caused by dominant negative mutations in the P2RY12 gene that disrupt the 
homo-dimerization of the receptor which is required for normal function [46]. No direct links 
between P2RY12 and PD have been reported in the literature, but P2RY12 is a widely 
studied gene with roles suggested in neuroinflammation, apoptosis and autophagy, 
pathways that are relevant to PD and other neurodegenerative diseases [47–49]. 
Experiments have been done to characterize expression patterns of P2RY12 in microglia 
and its role in neuroinflammation [50]. As these experiments focused on Alzheimer’s 
disease, it would be useful to build upon them in the PD context in the future. The possible 
role of P2RY12 in PD should be further analyzed using functional tests in cell and animal 
models.  
 

 
Figure 2. Locus zoom and locus compare plots for locus 16 and variant rs11707416 
and P2RY12. (A) The locus zoom Manhattan plot for risk variant rs11707416 on locus 16. 
The risk variant is uniquely colored purple and all other variants are colored by their r2 value. 
Recombination rate peaks are plotted in blue. Nearby genes are included at the bottom, with 
P2RY12 highlighted. (B) Locus compare plots for P2RY12 on locus 16 plot -log10P-values for 
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Nalls et al 2019 GWAS data (y-axis) and for different eQTL datasets (x-axis). Datasets 
available for P2RY12 are Qi et al. brain eQTL, Vosa et al. blood eQTL and PsychENCODE 
brain eQTL (left to right). Variants are colored by their r2 value and the risk variant is labelled 
and uniquely colored purple.  
 

 
Figure 3. Bar plot for single cell expression of P2RY12 on locus 16. Transcript per 
million (TPM) data for P2RY12 was averaged across all samples for seven different cell 
types from the substantia nigra. These include oligodendrocyte progenitor cells (OPC), 
oligodendrocyte cells (ODC), microglia, GABAergic neurons (GABA), endothelial cells, 
dopaminergic neurons (DaN) and astrocytes.  
 
Use case scenario 2: Locus 78, rs2248244: 
We have chosen a second use case for the browser at locus 78, for the risk variant 
rs2248244. This variant was discovered in the most recent PD GWAS (P=2.74E-11, 
OR=1.074, SE=0.0107) and its nearest gene, DYRK1A, was nominated as the causal gene 
in that study. The locus zoom plot shows a clear GWAS signal for this region (Figure 4A). 
The default settings in the evidence per gene table nominate DYRK1A as the top candidate 
with a conclusion score of 10, which is higher than any of other genes within the locus 
(second highest is 4).  
The brain and blood eQTL plots and the isoQTL plot show good correlation between GWAS 
and QTL values (Figure 4B). No coding variants or other known associated disease variants 
exist for this locus.  DYRK1A showed significant gene expression in all databases (GTEx 
brain, GTEx SN and single cell dopaminergic neuron data) (Figure 5). Constraint data for 
DYRK1A shows a low 90% CI for loss of function variation and a pLI of 1, suggesting 
significant intolerance to loss of function variation. However, burden test results show no 
significant change in variants for DYRK1A after Bonferroni correction. FINEMAP results of 
this locus nominated several variants with rs2248244 and rs11701722 both intronic with the 
highest probability score. 
DYRK1A is located in the Down Syndrome Critical Region (DSCR) on chromosome 21 and 
various deletions and single nucleotide variants have been linked to autosomal dominant 
mental retardation-7 (MRD7) [51–53]. This data is not enough to conclude that DYRK1A is 
the relevant risk gene at this locus, however, DYRK1A also has a significant representation 
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in PD literature. Previous studies have suggested that DYRK1A encodes a kinase that can 
phosphorylate α-synuclein and Pink1 in mammalian cells [54–57]. Studies in mouse models 
indicate that haploinsufficiency of DYRK1A leads to a reduction in dopaminergic neurons 
while increasing the dosage results in more dopaminergic neurons by altering apoptosis [54–
56]. All of these studies combined indicate that loss of DYRK1A expression may influence 
the number of dopaminergic neurons and thereby the development of PD. Therefore, the PD 
GWAS browser predicts DYRK1A is a good candidate for more functional PD studies in cells 
and mouse models as well as increasing individuals in human genetic studies to 
characterize the molecular mechanism underlying risk at this locus.  
 

 
Figure 4. Locus zoom and locus compare plots for locus 78 and variant rs2248244 and 
DYRK1A. (A) The locus zoom Manhattan plot for showing risk variant rs2248244 at locus 
78. The risk variant is uniquely colored purple and all other variants are colored by their r2 
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value. Recombination rate peaks are plotted in blue. Nearby genes are included at the 
bottom, with DYRK1A highlighted. (B) Locus compare plots for DYRK1A on locus 78 plot -
log10P-values for Nalls et al 2019 GWAS data (y-axis) and for different eQTL datasets (x-
axis). Datasets available for DYRK1A are Qi et al. brain eQTL, Vosa et al. blood eQTL and 
PsychENCODE brain isoQTL (left to right). Variants are colored by their r2 value and the risk 
variant is labelled and uniquely colored purple.  
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Figure 5. GTEx violin plot for DYRK1A on locus 78. DYRK1A transcript per million (TPM) 
data was averaged across all available samples from GTEx v8 data for different tissues. 
Distribution and probability of expression level is included for each tissue.  
 

Discussion 
GWAS have identified numerous risk loci for a large number of diseases 
(https://www.ebi.ac.uk/gwas/) [30]. The current bottleneck after completing these studies is 
identifying the causal genes and variants underlying the GWAS signals. There is a large 
discrepancy between the number of new GWAS loci identified and the number of studies 
that molecularly characterize these loci to identify a causative variant or gene. Currently, the 
number of PD loci that are functionally validated is very low and mostly includes genes that 
are known to cause monogenic forms of PD. GWAS has identified a number of these 
pleiotropic genes at various loci such as SNCA (locus 23), GBA (locus1), LRRK2 (locus 49) 
and VPS13C (locus 59). Current evidence suggests that TMEM175 (locus 19 [10]), CTSB 
(locus 37 [8,13]) and GCH1 (locus 56, [58]) are also pleiotropic and lead to PD by multiple 
mechanisms.  
Our goal is to provide the PD research community with a tool that catalogs all significant PD 
GWAS signals and helps prioritize the genes at each locus for functional studies. The overall 
significance score for each gene is displayed in the “Conclusion” column of the evidence 
table. This score is the sum of all other numerical values from each dataset for the 
respective gene. The inclusion of genes 1 Mb up and downstream of each variant is an 
arbitrary cutoff and may limit the ability of the browser to accurately prioritize genes. This 
limitation will come into effect when variants affect genes outside this range, however prior 
studies have found that functional noncoding variants are often located within this 2Mb 
window. Additionally, some loci contain more than one significant variant (eg locus 1, GBA 
with three reported independent signals) and until a way to detect precise causative variants 
is developed, it is assumed that all significant variants within the same locus will impact the 
same gene.  
While all of the datasets included in the PD browser may contribute to the prioritization of PD 
genes, each dataset comes with its own limitations that should be taken into account when 
considering the conclusion value. Blood and brain eQTL data was included to identify genes 
with similar GWAS and eQTL data distribution. While similar distributions may suggest 
causality, the power of these datasets may reduce their importance. Blood eQTL data will 
have more statistical power than brain data due to its larger sample size, but it may be less 
relevant to PD. Another important note is that we just test for cis eQTLs, since we simply do 
not have power to detect robust trans-QTLs. Scoring for the “QTL-brain” and “QTL-blood” 
column is not indicative of the causality of a gene because it relies on the existence of eQTL 
data, not the information provided by the data. While the “QTL-correl” column gives more 
insight into the eQTL data, the Pearson correlation coefficient cutoff significance value of -
0.3 and 0.3 are quite broad. This arbitrary value was chosen to account for the low number 
of genes that qualified for locus compare plots. Additionally, eQTL data is not available for all 
genes of interest. For these reasons, the correlation between eQTL and GWAS data does 
not guarantee causality for a gene, but is still good evidence for prioritization. Gene 
expression data was included to account for possible increased expression of genes 
associated with GWAS variants in relevant cell types and tissues. GTEx Transcript per 
million (TPM) v8 data was used to measure gene expression. We focused on brain tissue, 
SN tissue, and SN dopaminergic neuron data because of their established role in PD and 
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enrichment in PD GWAS loci [3]. However, genes do not necessarily need to be expressed 
in the substantia nigra or other brain tissues and cell types to increase the risk of PD. 
Constraint data was included to identify genes that are intolerant to specific types of 
variation, suggesting conservation. Therefore, we suspect genes with significant intolerance 
may be causal because normal variation in that gene is unlikely. We used a significance 
cutoff of 0.35 for the upper limit of the 90% confidence interval of the observed/expected 
value as suggested by gnomAD [25]. It is possible that variations within genes may not be 
associated with PD, suggesting that low intolerance/constraint scores aren’t necessarily 
causal. Previously published burden test results were included to account for genes thought 
to have a significant burden of rare variants in PD (Nalls et al., 2019). However, this does not 
guarantee causality, because causal genes may be tagged by common variants instead. 
The literature count was included to quickly measure the significance of genes in previously 
published research. However, existing studies can easily be biased, and our automated 
search of the literature does not account for this. Additionally, some genes are difficult to 
identify in automated literature searches due to nomenclature changing over time or their 
similarity to common names. Examples of these name complications include SHE and MAL 
(sometimes used for “mean axonal length” instead of the gene encoding “Myelin And 
Lymphocyte Protein”). 
Overall, for approximately half of all PD GWAS loci, an educated guess can be made based 
on the data included in our browser to choose the most likely candidate gene underlying the 
GWAS risk signal. For some loci where there is no obvious candidate (eg loci 34, 50 and 74) 
but our browser may still help prioritize candidate genes with the help of additional specific 
reference data. It should also be noted that there is not a “one-fits all” efficient scoring 
system for the prioritization of genes from under GWAS peaks. Additionally, each included 
dataset has clear limitations as discussed above. Therefore we included a weight option for 
each data column in the evidence table. This will allow users to assign weights (0-4, 0 for no 
points and 4 for 4 points) to different columns to alter the significance of the data in the final 
conclusion summation based on the datasets they deem most important. 
In summary, we present here an online platform that allows for prioritization of genes within 
PD GWAS loci. We highlight two examples (P2RY12 and DYRK1A) but many other 
interesting gene-candidates can be identified using this application. The platform is designed 
to be versatile, flexible and easily expandable when more loci or datasets of interest become 
available. By using this platform, GWAS follow-up studies can systematically prioritize genes 
based on publicly available datasets which may help improve the design of functional 
experiments. In turn, this workflow could help nominate these genes as potential therapeutic 
targets worthy of translating to the clinic.  
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