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Abstract 

Single-cell RNA sequencing provides an opportunity to study gene expression at single-cell 

resolution. However, prevalent dropout events result in high data sparsity and noise that may 

obscure downstream analyses. We propose a novel method, G2S3, that imputes dropouts by 

borrowing information from adjacent genes in a sparse gene graph learned from gene expression 

profiles across cells. We applied G2S3 and other existing methods to seven single-cell datasets to 

compare their performance. Our results demonstrated that G2S3 is superior in recovering true 

expression levels, identifying cell subtypes, improving differential expression analyses, and 

recovering gene regulatory relationships, especially for mildly expressed genes. 
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Background 

Singe-cell RNA sequencing (scRNA-seq) has emerged as a state-of-the-art technique for 

transcriptome analysis. Compared to bulk RNA-seq that measures the average gene expression 

profile of a mixed cell population, scRNA-seq measures cellular level expression for each gene 

and thus describes cell-to-cell stochasticity in gene expression. Applications of this technology in 

humans have revealed rare or novel cell types [1–3], cell population compositional changes [4], 

and cell-type specific transcriptomic changes [3,5] that are associated with diseases. These 

findings have great potential to promote our understanding of cell function, disease pathogenesis, 

and treatment response for more precise therapeutic development [6,7]. However, analysis of 

single-cell transcriptomic data can be challenging due to low library size, high noise level, and 

prevalent dropout events [8]. Particularly, dropouts lead to an excessive number of zeros or close 

to zero values in the data, especially for genes with low or moderate expression. These inaccurately 

measured gene expression levels may obscure downstream quantitative analyses such as cell 

clustering and differential expression analyses [6]. 

In the past few years, several imputation methods have been developed to recover dropout 

events in single-cell transcriptomic data. A group of methods, including MAGIC [9], scImpute 

[10], drImpute [11], and VIPER [12], assess between cell similarity and impute dropouts in each 

cell using its similar cells. Specifically, MAGIC constructs an affinity matrix of cells and 

aggregates gene expression across similar cells via data diffusion to impute gene expression for 

each cell [9]. scImpute infers dropout events based on the dropout probability estimated from a 

Gamma-Gaussian mixture model and only imputes these events by borrowing information from 

similar cells within cell clusters detected by spectral clustering [10]. drImpute identifies similar 

cells through K-means clustering and performs imputation via averaging the expression levels of 
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cells within the same cluster [11]. While these imputation methods improved the quality of single-

cell transcriptomic data to some extent, they were found to eliminate natural cell-to-cell 

stochasticity which is an important piece of information available in scRNA-seq data compared to 

bulk RNA-seq data [12]. To overcome this limitation, VIPER considers a sparse set of 

neighborhood cells for imputation to preserve variation in gene expression across cells [12]. In 

general, imputation methods that borrow information across similar cells tend to intensify subject 

variation in scRNA-seq datasets with multiple subjects when cells from the same subject are more 

similar than those from different subjects. To address this issue, SAVER borrows information 

across similar genes instead of cells to impute gene expression using a penalized regression model 

[13]. In addition, machine learning-based methods such as autoImpute [14], DAC [15], and 

deepImpute [16], use deep neural network to impute dropout events. While computationally more 

efficient, these methods were found to generate false-positive results in differential expression 

analyses [17]. 

In this article, we develop G2S3, a sparse and smooth signal of gene graph-based method that 

imputes dropout events in single-cell transcriptomic data by borrowing information across similar 

genes. G2S3 learns a sparse graph representation of gene-gene relationships from scRNA-seq data, 

in which each node represents a gene and is associated with a vector of expression levels in all 

cells that can be viewed as a signal on the graph. The graph is then optimized under the assumption 

that signals change smoothly between connected genes. Based on this graph, a transition matrix 

for a random walk is constructed so that the transition probabilities between genes with similar 

expression levels across cells are higher. A random walk on this graph imputes the expression 

level of a gene using the weighted average of expression levels from itself and adjacent genes in 

the graph. In this way, G2S3, like SAVER, makes use of gene-gene relationships to recover the 
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true expression levels. However, unlike SAVER which uses a penalized regression model for 

imputation, G2S3 optimizes the gene graph structure using graph signal processing that captures 

nonlinear correlations among genes and is robust to outliers in the data. The computational 

complexity of the G2S3 algorithm is a polynomial of the total number of genes in the graph, so it 

is computationally efficient, especially for large scRNA-seq datasets with hundreds of thousands 

of cells. 

 

Results 

Datasets and analyses overview 

We evaluated and compared the performance of G2S3 and five existing imputation methods, 

SAVER, MAGIC, scImpute, VIPER, and DCA, in terms of (1) expression data recovery; (2) cell 

subtype separation; (3) differential gene identification; and (4) gene regulatory relationship 

recovery. We applied these imputation methods to seven scRNA-seq datasets that can be classified 

into four categories accordingly. The first category includes three unique molecular identifier 

(UMI)-based datasets for the down-sampling analysis: the Reyfman dataset from human lung 

tissue [18], the peripheral blood mononuclear cell (PBMC) dataset from human peripheral blood 

[19], and the Zeisel dataset from mouse cortex and hippocampus [20]. Down-sampling was applied 

to these datasets to assess the method performance in recovering true expression levels. The second 

category of datasets was used to evaluate the method performance in separating different cell types. 

It includes the Chu dataset of human embryonic stem (ES) cell-derived lineage-specific 

progenitors from seven known cell subtypes [21], and the Petropoulos dataset of cells from human 

preimplantation embryos collected on different embryonic days [22]. The third category was 

chosen to evaluate the method performance in improving the identification of differentially 
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expressed genes. It includes the Segerstolpe dataset of pancreatic islets from type II diabetes (T2D) 

patients and healthy controls [23]. The last category includes the dataset from Paul et al. [24] that 

measured the well-known transcriptional regulators of myeloid progenitor populations. With this 

dataset, we evaluated the method performance in restoring gene regulatory relationships among 

key regulators. Table 1 summarizes the main features of the seven datasets. A more detailed 

description of these datasets is provided in the “Real datasets” section. 

 

Expression data recovery in down-sampled datasets 

Using the three down-sampled scRNA-seq datasets (Reyfman, PBMC, and Zeisel), we 

assessed the performance of the six imputation methods in recovering true expression levels. 

Figure 1 shows the gene-wise Pearson correlation and cell-wise Spearman correlation between the 

imputed and reference data using each dataset. The correlation between the observed data without 

imputation and reference data was set as a benchmark. In all datasets, G2S3 consistently achieved 

the highest correlation with the reference data at both gene and cell levels, and SAVER had slightly 

worse performance. VIPER performed well in the Reyfman and PBMC datasets but not in the 

Zeisel dataset based on gene-wise correlation, although the cell-wise correlations were much lower 

than G2S3 and SAVER in all datasets. MAGIC, scImpute, and DCA did not have comparable 

performance, especially based on gene-wise correlation. Since genes with higher expression tend 

to have a lower dropout rate, they are usually easier to impute but have less imputation need than 

those with lower expression [8]. To demonstrate the impact of expression level on the method 

performance, we stratified genes into three subsets based on the proportion of cells expressing 

them in the reference data: widely expressed (>80%), mildly expressed (30%-80%), and rarely 

expressed (<30%). Figure S1 shows the gene-wise and cell-wise correlations in each gene stratum. 
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We can see that G2S3 improved both the gene-wise and cell-wise correlations compared to the 

observed data for the widely and mildly expressed genes. Moreover, G2S3 achieved the most 

superior recovery accuracy than the other methods for the widely and mildly expressed genes, 

although SAVER had comparable accuracy for the widely expressed genes, suggesting the 

advantage of borrowing information from similar genes over from similar cells. For the rarely 

expressed genes, all imputation methods did not improve the correlations compared to the 

observed data at both gene and cell levels, suggesting that there is insufficient information on these 

genes to be successfully imputed. Overall, G2S3 provided the most accurate recovery of true 

expression levels. 

 

Restoration of cell subtype separation 

The second category of datasets was used to assess the performance of imputation methods in 

restoring the separation between different cell types. In the Chu dataset, there were 7 cell types 

including two undifferentiated human ES cell lines (H1 and H9), human foreskin fibroblasts (HF), 

neuronal progenitor cells (NP), definitive endoderm cells (DE), endothelial cells (EC), and 

trophoblast-like cells (TB). To quantify the performance in separating these cell subtypes, we 

calculated the ratio of the average inter-subtype distance to the average intra-subtype distance 

using the top 𝐾𝐾  principal components (PCs) of the data before and after imputation, for 𝐾𝐾 =

1, … ,10. We also calculated the silhouette coefficient that measures how similar cells are to cells 

from the same cell type compared to other cell types. Note that SAVER was unable to finish 

imputation within 24 hr on this dataset and thus was not shown. In Figure 2, G2S3 had the highest 

inter/intra-subtype distance ratio, and VIPER was the second best. Both methods performed better 

than the raw unimputed data, while MAGIC, scImpute, and DCA performed worse than the raw 
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data. G2S3 also achieved the highest silhouette coefficient among all imputation methods for all 

𝐾𝐾. These results suggest that G2S3 greatly improved the separation between different cell types 

and achieved the best performance than the other imputation methods. 

To demonstrate the comparison using cell clustering results, we generated PC plots in which 

cells were colored to represent the seven cell subtypes in the original dataset. Figures 3 and S2 

showed that the imputed data by G2S3 generated better separation of all cell subtypes except H1 

and H9 cells than the raw unimputed data. Given that both H1 and H9 are undifferentiated human 

ES cell lines, it is expected that separating them is more difficult due to the relative homogeneity 

of human ES cells compared to the progenitors. In contrast, the other imputation methods did not 

have comparable improvement or even reduced the separation of different cell types. Specifically, 

DE cells were mixed with EC and TB cells in the raw dataset and were not separated from the 

other cell subtypes by all methods except G2S3. MAGIC was only able to separate EC, H1 and 

HF cells from each other and the rest of the cell subtypes. scImpute tended to mix different cell 

types into one cluster. VIPER increased the within-subtype variation and resulted in artificially 

more heterogeneous cell-type clusters. DCA was only able to separate H1/H9 and HF cells from 

the rest. 

Figure S3 demonstrated the expression of two cell subtype marker genes GATA6, a marker 

gene of DE cells, and NANOG, a marker gene of H1/H9 cells [21] across all cells. We can see that 

G2S3 provided the best separation between H1/H9 cells, DE cells and other cell subtypes. 

Specifically, while neither the raw data nor the other imputation methods showed a clear separation 

between DE and NP cells, G2S3 successfully separated these two cell subtypes both from each 

other and from the other cell subtypes. In addition, the imputed data by VIPER still had a large 

proportion of dropout events. DCA separated H1/H9 cell lines from the rest of the progenitor cells 
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but had EC and TB cells marginally overlapped. These results suggest that G2S3 had the best 

performance in restoring the separation of different cell types, preserving biological meaningful 

variations, and reducing technical noises. 

In the Petropoulos dataset, cells from different embryonic days (E3-E7) were considered as 

different cell types. We used t-distributed stochastic neighbor embedding (t-SNE) visualization to 

evaluate the separation between cell types. Given the performance advantage of G2S3 and MAGIC 

over the other methods in the Chu dataset, we only compared the performance of G2S3 and 

MAGIC in this dataset. The results showed that cells from stages E6 and E7 were mixed and 

inseparable via cell clustering using the Louvain algorithm [25,26] in the raw data (Figure 4A). 

After imputation by G2S3, these two stages of cells were separated as two clusters and the 

segregation of cells from different embryonic days was also generally improved (Figure 4B). In 

contrast, the imputed data by MAGIC resulted in tight clusters of cells that correspond to different 

subjects rather than biologically meaningful cell types (Figure 4C). This is likely because MAGIC 

powers up the Markov matrix built on the cell-to-cell affinity matrix, rendering cells within each 

subject more similar to each other. 

 

Improvement in differential expression analysis 

One common analytical task for scRNA-seq studies is to identify genes differentially expressed 

between cells from two groups of subjects or two cell types. In this section, we evaluated and 

compared the improvement in downstream differential expression analysis before and after 

imputation by the six methods using the Segerstolpe dataset. Besides the scRNA-seq data, this 

dataset also provides bulk RNA-seq data on the same seven samples. We performed differential 

expression analysis between four T2D patients and three healthy donors using both scRNA-seq 
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and bulk RNA-seq data. The differentially expressed genes identified from the bulk RNA-seq data 

were treated as ground truth. We assessed the predictive power of the scRNA-seq data imputed by 

different methods on the ground truth using receiver operating characteristic (ROC) curves. Genes 

were stratified into highly expressed (expressed in more than 30% cells, n=7,459) and lowly 

expressed groups (expressed in less than 30% cells, n=1,551) to examine the impact of expression 

level on the performance. Note that VIPER was unable to finish imputation within 24 hr and thus 

was not shown. Figure 5 demonstrated that for highly expressed genes all imputation methods did 

not improve the differential analysis results except MAGIC. One possible explanation, as was 

noticed in previous studies [10,12], is that MAGIC tends to overly smooth the data, making the 

imputed data artificially resemble the bulk RNA-seq data. For lowly expressed genes, all 

imputation methods improved the differential analysis results over the raw data. Among all 

methods, G2S3 achieved the highest area under the curve (AUC) using both the t-test and 

Wilcoxon test. SAVER obtained high AUC on the lowly expressed genes only in the Wilcoxon 

test results. DCA had the lowest AUC in both tests. MAGIC failed to detect any differentially 

expressed genes in the lowly expressed group using the scRNA-seq data. In summary, G2S3 

achieved the best improvement in differential expression analysis, especially for lowly expressed 

genes. 

 

Gene regulatory relationship recovery 

To compare the method performance in recovering gene regulatory relationships, we examined 

the pairwise correlation between well-known transcription factors in the development of blood 

cells using the Paul dataset. The pairwise correlations between key regulators of the transcriptional 

differentiation of megakaryocyte/erythrocyte progenitors and granulocyte/macrophage 
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progenitors in the raw data and the imputed data by each method were used for performance 

evaluation. Based on previous studies [27–29], inhibitory and activatory gene pairs were defined, 

among which inhibitory pairs were expected to have negative correlation while activatory pairs 

were expected to have positive correlation. The mutually inhibitory pairs of genes include Fli1 vs. 

Klf1, Egr1 vs. Gfi1, Cepbpa vs. Gata1, and Sfpi1 vs. Gata1; and the mutually activatory pairs 

include Sfpi1 vs. Cebpa, Zfpm1 vs. Gata1, Klf1 vs. Gata1. Results in Figure 6A showed that the 

pairwise correlations were enhanced after imputation in the correct direction [24]. Specifically, 

G2S3 showed the greatest enhancement of the regulatory relationship for both inhibitory and 

activatory pairs. DCA enhanced more on the activatory pairs with positive correlations, scImpute 

did not have comparable enhancement, and MAGIC performed worse than the raw data with again 

a pattern of over-smoothing. We further examined the correlation enhancement of each method by 

plotting a set of representative inhibitory and activatory gene pairs. The gene pair Sfpi1 and Gata1 

were used as an example of a mutually inhibitory relationship (Figure 6B). For this pair, scImpute 

did not improve the correlations. MAGIC and DCA tended to over-impute to the extent that only 

one gene was expressed in the same cell after imputation. This is against the observation from the 

raw data and previous literatures that the higher expression of one gene, the lower, rather than 

completely shutting off, the expression of the other. The imputed data by G2S3 showed a 

negatively correlated curve where the expression level of one gene decreased with the increase of 

the other. Another example with an activatory pair was plotted using Zfpm1 and Gata1 (Figure 

6C). The positive correlation was reasonably enhanced by G2S3. For MAGIC, the plot of Zfpm1 

and Gata1 formed a nearly straight diagonal line, suggesting that the imputed data was over-

smoothed such that the cell-level biological variation was attenuated. 
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Computation time 

While SAVER has comparable performance to G2S3 in some datasets, G2S3 is 

computationally more efficient than SAVER. As both methods are based on gene networks, the 

computation time is expected to increase with the number of genes to be imputed. This makes gene 

network-based methods more suitable for scRNA-seq datasets with tens or even hundreds of 

thousands of cells than those based on cell similarity. In real data analysis, G2S3 was on average 

about six times faster than SAVER. For example, G2S3 took 11.25 hr to impute 22,934 genes from 

1,529 cells in the Petropoulos dataset using an 8-core, 100-GB RAM, Intel Xeon 2.6 GHz CPU 

machine, whereas SAVER was unable to finish imputation within 48 hr even with the option of 

do.fast using the same computer. On the other hand, the computation time of the imputation 

methods that borrow information from similar cells increases dramatically with the number of cells 

in the data. As demonstrated in a previous study, scImpute and VIPER were unable to scale beyond 

10K cells within 24 hr [16]. 

 

Discussion 

We have developed a novel method G2S3 to impute dropouts in scRNA-seq data. G2S3 learns 

a sparse and smooth signals of gene graph from scRNA-seq data and then borrows information 

from nearby genes in the graph for imputation. We evaluated and compared the performance of 

G2S3 and five existing imputation methods in terms of recovering expression levels, restoring cell 

subtype separation, improving differential expression analysis, and restoring gene regulatory 

relationships using seven scRNA-seq datasets. The results demonstrated that G2S3 achieved 

superior performance in all four aspects compared to the other methods, especially for genes with 
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relatively low expression. Furthermore, G2S3 is the most computationally efficient for large-scale 

scRNA-seq data imputation. 

Unlike the imputation methods that borrow information across similar cells, G2S3 harnesses 

the structural relationship among genes obtained through graph signal processing to perform 

imputation. Using the seven real datasets, we showed that methods relying on cell similarity tend 

to remove biological variation among cells and intensify subject-level batch effects. In contrast, 

G2S3 enhances cell subtype separation and thus relatively reduces the variations in cells from the 

same cell type and subject. The down-sampling and differential expression analysis results showed 

that G2S3 outperformed the other methods, especially for the mildly expressed genes. Of note, 

imputation methods such as SAVER, scImpute, and VIPER, used parametric models for gene 

expression. However, as the noise distribution varies across platforms for single-cell 

transcriptomics, the parametric model assumptions may be violated, particularly for new 

technologies. Graph signal processing extracts signals from data by optimizing a smoothness 

regulated objective function, thus is in principle less sensitive to the noise distribution. 

Despite the advantages of G2S3 over the other imputation methods shown in this article, G2S3 

has a number of limitations that can be improved upon. First, G2S3 uses a lazy random walk on 

the gene graph to recover dropout events, i.e., a weighted average of the observed expression and 

the predicted expression from neighboring genes. The weights currently depend only on between 

gene similarity which can be improved to reflect the reliability of observed read counts, the cell 

library size, and the dispersion of gene expression, similar to the weights used in SAVER. Second, 

G2S3 does not consider the dropout probability and therefore imputes all values at once. This can 

be improved by calculating the probability of being a dropout for each observed read count and 

only apply imputation on those with a high dropout probability. Finally, G2S3 does not consider 
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the potential subject effects in the data, which has been shown to be prevalent and dominant in 

certain cell types. One way to address this issue is to consider subject effect as “batch” effect and 

remove it using batch effect removal tools. This is effective only when there are no other effects 

of interest, for example, disease effect, because they will also be removed with “batch” effect. 

When there are other effects that confound with subject effect and are the interest of study, G2S3 

can be improved to consider subject effect and disease effect at the same time in imputation. 

 

Conclusions 

In this study, we developed G2S3, an imputation method that applies graph signal processing 

to extract gene graph structure from scRNA-seq data and recover true expression levels by 

borrowing information from adjacent genes in the gene graph. G2S3 was shown to be an effective 

tool to improve the quality of single-cell transcriptomic data. Moreover, G2S3 is computationally 

efficient for imputation in large-scale scRNA-seq datasets. 

 

Methods 

Imputation model and optimization 

To borrow information from similar genes for data imputation, G2S3 first builds a sparse graph 

representation of gene network under the assumption that expression levels change smoothly 

between closely connected genes. Let 𝑋𝑋 = [𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑚𝑚] ∈ ℝ𝑛𝑛×𝑚𝑚 denote the observed transcript 

counts of 𝑚𝑚 genes in 𝑛𝑛 cells, where the column 𝑥𝑥𝑗𝑗 ∈ ℝ𝑛𝑛 represents the expression vector of gene 

𝑗𝑗, for 𝑗𝑗 = 1, … ,𝑚𝑚. We regard each gene 𝑗𝑗 as a vertex 𝑉𝑉𝑗𝑗 in a weighted gene graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), in 

which the edge between genes 𝑗𝑗 and 𝑘𝑘 is associated with a weight 𝑊𝑊𝑗𝑗𝑗𝑗. 
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The gene graph is then determined by the weighted adjacency matrix 𝑊𝑊 ∈ ℝ+
𝑚𝑚×𝑚𝑚 . G2S3 

searches for a valid adjacency matrix 𝑊𝑊 from the space 

𝒲𝒲 = {𝑊𝑊 ∈ ℝ+
𝑚𝑚×𝑚𝑚:   𝑊𝑊 = 𝑊𝑊𝑇𝑇 , diag(𝑊𝑊) = 0} 

that is optimal under the assumption of smoothness and sparsity on the graph. To achieve this, we 

use the objective function adapted from Kalofolias’s model [30]: 

min
𝑊𝑊∈𝒲𝒲

   ‖𝑊𝑊 ∘ 𝑍𝑍‖1,1 − 1𝑇𝑇 log(𝑊𝑊1) +
1
2
‖𝑊𝑊‖𝐹𝐹2 ,                                           (1) 

where 𝑍𝑍 ∈ ℝ+
𝑚𝑚×𝑚𝑚 is the pairwise Euclidean distance matrix of genes, defined as 𝑍𝑍𝑗𝑗𝑗𝑗 = �𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑗𝑗�

2
, 

‖⋅‖1,1 is the elementwise L-1 norm, ∘ is the Hadamard product, and ‖⋅‖𝐹𝐹 is the Frobenius norm. 

The first term in Eq. (1) is equivalent to 2 tr(𝑋𝑋𝑇𝑇𝑋𝑋) that quantifies how smooth the signals are on 

the graph, where 𝐿𝐿 is the graph Laplacian. This term penalizes edges between distant genes, so it 

prefers to put a sparse set of edges between the nodes with a small distance in 𝑍𝑍. The second term 

in Eq. (1) represents the node degree which requires the degree of each gene to be positive to 

improve the overall connectivity of the gene graph. The third term in Eq. (1) controls sparsity to 

penalize the formation of large edges between genes. 

The optimization of Eq. (1) can be solved via primal dual techniques [31]. We rewrite Eq. (1) 

as 

min
𝑤𝑤∈𝜔𝜔

   1{𝑤𝑤≥0} + 2𝑤𝑤𝑇𝑇𝑧𝑧 − 1𝑇𝑇 log(𝑑𝑑) + ‖𝑤𝑤‖2, where 𝜔𝜔 = �𝑤𝑤 ∈ ℝ+
𝑚𝑚(𝑚𝑚−1)/2�, 

where 𝑤𝑤  and 𝑧𝑧  are vector forms of 𝑊𝑊  and 𝑍𝑍 , respectively, 𝑑𝑑 = 𝐾𝐾𝑤𝑤 ∈ ℝ𝑚𝑚  and 𝐾𝐾  is the linear 

operator that satisfies 𝑊𝑊1 = 𝐾𝐾𝑤𝑤. After obtaining the optimal 𝑊𝑊, a lazy random walk matrix can 

be constructed on the graph: 

𝑀𝑀 = (𝐷𝐷−1𝑊𝑊 + 𝐼𝐼)/2, 
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where 𝐷𝐷 is an 𝑚𝑚-dimensional diagonal matrix with 𝐷𝐷𝑗𝑗𝑗𝑗 = ∑ 𝑊𝑊𝑗𝑗𝑗𝑗𝑗𝑗 , the degree of the 𝑗𝑗-th gene, and 

𝐼𝐼 is the identity matrix. 

The imputed count matrix 𝑋𝑋imputed is then obtained by taking one step of a random walk on 

the graph which can be written as 

𝑋𝑋imputed = 𝑋𝑋𝑀𝑀𝑇𝑇 . 

Similar to other diffusion-based methods, G2S3 spreads out counts while keeping the sum constant 

in the random walk step. This results in the average value of non-zero matrix entry decreasing after 

imputation. To match the observed expression at the gene level, we rescale the values in 𝑋𝑋imputed 

so that the mean expression of each gene in the imputed data matches that of the observed data. 

The pseudo-code for G2S3 is given in Algorithm 1. 

 

 

Real datasets 

We evaluated and compared the performance of G2S3 and five existing imputation methods 

using datasets from seven scRNA-seq studies. Among them, four datasets were generated using 

the UMI techniques and three were generated by non-UMI-based techniques. 
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Reyfman refers to the scRNA-seq dataset of human lung tissue from healthy transplant donors 

in Reyfman et al. [18]. The raw data include 33,694 genes and 5,437 cells. To generate the 

reference dataset, we selected cells with a total number of UMIs greater than 10,000 and genes 

that have nonzero expression in more than 20% of cells. This ended up with 3,918 genes and 2,457 

cells. 

PBMC refers to human peripheral blood mononuclear cells from a healthy donor stained with 

TotalSeq-B antibodies generated by the high-throughput droplet-based system [19]. This dataset 

was downloaded from 10x Genomics website (https://support.10xgenomics.com/single-cell-gene-

expression/datasets). The raw data include 33,538 genes and 7,865 cells. To generate the reference 

dataset, we selected cells with a total number of UMIs greater than 5,000 and genes that have 

nonzero expression in more than 20% of cells. This ended up with 2,308 genes and 2,081 cells. 

Zeisel refers to the scRNA-seq dataset of mouse cortex and hippocampus in Zeisel et al. [20]. 

The raw data include 19,972 genes and 3,005 cells. To generate the reference dataset, we selected 

cells with a total number of UMIs greater than 10,000 and genes that have nonzero expression in 

more than 40% of cells. This ended up with 3,529 genes and 1,800 cells. 

Chu refers to the dataset investigating the separation of cell subpopulations in Chu et al. [21]. 

It measured gene expression of 1,018 cells including undifferentiated H1 and H9 human ES cell 

lines and the H1-derived progenitors. The cells were annotated with seven cell subtypes: neuronal 

progenitor cells (NP), definitive endoderm cells (DE), endothelial cells (EC), trophoblast-like cells 

(TB), human foreskin fibroblasts (HF), and undifferentiated H1 and H9 human ES cells. We 

performed preliminary filtering to remove genes expressed in less than 10% of cells, which 

resulted in 13,829 genes. 
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Petropoulos refers to the dataset studying cell lineage in human embryo development in 

Petropoulos et al. [22]. It measured expression profiles of 26,178 genes in 1,529 cells from 88 

human embryos. Cells were labeled as E3-E7 representing their embryonic day. We performed 

preliminary filtering to remove genes expressed in less than 5 cells and cells with less than 200 

expressed genes. After the filtering, we ended up with 22,934 genes and 1,529 cells. 

Segerstolpe refers to the dataset in Segerstolpe et al. [23]. The original dataset includes 26,179 

genes and 3,514 cells from whole islets of ten subjects, among which four are T2D patients and 

six are healthy donors. Samples from the four T2D patients and three healthy donors were also 

processed for bulk RNA-seq. We used the seven subjects with both scRNA-seq and bulk RNA-

seq data to evaluate the method performance in improving differential expression analysis. We 

performed preliminary filtering to remove genes expressed in less than 20% of cells, which 

resulted in 9,010 genes. 

Paul refers to the dataset from a study on the transcriptional differentiation landscape of 

myeloid progenitors [24]. This dataset includes 3,451 informative genes and 2,730 cells. We used 

this dataset to evaluate the performance of imputation methods in restoring gene regulatory 

relationships between well-known regulators. 

 

Performance evaluation 

Expression data recovery 

We first compared the method performance in recovering true expression levels using down-

sampled datasets. Down-sampling was performed on three independent UMI-based scRNA-seq 

datasets (Reyfman, PBMC, and Zeisel) to generate benchmarking datasets in a similar framework 

to previous studies [13,16]. In each dataset, we selected a subset of genes and cells with high 
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expression to be used as the reference dataset and treated them as the true expression. Details on 

the thresholds chosen to generate the reference datasets are described in the “Real datasets” section. 

However, unlike previous studies that simulated down-sampled datasets from models with certain 

distributional assumptions [13] which may incur modeling bias, we performed random binary 

masking of UMIs in the reference datasets to mimic the inefficient capturing of transcripts in 

dropout events. The binary masking process masked out each UMI independently with a given 

probability. In each reference dataset, we randomly masked out 80% of UMIs to create the down-

sampled dataset. 

All imputation methods were applied to each down-sampled dataset to generate imputed data 

separately. Because imputation methods such as SAVER and MAGIC output the normalized 

library size values, we performed library size normalization on all imputation methods. We 

calculated the gene-wise Pearson correlation and cell-wise Spearman correlation between the 

reference data and the imputed data generated by each imputation method. The correlations were 

also calculated between the reference data and the observed data without imputation to provide a 

baseline for comparison. To investigate whether the performance depends on the true expression 

level, we stratified genes into three categories: widely, mildly, and rarely expressed genes, based 

on the proportion of cells expressing genes in the down-sampled datasets. Specifically, widely 

expressed genes are those with non-zero expression in more than 80% of cells, rarely expressed 

genes are those with non-zero expression in less than 30% of cells, and mildly expressed genes are 

those that lie in between. The gene-wise and cell-wise correlations in each stratum were used to 

demonstrate the impact of expression level on the performance of imputation methods. 

Restoration of cell subtype separation 
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We applied the six imputation methods to the Chu dataset to evaluate their performance in 

separating different cell types. Methods that took more than 24 hr to finish imputation were 

excluded. A good imputation method is expected to stabilize within cell-subtype variation (intra-

subtype distance) while maintaining between cell-subtype variation (inter-subtype distance). 

Principal component analysis was conducted on the raw and imputed data for dimension reduction. 

We calculated the inter-subtype distance as the Euclidian distance between cells from different 

cell types, and the intra-subtype distance as the distance between cells of the same cell type, using 

the top 𝐾𝐾 PCs of the data, for 𝐾𝐾 = 1, … ,10. The ratio of the average inter-subtype distance to the 

average intra-subtype distance was used to quantify the performance. The higher this ratio is, the 

better performance the method has. We also calculated the silhouette coefficient, a composite 

index reflecting both the compactness and separation of different cell types, using the top 𝐾𝐾 PCs. 

The silhouette coefficient ranges from -1 to 1 where a higher value indicates a better matching 

with the cell subtypes and a value close to zero indicates random clustering [32]. To demonstrate 

the comparison using cell clustering results, we visualized the raw and imputed data using the top 

three PCs and colored cells by the cell subtype labels. To demonstrate cell subtype separation 

based on cell subtype marker genes, we further displayed DE and H1/H9 cells using their marker 

genes [21]: GATA6, a marker gene of DE cells, and NANOG, a marker gene of H1/H9 cells. 

We then assessed the performance of G2S3 and MAGIC in restoring the separation of cells 

from human preimplantation embryos of different embryonic days in the Petropoulos dataset. 

Since cell developmental time is the primary segregating factor for cells [21], a good imputation 

method is expected to restore the separation of cells from different embryonic days instead of from 

different subjects. Cells were clustered using the Louvain algorithm [25] in the observed and 

imputed data by G2S3 and MAGIC. The performance was evaluated based on data visualization 
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using t-SNE plots with cells colored by the detected cell clusters, the embryonic days, and the 

individual origins. 

Improvement in differential expression analysis 

To assess the performance in improving the identification of differentially expressed genes, 

we compared T2D patients to healthy donors using both imputed scRNA-seq and bulk RNA-seq 

data from the Segerstolpe dataset. Differential analysis in the bulk RNA-seq data was performed 

using t-test and Wilcoxon rank sum test, and the differential analysis in the scRNA-seq data was 

performed using the Seurat R package (version 3.0) with a default threshold on genes with at least 

0.25 log fold change. We treated the differentially expressed genes identified from the bulk RNA-

seq data as ground truth. The predictive power of differentially expressed genes identified in the 

raw and imputed scRNA-seq data on the ground truth was measured by the area under an ROC 

curve. Genes were stratified into two groups: highly expressed (expressed in more than 30% of 

cells) and lowly expressed (expressed in less than 30% cells), to demonstrate the impact of 

expression level on the method performance. 

Gene regulatory relationship restoration 

We finally evaluated the method performance by investigating the enhancement in the 

discovery of gene regulatory relationships using the Paul dataset. This was achieved by assessing 

the pairwise correlations among a set of regulators with known inhibitory and activatory 

relationships in blood development [15]. The estimated pairwise correlations between genes using 

the raw unimputed and imputed data by each method were compared for performance evaluation. 

Methods that took more than 24 hr to finish imputation were excluded from the results. 

 

Abbreviations 
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scRNA-seq: Single-cell RNA sequencing 

UMI: Unique Molecular Identifier 

PBMC: Peripheral Blood Mononuclear Cell 

ES: Embryonic Stem 

T2D: Type II Diabetes 

PC: Principal Component 

t-SNE: t-Distributed Stochastic Neighbor Embedding 

ROC: Receiver Operating Characteristic 

AUC: Area Under the Curve 
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Figure legends 
 
Figure 1. Performance of imputation methods measured by correlation with reference data in three 
down-sampled datasets, on the gene level (left) and cell level (right). Box plots show the median 
(center line), interquartile range (hinges), and 1.5 times the interquartile (whiskers), outlier data 
beyond this range are not shown. 
 
Figure 2. Average inter/intra-subtype distance ratio (top) and silhouette coefficient (bottom) to 
demonstrate cell subtype separation using the top 𝐾𝐾 principal components of the raw unimputed 
and imputed data by each method in the Chu dataset. 
 
Figure 3. PC plots (PC1 vs. PC3) of the raw unimputed and imputed data by each method in the 
Chu dataset. Cells are colored by the cell subtype labels. 
 
Figure 4. Cell clustering and t-SNE visualization of the Petropoulos dataset on human embryo 
stem cells from different embryonic days. A) t-SNE visualization of the raw data, B) t-SNE 
visualization of the imputed data by G2S3, and C) t-SNE visualization of the imputed data by 
MAGIC. In each panel, cells were colored by cluster ID detected via the Louvain clustering 
algorithm (left), cell embryonic day (middle), and subject ID (right). 
 
Figure 5. ROC curves of differential analysis results of the scRNA-seq data predicting 
differentially expressed genes identified from the bulk RNA-seq data in the Segerstolpe dataset. 
Genes are stratified into two groups: highly expressed (left) and lowly expressed (right). 
 
Figure 6. Performance of imputation methods in recovering gene regulatory relationship in the 
Paul dataset. A) heatmaps of pairwise correlations between well-known blood regulators, B) 
expression patterns of mutually inhibitory pair (Sfpi1 vs. Gata1), and C) expression patterns of 
mutually activatory pair (Zfpm1 vs. Gata1).
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Table 1. Detailed information on the seven scRNA-seq datasets used to compare the performance of imputation methods 

Experiment 
Category Dataset # Cells Sample Type Organism Technique UMI Accession 

Expression data 
recovery 

Reyfman [18] 5,437 Lung tissue Homo Sapiens Drop-seq 
 Yes GEO (GSE122960) 

PBMC [19] 7,865 Peripheral blood 
mononuclear cells Homo Sapiens Drop-seq  Yes 10x Genomics* 

Zeisel [20] 3,005 Brain tissue Mus Musculus Drop-seq  Yes Zeisel et al. 

Cell subtype 
separation 

Chu [21] 1,018 Embryonic stem cells Homo Sapiens Fluidigm C1 No GEO (GSE75748) 

Petropoulos [22] 1,529 Preimplantation 
embryos Homo Sapiens Smart-seq2 No Petropoulos et al. 

Differential 
gene 

identification 
Segerstolpe [23] 3,514 Whole islets Homo Sapiens Smart-seq2 No Segerstolpe et al. 

Gene regulatory 
relationship 

recovery 
Paul [24] 2,730 Bone marrow myeloid 

progenitor Mus Musculus MARS-seq Yes Paul et al. 

* URL to access the dataset: https://support.10xgenomics.com/single-cell-gene-expression/datasets 
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