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The rational design of enzymes is an important goal for both fundamental and practical reasons. 15 

Here, we describe a design process in which we learn the constraints for specifying proteins purely 

from evolutionary sequence data, build libraries of synthetic genes, and test them for activity in vivo 

using a quantitative complementation assay. For chorismate mutase, a key enzyme in the biosynthesis 

of aromatic amino acids, we demonstrate the design of natural-like catalytic function with substantial 

sequence diversity. Further optimization focuses the generative model towards function in a specific 20 

genomic context. The data show that sequence-based statistical models suffice to specify proteins and 

provide access to an enormous space of synthetic functional sequences. This result provides a 

foundation for a general process for evolution-based design of artificial proteins. 

 
One-sentence summary: An evolution-based, data-driven engineering process can build synthetic 25 
functional enzymes. 

 
 

Approaches for protein design typically begin with atomic structures and physical models for forces 

between atoms, but the dramatic expansion of protein sequence databases and the growth of new 30 

computational methods (1-4) opens new strategies to this problem. Statistical analyses of homologs 

comprising a protein family have recently enabled successful prediction of protein structure (5-8), protein-

protein interactions (9-13), mutational effects (14-18), and for a family of small protein interaction modules, 

have led to the successful design of artificial amino acid sequences that fold and function in a manner 
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similar to their natural counterparts (19, 20). These findings indicate that sequence-based statistical models 

may represent a general approach for a purely data-driven strategy for the design of complex proteins that 

can work in vivo, in specific organismal contexts. A first key step is to demonstrate the sufficiency of these 

models for specifying functional proteins. 

An approach for evolution-inspired protein design is shown in Figure 1A-C, based on direct coupling 5 

analysis (DCA), a method originally conceived to predict contacts between amino acids in protein three-

dimensional structures (1). The starting point is a large and diverse multiple sequence alignment (MSA) of 

a protein family, from which we estimate the observed frequencies (𝑓!") and pairwise co-occurrences (𝑓!#"$) 

of all amino acids (𝑎, 𝑏) at positions (𝑖, 𝑗) – the first- and second-order statistics (Fig. 1A). From these 

quantities, we infer a model comprising a set of intrinsic amino acid propensities (fields ℎ!(𝑎)) and a set of 10 

pairwise interactions (couplings 𝐽!#(𝑎, 𝑏)) that optimally account for the observed statistics (Fig. 1A). This 

model defines a probability 𝑃 for each amino acid sequence (𝑎,⋯ , 𝑎%) of length 𝐿: 

 

𝑃(𝑎&, ⋯ , 𝑎%)	~	𝑒𝑥𝑝[−𝐻(𝑎&, ⋯ , 𝑎%)],        (1) 

 15 

with the Hamiltonian 𝐻(𝑎&, ⋯ , 𝑎%) = −∑ ℎ!(𝑎!) − ∑ 𝐽!#(𝑎! , 𝑎#)!'#!  representing a statistical energy (that 

provides a quantitative log-likelihood score for each sequence, see Methods). Lower energies are associated 

with higher probability. Monte Carlo (MC) sampling from the model allows for generating non-natural 

sequence repertoires (Fig. 1B), which can then be screened for desired functional activities (Fig. 1C). If 

positional conservation and pairwise correlation suffice in general to capture the information content of 20 

protein sequences and if the model inference is sufficiently accurate, then the synthetic sequences should 

recapitulate the functional diversity and properties of natural proteins.  

To test this process, we chose the AroQ family of chorismate mutases (CMs), a classic model for 

understanding principles of catalysis and enzyme design (21-23). These enzymes occur in bacteria, archaea, 

fungi, and plants and operate at the central branch-point of the shikimate pathway leading to the 25 
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biosynthesis of tyrosine and phenylalanine (Fig. 1D). CMs catalyze the conversion of the intermediary 

metabolite chorismate to prephenate through a Claisen rearrangement, displaying more than a million-fold 

rate acceleration of this reaction (24), and are necessary for growth of bacteria in minimal media. For 

example, Escherichia coli strains lacking a CM are auxotrophic for Tyr and Phe, with both the degree of 

supplementation of these amino acids and the expression level of a reintroduced CM gene quantitatively 5 

determining the growth rate (22). Structurally, AroQα subfamily members exemplified by EcCM, the CM 

domain of the CM-prephenate dehydratase from E. coli, form a domain-swapped dimer of relatively small 

protomers (~100 amino acids, Fig. 1E) (25, 26). Their size, essentiality for bacterial growth, and the 

existence of good biochemical assays makes AroQ CMs an excellent design target for testing the power of 

statistical models inferred from MSAs. 10 

We used DCA to make a statistical model (Eq. 1) for an alignment of 1,259 natural AroQ protein 

domains that broadly encompasses the diversity of bacterial, archaeal, fungal, and plant lineages. Deducing 

the exact parameters (ℎ! , 𝐽!#) from the observed statistics in the MSA (𝑓! , 𝑓!#) for any protein is 

computationally intractable, but a number of approximation algorithms are available (1). Here, we use 

bmDCA, a computationally quite expensive but highly accurate method based on Boltzmann machine 15 

learning (27). For example, sequences generated by MC sampling from the model reproduce the empirical 

first- and second-order statistics of natural sequences used for fitting (Figs. 2A-B). More importantly, we 

also find that the model recapitulates higher order statistical features in the MSA that were never used in 

inferring the model (see Methods). This includes three-way residue correlations (Fig. 2C) and the 

inhomogeneously clustered phylogenetic organization of the protein family in sequence space (Fig. 2D). 20 

Our findings suggest that the statistical model goes beyond just being a good fit to the first- and second-

order statistics to capture the essential rules governing the divergence of natural CM sequences through 

evolution. In contrast, a simpler profile model that retains only the intrinsic propensities of amino acids at 

sites (ℎ!(𝑎), fitted to reproduce frequencies of amino acids 𝑓!") but leaves out pairwise couplings, fails to 

reproduce even the second-order statistics of the MSA (Fig. S1B), and does not account well for the pattern 25 

of sequence divergence in the natural CM proteins (Fig. S1D).  
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These findings raise the possibility that bmDCA may be a generative model, meaning that natural 

sequences and sequences sampled from the probability distribution 𝑃(𝒂) are, despite considerable 

divergence, equivalent. To test this, we developed a high-throughput, quantitative in vivo complementation 

assay to monitor CM activity in E. coli that is suitable for studying large numbers of natural and designed 

CMs in a single experiment. Briefly, libraries of CM variants (natural and/or synthetic, see below) were 5 

made using a custom de novo gene synthesis protocol that is capable of fast and relatively inexpensive 

assembly of novel DNA sequences at large scale ((28) and see Methods). For example, we made gene 

libraries comprising nearly every natural CM homolog in the MSA (1,130 out of 1,259 total), and more 

than 1,900 synthetic variants exploring various design parameters of the bmDCA model (see Methods). 

These libraries were expressed in a CM-deficient bacterial host strain (KA12/pKIMP-UAUC, (22)) and all 10 

transformants grown together as a single population in selective media lacking phenylalanine and tyrosine 

to select for those variants exhibiting chorismate mutase activity (Fig. 2E). Deep sequencing of the 

population before and after selection allows us to compute the log frequency of each allele relative to wild-

type EcCM. This quantity is called the “relative enrichment” (r.e.) which under particular conditions of 

gene induction, growth time, and temperature, quantitatively and reproducibly reports the catalytic CM 15 

activity (Fig. 2F, and Fig. S2). This “select-seq” assay is monotonic over a broad range of catalytic power 

and serves as an effective tool to rigorously compare large numbers of natural and synthetic variants for 

functional activity in vivo, in a single internally controlled experiment. 

The first study examined the performance of the natural CM homologs in the select-seq assay as a 

positive control for bmDCA designed sequences. Natural sequences show a unimodal distribution of 20 

bmDCA statistical energies centered close to the value of EcCM (defined as zero, Fig. 3A), but it is not 

obvious how they will function in the particular E. coli host strain and experimental conditions used in our 

assay. For example, members of the CM family may vary in unknown ways with regard to activity in any 

particular environment, and the MSA includes some fraction of paralogous enzymes that carry out a related 

but distinct chemical reaction (29, 30). The select-seq assay showed that the 1,130 natural CM homologs 25 

exhibit a bimodal distribution of complementation in the assay, with one mode comprising ~ 38% of the 
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sequences centered close to the level of wild-type EcCM, and the remainder comprising a mode centered 

close to the level of the null allele (Fig. 3B). A Green Fluorescent Protein (GFP) tagged version of the 

library suggests that the bimodality of complementation is not obviously related to differences in expression 

levels compared to the E. coli variant (Fig. S3); instead, the bimodality presumably originates from non-

linearities linking sequence to growth rate in the host strain, and from the inclusion of some functionally-5 

distinct paralogous sequences. For the purpose of this study, the bimodality allows normalization of r.e. 

scores by the two modes and by Gaussian mixture modeling, to meaningfully group sequences into those 

that are functionally either like wild-type EcCM (norm. 𝑟. 𝑒. > 0.42) or like the null allele in our assay (Fig. 

3B). Importantly, the standard curve shows that this quantity is a stringent test of high chorismate mutase 

activity (Fig. 2F). 10 

To evaluate the generative potential of the bmDCA model, we used MC sampling to randomly draw 

sequences from the model that span a wide range of statistical energies relative to the natural MSA (Figs. 

3C-E), with the hypothesis that sequences with low energy (i.e. high probability) may be functional 

chorismate mutases. To sample sequences with low energy, we introduce a formal computational 

“temperature” 𝑇 ≤ 1 in our model: 15 

 

𝑃((𝑎,⋯ , 𝑎%)	~	𝑒𝑥𝑝[−𝐻(𝑎&, ⋯ 𝑎%)/𝑇],  

 

which, in exact analogy to temperature in statistical physics, serves to decrease the mean energy when set 

to values below unity. For example, sampling at 𝑇 ∈ {0.33, 0.66} produces sequences with statistical 20 

energies that closely reflect the natural distribution (Fig. 3D) or reach even lower values (Fig. 3C).  In 

contrast, sequences sampled at 𝑇 = 1 show a broad distribution of statistical energies that deviate 

significantly from the natural distribution (Fig. 3E) towards higher energies. This deviation is, among other 

factors, due to statistical adjustments (regularization, see Methods) used during model inference for 

compensating for the limited sampling of sequences in the input MSA. 25 
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We made and tested libraries of 493-616 synthetic sequences sampled at 𝑇 ∈ {0.33, 0.66, 1.0} from 

bmDCA models inferred at two regularization strengths (Fig. 3F-H). The data show that overall, these 

sequences also display a bimodal distribution of complementation, with many complementing function near 

to the level of the wild-type EcCM sequence. Consistent with our hypothesis, the probability of 

complementation is well-predicted by the bmDCA statistical energy, with low-energy sequences drawn 5 

from 𝑇 ∈ {0.33, 0.66} essentially recapitulating or even somewhat exceeding the performance of natural 

sequences (Fig. 3F-G).  In contrast, sequences drawn from 𝑇 = 1 show poor performance, consistent with 

deviation in bmDCA statistical energies (Fig. 3H).  Overall, 481 synthetic sequences out of 1,618 total 

(~30%, norm 𝑟. 𝑒. > 0.42) rescue growth in our assay, comprising a range of top-hit identities to any natural 

chorismate mutase of 42 – 92% (Table S1 and Fig. S4A-B).  These include 46 sequences with less than 10 

65% identity to proteins in the MSA, corresponding to at least 33 mutations away from the closest natural 

counterpart.  Sequence divergence from EcCM ranges from 14 to 82% (Fig. S4C-D).  A representation of 

the positions in the EcCM protein that contribute most to the bmDCA statistical energy highlights residues 

distributed both within the active site and extending through the AroQ tertiary structure to include the dimer 

interface (blue spheres, Fig. 4F).   15 

Is the ability of designed CM sequences to rescue just a function of their sequence distance from their 

natural counterparts? To test this, we made 326 sequences with the same distribution of top sequence 

identities as bmDCA-designed sequences but preserving only the first-order statistics (position-specific 

conservation) and leaving out correlations. These sequences expectedly show high bmDCA energies and 

display no complementation at all (Fig. 3I-J). Thus, enzyme function is not simply about the magnitude of 20 

sequence variation and not even about conservation of sites taken independently; instead, it fundamentally 

depends on the pattern of correlations imposed by the couplings in 𝐽!# (see Eq. 1). 

 We selected five natural and five designed CMs that complement growth in our assay for in-depth 

biochemical studies. The natural sequences occur in organisms representing a broad range of phylogenetic 

groups and diverse environments, and the designed sequences are chosen to sample regions that reflect this 25 
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diversity (Fig. 4B-C). The selected CM genes were expressed in an E. coli strain that is deficient for 

endogenous CM to eliminate any possibility of contamination with the wild-type enzyme, and catalytic 

parameters of the purified proteins were determined using a spectrophotometric assay following the 

consumption of the substrate chorismate (22). The data show that all ten CM genes express similarly, and 

that the natural CMs display catalytic parameters similar to those of the previously characterized E. coli(31) 5 

and M. jannaschii (32) enzymes (Table 1).  Consistent with their natural-like complementation, the 

designed CMs show catalytic parameters that closely recapitulate those of natural CMs. Thus, we conclude 

that the bmDCA-designed CMs are bona fide synthetic orthologs of the CM family. 

Putting all the data together, we find a strikingly steep relationship between bmDCA statistical energy 

and CM activity (Fig. 4A and Fig. S5).  Forty-five percent of designed sequences rescue the CM null 10 

phenotype when the statistical energy is below a threshold value set by the distribution of statistical energies 

observed for natural sequences (𝐸)*+ < 50, Fig. 4A) and essentially no sequences (< 3%) are functional 

above this value. Thus, bmDCA infers an effective generative model, capable of designing natural-like 

enzymatic activity with considerable sequence diversity if statistical energies are within the range of natural 

homologs. The extent of sequence variation from natural homologs highlights the sparsity of the essential 15 

constraints on folding and biochemical function. 

The bmDCA model captures the overall statistics of a protein family and does not focus on specific 

functional activities of individual members of the family. Thus, just like natural CM homologs, most 

bmDCA-designed sequences do not complement function under the specific conditions of our assay (Fig. 

4A). But, might it be possible to improve the generative model to deduce the extra information that makes 20 

a protein sequence optimal for a specific phenotype?  A bit of insight comes from studying how sequences 

that rescue function in our assay occupy the sequence space spanned by natural CM sequences. Natural 

CMs that complement function in our E. coli host strain are distributed in several diverse clusters (Fig. 4B), 

but interestingly, functional synthetic sequences also follow the same pattern (Fig. 4C).  This suggests that 

information about CM function in the specific context of the E. coli assay conditions exists in the statistics 25 

of natural sequences and might be learned.  If so, knowledge gained in the first experimental trial might be 
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added to formally train a classifier to predict synthetic sequences that encode particular protein phenotypes 

and organismal environments.  

To test this idea, we annotated the sequences in the natural MSA with a binary value 𝑥	indicating their 

ability to function in our assay (𝑥 = 1 if functional, 𝑥 = 0 if not).  Due to its formal similarity to the DCA 

framework, we used logistic regression on the annotated MSA to learn a model providing a probability for 5 

any synthetic sequence 𝒂 = (𝑎&, ⋯ , 𝑎%) to function in the E. coli select-seq assay; that is,  𝑃(𝑥 = 1|𝒂).  

Interestingly, Figs. 4D-E show that for low-energy CM-like synthetic sequences sampled from the naïve, 

unsupervised bmDCA model (Fig. 4D), the extra condition that 𝑃(𝑥 = 1|𝒂) > 0.8 now efficiently predicts 

the subset that complements in the context of our assay (83 %, Fig. 4E).  These results support an iterative 

design strategy for specific protein phenotypes in which the bmDCA model is updated with each round of 10 

selection to optimize desired phenotypes. 

What structural principles underlie the general constraints on CM function and the extra constraints for 

system-specific function? Mapping the positions that contribute most significantly to E. coli-specific 

function of CM sequences shows an arrangement of amino acids peripheral to the active site, within a 

poorly-conserved secondary shell around active site positions (Fig. 4F). Thus, these positions work 15 

allosterically or otherwise indirectly to control catalytic activity, a mechanism to provide context-dependent 

fine-tuning of reaction parameters.  

The results described here validate and extend the concept that pairwise amino acid correlations in 

practically-available sequence alignments of protein families suffice to specify protein folding and function 

(19, 20). The bmDCA model is one approach to capture these correlations, but there is more work to be 20 

done to fully understand these models.  Currently, the interpretation of DCA is focused on the relatively 

few highest magnitude terms in the matrix of couplings (𝐽!#), because these identify direct structural contacts 

between amino acids in protein tertiary structures (33).  Indeed, the top terms in 𝐽!# for chorismate mutases 

do nicely correspond to contacts in the tertiary structure (Fig. S6).  However, contact terms in 𝐽!# alone do 

not suffice to reproduce either the alignment statistics in the AroQ family (Fig. S7) or the functional effects 25 
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of mutations (17). Instead function in proteins seems to depend also on many weaker, non-contacting terms 

in 𝐽!# that currently have no simple physical interpretation. Similar findings have been made in the case of 

predicting protein-protein interaction specificity (34). The weaker terms in 𝐽!# seem to describe the 

collective evolution of amino acids within the structure, a property that may be related to patterns elucidated 

by other approaches to sequence coevolution (1, 35-39). A key next goal is to further refine the topology 5 

and best representation of sequence correlations that underlie the physics of protein structure and function. 

However, even pending these necessary refinements, the data presented here provide the foundations 

for a general data-driven approach to protein engineering.  This approach is similar to directed evolution in 

that it works without the use of physics-based potentials or atomic structures, but the computational models 

access a sequence space of functional proteins that is vastly larger than currently understood.  Indeed, the 10 

results presented here permit a lower-bound estimate of the size of the sequence space consistent with the 

evolutionary rules for specifying members of a protein family. For example, at 𝑇 = 0.66, we conservatively 

compute a total space of 1025 sequences that could be synthetic homologs of the AroQ family (see Methods).  

Given that ~30% of sequences randomly sampled from this pool rescue CM function under our assay 

conditions, this amounts to more that 1024 sequences that can operate in a specific genomic and experimental 15 

context.  These numbers are enormous in absolute terms but are infinitesimally unlikely in a sequence space 

searched without any model (~10125) or with models capturing only first-order constraints (1085, see 

Methods). These considerations suggest that it will be of great interest to use evolution-based statistical 

models to guide the search for functional proteins with altered or even novel chemical activities. 

 20 
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Figure Legends: 

 

Figure 1: Evolutionary data-driven protein engineering.  A, a multiple sequence alignment (MSA) of 

𝑀 natural homologs provides empirical first and second-order statistics of amino acids (𝑓!" , 𝑓!#"$), which are 

used to infer a statistical model with the bmDCA method. The probability of sequence 𝒂 = (𝑎&, … , 𝑎%) is 25 

an exponential function of a Hamiltonian, or statistical energy, parameterized by intrinsic fields ℎ!(𝑎) and 
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couplings 𝐽!#(𝑎, 𝑏) acting on amino acids. B-C, the model is used to generate 𝑁 ≫ 𝑀 synthetic sequences 

that can be tested in a high-throughput assay for desired functions. D, chorismate mutase (CM) is an enzyme 

occurring at the central branch point in the shikimate pathway leading to the synthesis of tyrosine and 

phenylalanine. E, members of the AroQα and AroQδ families of CMs fold into a domain-swapped dimer 

(PDB ID 1ECM). Active site residues are shown with yellow stick bonds and arise from both subunits (dark 5 

and light blue). A bound substrate analog is shown in magenta. 

 

Figure 2: Design and testing of synthetic CM sequences. A-C, 2D histograms showing the relationship 

of first (A), second (B), and third (C) order statistics of natural and bmDCA-designed sequences. The 

color scale indicates the number of counts per bin. D, the top two principal components of the pairwise 10 

sequence distance matrix of natural homologs (blue circles) overlaid with a projection of synthetic CM 

sequences (black circles); the position of EcCM from E. coli is marked with a red plus sign. Synthetic 

sequences both recapitulate data used for fitting (A-B) and also account for statistical features of natural 

data not used for fitting (C-D). E, the workflow for functional characterization of chorismate mutase 

activity. CM deficient E.coli cells carrying libraries of variants are grown under selective conditions in 15 

minimal media, followed by deep sequencing of input and selected populations and calculation of the 

relative enrichment of each variant (r.e.). F, the relationship of r.e. to catalytic power (log10(kcat/Km)) 

for a number of CM variants yields a “standard curve”. The assay shows a hyperbolic relationship over 

the range from complete lack of CM activity to wild-type EcCM activity. 

 20 

Figure 3: Functional analysis of natural and synthetic CMs. A, the distribution of bmDCA statistical 

energies for 1,130 tested natural AroQ homologs, relative to the value for EcCM. The data show a unimodal 

distribution centered close to EcCM. B, the distribution of functional complementation by natural AroQ 

sequences is bimodal, with ~38% of sequences in one mode near to EcCM and the rest in another mode 

close to the r.e. of the null allele. The bimodality is used to normalize the raw r.e. scores between zero and 25 

the mean of the near-null mode for all libraries in panels B, F-H, and J. C-E, distributions of statistical 
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energies for synthetic sequences and F-H, distributions of corresponding r.e. sampled at 𝑇 ∈ {0.33,0.66,1}, 

respectively. I-J, distributions of statistical energy and r.e. for synthetic sequences retaining the intrinsic 

propensities of amino acids at positions but leaving out all correlations. Taken together, the data show that 

bmDCA is a generative model. 

 5 

Figure 4: General and system-specific constraints in CM. A, the overall relationship of bmDCA 

statistical energies and catalytic function, with functional sequences in black and non-functional in blue. 

The data expose a steeply nonlinear relationship, with functional sequences strictly below a sharp threshold 

(𝐸)*+ < 50). This value is the limit of statistical energies for natural homologs (Fig. 3A). B, the two top 

principal components of sequence variation in natural homologs, with sequences complementing the E. coli 10 

CM auxotroph in black. C, the same as panel b, but for synthetic sequences, showing a similar pattern. 

Sequences chosen for in-depth biochemical characterization are indicated in panels b-c, see Table 1. D-E, 

r.e. distributions for all synthetic sequences with 𝐸)*+ < 50 (d) or with an additional statistical constraint 

derived from the pattern of rescue of natural homologs (𝑃(𝑥 = 1|𝒂); see text for details). The additional 

constraint now identifies sequences functional in E. coli in our selection assay. F, The spatial architecture 15 

of functional constraints in CM enzymes mapped on to the EcCM structure. Blue spheres show positions 

constrained in the bmDCA model. Yellow spheres show the extra constraints required for E. coli specific 

function, highlighting a peripheral shell around active site residues important for CM catalysis.  

 

Table 1:  Biochemical properties of natural and designed CM enzymes. Construct numbers 20 

correspond to the numbering presented in Tables S1-S3, which provide additional information about these 

CM proteins. 
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Table 1 
 
 5 

 
 

Construct Closest Natural ID to EcCM Top ID kcat [s-1] Km [µM] kcat/Km [M-1s-1]
1 Escherichia coli 1.00 1.00 64 390 1.6 x 105

Methanococcus jannaschii 0.30 1.00 5.7 41 1.4 x 105

125 Nitratiruptor sp. SB155-2 0.32 1.00 110 ± 10 600 ± 120 2.0 ± 0.6 x 105

230 Geobacter uraniireducens 0.3 1.00 45 ± 4 37 ± 7 1.2 ± 0.1 x 106

449 Acetoanaerobium sticklandii 0.18 1.00 19 ± 1 190 ± 30 1.0 ± 0.2 x 105

528 Ilyobacter polytropus 0.24 1.00 19 ± 2 38 ± 5 5.1 ± 1.2 x 105

553 Collinsella intestinalis 0.23 1.00 7.6 ± 3.2 110 ± 20 6.8 ± 1.8 x 104

1950 Sulfurisphaera tokodaii 0.25 0.67 8.7 ± 1.3 120 ± 10 7.7 ± 2.1 x 104

2021 Desulfovibrio sp. 0.27 0.68 2.8 ± 0.1 330 ± 10 8.5 ± 0.1 x 103

2026 Methanocella arvoryzae 0.25 0.69 30 ± 10 220 ± 30 1.4 ± 0.6 x 105

2051 Methanococcus vannielii 0.22 0.66 3.0 ± 0.1 230 ± 3 1.3 ± 0.0 x 104

2064 Streptococcus sanguinis 0.22 0.69 21 ± 13 75 ± 25 2.7 ± 0.8 x 105DE
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