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ABSTRACT

Recent technological advances and international efforts, such as The Cancer Genome Atlas
(TCGA), have made available several pan-cancer datasets encompassing multiple omics layers
with detailed clinical information in large collection of samples. The need has thus arisen for
the development of computational methods aimed at improving cancer subtyping and biomarker
identification from multi-modal data. Here we apply the Integrative Network Fusion (INF) pipeline,
which combines multiple omics layers exploiting Similarity Network Fusion (SNF) within a machine
learning predictive framework. INF includes a feature ranking scheme (rSNF) on SNF-integrated
features, used by a classifier over juxtaposed multi-omics features (juXT). In particular, we
show instances of INF implementing Random Forest (RF) and linear Support Vector Machine
(LSVM) as the classifier, and two baseline RF and LSVM models are also trained on juXT. A
compact RF model, called rSNFi, trained on the intersection of top-ranked biomarkers from the
two approaches juXT and rSNF is finally derived. All the classifiers are run in a 10x5-fold cross-
validation schema to warrant reproducibility, following the guidelines for an unbiased Data Analysis
Plan by the US FDA-led initiatives MAQC/SEQC. INF is demonstrated on four classification tasks
on three multi-modal TCGA oncogenomics datasets. Gene expression, protein abundances
and copy number variants are used to predict estrogen receptor status (BRCA-ER, N=381) and
breast invasive carcinoma subtypes (BRCA-subtypes, N=305), while gene expression, miRNA
expression and methylation data is used as predictor layers for acute myeloid leukemia and renal
clear cell carcinoma survival (AML-OS, N=157; KIRC-OS, N=181). In test, INF achieved similar
Matthews Correlation Coefficient (MCC) values and 97% to 83% smaller feature sizes (FS),
compared with juXT for BRCA-ER (MCC: 0.83 vs 0.80; FS: 56 vs 1801) and BRCA-subtypes
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(0.84 vs 0.80; 302 vs 1801), improving KIRC-OS performance (0.38 vs 0.31; 111 vs 2319).
INF predictions are generally more accurate in test than one-dimensional omics models, with
smaller signatures too, where transcriptomics consistently play the leading role. Overall, the
INF framework effectively integrates multiple data levels in oncogenomics classification tasks,
improving over the performance of single layers alone and naive juxtaposition, and provides
compact signature sizes1.

Keywords: multi-omics, classification, network, oncogenomics, predictive modeling

1 INTRODUCTION

The challenge of integrating multi-omics data is as old as bioinformatics itself (1, 2), but, despite the wide
literature, it remains an open issue nowadays, even worth being funded by major institutions2.

Our study introduces Integrative Network Fusion (INF), a reproducible network-based framework for
high-throughput omics data integration that leverages machine learning models to extract multi-omics
predictive biomarkers. Originally conceptualized and tested on multi-omics metagenomics data in an early
preliminary version (3, 4), INF combines the signatures retrieved from both the early-integration approach
of variable juxtaposition (juXT) and an intermediate-integration approach (SNF (5)), to find the optimal set
of predictive features. In particular, first a set of top-ranked features is extracted by juXT by a classifier,
here Random Forest (RF) and linear Support Vector Machine (LSVM). Then, a feature ranking scheme
(rSNF) is computed on SNF-integrated features and finally a RF model (rSNFi) is trained on the intersection
of two set of top-ranked features from juXT and rSNF, obtaining an approach that effectively integrates
multiple omics layers and provides compact predictive signatures. Selection bias and data-leakage effects
are controlled by performing the experiments within a rigorous Data Analysis Plan (DAP) to warrant
reproducibility, following the guidelines of the US FDA-led initiatives MAQC/SEQC (6, 7, 8). In particular,
to alleviate the computational burden of the full DAP pipeline, an approximating DAP is designed to
lighten computing without significantly affecting the results. Further, experiments are run on samples with
randomly shuffled labels as a sanity check versus overfitting effects and, finally, INF robustness is verified
by testing on different train/test splits.

We test INF on three datasets retrieved from the TCGA repository, to predict either the estrogen receptor
status (ER) or the cancer subtype on the breast invasive carcinoma (BRCA) dataset, and to predict the
overall survival (OS) on the kidney renal clear cell carcinoma (KIRC) and acute myeloid leukemia (AML)
datasets. Overall, INF improves over the performance of single layers and naive juxtaposition on all four
oncogenomics tasks, extracting a biologically meaningful compact set of predictive biomarkers. Notably,
the transcriptomics layer is prevalent inside the inferred INF signatures, consistently with published
findings (9).

The INF framework is currently designed to integrate an arbitrary number of one-dimensional omics
layers. We plan to further extend the framework by enabling the integration of histopathological features
extracted from whole slide images (10) or deep features from radiological images (11) extracted by deep
neural network architectures, carefully addressing all potential caveats (12).

1 INF source code is publicly available on the GitLab repository https://gitlab.fbk.eu/MPBA/INF, while data is archived at http://dx.doi.
org/10.6084/m9.figshare.12052995.v1
2 European Call Multi-omics for genotype-phenotype associations (RIA) https://ec.europa.eu/info/funding-tenders/opportunities/
portal/screen/opportunities/topic-details/biotec-07-2020
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Dataset-task #samples layers (#features)
BRCA-ER 381 gene (17814), cnv (18050), prot (142)BRCA-subtypes 305
AML-OS 157 gene (10265), meth (2500), mirna (352)
KIRC-OS 181 gene (10265), meth (2500), mirna (484)
Synthetic-ST 380 layer1 (100), layer2 (50), layer3 (250)

Table 1. Data summary. BRCA: breast invasive carcinoma; AML: acute myeloid leukemia; KIRC: kidney
renal clear cell carcinoma; gene: gene expression; cnv: copy number variants; prot: protein abundance;
meth: methylation; mirna: microRNA expression; ER: estrogen receptor; subtypes: breast cancer subtypes;
OS: overall survival; ST: synthetic target.

To further foster reproducibility and support users and future developers, the full code of this benchmark
is publicly shared on the GitLab repository https://gitlab.fbk.eu/MPBA/INF. Additional
information is included in the Supplementary Material available on the publisher’s website, while the
full set of experimental data can be accessed at http://dx.doi.org/10.6084/m9.figshare.
12052995.v1.

2 MATERIALS AND METHODS

2.1 Data

Three multi-modal cancer datasets generated by The Cancer Genome Atlas (TCGA) Research Network
(https://www.cancer.gov/tcga) and four classification tasks are considered in this study. Protein
abundance (prot), gene expression (gene) and copy number variants (cnv) are used to predict breast invasive
carcinoma (BRCA) estrogen receptor status (0: negative; 1: positive) and subtypes (luminal A, luminal B,
basal-like, HER2-enriched). Methylation (meth), gene expression (gene) and microRNA expression (mirna)
are used to predict acute myeloid leukemia (AML) and kidney renal clear cell carcinoma (KIRC) overall
survival (0: alive; 1: deceased). The number of samples and features for each omic layer and classification
task are detailed in Table 1; class balance, split by dataset, is reported in Table 2.

For AML and KIRC, gene expression is profiled using the Illumina HiSeq2000 and quantified as log2-
transformed RSEM normalized counts; miRNA mature strand expression is profiled using the Illumina
Genome Analyzer and quantified as reads per million miRNA mapped; and methylation is assessed by
Illumina Human Methylation 450K and expressed as beta values. For BRCA, gene expression is profiled
with Agilent 244K custom gene expression microarrays; protein abundance is assessed by reverse phase
protein arrays; copy number profiles are measured using Affymetrix Genome-Wide Human SNP Array 6.0

Dataset-task labels (#samples)
BRCA-ER Negative (95), Positive (286)
BRCA-subtypes LuminalA (170), LuminalB (102), Basal-like (81), HER2-enriched (48)
AML-OS Dead (101), Alive (56)
KIRC-OS Dead (133), Alive (48)

Table 2. Class balance. BRCA: breast invasive carcinoma; AML: acute myeloid leukemia; KIRC: kidney
renal clear cell carcinoma; ER: estrogen receptor; subtypes: breast cancer subtypes; OS: overall survival.
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Layer # features # informative features Multiplicative factor Class separation Random state
Layer 1 100 10 default 1.0 1
Layer 2 50 5 default 1.2 2
Layer 3 250 25 10 0.8 3

Table 3. Synthetic data summary for each simulated layer. Multiplicative factor, class separation,
and random state refer to the parameters scale, class sep, and random state of the
make classification function in scikit-learn.

platform, copy number variants are segmented by the TCGA Firehose pipeline using GISTIC2 method,
and then mapped to genes.

The original data is publicly accessible on the National Cancer Institute GDC Data Portal
(https://portal.gdc.cancer.gov/) and the Broad GDAC Firehose (https://gdac.
broadinstitute.org/), where further details on data generation can be found. The data was retrieved
in December, 2019 and January, 2020 using the RTCGA R library (13).

Furthermore, the INF pipeline has been tested on a synthetic dataset with 380 observations in two
classes (70% class 1 and 30% class 2, defining the synthetic target ST), 3 pseudo-omics layers, and 400
features (layer 1: 100; layer 2: 50; layer 3: 250). The dataset is generated in-house using scikit-learn’s
make classification function with the arguments shuffle=False and flip y=0. The number
of informative features and the difficulty of the task were set on a per-layer basis, as summarized in Table 3.

2.2 In silico workflow

The INF pipeline integrates two or more omics layers, e.g. gene expression, protein abundance,
or methylation, in a machine learning framework for improved patient classification and biomarker
identification in cancer. The core consists of three main components, structured as in Figure 1, managing
the integration of the omics layers and their predictive modeling. A baseline integration method (juXT) is
first considered by training a Random Forest (RF) (14) or a linear Support Vector Machine (LSVM) (15)
classifier on juxtaposed multi-omics data, ranking features by ANOVA F-value. Secondly, the multi-omics
features are integrated by Similarity Network Fusion (SNF) (5), a method that computes a sample similarity
network for each data type and fuses them into one network. INF introduces a novel feature ranking scheme
(rSNF) that sorts multi-omics features according to their contribution to the SNF-fused network structure. A
RF or LSVM classifier is trained on the juxtaposed multi-omics data, ranking features by rSNF. A compact
RF model (rSNFi) is finally trained on the juxtaposed dataset restricted on the intersection of top-ranked
biomarkers from juXT and rSNF.

2.3 Omics integration

In a comparative review of scientific literature, SNF (5) emerged as one of the most reliable alternatives to
simple juxtaposition-based integration. SNF is a non-Bayesian network-based method that can be divided
into two main steps: the first step builds a sample-similarity network for each omics dataset, where nodes
represent samples and edges encode a scaled exponential Euclidean distance kernel computed on each pair
of samples; the second step implements a nonlinear combination of these networks into a single similarity
network through an iterative procedure. The multi-omics datasets are first converted into graphs, and
for each graph two matrices are computed: a patient pairwise similarity matrix (“status matrix”), and a
matrix with similarity of each patient to the K most similar patients, through K-nearest neighbors (“local
affinity matrix”). At each iteration, the status matrix is updated through the local affinity matrix, generating
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Figure 1. Graphical representation of the INF workflow for N omics datasets with K phenotypes. A first
RF or LSVM classifier is trained on the juxtaposed data, ranking features by ANOVA F-value (juXT). The
two data sets are then integrated by Similarity Network Fusion, the features are ranked by rSNF and a RF
or LSVM model is developed on the juxtaposed dataset with the rSNF feature ranking (rSNF). Finally, a
RF or LSVM classifier is trained on the juxtaposed dataset restricted to the intersection of juXT and rSNF
top discriminant feature lists (rSNFi). The classifier is either RF or LSVM throughout the INF workflow.
All the predictive models are developed within the DAP described in the methods.

two parallel interchanging processes. The status matrices are finally fused together into a single network.
Spectral clustering is performed on the fused network, in order to identify sub-communities of samples,
potentially reflecting phenotypes. The clustering performance is evaluated with respect to a ground truth,
i.e., the real phenotype each sample belongs to, by the Normalized Mutual Information (NMI) score. SNF
integrates multiple omics datasets into a single comprehensive network in the space of samples rather than
measurements (e.g., gene expression values).

This work proposes multi-omics integration as an approach to identify robust biomarkers of samples
phenotypes or cancer subtypes (e.g., survival status vs breast cancer subtyping); consequently, it is
necessary to extract measurements information from the SNF-fused network of samples. To this aim,
we extended SNF by implementing rSNF (ranked SNF), a feature-ranking scheme based on SNF-fused
network clustering. In detail, a patient network Wi is built for each feature fi, based on fi alone, and
spectral clustering is performed on it. Then, NMI score is computed comparing the samples clusters found
inside Wi with those in the fused network; the higher the score, the more similar the clustering between the
fused network and Wi. Thus, each feature fi is associated to a consistency score, ranking all multi-omics
features with respect to their relative contribution to the whole network structure.
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Figure 2. Data splitting procedure. To avoid information leakage due to the use of the same data both
for feature selection and model training, we considered different train and test sets according to the
integration scheme. In particular, each data set is split into three non-overlapping partitions (TR/TS/TS2),
corresponding to the 50%/30%/20% of the entire data set, respectively. The TR/TS/TS2 partitions preserve
the original proportion of patient phenotypes. Predictive models for juXT and rSNF are trained on TR and
validated on TS, while for rSNFi the train set is TS (with features restricted to the intersected biomarkers
of juXT and rSNF) and TS2 the test set.

The entire procedure of similarity networks inference and fusion relies on two hyperparameters: α, the
scaling variance in the scaled exponential similarity kernel used for similarity networks construction, and
K, the number of nearest neighbors in sparse kernel and scaled exponential similarity kernel construction.
While the original method (5) assigned fixed values to α and K, in this study the optimal hyperparameters
are chosen among the grids αgrid = {0.3, 0.35, 0.4, 0.45, . . . , 0.8} and Kgrid = {i ∈ N, 10 ≤ i ≤ 30} in a
10×5-fold cross-validation schema.

2.4 Predictive profiling

To ensure the reproducibility of results and limit overfitting, the development of classification models is
performed inside a Data Analysis Plan (DAP), following the guidelines derived by the U.S. Food and Drug
Administration MAQC/SEQC studies (6, 16). Data is split in a training set (TR) and two non-overlapping
test sets (TS, TS2), preserving the original proportion of patient phenotypes (classes). The TR/TS/TS2
partitions are 50%/30%/20% of the entire data set, respectively. The data splitting procedure is repeated 10
times so to obtain 10 different TR/TS/TS2 splits. Predictive models are trained and developed on TR and
TS for juXT and rSNF; in the case of rSNFi, the models are trained and developed on TS and TS2 to avoid
information leakage due to using the same data both for feature selection and model training (see Figure 2).

For each split, Random Forest (RF) or linear kernel Support Vector Machine (LSVM) classifiers are
trained on the training partition within a stratified 10×5-fold cross-validation (10×5-CV). The model
performance is assessed in terms of average Matthews Correlation Coefficient (MCC) (17, 18), which
is generally regarded as a balanced measure of accuracy and precision that can be used both in binary
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and multiclass problems (19, 20) and even when classes are imbalanced (21). MCC lies in [−1, 1], with 1
meaning perfect prediction, -1 inverse prediction and 0 random guess. For binary classification tasks, MCC
is calculated on true and predicted labels considering true positive (TP), true negative (TN), false positive
(FP) and false negative (FN) values, as in the following:

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

At each CV round, features are ranked either by ANOVA F-value (for juXT, rSNFi) or by the rSNF
ranking (see Section 2.3) and different classification models are trained for increasing numbers of ranked
features, namely 5%, 10%, 25%, 50%, 75%, and 100% of the total features. A unified list of top-ranked
features is then obtained by Borda aggregation of all the ranked CV lists (22, 23). The best model is
later retrained on the whole training set restricted to the features yielding the maximum MCC in CV, and
validated on the test partition. A global list of top-ranked features is derived for juXT, rSNF, and rSNFi by
Borda aggregation of the Borda lists of each TR/TS split (Borda of Bordas, “BoB”). The signatures for
juXT, rSNF, and rSNFi are defined by the top N features of the corresponding BoB lists, with N being the
median size of top features across all experiments.

In the “full” version of the DAP (fDAP), described above, the rSNF ranking is performed at each CV
round on the training portion of the data. Since this procedure is quite demanding in terms of computational
time, even if parallelized (≈ 9 feature/min), we devised an “accelerated” version of the DAP (aDAP), where
the rSNF ranking is precomputed on the whole TR data and used as is at each CV round. We assessed
the fDAP vs aDAP performance on the synthetic dataset as well as BRCA-ER and BRCA-subtypes by
comparing the overall metrics and measuring the dissimilarity of the rSNF BoB of the two DAPs by the
Canberra distance (22).

RF models are trained using 500 trees, measuring the quality of a split as mean decrease in the
Gini impurity index (14); the regularization parameter C of LSVM models is tuned over the grid
Cgrid={10i, i ∈ N,−2 ≤ i ≤ 3} within a 10× stratified Monte Carlo cross-validation (50%
training/validation proportion).

To ensure that the predictive profiling procedure is not affected by selection bias, the whole INF workflow,
including the rSNF procedure, is also repeated after randomly scrambling the training set labels (“random
labels” mode): in the absence of systematic bias, MCC is expected to be close to the random guess value of
zero.

2.5 Implementation

The complete INF pipeline is implemented through the workflow management tool Snakemake (24, 25),
which allows automatic handling of all dependencies required to generate the INF output. The pipeline
operates on N omics input files, one for each layer that should be integrated, and a single file describing the
patient labels. The omics files are tab-separated text matrices with patients on the rows and features on the
columns, with row and column identifiers. The label file is a single column file with patient phenotypes,
with no header. This input structure, with one file per omic layer and a label file, simplifies the downstream
analysis and reduces to a minimum the preprocessing burden for the end user.

The predictive profiling module, including the DAP, is written in Python 3.6 on top of NumPy (26)
and scikit-learn methods (27). The ranked SNF (rSNF) procedure is implemented in R (28) leveraging
the original R scripts provided by SNF authors (5), extended by a dedicated script for SNF tuning and a
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main script for SNF analysis and the post-SNF feature selection procedure, which is parallelized over the
features for efficiency using the foreach R library.

All the INF code is available on the GitLab repository https://gitlab.fbk.eu/MPBA/INF.

2.6 Computational details

The INF computations were run on the FBK Linux high-performance computing facility KORE, on a
8-core i7 3.4 GHz Linux workstation, and on a 72-vCPU 2.7 GHz Platinum Intel Xeon 8168 Microsoft
Azure cloud machine (F72s v2 series).

3 RESULTS

The INF workflow was run on all tasks considering 3-layer integration and all 2-layer combinations; the
DAP was also run separately on all single-layer datasets in order to obtain a baseline. All results presented
here refer to experiments performed with RF classifier. Experiments using LSVM were performed on
BRCA-ER and KIRC-OS obtaining similar classification performances, top features and layer contributions
(Supplementary Material tables BRCA-ER LSVM, KIRC-OS LSVM). The classifier performance for 3-layer
integration is summarized in Table 4, in terms of average cross-validation MCC on the 10 training set splits
(MCC cv) with 95% Studentized bootstrap confidence intervals (CI) as (MCC min, MCC max), average
MCC on the 10 test set splits (MCC ts) with CI, and median number of features (Nf) yielding MCC cv.
The classifier performance on single-layer and 2-layer data is summarized in Figure 3.

A comparison between the “accelerated” flavour of the DAP (aDAP) and the full DAP (fDAP) was run
on synthetic data, BRCA-ER and BRCA-subtypes data, with aDAP yielding similar performance metrics
and top-ranked biomarker lists as fDAP (Supplementary Material tables Synthetic RF, BRCA RF fDAP,
canberra distances), while being ≈ 30× faster (for BRCA-ER, approx. 2h vs 64h, or 300 features/min
vs 9 features/min). All the results presented here were thus obtained using aDAP. Moreover, the INF
workflow running in “random labels” mode achieved an average cross-validation MCC ≈ 0, as expected by
a procedure unaffected by systematic bias.

Task Method MCC cv (CI) MCC ts (CI) Nf

BRCA-ER
juXT 0.785 (0.776, 0.795) 0.797 (0.778, 0.819) 1801
rSNF 0.792 (0.782, 0.801) 0.804 (0.779, 0.830) 1801

rSNFi 0.820 (0.808, 0.831) 0.830 (0.803, 0.857) 55.5

BRCA-subtypes
juXT 0.778 (0.771, 0.785) 0.795 (0.771, 0.817) 1801
rSNF 0.769 (0.762, 0.777) 0.811 (0.787, 0.835) 1801

rSNFi 0.788 (0.778, 0.798) 0.838 (0.794, 0.879) 301.5

KIRC-OS
juXT 0.266 (0.243, 0.289) 0.305 (0.229, 0.382) 2319
rSNF 0.253 (0.230, 0.276) 0.274 (0.189, 0.348) 3313

rSNFi 0.268 (0.239, 0.298) 0.378 (0.288, 0.464) 111

AML-OS
juXT 0.141 (0.120, 0.163) 0.223 (0.146, 0.307) 6559
rSNF 0.180 (0.157, 0.202) 0.263 (0.175, 0.366) 656

rSNFi 0.274 (0.245, 0.301) 0.176 (0.068, 0.278) 91.5

Table 4. Summarized best predictive performances for each classification task using RF model and three
omics layers. CI: 95% bootstrap confidence interval; MCC cv: best average MCC in cross-validation on
training set splits; MCC ts: average MCC on validation set splits; Nf: median number of features leading
to MCC cv. Bold indicates best performance (highest MCC and smallest signature size).
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Figure 3. Overview of Random Forest classification performance (MCC, Matthews Correlation
Coefficient) on the four tasks in cross validation (“CV”) and test (“ts”), on single-layer (blue shades) and on
all two-layer combinations for juXT (orange), rSNF (red) and rSNFi (green). Bars indicate 95% confidence
intervals. On top of each CV-ts pair is the median number of features leading to best CV performance.

Overall, integrating multiple omics layers with INF yields better or comparable classification performance
than using only features from a single layer or naı̈ve omics juxtaposition, at the same time with much more
compact signature sizes. On 3-layer BRCA-subtypes and 2- or 3-layer KIRC-OS, INF outperforms the
single layers, as well as juXT and rSNF (Figure 3, Table 4). On 2-layer BRCA-subtypes, INF performance
on gene-cnv and gene-prot is comparable to the best-performing single-layer data (gene) and superior
to cnv and prot single layers, while INF on cnv-prot only improves over the cnv single layer. On the
BRCA-ER task, the performance with INF integration of 2 or 3 layers is still better than using single
layers, nevertheless to a smaller extent, except for cnv-prot integration which performs better than cnv
alone but slightly worse than gene and prot single layers. On the more difficult AML-OS task, INF has
better performance over both rSNF and juXT on gene-mirna and meth-mirna integration, still improving
over single-layer performance both in terms of MCC and reduced signature sizes.

One or multi-omics layers vs juXT/rSNF/rSNFi. For BRCA-ER, three-layer INF (rSNFi) integration
performs better than either rSNF or juXT (MCC test 0.830 vs 0.804, 0.797 for rSNF and juXT, respectively).
All two-layer INF integrations perform similarly to, or better than, the corresponding rSNF and juXT
integrations, in particular for cnv-prot integration (MCC test 0.746 vs 0.682, 0.692 resp. for rSNF and
juXT).

On BRCA-subtypes, the 3-layer INF integration performs better than either rSNF or juXT (MCC test
0.838 vs 0.811, 0.795 resp. for rSNF and juXT), nevertheless without improving over the gene single-layer
performance (MCC test 0.821). However, the INF median signature size is only 301.5, compared to
1801 for rSNF and juXT, and 891 for the gene layer alone. All two-layer INF integrations yield better
performance than their corresponding juXT or rSNF integrations.
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Omics integration is particularly effective for KIRC-OS, as all 2- and 3-layer INF integrations outperform
juXT, rSNF, and each of the single-layer classifiers. In fact, 3-layer rSNFi achieves MCC test 0.378 vs
0.274, 0.305 (resp. for juXT, rSNF), 0.296, 0.327, 0.333 (resp. rSNFi meth-mirna, gene-mirna, gene-meth),
and 0.253, 0.261, 0.249 (resp. gene, meth, mirna).

For AML-OS, INF feature sets are always more compact than either juXT or rSNF, with three-layer
integration giving better MCC than any of the INF two-layer integrations (MCC test 0.176 vs 0.125, 0.169,
0.047, respectively three-layer vs meth-mirna, gene-mirna, gene-meth). Moreover, cross-validation MCCs
corresponding to INF integration are better than any single layer MCC as well as rSNF and juXT.

Characterization of the signatures identified by INF. For all tasks, INF signatures are markedly more
compact with respect to both juXT and rSNF. With 91.5 vs 6559 (1.4%) median features (rSNFi vs juXT),
the largest reduction in size occurs for AML-OS 3-layer integration, while the least reduction is observed
for BRCA-subtypes task, with 301.5 vs 1801 (16.7%) median features (rSNFi vs juXT).

In terms of contributions from the omics datasets being integrated, the gene layer generally provides the
largest number of features to the signatures identified by the INF workflow. In particular for the BRCA
dataset, in both ER and subtypes tasks, the gene layer contributes over 95% of the top features for juXT
and rSNFi, with rSNF signatures being slightly more balanced (prot contribution remains marginal, while
cnv provides 28.3% and 17.7% of the top features in ER and subtypes tasks respectively). In AML-OS
experiments, the layer contributing the most is still gene, accounting for ca. 78%, 73% and 81% of the top
feature sets for RF juXT, rSNF and rSNFi experiments, respectively. In KIRC-OS experiments, gene is
the layer contributing the most to the top juXT and rSNF feature sets, while meth is the major contributor
for rSNFi. The percentage of features from each omic layer contributing to the top signatures for juXT,
rSNF and rSNFi 3-layer integrations are reported in Supplementary Material table layer contribution. The
RF rSNFi signatures for all tasks are available in Supplementary Material tables BRCA-ER RF rSNFi,
BRCA-subtypes RF rSNFi, AML-OS RF rSNFi and KIRC-OS RF rSNFi.

Even though a systematic biological interpretation of the signatures identified is beyond the scope of
this work, to ascertain the reliability of our results we compared them with published data. The top
features in the BRCA-ER rSNFi signature include multiple genes known to be associated with breast
carcinoma progression and outcome such as AGR3, B3GNT and MLPH (29, 30, 31). In addition we find
the estrogen receptor gene (ESR1 from the gene and ER-alpha from the prot layer) and the transcription
factor GATA3 (from both gene and prot layers) (32). Both the BRCA-ER and BRCA-subtypes signatures
include genes previously identified as novel biomarkers for intrinsic breast carcinoma subtype prediction
(33). Interestingly there is only partial overlap between the top features identified in BRCA ER vs subtypes
tasks. Considering AML-OS task, it is noteworthy to mention that the top feature identified has been
recently reported as a potential biomarker predicting overall survival in a subset of AML patients (34).

Within the mirna features of the AML-OS signature, MIR-203 expression was recently found to be
associated with AML patient survival (35); MIR-100 is highly expressed in AML and was found to regulate
cell differentiation and survival (36); high expression of miR-504-3p was reported to be associated with
favorable AML prognosis (37). Given that the rSNFi signature identified in the KIRC-OS task contains
a large percentage of methylation data (86.5%), its direct interpretation is more difficult. It is however
interesting to observe that all the 15 gene features in the signature are identified as prognostic markers for
renal carcinoma according to the Human Protein Atlas (38).

Unsupervised analysis. The features selected by juXT, rSNF and rSNFi are projected on a bi-dimensional
space using the UMAP unsupervised multidimensional projection method (39, 40). Here we show an
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(a) (b)

Figure 4. UMAP projection on the BRCA-subtypes task with 3-layer juxtaposed data (a) and restricted to
the rSNFi signature (b). Circle: TR set; triangle: TS set; diamond: TS2 set.

example on the BRCA-subtypes 3-layer dataset, with a UMAP projection of the features selected by juXT
(Figure 4(a)) compared to the UMAP projection of the INF signature (Figure 4(b)) for one of the 10 data
splits (the UMAP plots for the remaining 9 splits are in Supplementary Material figures S1, S2). Colors
represent cancer subtypes and shapes represent training/test partitions. Using the 1801 juXT features,
cancer subtypes are roughly clustered, with HER2-enriched and Luminal B being more dispersed (Figure
4(a). The clusters appear to be more sharply defined in the projection of the 302-feature INF signature: in
particular, Basal-like patients form a distinct cluster, while Luminal A, Luminal B and HER2-enriched
patient clusters are close to each other, slightly overlapping yet hinting to a trajectory pattern (Figure 4(b)).
The HER2/luminal cluster contains two patients classified as basal-like subtype, consistently with the
findings of Koh and colleagues (41).

4 DISCUSSION

4.1 Background and related work

Ritchie and colleagues (42) defined omics data integration as the combination of multiple omics datasets
that can be used for the development of models to predict complex traits or phenotypes. The problem of
data integration in computational biology is far from having a consolidated and shared solution. Many
long-standing obstacles are still far from being overcome, and the increasing availability of data (e.g.,
TCGA, (43)) and computational tools (see for instance (44, 45, 46, 47, 48) and https://github.
com/mikelove/awesome-multi-omics), also interactive (e.g. (49)), is raising new issues that
need to be addressed. In fact, not only are existing datasets still lacking standardization protocols to
deal with their complexity and heterogeneity, but also the reliability, reproducibility and interpretability
of new computational methods are emerging as urgent and relevant questions (50). Moreover, modern
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technologies allow the rapid extraction of high-dimensional, high-throughput features from different
sources (e.g. gene expression, DNA sequencing, metabolomics, or high-resolution images), which in turn
require collaboration between biologists, computer scientists, physicians and other experts. The lack of
common methodologies and terminologies can transform this synergy into a further level of complexity
in the process of data integration (51). As observed in (52, 53), specific technological limits, noise levels
and variability ranges affect the different omics, and thus confounding the underlying biological signals,
yielding that really integrative analysis is still very rare, while different methods often discover different
kinds of patterns, as evidenced by the lack of consistency in the published results, although efforts in this
direction have started appearing (54, 55).

Indeed, the underlying hypothesis of multi-omics integration is that different omics data can provide
complementary information (53) (although sometimes redundant (9)), and thus a broader insight with
respect to single-layer analysis, for a better understanding of disease mechanisms (56). This assumption has
been confirmed by multiple studies on diverse diseases, such as cardiovascular disease (57), diabetes (58),
liver disease (59), or mitochondrial diseases (60), and also longitudinally (61), suggesting that the more
complex the disease the more advantageous the integration. As the co-occurence of multiple causes and
correlated events is a well-known characteristic of tumorigenesis and cancer development, the integration
of data generated from multiple sources can thus be particularly useful for the identification of cancer
hallmarks (62, 63, 64, 65).

Many computational strategies have been introduced that combine multiple types of data to identify novel
biomarkers and thus to predict a phenotype of interest or drive the development of intervention protocols.
Given the heterogeneity of data and tasks, these techniques deal with the data integration at different levels
of the learning process: (i) by concatenating the features before fitting a model (early-integration), (ii) by
incorporating the integration step into the model training (intermediate-integration), or (iii) by combining
the outputs of distinct models for the final prediction (late-integration) (66, 67).

In the early-integration approach, also known as juxtaposition-based, the multi-omics datasets are first
concatenated into one matrix. To deal with the high-dimensionality of the joint dataset, these methods
generally adopt matrix factorization (68, 53, 55, 52), statistical (46, 69, 70, 59, 57, 44, 71, 72, 73, 55), and
machine learning tools (74, 73, 55). Although the dimensionality reduction procedure is necessary and
may improve the predictive performance, it can also cause the loss of key information (66). Moreover,
biomarkers identified purely on a computational statistics rationale from meta-omics features often lack
biological plausibility (75).

In order to maximize the contribution of the single-omics layer, the late-integration methods first
model each dataset individually, and then merge or average the results; they are also known as model-
driven (76, 67). Although these techniques avoid the pre-selection of the features, they do not leverage the
hidden correlations between the data, posing again the risk of signal loss (77, 75).

The intermediate-integration strategies aim at developing a joint model that accounts for the correlation
between the omics layers, to boost their combined predictive power (78). Among these methods,
the network-based models refer to the reconstruction of a graph representing the complex biological
interactions (79, 73), known or predicted, between the variables to discover novel informative
relationships (80). They have successfully been applied in cancer research for the identification of pan-
cancer drug targets (81), the detection of subtype-specific pathways (82, 78) and of genetic aberrations (83),
or the stratification of cancer patients (84, 85, 86). In particular, Koh and colleagues (41) predicted breast
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cancer subtypes by applying a modified shrunken centroid method in the development of their network-
based tool, iOmicsPASS. Further, breast cancer datasets in TGCA represent a benchmark for integrative
models (87, 88, 89), as well as AML (90).

More recently, the success of deep learning algorithms in various bioinformatics fields (91) prompted
the adoption of deep neural network for omics-integration in precision oncology. Autoencoders
and convolutional neural networks have been effectively trained for the prediction of prognostic
outcomes (92, 9), response to chemotherapeutic drugs (47), and gene targeting (93), by adopting either an
early-integration (9, 93) or a late-integration (92, 47). Although deep learning models hold the potential
to include image-derived features in the integration workflow, they suffer from interpretability and
generalization issues (94).

Although it is clear that no single method is consistently preferable, and that most of the proposed
approaches are task and/or data dependent (75), the complexity of tumor analysis suggests that network-
based approaches are needed (82, 95).

In this context, it is clear that omics-integration is one of the most promising and demanding challenge of
the modern bioinformatics, and that there is an urgent need to prove the reproducibility, interpretability,
and generalization capability of the proposed methods (80, 96).

4.2 Integrative Network Fusion

We present the INF framework for the characterization of cancer patient phenotypes by integrated
multi-omics signatures, combining an improved version of a state-of-the-art integration technique (5) with
predictive models developed inside a Data Analysis Plan (6) for machine learning. The framework is
applied to TCGA data to predict clinically relevant patient phenotypes such as the overall survival or cancer
subtypes.

The simplest approach for multi-omics data integration consists in juxtaposition of normalized
measurements into one joint matrix, followed by the development of a predictive model. Juxtaposition-
based integration is considered as a baseline technique, since it is the most naı̈ve approach to combine two
datasets; moreover, it enables to identify multi-omics signatures by borrowing discriminatory strength from
information derived by all datasets. Juxtaposition further dilutes the already possible low signal-to-noise
ratio in each data type, affecting the understanding of the biological interactions at the different omics
levels.

Conversely, our INF method for omics data integration is an improvement of the popular Similarity
Network Fusion (SNF) approach (5), which has inspired several studies in the scientific literature,
specifically in cancer genomics (97, 98, 99, 100, 74, 82, 101). SNF maximizes the shared or correlated
information between multiple datasets by combining data through inference of a joint network-based model,
accounting for how informative each data type is to the observed similarity between samples.

Two innovative solutions have been implemented in this study: (i) we devised a SNF-based procedure
to rank variables according to their importance in clustering samples with similar phenotypes; and (ii)
predictive models were developed exploiting the SNF-ranked variables, inside a rigorous Data Analysis
Plan which ensures reproducibility (6, 16).

The performance of INF was assessed both in terms of statistical properties as well as biological interest.
Concerning the statistical aspect, INF was compared with predictive models developed on the juxtaposed
datasets (juXT technique), as well as on the single-layer datasets. With INF, smaller signature sizes were
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systematically derived to achieve comparable or even better performance both in cross-validation and in
test. This is an added value for INF, as biological validation of biomarkers can definitely benefit from
signatures of small size in terms of both costs and required time. This main achievement is mainly due to
the novel rSNF ranking, which increases the signal-to-noise ratio from the combined layers by prioritizing
the most discriminant biomarkers in terms of network mutual information. rSNF exploits two main SNF
advantages: integration of heterogeneous data and clustering of sample networks. The main peculiarity
of the SNF integrative procedure is its robustness to noise (5), because weak similarities among samples
(low-weight edges) disappear, except for low-weight edges supported by all networks, which are conserved
depending on how tightly connected their neighborhoods are across networks. Moreover, the rSNFi step
further increases the signal-to-noise ratio by training a predictive classifier on multi-omics juxtaposed data
restricted to the top-ranked biomarkers shared by juXT and rSNF models. The resulting signatures are
compact in size (up to 99% reduction w.r.t. juXT) while allowing predictive models to achieve equal or
better performance compared to naı̈ve juxtaposition or the single layers alone. While a comprehensive
evaluation of the biological meaning of the signatures identified through the INF framework is beyond the
scope of this work, we assessed their general validity with a thorough literature search. Our investigation
shows that the signatures identified through the INF framework include biological markers that are relevant
in the tasks under analysis and are consistent with previously published data. Further, as in (9), the largest
contribution in the biomarkers’ lists is provided by gene expression, while epigenomics, proteomics and
miRNA transcriptomics play a minor role.

A fair comparison of INF results with other integration methods is currently unfeasible due to the number
and variety of computational pipelines with dissimilar datasets, preprocessing methods, data analysis plans,
and performance metrics.

This work is based on the original R implementation of the SNF algorithm (5). However, we are aware
that Open Source implementations exist in other programming languages, in particular snfpy for Python
(102). In a future release of the INF workflow, we plan to migrate the SNF-related parts to snfpy or a similar
Python-based implementation, in order to drop the dependency on R and to potentially improve the overall
performance.

In its current version, the INF framework supports the integration of two or more one-dimensional omics
layers. As part of our future effort we will add support for the integration of medical imaging layers,
for example leveraging the extraction of histopathological features from whole slide images by deep
learning (10) or using radiomics or deep features from radiological images (11). In both cases, further
issues will emerge from the interactions between the omics and the non-omics data, needing particular care
in the integration (12).
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