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Abstract
Changes in the sequence of an organism’s genome, i.e. mutations, are the raw material of evolution1.

The frequency and location of mutations can be constrained by specific molecular mechanisms, such as
Diversity-generating retroelements (DGRs)2–4. DGRs introduce mutations in specific target genes, and
were characterized from several cultivated bacteria and bacteriophages2. Whilst a larger diversity of
DGR loci has been identified in genomic data from environmental samples,  i.e.  metagenomes, the
ecological role of these DGRs and their associated evolutionary drivers remain poorly understood5–7.
Here we built and analyzed an extensive dataset of >30,000 metagenome-derived DGRs, and determine
that  DGRs have a  single  evolutionary  origin  and a  universal  bias  towards  adenine  mutations.  We
further identified six major lineages of DGRs, each associated with a specific ecological niche defined
as a genome type, i.e. whether the DGR is encoded on a viral or cellular genome, a limited set of taxa
and environments, and a distinct type of target. Finally, we leverage read mapping and metagenomic
time series to demonstrate that DGRs are consistently and broadly active, and responsible for >10% of
all amino acid changes in some organisms at a conservative estimate. Overall, these results highlight
the strong constraints under which DGRs diversify and expand, and elucidate several distinct roles
these elements play in natural communities and in shaping microbial community structure and function
in our environment.

Introduction
Diversity-generating retroelements (DGRs) are genetic elements that can produce a large number of

mutations in a specific region of a target gene2,4. The first DGR identified induces hypervariation in a
structural  protein  responsible  for  host  recognition  and  attachment  of  bacteriophage  BPP-13.  Other
examples of DGRs were subsequently characterized, with the best-studied instances, in Legionella and
Treponema, targeting surface-displayed proteins8,9. All currently known DGRs seem to use the same
molecular  mechanism,  known  as  mutagenic  retrohoming,  to  generate  hypervariation  in  the  target
protein4,10,11. Mechanistically, a DGR requires three main components: a reverse transcriptase (RT); a
template  region (TR),  which in most  cases is  intergenic;  and a variable  region (VR), that  is  near-
identical to the TR and located within the coding sequence of the target protein. The DGR-encoded RT
uses  a  primary  TR  transcript  as  the  template  for  error-prone  reverse  transcription.  Our  current
understanding  is  that  DGR  RTs  are  strongly  promiscuous  at  template  adenines,  leading  to  the
incorporation of dATP, dGTP, and dCTP in roughly equal proportions to  the templated dTTP.  The
resulting sequence variant, i.e. TR-cDNA, is then integrated in the protein-coding gene, replacing the
original VR sequence, through a yet-undefined homing mechanism10,11.

Building on the handful of well-characterized DGRs, recent studies have sought to explore DGR
diversity  by  mining  genomic  data  for  DGR-like  RT genes  found  next  to  imperfect  repeats  with
mismatches  opposing  adenine  positions.  This  approach  was  successfully  applied  to  both  draft
genomes2,12 and metagenome assemblies5–7,13–17. Collectively, these studies identified ~1,500 DGRs, and
suggested that DGRs are present in diverse environments ranging from the human gut to deep-sea
sediments and terrestrial groundwater5,6,13. DGRs were also associated with a broad range of genomes
including uncultivated bacteria from the Candidate Phyla Radiation (CPR) and several archaea5,6. 

While DGRs are now broadly recognized as important diversification mechanisms in microbes, their
specific activity and role(s) across organisms and biomes remain elusive. Specifically, ecological and
evolutionary  drivers  of  targeted  hypermutation  are  currently  unknown due to  the  lack  of  a  global
contextualized map of DGRs. Similarly, predicting the potential role of individual DGRs is currently
challenging because the vast majority of putative targets are functionally uncharacterized. Therefore, it
remains  unclear  for  which  proteins,  functions,  organisms,  or  environments  this  type  of  targeted
hyperdiversification constitutes a selective advantage.
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Here  we  expand  the  set  of  known  DGRs  ~15-fold  by  extracting  31,007  DGRs  from  public
metagenomes and metatranscriptomes to obtain a holistic view of DGR diversity and their spatial and
temporal dynamics. We leverage this comprehensive collection to (i) evaluate the global ecology and
evolution of DGRs across viral  and cellular genomes, (ii)  characterize the functional diversity and
molecular  constraints  of  DGR  targets,  and  (iii)  infer  temporal  patterns  of  DGR  activity  across
organisms and biomes.  Taken together,  these analyses reveal how DGRs are frequently transferred
between genomes yet clearly restricted to specific ecological niches, within which they likely impact
both viral  and microbial  dynamics by consistently driving amino acid-level diversification of their
target domains.

Results
Large-scale metagenome mining uncovers an extensive diversity of DGRs

To identify candidate DGRs, we searched for reverse transcriptase (RT) genes found within 1kb of an
imperfect repeat,  and used phylogenetic placement and mismatch patterns to identify false-positive
detections  (see  Methods).  We  applied  this  approach  to  81,404  public  genomes  and  9,467  public
metagenomes to obtain a global view of DGR diversity (Supplementary Table 1).  In genomes, we
detected a total of 1,314 DGRs, comparable in number and diversity to those identified in previous
mining of genome databases2,6. By contrast, we detected 31,007 DGRs in public metagenomes, a ~15-
fold increase compared to the total number of DGRs previously reported5–7,13–17. Overall, DGRs were
detected from ≥1,500 bacterial and archaeal genera and ≥90 environment types (Supplementary Table
2, Supplementary Text).

In order to systematically explore this DGR diversity, we used average amino acid identity (AAI) to
group  RT sequences,  first  into  13,415  OTUs  (≥95% AAI),  then  into  1,318  clusters  (≥50% AAI,
Supplementary  Fig.  S1,  Supplementary  Tables  3  &  4).  Members  of  each  OTU  and  cluster  were
associated with consistent genome (i.e., viral vs cellular), taxa, and biome types, suggesting that these
groupings represent distinct DGR evolutionary units (Supplementary Text, Supplementary Fig. S2). To
evaluate global DGR diversity, a phylogenetic tree including a representative of each RT clusters was
built (Fig. 1A). DGRs formed a monophyletic clade separated from other types of RTs, such as introns
or retrons, supporting a single evolutionary origin for these elements2. Overall, 75% of clusters were
composed exclusively of metagenome-derived DGR sequences, and our survey alone represented an
almost 6-fold increase in DGR phylogenetic diversity (573%), highlighting the significant contribution
of metagenome and metatranscriptome assemblies to the exploration of DGR sequence space.

DGRs dispersion is strongly constrained and reflected in cohesive lineage partitioning
Mapping the genome type, taxonomy, and biome of each DGR cluster onto the tree suggested that the

global  DGR  diversity  could  be  divided  into  6  main  clades  (DGR  clades  1-6,  Fig.  1A  &  B,
Supplementary Text). Three clades (DGR clades 1, 4, and 6) are composed of DGRs identified almost
exclusively  in  viruses,  predominantly  phages  infecting  abundant  gut  bacteria  belonging  to  the
Firmicutes and  Bacteroidetes (DGR  clade  1),  or  Proteobacteria (DGR  clades  4  &  6,  Fig.  1B,
Supplementary Fig. S3, Supplementary Text). Clades 2 and 5 are almost entirely composed of cellular-
encoded DGRs, mostly from aquatic biomes, and either restricted to the Patescibacteria, referred to as
the  Candidate  Phyla  Radiation  (CPR,  DGR  clade  2),  or  affiliated  to  diverse  phyla  including
Proteobacteria and Bacteroidetes (DGR clade 5). Finally, clade 3 includes a nearly even mix of virus-
and cell-derived DGRs, mostly associated with  Proteobacteria and  Bacteroidetes. Across all clades,
alignments between template repeat (TR) and variable repeat (VR) overwhelmingly displayed ≥75% of
mismatches  facing adenine residues  in  the TR: after  manual  inspection of outliers (Supplementary
Text),  we identified only 7 clusters of seemingly genuine DGRs with <75% of mismatches facing
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adenine residues (Supplementary Fig. S4, Supplementary Table 4). This suggests that the mutation bias
towards  adenine  is  an  intrinsic  feature  of  DGR  RTs.  The  monophyly  in  the  RT  tree  and  near-
universality of the adenine mutation bias also suggests a single origin for all modern DGRs followed by
sporadic  transfers  across  organisms  and  biomes  leading  to  the  6  main  clades  observed  here
(Supplementary Text). 

Across  the 9,467 metagenomes we examined,  several  taxa  and biomes  were clearly enriched in
DGRs. DGRs were significantly more common (p-value <10-16) in members of the CPR, Firmicutes,
and  Flavobacteria-Bacteroidetes-Chlorobi (FCB)  groups  (Fig.  1C).  Similarly,  we  observed  a
significantly higher rate of DGR detection per genome in several environments, including human gut
microbiomes,  saline lakes,  landfills,  and groundwater reservoirs (Fig.  1D, Supplementary Fig.  S5).
Notably, a random forest classifier was able to predict with >75% accuracy whether a genome encodes
a DGR based simply on a 2-level biome classification (e.g. Host-Associated:Human gut) and a 2-level
taxonomic classification (e.g. Bacteria:Cyanobacteria). The prediction accuracy decreased when only
one of these two features was used, indicating that DGRs are associated with specific taxon-biome
combinations  (Fig.  1E).  Taken  together,  these  results  point  towards  a  long  and  complex  DGR
evolutionary history, with DGRs able to transfer between unrelated organisms, but only being selected
for and retained in specific niches as evidenced by their current uneven distribution across genomes
and biomes.

DGR targets are diverse but share a conserved organization
To gain insight into the potential  roles of identified DGRs, we next investigated the diversity of

36,611 putative DGR target genes present in genomes and metagenomes. As previously reported2, the
majority (68%) of these targets could not be functionally annotated when individually compared to
reference databases. However, de novo clustering revealed that most DGR targets (>92%) grouped into
24  protein  clusters  (PCs)  representing  just  four  broad  functional  classes  (see  below),  and  clearly
partitioned by genome type and DGR clade (Fig. 2A, Supplementary Table 5, Supplementary Text).

Analysis  of  functional  domains  and  residue  conservation  across  PCs  suggested  a  near-universal
modular organization. Targets were typically multi-domain proteins, with the VR region found at the C-
termini,  as  previously  reported2 (Fig.  2A).  While  these  C-terminal  regions  include  DGR-variable
residues, they were overall more conserved than the rest of the sequence across all PCs, likely due to
structural  constraints  associated  with  DGR-induced  hypervariation18,19 (Supplementary  Fig.  S6).
Accordingly,  whereas  a  range  of  folds  were  predicted  for  N-terminal  domains,  annotated  VR-
containing regions were systematically associated with C-type lectin (C-Lec) folds. Some rare VRs had
previously  been  tentatively  linked  to  Ig-like  folds2,  our  analysis  suggests  these  targets  instead
correspond to phage tail fibers containing Ig-like domain(s) next to an uncharacterized, non-Ig-like, VR
domain (Supplementary Fig. S7, Supplementary Text). Since novel variants of C-Lec fold domains are
still being discovered on a regular basis18,20, it is probable that other uncharacterized conserved domains
overlapping  VR  regions  represent  new  variants  of  the  C-Lec  fold  domain  family.  Based  on  the
distribution of corresponding target PCs, these novel C-Lec fold will most likely be associated with
novel viruses and uncultivated bacteria (CPR) and archaea (Supplementary Fig.  S8). The observed
modularity of target proteins also suggests that intragenic recombination may occur for DGR targets,
with the potential  to  fuse a  wide range of  independently folding domains  to  a  C-terminal  C-Lec-
encoding region to produce a chimeric target ready for mutagenesis.

DGR targets are primarily involved in virus-cell and cell-particle interactions
Given the near-universal modular organization of target proteins, putative functions were assigned

based on the presence of conserved domains or sequence features identified outside of the C-terminal
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VR region.  Viral  targets  from DGR Clades  1,  4,  and 6 were found to mostly represent  structural
proteins, i.e. would be displayed on the surface of the virion and likely involved in host interaction
(Fig. 2A). Since our knowledge of viral structural proteins is still partial21, target PCs currently lacking
a functional annotation but associated with the same DGR clades (e.g. PC_00007) likely represent
additional unknown structural proteins. Combined with the strong enrichment for viral-encoded DGRs
in the mammalian gut, this suggests that mechanisms of host resistance to phages in these environments
are skewed towards cell wall modification to circumvent host recognition and phage adsorption, which
would select for hypervariation of phage structural proteins22.  One notable exception was PC_00012,
which included targets with an atypical eukaryotic-like serine/threonine kinase (CotH-like domain).
While  these  kinase  domains  are  typically  located  distantly  from  the  VR,  structural  predictions
suggested both regions may be in close contact, perhaps directly interacting with each other, once the
protein is folded (Fig. 2B). Based on the known functions of eukaryotic-like serine/threonine kinases,
these DGRs may be associated with the manipulation of fundamental host cell signaling pathways such
as cell division, dormancy, or sporulation23.

For cellular targets, most PCs contained at least one N-terminal transmembrane domain or signal
peptide, along with different functional domains involved in carbohydrate binding and cell adhesion
(Fig. 2A & C, Supplementary Table 5). This suggests that most of these targets are membrane-anchored
proteins binding extracellular substrates, potentially including particle aggregates and other microbial
cells. Accordingly, metagenome-assembled genomes associated with the most prevalent of these targets
(PC_00001)  displayed  a  gene  content  and  functional  annotation  consistent  with  a  copiotrophic  or
particle-associated  lifestyle  (Supplementary  Text).  DGRs  with  PC_00001  targets  were  primarily
detected in aquatic environments (Supplementary Fig. S8), however the frequency of DGR detection
was highly variable between different aquatic biomes (Fig. 1, Supplementary Fig. S5). Taken together,
this suggests that the selective advantage provided by broad-scale particle binding, cell-cell attachment,
or surface adherence may vary between environments. For instance, in the open ocean, random binding
may not be advantageous as it could lead to elevated cell loss due to sinking particles24, which may
explain why DGRs are rarely detected in these samples (Fig. 1). Unlike most other cellular-encoded
targets, the ones encoded by CPRs in clade 2 and archaea in clade 5 do not typically include any
transmembrane or recognizable domain (Fig. 2C), as was previously reported5,6. Whether this is due to
functional  domains  not  being  readily  identified  in  these  divergent  genomes  or  to  these  proteins
representing genuine non-membrane-bound DGR targets remains to be investigated. Overall, the large
collection of targets identified in this study provides additional and strong evidence that DGRs are
primarily linked to cell-particle, cell-cell, and virus-cell interactions, and in some rare cases may be
involved in microbial cell regulation6.

DGRs are broadly active across organisms and biomes
Next, we evaluated population diversity for DGR loci across taxa and ecosystems. To that end, we

analyzed single nucleotide and amino acid variants for 6,901 DGRs with ≥10 kb genomic context and
≥20x coverage (see Methods). Overall, single-nucleotide variants (SNVs) could be detected for 70.1%
of the VR loci (Fig. 3A, Supplementary Fig. S9, Supplementary Text). When SNVs were detected, VR
loci were strongly enriched in non-synonymous SNVs, as estimated through pN/pS ratio (Fig. 3B):
while  non-target  genes  displayed  a  low  frequency  of  non-synonymous  SNVs  and  pN/pS  ratios
consistent with a purifying selection (i.e., <1), >80% of VR loci with ≥1 SNV(s) displayed pN/pS ratios
>1, indicating a strong enrichment in non-synonymous mutations.

Using  the  enrichment  in  non-synonymous  SNVs  as  marker  for  recent  DGR  activity,  we  next
compared different types of DGRs. For all DGR groups, 50-75% of DGRs showed signs of recent
activity (Fig. 3C). Viral-associated DGRs were linked to the highest activity level, while members of
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DGR clades 2 and 3 displayed a significantly lower-than-average activity level (Supplementary Fig.
S10).  However,  strong purifying selection that  would reduce population diversity  may mask DGR
activity in these single-sample variant analyses, with active DGRs having the potential to generate new
variants that would almost instantaneously be purged from the population and thus evade detection.

DGR activity drives frequent changes in target residues
Given widespread DGR activity, most VR loci can be expected to evolve under two antagonistic

forces:  DGR diversification  and purifying  selection.  The relationship  between these  forces  can  be
examined from time-series data so long as the adaptive value of different variants fluctuates over time
(Fig. 3D, Supplementary Fig. S11). Specifically, we hypothesized DGR diversification to lead to high
population diversity within each sample and changes in dominant allele between time points, while
purifying selection would reduce population diversity within each sample. For alternating phases of
diversification and purifying selection, we expect to observe a low population diversity within each
sample but changes in the dominant allele between samples (Supplementary Fig. S12).

To test this hypothesis and shed light on the balance between DGR diversification and purifying se-
lection in nature, we analyzed the subset of DGRs found across metagenomic time-series. We identified
130 longitudinal data sets containing 563 DGRs amenable to analysis, i.e. having ≥10kb genomic con-
text, with coverage ≥10x, and detected at ≥2 time-points, Supplementary Table 6). Overall, a majority
of predicted VR positions in these DGRs showed high diversity associated with frequent amino acid re-
placement, suggesting a high DGR activity overpowering purifying selection (Fig. 3E and Fig. 3F).
This pattern was consistent across natural biomes but absent for in vitro microbiomes, i.e.  laboratory
incubations. There, both the observed diversity and amino acid change frequency were much lower for
all types of DGRs, probably due to the population bottlenecks25,26, lack of various environmental stress,
and/or shorter time frames of these experiments (Fig. 3F). Overall, viral-encoded DGRs targeting struc-
tural proteins systematically displayed a higher rate of amino acid turnover than DGRs of the cellular-
encoded clades or “mixed” clade 3 from the same environment (Fig. 3F, Supplementary Fig. S13). Ex-
trapolating from the average mutation rates observed here,  we conservatively estimated that DGR-
driven  mutations  would  be  responsible  for  6-16% of  all  amino  acid  changes  in  an  average  viral
genome, even though DGRs target only ~0.1% of amino acid residues (see Supplementary text). Mean-
while, DGRs were identified in human gut samples from individuals following a 12-month weight-loss
program27, and in samples taken from infants during gut microbiome establishment28. DGR activity in
these ‘perturbed’ human gut microbiomes was thus compared to activity in ‘unperturbed’ human gut
microbiomes, obtained from adult HMP subjects with multiple visits29. Overall, DGR activity seemed
to be higher in perturbed vs non-perturbed human gut microbiomes, with a more pronounced increase
in activity for cellular-encoded clade 3 DGRs (Fig. 3F, Supplementary Fig. S14). Taken together, this
suggests that DGRs drive more steady changes in viral structural proteins through time compared to
non-structural or cellular targets, and some of the latter may be more associated with adaptation during
stress episodes. Whether this is due to a stronger control of DGR RT activity or a stronger selection ex-
erted outside of stress episodes on targets remains to be determined.

Conclusion
The  extensive  comparative  analysis  of  metagenome-derived  DGRs  presented  here  reveals

fundamental aspects of DGR biology as a key component of microbial and viral genome evolution. The
near-universal conservation of the adenine mutation bias and the C-Lec fold in target proteins suggests
that DGR RTs are mechanistically constrained in the type and location of mutations they can generate
and, reciprocally, that C-Lec folds have a seemingly unique ability to accommodate massive sequence
variation18.  The strong DGR enrichment observed in select biomes and taxa likely reflects specific
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ecological conditions and lifestyles for which hypermutation is advantageous. For instance, in human
gut microbiomes,  the combination of high resource availability  and frequent  infections by a broad
diversity of phages is expected to favor resistance through cell wall modification30, which would in turn
select  for  DGR-encoding  viruses.  Finally,  the  widespread  and  seemingly  constant  DGR  activity
suggests that these elements are mostly used to maintain a high population diversity at  target loci.
DGRs may thus represent a key mechanism by which viruses and cellular microorganisms modulate
adaptation and response patterns in an environment of constant and unpredictable change.
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Figures

Figure 1. Distribution of DGR diversity across organisms, biomes, and taxa. A. Phylogeny of DGR
and non-DGR reverse transcriptases (RT). RT protein sequences were first grouped into “RT clusters”,
and a representative for each cluster was included in the tree building process (see Methods). Branches
are colored according to the type of RT in the corresponding cluster. All nodes with support <50% were
collapsed.  From inside  to  outside,  the  outer  rings  display  the  consensus  genome type,  taxonomic
classification,  and  biome  of  each  RT  cluster.  CPR:  Candidate  Phyla  Radiation.  DPANN:
Diapherotrites,  Parvarchaeota,  Aenigmarchaeota,  Nanoarchaeota,  Nanohaloarchaeota.  FCB:
Flavobacteria,  Fibrobacteres,  Chlorobi,  Bacteroides.  PVC:  Planctomycetes,  Verrucomicrobia,
Chlamydiae.  Aq:  Aquatic.  Te:  Terrestrial.  En:  Engineered.  H-a:  Host-associated.  NA correspond to
cases for which the feature could not be estimated (see Supplementary Fig. S2). B. Distribution of each
feature at the RT OTU level across DGR clades. Colors used in the bar chart are identical to panel A,
and NA values were not included. C. Enrichment of DGR-encoding genomes across taxa. The total
number of  genomes observed across  metagenome assemblies  was calculated  based on single-copy
marker genes (see Methods), and an average frequency of DGR was derived from the entire dataset. A
frequency of DGR detection per genome was then calculated for each taxonomic group and compared
to the overall frequency to derive log2 enrichment ratios. All log2-ratios presented in the figure are
statistically  significant  (Chi-square  test  of  independence  corrected  p-value  <1E-10)  except  for  the
Cyanobacteria  group (p-value=0.21).  D. DGR enrichment  across biomes.  For  each biome,  a  linear
regression was computed between the estimated total number of genomes and the number of DGRs
detected in each metagenome (see Supplementary Fig. S5). The regression slope was then considered
as an estimation of the average number of DGR per genome and is displayed here with error bars
representing the standard error of the slope estimation. Cutoffs of 0.05 and 0.2 DGRs per genome are
highlighted with vertical dashed lines. For these calculations, viral and low complexity metagenomes
were excluded. E. Accuracy of random forest classifiers trained to predict whether an input genome
encodes a DGR. The features used as predictors are indicated on the y-axis, and all classifiers were
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trained and evaluated on the same dataset (see Methods). An interactive version of the tree is available
at http://itol.embl.de/tree/15713110928194161585007032.

Figure 2. Diversity and major types of DGR targets. A. Prevalence and sequence characteristics of
the most abundant DGR target protein clusters (PCs). The 24 PCs listed here represent >92% of all
identified  DGR  targets.  These  were  divided  into  four  major  types  (left  panel;  Target  proteins
highlighted with red stars). Characteristics of each PC are indicated to the right, including number of
associated DGR RT OTUs, relative proportion of viral-encoded vs cellular-encoded DGRs (“Genome
type”), distribution across DGR clades, detection of a C-Lec fold around the VR region, detection of a
conserved domain outside of the VR region, and relative position of the VR region within the target
sequence. The boxplot lower and upper hinges correspond to the first and third quartiles, respectively,
and the whiskers extend no further than ±1.5 times the interquartile range. B. Predicted structure of a
viral-encoded target sequence from PC_00012 displaying similarity to a eukaryotic-like kinase domain
(CotH). The structure is colored with a blue-red rainbow gradient from the N- to C-terminal end and
predicted variable residues in the VR (i.e. corresponding to TR adenines) are highlighted with grey
spheres. Because of the large size of the protein (2,284 aa), structure prediction was run on a subset of
the sequence from position 786 to 2,284, i.e. without the N-terminal region. The model quality was
assessed based on the TM-score estimated by I-TASSER (a TM-score >0.5 indicates a model with a
likely correct topology). C. Percentage of cellular targets with a predicted transmembrane domain (top)
or  one  or  more  functional  domain(s)  associated  with  cell  adhesion  and/or  carbohydrate  binding
identified  outside  of  the  VR  region  (bottom).  Target  sequences  are  divided  based  on  their  PC
membership into “membrane-bound” PCs or “other” PCs (see panel A).

9

305

310

315

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 2, 2020. ; https://doi.org/10.1101/2020.04.01.020958doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.01.020958
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3. Diversity patterns associated with DGR target loci. A. Proportion of genes with ≥1 SNV
observed (synonymous or non-synonymous), for both non-target genes within 10kb of a DGR RT (left),
and VR loci (right). “Low coverage” category includes cases in which the coverage of the VR region
was significantly lower than that of the surrounding genes, suggesting that the read recruitment may be
only partial, and the population diversity in the VR can not be reliably inferred (see Supplementary Fig.
S9). B. Distribution of pN/pS values for genes with ≥1 synonymous SNV, for both non-target genes and
VR loci. A dashed line indicates pN/pS=1. Boxplot lower and upper hinges correspond to the first and
third  quartiles,  whiskers  extend  no  further  than  ±1.5*Inter-quartile  range. C.  Proportion  of  DGRs
estimated  “active”  vs  “inactive”  based  on  an  enrichment  of  VR  loci  in  non-synonymous  SNVs
compared to surrounding genes, across different DGR classifications. Groups with a significantly lower
proportion of active sequences (Chi-squared test of independence) are highlighted with star symbols
(Bonferroni-corrected p-values: *<1E-03, **<1E-05, ***<1E-10). D. Schematic representation of the
two competing forces exerted on VR loci: purifying selection and DGR diversification. Three examples
of possible DGR activity levels are indicated in color, with the resulting observations across a time
series (“Sample_1” and “Sample_2”) summarized in the right column. E. Example of diversity and
changes  observed  for  one  DGR  target  across  two  time  series  datasets.  For  each  position,  the
corresponding amino acid is indicated in the main heatmap with its frequency within the population
indicated  in  color.  The  right  panel  indicates  the  category  of  the  position  based  on  within-sample
entropy, between-samples cosine distances, and number of amino acid changes in the time series (see
Supplementary  Text),  colored  as  in  panel  D.  The  top  panel  indicates  the  median  coverage  of  all
positions in each sample. For reference purposes, 10 random positions from the same protein outside of
the predicted VR are included. F. Distribution of VR positions into “activity” categories (see panel D)
across different biomes and clades. Cases with <50% of variable positions and <5% of amino acid
changes were considered as “low DGR activity” and colored in white. Only groups for which ≥10
DGRs were available are included.
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Supplementary Figures
Supplementary Figure S1: Size distribution of the 100 largest RT OTUs (top panel) and RT Clusters
(bottom panel). The bars are colored according to the presence/absence of reference sequences in the
corresponding OTU/Cluster. 

Supplementary Figure S2: Characteristics of DGR RT OTUs and Clusters. Each bar chart indicates the
consistency of one feature (taxonomic classification, biome, or genome type) across members of a
DGR RT OTU (A) or DGR RT Cluster (B). For OTUs with ≥2 members (i.e. non-singletons) with
inconsistent values for a feature, a majority rule was applied: if a majority of an OTU members had the
same value, this value was used for the OTU (“Mixed values: solved”). In case of tie (i.e. equal number
of members associated to different features), the OTU feature was considered as unknown (“Mixed
values:  irreconcilable”).  For  Clusters,  a  similar  approach was used with a 2/3rd majority  rule.  All
Clusters for which ≥ 2/3rd of the members had the same value were considered as “Consistent value”
and  the  value  was  assigned  to  the  cluster.  Cases  in  which  the  majority  value  in  the  cluster  was
associated with < 2/3rd of the members were considered as “Mixed values: irreconcilable”.

Supplementary Figure S3: Phylogeny of isolate and metagenome-binned genomes encoding one or
more DGRs and associated with human gut samples. Nodes with support <50 were collapsed, and
nodes with support ≥80 are noted with a black circle. For each genome, the different clades of DGRs
detected  in  the  genome  is  indicated  next  to  the  tree  as  a  colored  heatmap.  The  genome  relative
abundance is then indicated next to the heatmap: isolate genomes are highlighted with grey squares,
genome bins ranked as one of the 5 most abundant genomes within a metagenome are highlighted with
black squares.

Supplementary Figure S4: Examples of predicted DGRs with atypical (non-A) mutation bias. For each
DGR,  the  clade,  genome  type,  taxonomic  classification,  biome,  and  primary  target  affiliation  are
indicated  when available.  The genome maps are  colored  based on each predicted  CDS functional
annotation:  the  DGR reverse-transcriptase  in  red,  target  gene  in  green,  other  genes  in  blue,  and
“hypothetical protein” in grey.

Supplementary Figure S5: Link between estimated total number of genomes (x-axis) and number of
DGRs detected (y-axis) for metagenomes across different biomes. For each biome, a linear regression
line is indicated in color, with the 95% confidence interval outlined in gray. Zoomed plots are displayed
on the right panel, and the zoomed-in region is highlighted with a dashed black square on the full plot
on the left panel.

Supplementary Figure S6: Average residue conservation in predicted targets. A. Example of average
residue  conservation  in  35-residues  windows  along  the  multiple  alignment  of  PC_00008.  An
“extended” VR region (200 residues upstream and 20 residues downstream of the average predicted
VR region) is  highlighted in grey,  which corresponds to the variable residues and the surrounding
conserved domain. B. Distribution of residue conservation in “extended VR” and non-VR regions for
the 24 largest target clusters. All distribution were significantly different (Kolmogorov–Smirnov test p-
value <2E-16). The magnitude of the difference between VR and non-VR region is indicated through
Cohen’s d effect size (star symbols on the x-axis). All target PCs showed a higher average conservation
in VR compared to non-VR regions except for PC_00012, which is highlighted with a black circle. The
boxplot  lower  and  upper  hinges  correspond  to  the  first  and  third  quartiles,  respectively,  and  the
whiskers extend no further than ±1.5 times the interquartile range. 
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Supplementary  Figure  S7:  Phylogeny  and  domain  organization  of  target  sequences  clustered  in
PC_00003. Nodes with support <50 were collapsed, and nodes with support ≥80 are indicated with a
black circle. For each sequence or clade, a schematic of the domain organization is indicated to the
right of the tree, with a black line proportional to the sequence length, VR domains indicated with a red
circle,  and other domains indicated with colored rectangles. Monophyletic clades with a consistent
domain organization were collapsed. The two clades of sequences displaying an internal VR region
typically followed by one or several Ig-like folds in C-terminal are highlighted with a black dashed
square. Reference sequences identified in the “Ig1” and “Ig2” domains are noted with a star symbol
next to the sequence name.

Supplementary Figure S8: Taxonomic classification and biome of DGR OTUs associated with the 24
largest target PCs. The PCs are ordered according to the 4 main categories of targets, as on Fig. 2.
Target PCs for which the VR region was not identified as a putative C-Lec fold are highlighted in red.
The proportion of DGR OTUs associated with specific taxa (left)  or biomes (right) was calculated
independently for each target PC. White cells in the heatmap correspond to an absence of DGR for the
corresponding  taxa/biome  and  target  PC  combination.  CPR:  Candidate  Phyla  Radiation.  FCB:
Flavobacteria, Fibrobacteres, Chlorobi, Bacteroides.

Supplementary Figure S9: Read mapping and SNV calling on VR regions. A. Comparison of coverage
between VR regions and non-target genes for individual TR-VR pairs. Only cases with coverage ≥20x
are displayed, and both x- and y-axis are displayed as log10 scale. The 1-to-1 line is indicated in black.
A lower bound for a 95% confidence interval was calculated from the average coverage of non-target
genes from the same contig minus 2 standard deviations. If the VR coverage was below this cutoff, it
was considered as significantly lower than expected, the TR-VR was colored in blue in this plot, and
flagged as “low coverage” if no SNVs were detected in Fig. 3A. B. Comparison of SNV density for
individual VR regions obtained from Mpileup (x-axis) vs Freebayes (y-axis). A linear regression curve
is plotted in blue, and the associated equation is indicated on the plot (p-value <2e-16).

Supplementary Figure S10: Distribution of active-vs-inactive DGRs across genome type, clade, and
targets, for different ranges of coverage. Groups (i.e. DGRs of the same genome type, DGR clade, or
target)  with  a  significantly  lower  proportion  of  active  sequences  compared  to  the  average  of  the
corresponding coverage category (Chi-squared test of independence) are highlighted with star symbols
(Bonferroni-corrected p-values: *<1E-03, **<1E-05, ***<1E-10).

Supplementary  Figure  S11:  Schematic  of  the  different  categories  of  positions  defined  based  on
population diversity across time series. Each example represents an individual position observed across
5 samples. The population diversity in each sample is represented as a heatmap, and the two metrics
used to  define  the  DGR activity  categories  are  plotted  underneath,  either  for  each  sample  for  the
entropy, or between pairs of consecutive samples for the cosine similarity. 

Supplementary Figure S12: Examples of DGR target positions with changes in dominant amino acid
between samples and low diversity within sample (“Alternating” pattern in Fig. 3D). For each position
(y-axis), the corresponding amino acid is indicated in the main heatmap with its frequency within the
population indicated in color for each sample (x-axis). The right panel indicates the category of the
position based on within-sample entropy, between-samples cosine distances, and number of amino acid
changes in the time series (see Supplementary Text), colored as in Fig. 3D. The top panel indicates the
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median coverage of all positions in each sample. For reference purposes, 10 random positions from the
same protein but outside of the predicted VR are included in the heatmap. 

Supplementary  Figure  S13:  Percentage  of  positions  with  ≥1  change(s)  in  dominant  allele  among
positions considered as “Constant diversity” or “Alternating” for different types of DGR across major
biomes. For each biome, the percentage in “Viral structural – Clades 1/4/6” DGRs was compared to the
percentage in other DGR categories combined using a Chi-square test of independence. Groups with a
significantly  higher  proportion  of  positions  with  ≥1  change(s)  are  highlighted  with  star  symbols
(Bonferroni-corrected p-values: *<1E-03, **<1E-05, ***<1E-10). † Counts for DGRs associated with
viral structural proteins in temperate lakes are based on only 5 DGRs, while all other environments had
> 10 DGRs associated with viral structural proteins.

Supplementary Figure S14: Comparison of DGR activity between perturbed and non-perturbed human
microbiome  samples.  Left  panels  display  the  distribution  of  activity  categories  for  VR  positions
between perturbed and non-perturbed human gut microbiome DGRs. The conditions under which each
dataset was collected are indicated at the bottom of the figure. The right panel bar graph indicates the
number of observations (i.e. total number of DGRs covered in at least 2 time points across all subjects)
for each dataset.  Panel  A includes  all  relevant  DGRs, while  panel  B and C include only viral-  or
cellular-encoded  DGRs,  respectively.  Statistically  significant  comparisons  (Chi-square  of
independence) are highlighted with star symbols (Bonferroni-corrected p-values: *<1E-03, **<1E-05,
***<1E-10).

Supplementary Table

Supplementary  Table  1:  List  of  metagenomes  mined for  DGRs.  Metagenomes  are  associated  with
samples,  ecological  category,  sample  type,  and  publication  based  on information  from IMG31 and
Gold32. The number of genomes in each assembly was estimated based on single-copy marker genes,
while the ratio of bp in viral sequences among contigs of 10kb or more was derived from VirSorter
detection of viral contigs (see Methods). For laboratory incubations, the biome listed corresponds to the
biome of the original sample, when available.

Supplementary Table 2: List of DGRs detected in public genomes and metagenomes. For cases where
the mutation bias of a DGR was atypical (<75% A) while the average bias of the corresponding OTU
was typical (≥75% A), the DGR bias was replaced by the OTU one with the mention “(from OTU)”.
For OTUs with “unknown” genome type, a predicted one based on the taxonomy, biome, and target of
the corresponding OTU is indicated if available, noted with “(predicted)”. NA: information unknown
and not available.

Supplementary Table 3: List of DGR OTUs with annotation. When inconsistent, OTU-level annotation
was derived from a consensus annotation (majority rule) of OTU members (see Methods). This list
does not include the 655 RT OTUs that corresponded to non-DGR references included in the tree. NA:
information unknown and not available.

Supplementary Table 4: List of DGR clusters with annotation. Cluster-level annotation was derived
from a consensus annotation (2/3rd majority) of cluster members (see Methods). A list of the 7 clusters
of seemingly genuine DGRs with atypical mutation biases is provided in a separate tab. This list does
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not include the 175 RT clusters that corresponded to non-DGR references included in the tree. NA:
information unknown and not available.

Supplementary Table 5: List of predicted DGR targets with annotation. For VR region position, the best
hit  between  the  TR  and  the  target  sequence  was  considered.  NA:  information  unknown  and  not
available.

Supplementary Table 6: List of longitudinal datasets used in the time-series analyses. These datasets
were previously analyzed in refs. 27–29,33–35
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Methods

Collection and annotation of Reverse-transcriptase (RT) and DGR reference sets
Reference  sequences  of  RTs  (DGRs and  non-DGR) were  collected  from ref.36.  Additional  DGR

references were obtained from ref.2. For the latter, corresponding TR/VR (template repeat and variable
repeat) and target sequences were extracted from the supplementary html and fasta files (respectively)
provided. Taxonomic classification of reference sequences was derived from NCBI database based on
the genome identifier provided for each DGR. For DGRs not taxonomically classified as viruses, the
genome sequence was downloaded from NCBI and VirSorter was used to identify whether the DGR
RTs was encoded in an integrated provirus or metagenomic viral contig.

Detection of DGRs in (meta)genomes
The overall detection pipeline consisted of 3 main steps: (i) identification of RT based on matches to

HMM profiles using hmmsearch v3.2.137, (ii) detection of repeats around the candidate RT using blastn
v2.9.0+38 with option -word_size 8 -dust no -gapopen 6 -gapextend 2, and (iii) selection of putative
DGRs, TRs, and target  genes based on repeat patterns and RT length.  Importantly,  unlike existing
tools39,  this  detection was agnostic to the variation between the repeats, because it  did not require
mismatches  between repeats  to  be  associated  with  adenine  residues.  The input  sequences  for  this
detection pipeline were (i) all genes predicted from IMG public genomes, and (ii) genes predicted on
contigs ≥1kb and encoding ≥2 genes from IMG public metagenomes (Supplementary Table 1). The
former was used to complete the reference set of DGRs already collected from the literature, while the
latter formed the main dataset analyzed in this study.

Successive  rounds  of  the  detection  pipeline  were  used  as  follows.  Candidate  DGRs  were  first
detected based on matches to Pfam Reverse-transcriptase domains (PF00078, PF07727, PF13456, and
PF13655), with a score ≥20 for genomes and ≥30 for metagenomes40. Candidates with a RT sequence
length of 250 to 550 amino acids and an imperfect repeat detected within 20kb of the RT in 5’ or 3’
(blastn hit ≥50bp with <99 % nucleotide identity), with one of the repeats within ≤1kb of the 5’ or 3’
end of the RT gene, were selected as putative DGRs. Sequences obtained from isolates were clustered
with literature-derived references to remove redundancy (cd-hit41 v4.8.1, ≥95% amino acid identity).
All candidate DGRs were included in a phylogenetic tree along with DGR and non-DGR references,
based on a multiple alignment of RT amino acid sequences obtained with mafft42 v7.407 using iterative
refinement (“einsi”),  and built  with FastTree43 v2 using the WAG substitution model.  Since known
DGRs formed a large monophyletic clade in this phylogeny, new sequences that branched outside of
this clade and for which <75% of the mismatches between repeats were associated with A residues
were considered as false positives and discarded. All other candidate DGRs were retained, and used to
generate 6 new HMM profiles representing the main clades in the RT tree, using multiple alignment
built with Muscle44 v3.8 and the hmmbuild tool from HMMER37 v3.2.1, with default parameters.

A second round of search was conducted on the same input dataset by using these new DGR RT
HMM profiles instead of Pfam HMM profiles in the initial search (score ≥50 and e-value ≤1E-05).
Putative DGRs were then selected as in the first round, except for the RT sequence length which was
extended to range from 150 to 650 amino acids. After manual inspection and removal of false positive
detections  based  on  a  phylogeny  (as  in  the  first  round),  another  set  of  4  HMM  profiles  were
constructing. These new HMM profiles were used in a third and last round of search, which did not
yield any new plausible candidate DGR, detecting only 7 previously undetected sequences that were all
identified as likely false positives.

Selection and annotation of reference genomes and metagenome sequences
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For additional DGRs identified from IMG genomes, taxonomic classification was derived from the
IMG taxonomy database. VirSorter45 v1.0.5 was used to identify which of these DGRs were encoded in
proviruses:  predictions  of  categories  1,  2,  4,  and 5 were considered  as  viral,  while  predictions  of
categories 3 and 6 were provisionally listed as “putative viral” for the RT OTU-level aggregation (see
below). 

For DGRs detected on metagenome contigs, taxonomic classification of DGR-encoding contigs ≥3kb
were derived from the automatic taxonomic annotation provided by IMG, based on majority ruling
from gene-level best blast affiliations, i.e. each contig is affiliated based on individual gene affiliation
up  to  the  rank  at  which  there  is  no  majority  affiliation  anymore31.  For  contigs  <3kb,  taxonomic
classification was set as “unclassified” because there are not enough predicted genes beyond the RT
and DGR target on these contigs for a robust classification using the majority rule approach. Viral
origin was predicted using a combination of VirSorter45 v1.0.5 (as for genomes), the Earth’s Virome
pipeline46, and the inovirus detector pipeline47. All sequences identified as viral with the Earth’s Virome
pipeline, the inovirus detector pipeline, or VirSorter categories 1, 2, 4, and 5 were considered “viral”,
while sequences only predicted with VirSorter as categories 3 or 6 were listed as “putative viral” for the
RT OTU-level aggregation (see below). For sequences not identified as viral by any pipeline, contigs
≥10kb were considered as “cellular”, while contigs <10kb were considered as “unknown”, based on
previous  benchmarks  of  viral  sequence  detection  tools45,46.  For  contigs  identified  as  viral,  host
taxonomic classification was determined as follows. For contigs ≥10kb, IMG blast-based taxonomy
was considered as the predicted host taxonomy48. All sequences predicted as viral were also compared
to IMG CRISPR spacer database49 using blastn38 with options -dust no and -word_size 7. Hits between
viral sequences and CRISPR spacers with 0 or 1 mismatch over the entire spacer length were selected
and used to infer host taxonomic classification of the corresponding viral sequence. In the rare cases
where IMG and CRISPR matches taxonomic affiliations were inconsistent, IMG taxonomy was used.
Viral contigs were also classified using vContact250, to obtain a taxonomic affiliation of the virus itself
(instead of the host) at the genus rank. vContact2 was run with “diamond” option to generate the PCs,
clustering of VCs with cluster_one, and the reference database “ProkaryoticViralRefSeq94-Merged”,
all other parameters left as default. Metagenome-derived DGRs were also associated to a biome type
based on the original sample classification available in the Gold database32 (Supplementary Table 1).

In all analyses, the taxonomic classification used was the microbial one (i.e. “host” classification for
viral  contigs)  at  the  domain  and phylum ranks  or  equivalents.  Members  of  the  Candidatus  Phyla
Radiation  (for  bacteria)  and  DPANN  (for  archaea)  were  gathered  in  “Bacteria:CPR”  and
“Archaea:DPANN” groups (respectively) based on the supergroup classification proposed in ref.  51.
Similarly,  genomes  classified  as  Bacteroidetes,  Chlorobi,  Cloacimonetes,  Fibrobacteres,  and
Marinimicrobia were gathered in a “Bacteria:FCB” group, and genomes classified as Omnitrophica,
Chlamydiae, Lentisphaerae, Planctomycetes, and Verrucomicrobia in a “Bacteria:PVC” group.

Clustering and annotation of DGR based on RTs
The  global  DGR  collection  was  clustered  based  on  RT sequences,  along  with  non-DGR  RTs,

representing a total of 33,342 RT sequences: 655 non-DGR RTs, 1,680 “reference” DGR RTs either
from literature or from IMG genomes, and 31,007 from IMG metagenomes. These sequences were first
clustered into “RT-OTUs” at 95% amino acid identity using cd-hit41 v4.8.1. Next, the representatives
(longest sequences) from each RT-OTU were collected, and compared all-vs-all using blastp38 v2.9.0+.
Blast hits with e-value <0.001 and with amino acid identity ≥50% (based on the whole query length)
were used as input to an MCL clustering with inflation value 2.0 and amino acid identity percentage as
edge weight52. The groups provided by MCL are designated as “RT-Clusters”. 
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RT-OTUs  and  RT-Clusters  were  associated  with  a  genome  type  (viral  or  cellular),  taxonomic
classification,  biome  classification,  and  target  gene  (see  below)  as  follows.  Because  DGRs  were
detected across >1,500 different bacterial, archaeal, and viral genera, and >90 different environment
types, we opted to conduct global analyses at a coarse level, i.e. phylum-level for taxonomy and broad
ecosystem  types  (e.g.  “Aquatic:Freshwater”,  “Host-associated:Rumen”)  for  biomes.  Taxonomic
classification of RT-OTUs was based on RT-OTU member affiliations using a majority rule, and an
LCA if the top two affiliations had an identical number of members. A similar approach was used for
the biome classification and the target PC, i.e. majority rule and LCA in case of a tie. For genome type,
RT-OTUs with all members unknown were considered “unknown”, RT-OTUs with at least 1 “viral” or
“putative viral” member and no cellular were considered “viral”, while others were considered “viral”
or “cellular” based on a majority rule between viral  and cellular members (if  tied,  the RT-OTU is
considered as “unknown”). A consensus bias vector, representing the frequency of individual A, T, C,
and G nucleotides in the TR for positions with mismatch, was also calculated by averaging the bias
vector of RT-OTU members. For this average, we discarded cases in which the RT was found within
500bp of the contig edge or the target gene was found within 200bp of the contig edge, and the bias
vector had an atypical A frequency <70%, as these likely represent misprediction of the TR/VR and/or
target (based on manual inspection of these contigs). Similarly, in cases where RT-OTUs included both
members with “typical” and “atypical” bias vectors, i.e. A frequency ≥70% and <70% respectively, the
average vector for the RT-OTUs was calculated only with the “typical” ones. For RT-Clusters, a 2/3rd
majority rule was applied based on the annotation of the RT-Cluster members. For multi-level data
(taxonomy, biome, and target PC), the 2/3rd majority rule was applied first to the first level, then to the
second level. In cases for which the majority value was found in less than 2/3rd of the RT-Cluster, the
value was set as “unknown”.

Enrichments of DGRs across taxa and biomes
Two different approaches were used to evaluate potential enrichment in DGRs of specific taxa and/or

biomes. To link DGRs with specific taxa, the number of genomes affiliated to each taxon (at the same
rank as for the DGR, see above) was estimated for each metagenome based on a list of 139 single-copy
marker genes53. Briefly, for each metagenome, the total number of genomes for a taxon was estimated
as the median number of single-copy marker genes affiliatied to this taxon, similar to the estimation
performed in Anvi’o54. For each taxon, an enrichment in DGRs was calculated as the log2 ratio between
the frequency at which DGRs were observed in this taxon (i.e. total number of DGR OTUs observed
for this taxon divided by the total estimated number of genomes for this taxon across all metagenomes)
and the average frequency of detection of DGRs across all  taxa (i.e.  total  number of DGR OTUs
divided by total estimated number of genomes across all metagenomes). The statistical significance of
these differences in DGR frequency was evaluated using a Chi square test of independence (prop.test
function in R on 2x2 contingency table for each taxon). 

For biomes,  the same set  of single-copy marker  genes  were used to  estimate a  total  number of
microbial genomes in each metagenome. For each biome group (see above), a linear regression model
was then fitted using the number of genomes as a predictor for the number of DGRs. For statistically
significant fits (p-value <1E-4), an estimated number of DGRs per genome was derived based on the
regression coefficient. Metagenomes with ≥40% of contigs ≥10kb identified as viral were excluded
from this analysis as they likely derive from samples strongly enriched in viral genomes, for which the
count of microbial genomes will not be reliable.

Clustering and functional annotation of predicted target genes
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For each DGR RT, target  genes  were  identified  by  comparing  the  predicted  VR repeat  to  CDS
predictions available in the IMG database. If multiple VR repeats were detected for a single DGR RT,
the one with the highest A mutation bias or, if tied, the closest to the DGR RT on the contig, was
considered  as  the  primary  target.  Genes  associated  with  other  VR repeats  were  then  included  as
“secondary”  targets  if  the  VR repeat  was  associated  with  a  plausible  A mutation  bias  (≥75% of
mismatches on A positions in the TR).

For de novo clustering of predicted targets, high-quality target sequences were first selected as genes
longer than 300 nucleotides and not within 50bp of the edge of the contig, i.e. less likely to represent
partial genes. These high-quality target genes were clustered at 99% AAI using cd-hit41 v4.8.1, then
clustered in a two-step process as in ref. 47. Briefly, sequences are first clustered using MCL52 from an
all-vs-all blastp, using blast score as edge weight and an inflation value of 2.0, then HMM profiles were
built for these clusters and hhsearch55 v3.1.0 was used to identify similarities between clusters. This led
to the definition of “superclusters” (i.e. clusters of clusters) based on a single-linkage clustering using
similarities of ≥90% probability of ≥50% of the profile length or ≥99% over ≥20% of the profile length
and 100 positions. Target sequences that were initially discarded because shorter than 300 nucleotides
and/or within 50bp of the contig edge were then mapped to these superclusters using hmmsearch 37

v3.2.1, with each sequence affiliated to the cluster with the highest score if ≥30.
Functional  annotation  of  superclusters  was  obtained  from  analysis  of  the  supercluster  multiple

sequence alignment and from the annotation of individual members. For the former, multiple sequence
alignments were built using Muscle44 v3.8 after dereplicating the supercluster sequences at 90% AAI
using cd-hit41 v4.8.1.  These alignments were then used as input in hhsearch55 which compared the
alignments  to  the  Pdb70  v190918,  Pfam  v32,  and  scop70  v1.75  databases  (database  package
downloaded in Feb. 2019 from the HH-Suite website). Each target sequence was also annotated the
same way, using a direct hhblits55 comparison to the same Pdb70 v190918, Pfam v32, and scop70 v1.75
databases. In addition, individual target sequences were also searched for transmembrane domains and
signal peptides using TMHMM56 v2.0c and SignalP57 v4.1, and compared to the Pfam v30 database
using  hmmsearch.  Annotations  were  derived  from  hits  with  score  ≥50  in  hmmsearch  or  ≥90%
probability in hhblits, except for hits overlapping the prediction VR region for which these cutoffs were
lowered to ≥30 on score and ≥80% probability, in order to enable the identification of distantly related
C-lectin folds. A target PC was considered as having a C-Lec fold VR if ≥5% of the PC members
displayed  a  significant  hit  to  a  C-Lec  fold  reference  overlapping  with  the  predicted  VR  region.
Similarly, a target PC was considered as functionally annotated outside of the VR if ≥5% of the PC
members had a significant hit to a single reference sequence and/or domain.

A prediction of 3D structure was computed for selected target sequences using I-TASSER58 5.1, using
default  reference  libraries  and 25 hours-long simulations.  The average  conservation  of  residues  in
target clusters was based on the multiple alignments generated for cluster annotation (see above). For
comparing conservation within and outside of the VR regions, a predicted “extended” average VR
region was  defined by adding 200 residues  upstream and 20 residues  downstream of  VR regions
predicted on individual sequences. The size of this “extended” VR regions was defined based on the
coordinates of predicted VRs and surrounding conserved C-Lec fold on reference DGRs.

The  association  between  RT,  TR-VR,  and  target  protein  sequences  was  evaluated  as  follows.
Predicted TR sequences associated with high-quality targets and typical mutational bias (see above)
were compared using all-vs-all blastn38 v2.9.0+ with options adapted for short sequences (“--dust no --
word_size 7”). The global nucleotide identity between two TR sequences was then calculated based on
the number of identical residues in the best blast hit compared to the length of the shortest TR sequence
of the pair.
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DGRs identified in genome bins
When available,  automatically-generated  genome bins  were searched for  DGR-encoding contigs.

Briefly, genome bins were automatically generated for public metagenomes on IMG, using metabat59

v0.32.4  for  binning  with  a  3,000  bp  minimum  contig  cutoff,  contig  coverage  information,  and
parameter '-superspecific' for maximum specificity, checkM60 v1 for quality estimation, and gtdb-tk61

v0.3  for  taxonomic  assignment.  Only  medium-  and  high-quality  bins  according  to  the  MIMAG62

criteria were included. DGRs encoded on contigs identified as entirely viral were not considered in this
process, since previous studies have indicated that these contigs are often binned incorrectly. Overall,
13,180 MAGs were searched, and 1,509 were found to include at least 1 DGR locus. For metagenomes
including at least 1 genome bin with a DGR-encoding contig and at least 10 genome bins, the relative
abundance rank of each genome bin was determined as follows: for all  MQ and HQ genome bins
identified in the metagenome, the bin coverage was estimated as the median coverage of all contigs.
The genome bins were then ordered based on this median coverage of contigs to determine the rank(s)
of genome bin(s) encoding DGRs.

The diversity of DGR-encoding genomes identified in human gut samples was evaluated through an
RNA polymerase B (RpoB) tree. RpoB protein sequences were first identified in isolate genomes and
genome bins associated with human gut and encoding a DGR of clade 1, 4, or 6, based on significant
hits to the pfam domain PF04563 (hmmsearch score ≥50). A multiple alignment was then built with
MAFFT42 v7.407 using default parameters, automatically trimmed using TrimAl63 v1.4.rev15 with the
--gappyout option, and used as input to build a tree with IQ-Tree64 v1.5.5 with built-in model selection
(optimal model suggested: LG+R6).

The gene content of DGR-encoding genomes was evaluated based on metagenome bins as follows.
For each metagenome including at least one Clade 5 DGR in a genome bin, the number of proteins
affiliated to each COG in each MQ or HQ bin was tallied. The number of proteins associated with each
COG category  (level  1)  was  then  compared  between  DGR-encoding  genome bins  and non-DGR-
encoding genome bins for each metagenome using a Kolmogorov-Smirnov test and Cohen’s effect size.

Phylogenetic analyses
For RT phylogeny, a representative of each RT cluster was selected as the sequence with the highest

score when compared to the RT cluster hmm profile, or the longest sequence in case of ties, first among
the references if available, then among the new sequences if no reference was present in the RT cluster.
An RT tree was then built with IQ-Tree64 v1.5.5 using the built-in model selection (optimal model
suggested: VT+F+R10), based on an amino acid multiple alignment computed with MAFFT42 v7.407
using the einsi mode, and automatically trimmed using TrimAl63 v1.4.rev15 with the --gappyout option.
Sequences from the non-DGR RT reference set (see above) were included in the alignment, with the
exception of sequences identified as “unknown” or “unclassified” by Wu et al., as these led to a lower
quality alignment and long branch attraction issues in the resulting tree.

The distribution of DGR features (genome type, taxonomy, target, and biome) across the tree was
analyzed by computing unweighted Unifrac distances65 between all pairs of values for each features
and comparing these with the distance for the same pair of values on 100 randomly shuffled trees.
Ancestral state reconstructions were conducted using the R package phytools66 v0.6-99 with the options
model="ER" and type="discrete", separately for each feature. 

A similar  pipeline  was used  to  build  the  trees  of  target  sequences  from PC_00003.  Briefly,  for
PC_00003 targets, high-quality target protein sequences (see above) clustered into PC_00003 were
gathered and dereplicated at 80% amino acid identify using cd-hit41 v4.8.1. A multiple alignment of
representative sequences was then generated with MAFFT42 v7.407 using the einsi mode, automatically
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trimmed using TrimAl63 v1.4.rev15 with the --gappyout option, and used as input to build a tree with
IQ-Tree64 v1.5.5 with built-in model selection (optimal model suggested: WAG+F+R10). 

Association between DGR presence or features and genome characteristics
To evaluate potential links between the presence of a DGR and the original biome or taxonomic

classification of a genome, a random forest classifier was trained to predict from a genome’s features
whether or not it encodes a DGR. A training set for the model was built based on DGR and single-copy
marker genes observed in metagenomes as follows: first a metagenome was selected at random, then a
genome taxonomy was selected at random with probability weighted based on the affiliation of single-
copy marker genes in this metagenome (see “Enrichments of DGRs across taxa and biomes”), and this
genome was considered to encode a DGR or not based on the overall frequency of DGRs detected in
genomes of the same taxonomy in this metagenome. This process was repeated until a dataset of 1,000
DGR-encoding and 1,000 non-DGR-encoding genomes was obtained. This allowed for the generation
of  a  balanced  dataset  which  still  reflected  actual  frequency  of  DGRs  detected  across  taxa  and
metagenomes. Random forest classifiers were generated with the randomForest67 R package v4.6-14
using as predicting features a combination of taxonomy and/or biome features, either at 1-level (e.g.
“Aquatic” or “Bacteria”) or 2-level (e.g. “Aquatic:Freshwater” or “Bacteria:Proteobacteria”) classes.
All  classifiers were built  using 500 trees  with all  other  options default.  The Out-of-bag confusion
matrix automatically generated was then used to evaluate the models’ prediction accuracy.

Diversity estimation of DGR target loci
Nucleotide and amino acid diversity evaluation was conducted on the metagenome-derived DGRs

with contig length ≥10kb and median coverage ≥20x. The coverage cutoff was applied to ensure that
single nucleotide polymorphisms (SNVs) could be called with enough certainty, while the length cutoff
was  used  to  ensure  that  enough  surrounding  genes  were  available  to  evaluate  background
microdiversity for the DGR-encoding genome. For this analysis, combined assemblies (i.e. datasets
obtained by combining reads from multiple samples), metatranscriptomes, and viral metagenomes were
not included. The final set included 6,901 DGRs, with representation of all DGR clades (1,968 DGRs
from DGR_Clade_1, 972 from DGR_Clade_2, 1,359 from DGR_Clade_3, 1,147 from DGR_Clade_4,
1,095 from DGR_Clade_5, and 350 from DGR_Clade_6).

For DGRs found on contigs ≥20kb, a region of 20kb around the RT (i.e. up to 10kb in 5’ and 3’) was
extracted and used in these analyses. Reads from the original metagenome were first recruited to the
contig  (or  selected  contig  subset)  using  bwa68 v0.7.17-r1188  (default  parameters).  Reads  which
matched the reference sequence on at least 50% of their length were then extracted using filterBam
(https://github.com/nextgenusfs/augustus/tree/master/auxprogs/filterBam)  and  realigned  against  the
same reference sequence using bbmap69 v38.73 to obtain a global alignment of the read to the reference
contig instead of the local/soft-clipped alignment provided by bwa (bbmap options “vslow minid=0
indelfilter=2  inslenfilter=3  dellenfilter=3”,  see  Supplementary  Text).  This  global  alignment  was
required to accurately estimate SNVs in regions with a high number of mismatches, such as VRs with
many different variants in the population. Typically, in these regions, local alignment tools will either
trim the mapping to remove these mismatch-containing regions, or “soft-clip” them, i.e. mask them in
the resulting sam file, which eventually means that no SNV will be called in these variable regions.
Instead, by re-aligning the same reads with a global alignment algorithm, all positions from the read
will be considered and SNVs can be identified.

SNVs were called using bcftools70 v1.9 ‘mpileup’ and ‘call’ functions (options “-A -Q 15 -L 8000 -d
8000 “ for mpileup, “--ploidy 1 -A -m” for call).  Only SNVs for which the alternative allele was
supported by ≥4 reads or ≥1% of the reads (whichever was smaller) were further considered. These
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SNVs were then classified as synonymous or non-synonymous based on the available gene prediction,
and used to calculate pN/pS for each gene as in Schloissnig et al.71. Another set of SNVs was called
using FreeBayes72 v1.3.1 using the options “--ploidy 1 --min-base-quality 15 --haplotype-length 0 --
min-alternate-count 1 --min-alternate-fraction 0 --pooled-continuous --limit-coverage 8000” and the
same cutoff  on read  representation.  The two SNV sets  were found to be mostly overlapping (see
Supplementary Text), and the bcftools SNVs were used in all subsequent analyses.

To evaluate DGR activity, an enrichment of the VR locus in non-synonymous SNVs was calculated
as follows. For each DGR, the frequency of non-synonymous SNVs (i.e.  average number of non-
synonymous SNVs per position) observed across all genes for the contig (or contig subset) was first
calculated. A poisson law was then used to compare the number of non-synonymous SNVs observed in
the VR locus to an expected number of non-synonymous SNVs based on surrounding genes. All cases
for which the number of non-synonymous SNVs observed in the VR locus was significantly higher
than expected by chance (poisson law probability <0.05) were considered as observations of DGR
activity.  For  cases  where  different  metagenomes  were  available  from the  same  sample,  only  the
observation with the highest coverage was selected and used in DGR activity evaluation.

To further explore the dynamics of VR loci in nature, 130 datasets were identified as longitudinal
sampling that enabled tracking of DGRs across time in the same system (Table S7). For these, a similar
mapping approach was used as described above, but including all metagenomes from a single subject
(for human-associated metagenomes) or location (e.g. geographic coordinates and water layer). The
same approach based on non-synonymous SNV frequencies was used to evaluate DGR activity for
each individual sample, except that the minimum median coverage was set at 10x. For cases in which
multiple metagenomes were available for a single subject/location and time point, the one with the
highest coverage was used for each DGR. In addition, nucleotide diversity (Π) was calculated for each
VR locus as the average nucleotide diversity observed for each position. To evaluate changes in the VR
locus between samples, amino acid variants were called using Anvi’o54 v6.1 based on the same read
mappings.  This  enabled us to  accurately evaluate the frequency of individual amino acid residues,
including the ones for which multiple positions in the codon were variable.

Data processing and visualization
Plots and charts were generated in R73 v3.6.1 using the ggplot274 v3.2.1 package, while phylogenies

were visualized using iToL75 v4 (https://itol.embl.de/) and predicted protein structures were visualized
with UCSF Chimera76 v1.11.2. Several programs used in this study benefited from the GNU parallel
tool77. The genome maps from Supplementary Fig. S4 were generated using Easyfig78 v2.2.3.

Data and scripts availability
Scripts used in this study are available at https://bitbucket.org/srouxjgi/dgr_scripts/. All metagenome
assemblies  are  available  through  IMG  (https://img.jgi.doe.gov)  using  accession  numbers  listed  in
Supplementary Table S1. Additional supplementary datasets include:
All_RTs.faa: fasta file of amino acid sequences for all RTs used in the analysis (DGR and non DGR)
All_DGR_targets.faa: fasta file of amino acid sequences for all predicted DGR targets. Note that this
file includes all sequences predicted by the automatic pipeline to be a DGR target, before any of the
manual curation step mentioned in the Methods section
All_DGR_TR_VR.fna: fasta file of nucleotide sequences for TR/VR pairs. As for the targets, this file
includes all sequences predicted by the automatic pipeline, before any of the manual curation steps
mentioned in the Methods section and Supplementary Text.
The same files are also available at: 
https://bitbucket.org/srouxjgi/dgr_scripts/src/master/Companion_datasets/.
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Supplementary Text

Iterative detection of DGR in IMG public genomes and metagenomes
Overall, up to 3 rounds of DGR detection were performed for both genomes and metagenomes. The

first round of detection was based on known HMM profiles of DGR RTs, while after each round, new
profiles were generated from the DGR RT sequences collected, and used as references for the next
searches (see Methods). For whole genome shotgun sequences (i.e. “IMG isolates”), the first round of
searches identified 2,793 candidate DGR sequences, the second 442 candidates, while the third yielded
only one candidate that was identified as a false-positive, hence no further searches were performed.
For metagenomes, the first round identified 45,704 candidates, the second 10,964 candidates, while the
third round provided seven candidates which were all identified as false-positives. Overall, DGRs were
detected across 1,129 genomes and 2,684 metagenomes.

For  both  genomes  and  metagenomes,  false-positive  detections  were  mostly  associated  with  RTs
encoded  on  eukaryote  genomes,  especially  in  regions  containing  multiple  imperfect  repeats  with
seemingly random mismatches and both repeats within predicted CDS, as opposed to the A bias and
one intergenic repeat of typical DGRs. When included in a phylogenetic tree based on RT protein
sequences,  these  candidates  formed  a  clade  outside  of  all  known RTs,  and  in  particular  branched
outside of the known DGR clade. Because these sequences are likely not representing genuine DGRs
despite the presence of nearby repeats, the choice was made to only retain sequences with a typical
DGR mismatch profile (i.e. enriched in A mismatches) or branching within the known DGR clade,
while all other candidates were excluded.

Taxonomic distribution of DGRs detected from metagenomes
While a majority of DGR-encoding contigs could only be affiliated to the phylum or class rank, a

total  of  4,755 were  affiliated  up  to  the  genus  rank,  distributed  across  369 bacterial  genera  and 9
archaeal  genera.  Even  though  48%  of  these  affiliations  were  to  only  3  genera  (Bacteroides,
Pseudomonas, and Prevotella), both because of a high prevalence of DGRs in these taxa and an over-
representation of these sequences in the metagenomes mined, the less common genera revealed new
DGR-encoding taxa (Supplementary Table 2).  These included notably members of the  Fibrobacter
genus, key actors in the degradation of cellulose compounds in ruminant animals, for which DGRs
have not yet been described and explored. This dataset also included additional examples of DGR for
ecologically-relevant  genera  within  the  phyla  Chlorobi (e.g.  Pelodictyon,  Chlorobaculum,  and
Chlorobium), Actinobacteria (e.g. Bifidobacterium, Colinsella, and Gardnerella), and Nitrospirae (e.g.
Candidatus Magnetobacterium), for which only a handful of examples have been reported. Within the
Archaea  domain,  DGRs were  associated  with various  members  of  the  Euryarchaeota  phylum and
DPANN supergroup.

For this taxonomic affiliation, viral-encoded DGRs were associated with the taxon of their host when
available, based on the detection of an integrated provirus or matches to known CRISPR spacers (see
Methods). However, the viral genomes encoding these DGRs can also be classified in a separate viral
taxonomic framework. When affiliated, nearly all DGR-encoding viruses (n=3,218) were classified in
the  Caudovirales  order (either affiliated to an existing  Caudovirales genus or connected to the main
Caudovirales component in vContact2 network). Notably, while many giant viruses have been recently
identified from metagenome assemblies79,  no DGR were detected in these genomes or co-localized
with an NCLDV marker gene, suggesting that DGRs are rare or absent from these large eukaryotic
viruses  despite their  ability to exchange genes with bacteriophages. The only exceptions were two
sequences  (Meta_3300029305_Ga0307249_1003718615  and
Meta_3300018430_Ga0187902_100048955) identified as putative inoviruses because of the presence
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of an inovirus ATPase marker nearby47. However, in both cases, the metagenome contig was too short
to  distinguish  whether  the  DGR  was  encoded  by  the  inovirus  genome  or  by  a  neighboring
Caudovirales  prophage, as previously observed47. Hence, overall, the available affiliations of DGR-
encoding virus contigs suggest that these elements are mostly,  and maybe exclusively,  encoded by
Caudovirales.

Homogeneity of DGR OTUs and Clusters based on RT sequences
DGR  OTUs  were  defined  based  on  a  95%  AAI  clustering  of  the  RT  sequences,  and  were

homogeneous in terms of taxon, biome, and genome type (i.e. viral vs cellular). Specifically, 99%,
91%, and 94% of non-singleton DGR OTUs were associated with a single taxon, biome, and genome
type,  respectively (Supplementary  Fig.  S2).  A majority  (60%) of  DGR RT sequences  remained as
singletons after this 95% AAI clustering, and >88% of DGR RTs were found in OTUs comprising less
than 5 sequences, illustrating how large the DGR RT sequence space is.

A similar pattern was observed for DGR clusters (≥50% AAI groups), of which 99%, 85%, and 96%
were associated with a consistent taxon, biome, and genome type, respectively (Supplementary Fig.
S2). The lower percentage of consistency for the biome feature was due in part to overlap between
connected environments, e.g. “Landfill” and “Groundwater”, as well as the detection of DGR clusters
with a broad ecological distribution such as Meta_3300009658_Ga0116188_10269693, which includes
members from wastewater treatment plants, biogas reactors, saline and freshwater lakes, elephant gut
microbiome and moose rumen microbiome (Supplementary Table 4). While an exception, this suggests
that at least some DGR clusters are broadly distributed in the environment. Conversely to the OTU
clustering, most DGR RTs were found in a cluster comprising 2 or more sequences, and only 52% of
DGRs were found in clusters including less than 5 sequences. In addition, the 11 largest clusters alone
gathered >36% of all sequences, illustrating how this dataset enabled the detection of the predominant
groups of  DGRs in the environment.  Consistently,  the 11 largest  clusters  all  included at  least  one
reference sequence (Supplementary Fig. 1).

Definition of major DGR clades
In order to partition the large RT phylogeny into meaningful clades, we sought to leverage the key

features  of  each  DGR  cluster  including  genome  type,  taxon,  and  biome.  We  first  mapped  each
parameter to  the RT phylogeny rooted on non-DGR RTs and verified that  the distribution of each
parameter across the tree was statistically structured and not random (non-weighted Unifrac p-value
<1E-03). Then, we reconstructed ancestral states for each parameter at each node throughout the tree,
and identified deep-branching clades with ancestral states predicted with ≥95% confidence as the main
groups of DGRs. Taken together, the different features mapped onto the tree suggest the successive
emergence of 6 major DGR clades from a single origin (Fig. 1A & B). 

Based on these ancestral state reconstructions, the deepest-branching clade of DGRs (DGR clade 1)
was found primarily in host-associated microbiomes (>99% confidence) and encoded on viral genomes
(>99% confidence)  infecting mostly  Bacteroides and  Firmicutes hosts. DGR clade 4 showed similar
characteristics  with  a  clear  association  with  host-associated  microbiomes  (>99%  confidence)  and
Firmicutes  (>99% confidence),  and most sequences found in a viral  genome. Two large groups of
cellular-encoded DGRs (DGR clades 2/3 and DGR clade 5) branched next to DGR clade 4 suggesting
two potentially distinct horizontal DGR transfer events from viruses to bacteria/archaea. In the group
including clades 2 and 3, the deep-branching nodes are associated with aquatic (>99% confidence)
cellular-encoded DGRs (>99% confidence) affiliated to the CPR (Candidate Phyla Radiation) taxon
(>96% confidence). However, another type of DGR is nested within these CPR-encoded DGRs, also
originally associated with aquatic environments (>99% confidence) but affiliated to other bacteria taxa,
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especially Proteobacteria. The deep-branching CPR-associated DGRs were identified as “DGR Clade
2”, while the latter clade was identified as “DGR Clade 3”. The other group of cellular-encoded DGRs,
“DGR clade 5” branched separately from clades 2 and 3 but was also predicted to originally represent
aquatic (>99% confidence) cellular-encoded (>98% confidence) DGRs. A single clade of viral-encoded
(>99% confidence) DGRs branched within it however, suggesting a secondary transfer this time from
cellular to viral genomes. This latter clade was identified as “DGR Clade 6”.

Distribution of reference DGRs across newly defined clades
While the diversity of DGR RTs was vastly expanded by metagenome-derived sequences, each of the

6 DGR clades included at  least  one reference and/or laboratory-characterized DGR sequence2.  The
original DGR identified in Bordetella virus BPP13 was affiliated in DGR Clade 6, along with other
reference DGRs mostly identified in prophages from Proteobacteria and Firmicutes genomes, targeting
viral  structural proteins  (Target  PC_0002  and  PC_00010,  Fig.  2,  Supplementary  Fig.  8).  The
Treponema DGR9 was  affiliated  to  DGR  Clade  5,  along  with  DGR  sequences  identified  in
Spirochaetes,  Cyanobacteria, as well as  Archaea and associated archaeoviruses5. Consistent with the
majority of DGR Clade 5 sequences, these reference sequences represented the main clade of cellular-
encoded DGRs associated with membrane-bound target proteins (Target PC_00001).  DGR Clade 4
included  another  set  of  DGRs  previously  identified  on  prophages,  mostly  from  Firmicutes and
Actinobacteria,  and targeting viral  structure proteins.  The  Legionella DGR8 was  affiliated in  DGR
clade 3, along with other references from Proteobacteria and Bacteroidetes targeting uncharacterized
proteins  gathered  in  Target  PC_00009.  Interestingly,  a  number  of  these  references  correspond  to
prophage-encoded DGRs, while others, such as the  Legionella DGR, are encoded on regions of the
cellular chromosome that are predicted as “putative mobile genetic element”. This suggests that this
DGR may have been frequently exchanged between cellular and viral genomes, or may have originated
from a provirus and retained on cellular genomes while the rest of the provirus decayed. DGR Clade 2
gathered sequences identified in the CPR group6 and associated with various uncharacterized targets
including Targets PC_00019, PC_00020, PC_00024, PC_00027, PC_00029, and PC_00040. Finally,
DGR  clade  1  included  references  from  Bacteroidetes,  Firmicutes,  and  Actinobacteria prophages,
targeting mostly viral structural proteins (Target PC_00002, Fig. 2, Supplementary Fig. 8).

Distinguishing prediction errors from genuine atypical TR-VR sequences
While our detection approach did not rely on the typical mutational bias of DGRs, i.e. mutations

associated  with  A residues,  nearly  all  (99%)  DGR  clusters  displayed  a  strong  bias  towards  A
mismatches (Fig. 1B). The few TR-VR pairs which did not show this pattern could arise either from
different mispredictions of the TR-VR regions or from a genuine DGR not constrained by the typical A
mutation  bias.  Upon  manual  inspection,  different  scenarios  leading  to  mispredicted  TR-VRs were
identified:

• Errors in the predicted CDS in the VR region can lead to an incorrect “T” bias, i.e. most of the
mismatches correspond to “T” in the TR because the putative target gene is predicted on the
opposite strand of the real target gene. This is especially common for VR regions situated near
the edge of a contig (i.e. within the first or last ~ 200bp), and we thus discarded such mutation
bias profiles based on partial target genes predicted on the edge of a contig.

• In other cases, the CDS prediction overlapping the VR region seemed correct, however it is
unlikely to be a genuine DGR target based on functional annotation and a lack of similarity to
any other DGR target (known or predicted). In this case, it is most likely that the TR-VR pair
was wrongly identified, and the associated mutations biases were also excluded.
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• For TR-VR with a plausible target gene and not on the edge of a contig, several cases were
identified for which the blast hit used to define the TR-VR region likely extended past these
regions. While the TR-VR initially identified did not display an A bias, an internal subset of the
alignment could be identified upon manual inspection with (near-)exclusively A mismatches.
Most likely in these cases, near-identical regions next to the TR-VR led to this misprediction,
and the bias was corrected to reflect the one of the “inner” TR-VR.

• Finally, some TR-VR pairs were associated with a plausible target gene and did not include any
subset with an A bias. No other mutation bias was apparent in any of these TR-VR pairs, i.e. the
mismatches observed did not show any enrichment in a specific nucleotide either in the TR or
the VR sequence. These could represent either TR-VR sequences that accumulated mutations
beyond the  ones  introduced  by the  DGR RT,  or  DGR RTs for  which  the  incorporation  of
random nucleotides  is  not  strictly  associated  with  A residues.  The  small  numbers  of  such
“atypical”  DGRs  and  their  sparse  distribution  across  the  tree  indicates  however  that  the
tendency of DGR RTs to incorporate random nucleotide specifically at template A-residues is
both ancestral and conserved, thus most likely associated with biochemcial and/or structural
constraints of the RT enzyme itself11.

Target clustering and annotation
To avoid over-estimating the diversity of target proteins, we first restricted the analysis to only “high-

quality” targets, i.e. predicted target genes longer than 300 nucleotides and not within 50bp of the edge
of the contig. This selection was designed to limit the inclusion of incorrect targets due to partial and/or
mispredicted CDS in metagenome contigs. Dereplication (99% AAI) of these high-quality targets led to
a  dataset  of  15,559  non-redundant  targets  used  as  input  in  the  two-step  clustering  process  (see
Methods). After protein clustering, most (92.18%) high-quality targets clustered in 1 of the 24 largest
PCs, which were all associated with plausible functional annotation for DGR targets, and thus further
considered  as  likely  genuine  DGR  targets.  Other  target  sequences  found  in  smaller  PCs  and/or
singletons could be either genuinely rare types of targets or cases for which the target CDS or TR-VR
regions are misidentified. Because these sequences are mostly originating from short contigs for which
genes and DGR features prediction are challenging, we opted to consider these targets as “Rare” and
not analyze them further.

To evaluate the expansion of DGR target space obtained here, we compared the functional annotation
obtained  on the  24  largest  target  PCs  with  the  functions  of  DGR targets  previously  reported2.  In
addition  to  conserved  domains  already  detected  on  reference  sequences,  23  domains  were  newly
identified  on  >5  predicted  target  sequences.  These  included  conserved  domains  within  S-Layer-
containing proteins (PDB 4QVS_A), PEGA domains (Pfam PF08308), putative bacterial lipoproteins
(Pfam PF05643), putative glutamyl endopeptidases (PDB 1WCZ_A), serine proteases (PDB 3STI_A
and 6BQM_A), and other types of viral structural proteins (PDB 4V96_AG, Pfam PF03906). Overall
these confirm that DGR targets are extremely diverse, but are mainly associated with carbohydrate-
binding proteins embedded in virions and cell membranes.

Examination of putative Ig-like VR domains
Wu  et  al.2 previously  reported  two  ‘categories”  of  VRs  which  were  predicted  to  adopt  an

Immunoglobulin-like (Ig-like) fold (Ig1 and Ig2). These included respectively 36 and 9 non-redundant
targets, with 3 types of domain organization: 25 displayed a C-terminal VR within a short (≤250 aa)
protein, 4 included a C-terminal VR with a long (>250 aa) uncharacterized N-terminal part, and 17 had
a N-terminal VR followed by a long (>250aa) uncharacterized C-terminal region2. As typical for DGR
targets, despite the similarities observed between the VR regions, most of these sequences could not be
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annotated. Wu et al. however noted that a structure prediction with Phyre 2 suggested that some of
these VRs (3 Ig1 and 5 Ig2) may overlap with an Ig-like domain.

In our analysis, Ig1 and Ig2 targets were found in two different PCs, PC_00003 (24 Ig1, 8 Ig2) and
PC_00008 (12 Ig1), with one exception (one Ig2 target was clustered in PC_00062, considered a “rare”
target in our analysis). Both PC_00003 and PC_00008 are clearly associated with viral-encoded DGRs,
which  is  consistent  with  previous  analysis  of  Ig1  and  Ig2  VRs2.  However,  with  PC_00003  and
PC_00008 including 1,770 and 416 non-redundant high-quality sequences respectively, this extended
dataset provided a unique opportunity to further understand the putative link between VRs and Ig-like
domains.

When annotating these targets using hhblits, members of PC_00003 and PC_00008 did not display
any  conserved  domain  overlapping  the  VR  region  (Supplementary  Table  5).  Both  members  of
PC_00003 and PC_00008 had hits to functional domains related to carbohydrate binding outside of the
VR regions however, including several with Ig-like domains (Supplementary Table S5). Several types
of phage tail fiber proteins have been previously shown to harbor similar Ig-like fold domains80, which
is consistent with expected function of DGR targets. Specifically, this type of tail fiber was shown to
vary in length, especially through the addition and removal of one or several Ig-like domains in the C-
terminal region of the protein.

Accordingly,  when  building  a  phylogeny  of  target  sequences  from PC_00003  and  mapping  the
domain organization of these targets to the tree, two large clades of sequences longer than average and
typically  including  one  or  several  Ig-like  domains  immediately  downstream to  the  conserved  VR
domain can be observed (Supplementary Fig. S7). This would be consistent with the original target
displaying  a  typical  C-terminal  VR  region,  and  progressively  increasing  in  length  through  the
downstream addition of additional carbohydrate-binding domains. 

We wondered  however  whether  Ig-like  domains  immediately  next  to  VR regions  could  lead  to
erroneous structure predictions including an incorrect overlap between VR and Ig-like domains. When
we repeated the structural prediction of Ig1 and Ig2 proteins using Phyre2, we observed that all cases
for which an Ig-like fold was predicted as overlapping a VR region corresponded to sequences for
which multiple Ig-like domains were identified (both by hhblits and Phyre2) downstream from the VR,
and found in one of the two clades of sequences longer than average (Supplementary Fig. S7). The
structures obtained were also of relatively low quality (as also noted by Wu et al.2),  and based on
templates  often  consisting  of  multiple  successive Ig-like  domains.  Conversely,  for  all  Ig1 and Ig2
sequences with a C-terminal VR or with a VR without nearby Ig-like domain, no prediction of an Ig-
like fold was obtained. These Ig1/Ig2 sequences are thus most likely phage tail fibers with a non-Ig-like
conserved VR domain for which no characterized fold can be identified.

Analysis of DGR-encoding metagenome bins
Two analyses were conducted based on DGR identified in IMG genomes bins (see Methods). First,

genome bins  were used  to  evaluate  whether  DGR-encoding viruses  infected  dominant  and/or  rare
genomes in human gut samples. A total of 124 human gut metagenomes were selected which included
at  least  10  MQ/HQ bins,  at  least  1  DGR-encoding  bin,  and for  which  coverage  information  was
available.  While  these  metagenomes  included  10 to  37  bins,  DGR-encoding  bins  were  frequently
among the most abundant genomes observed. Specifically, DGRs were identified in one of the 3 most
abundant bins for 68 of these 124 metagenomes (55%). While this pattern may be potentially biased by
the fact that genome bins with higher coverage may have a higher completeness than bins with lower
coverage,  importantly,  it  was  not  observed  across  other  biomes.  Specifically,  when evaluating  the
number of metagenomes for which a DGR was identified in one of the 3 most abundant bins, these
only represented 17 of the 66 qualified metagenomes (26%) from other host-associated samples (i.e.
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non-human gut), 44 of the 139 qualified metagenomes (32%) from aquatic samples, and 17 of the 67
qualified metagenomes (25%) from engineered samples, compared to 55% for human gut samples.
Hence, this pattern is likely not associated with a systematic genome binning bias, and DGRs seem to
be specifically associated with abundant members of the community in human gut microbiomes.

Next, we used genome bins to evaluate differences in gene content between DGR-encoding and non-
DGR-encoding  genomes  for  Clade  5  DGRs,  which  are  primarily  identified  in  aquatic  biomes.
Compared to MQ/HQ genome bins from the same metagenomes that do not encode a DGR, genome
bins encoding a Clade 5 DGRs displayed a significant enrichment in key COG categories associated
with copiotrophic and/or particle-associated lifestyle. Specifically, genome bins which included a Clade
5 DGR showed a higher percentage of genes assigned to COG category N “Cell motility”, T “Signal
transduction  mechanisms”,  and  V “Defense  mechanisms”  compared  to  other  bins  from the  same
metagenomes (ks-test p-value ≤1E-5, cohen’s effect size ≥0.2), all categories previously highlighted as
enriched in copiotrophs81. Importantly, the same pattern, i.e. significant enrichment in COG categories
N, T, and V, was observed for bins including the other main clade of cellular-encoded DGRs, DGR
clade 3, but not for any other clade. This indicates that these patterns are not a systematic bias of
genome binning, but instead reflect key features in terms of gene content of micro-organisms encoding
DGRs of clade 3 and 5. Given that the target genes of DGR clade 5 are typically membrane-bound, it is
tempting to  speculate that  at  least  some of the DGRs in these clades drive hyperdiversification of
surface protein directly involved in particle binding, and would thus broaden the range of particles and/
or other microbial cells to which a microbe could bind. 

Evaluating DGR activity from read mapping
Because of the high number of SNVs concentrated in a short  region, mapping pipelines for VR

sequences must use specific parameters to allow more mismatches and avoid under-recruiting short
reads to the hypervariable reference. To achieve this, we used here a two-step mapping process. First,
all reads were mapped using bwa to recruit all reads matching, even partially, to the reference sequence
(i.e. based on local alignment). Then, reads which were locally aligned on at least 50% of their length
were mapped against the same reference using bbmap with parameters tuned toward optimization of
the read global alignment and tolerating mismatches (see Methods). We verified whether most reads
from VR regions were likely recovered by comparing the read depth of VR regions to the one of
surrounding  genes  from the  same contig  (Supplementary  Fig.  S9).  Since  some metagenomes  will
display variable read coverage along a single contig, e.g. due to PCR amplification of the library82, we
established a 95% confidence interval for coverage along each contig based on the average coverage of
non-target genes minus 2 standard deviations, and considered as “low coverage” cases in which the VR
coverage was below this cutoff. Pragmatically, we considered VR region with a coverage below the
average minus 2 standard deviations cutoff as unexpectedly low, and likely reflecting an incomplete
recruitment of VR reads. Overall, >91% of VR regions displayed a coverage above the 95% confidence
interval lower bound, confirming that most reads coming from these VR regions had been recovered.

To further verify that SNVs could be robustly called in VR regions, we compared the number of
SNVs detected by two different tools: bcftools mpileup/call and freebayes (see Methods). Overall, both
SNV calling approaches produced very similar result (Supplementary Fig. S9B), resulting in a Pearson
correlation  coefficient of  0.873 (95% confidence  interval:  0.868-0.879,  p-value  <2.2e-16)  between
SNV densities for individual VR regions. We thus proceeded using only one of these SNV sets, and
opted to use the more conservative one given the parameters used here, i.e. bcftools (Supplementary
Fig. S9B).

In order to measure the selective constraints exerted on individual genes and/or VR regions, we first
relied on the known pN/pS metric, calculated as in Schloissnig et al.71. For non-target genes, this pN/pS
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ratio was on average 0.16 (95th percentile=0.60), as expected for microbial genes evolving under long-
term purifying selection. By contrast, pN/pS ratio average was 2.83 for target genes. Notably, pN/pS
calculations were sometimes impossible  to calculate because of an absence of synonymous SNVs.
While in the case of non-target genes, the absence of synonymous SNVs was mostly (>90% of the
time) associated with an absence of non-synonymous SNVs, this was not the case for VR regions, of
which 51% displayed ≥1 non-synonymous SNVs but 0 synonymous SNVs. In order to include these
sequences  in  the  activity  estimation,  we opted  to  use  an  “enrichment  in  non-synonymous  SNVs”
statistics comparing the density of non-synonymous SNVs in a VR region to the one in surrounding
non-target genes. The two approaches were largely congruent, as for cases in which both could be
calculated, the 296 sequences without an enrichment in non-synonymous SNVs all had low pN/pS
(median=0.39), while the 2,417 sequence with an enrichment in non-synonymous SNVs had a high pN/
pS (median=2.48).

Finally, we searched for time-series datasets that could provide insights into the population diversity
of DGR loci through time. We first identified time series among our metagenome set, and linked each
sample to its  “subject/location”,  i.e.  individual patient for human cohorts,  individual bioreactor for
laboratory incubations, individual water body and/or depth layer for lakes (Supplementary Table 6).
Individual  water  layers  were  used  as  subject/location  when  they  represented  distinct  ecological
conditions,  or were grouped as a single subject/location otherwise to avoid duplicate  observations.
Candidate  DGRs  for  time  series  analysis  were  identified  based  on  DGR  OTUs  which  included
members  assembled  from multiple  datasets  of  a  single  subject/location.  For  these,  reads  from all
datasets  associated  with  the  subject/location  were  mapped  to  the  same  DGR OTU  representative
sequence, and the longitudinal analysis was conducted if the median coverage of this sequence was
≥10x in ≥2 time points. Overall, 563 DGR OTUs were analyzed this way across 130 time series, and
covered all DGR clades (the lowest number of DGR OTUs was for DGR clade 2, with 47 OTUs).

Definition of activity categories for time series
The activity of DGR analyzed as part of a time series were evaluated based on single amino acid

variants called using Anvi’o (see Methods), i.e. for each position of interest and each sample, a vector
of frequency of amino acid alleles was determined by Anvi’o based on read mapping. For each TR-VR
pair, all amino acid residues in the VR for which at least one of the position in the codon corresponded
to an A in the TR were evaluated, along with 10 randomly chosen positions upstream in the target
protein sequence which were used as control. 

Three complementary metrics were computed from these amino acid alleles frequency vectors. First,
the entropy calculated by Anvi’o was used as a measure of the populations diversity at a given position
in a given sample. Based on the overall distribution of entropy values across VR and control positions,
we established three categories of positions: low entropy for values ≤0.25, medium entropy for values
>0.25 and ≤0.5,  and high entropy for values >0.5.  Next,  we calculated for each position a cosine
similarity  between the  allele  frequency  vector  of  a  sample  and  the  allele  frequency  vector  of  the
previous sample in the time series. Again, based on the overall distribution of cosine similarities across
consecutive time points for VR and control positions, we defined cosine similarity values ≥0.9 as “high
similarity”,  values  ≥0.75  and  <0.9  as  “medium similarity”,  and  values  <0.75  as  “low similarity”.
Finally, we calculated the number of changes in the dominant (i.e. majority) allele throughout the time
series for each position.

Four categories of DGR activity were then defined based on a combination of these 3 metrics. First,
if the entropy of position was always high, i.e. >0.5 for all time points, the position was considered as
“constant diversity”, i.e. it is likely that the corresponding DGR is active enough to counteract any
purifying selection. If instead a position included in the same time series included both samples with
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low (i.e. ≤0.25) and high (i.e. >0.5) entropy, it was considered as “alternating”, i.e. these changes were
interpreted as a series of DGR-driven diversification events followed by diversity reduction through
purifying selection and/or  drift.  Alternatively,  if  at  least  one dominant  allele  change was observed
during  the  time series  with  a  low cosine  similarity  (i.e.  <0.75),  the  corresponding DGR was  also
considered as “alternating”. In this case, we interpreted the change in dominant allele associated with a
high  distance  between  allele  frequency  vectors  as  evidences  suggesting  some  unsampled  DGR
diversification event between the time points. The cutoff on distance between allele frequency vectors
enabled us to distinguish cases with genuine changes in the amino acid composition of a position, from
cases with multiple co-dominant alleles of nearly equal proportion, for which a change in dominant
allele could be observed by chance without the need for any diversification or selection event. Positions
not considered as “constant diversity” or “alternating” were then classified as “constant selection” if the
minimum entropy was at least medium (i.e. >0.25). These are cases for which few to no change in the
dominant allele are observed, however all samples show significant population diversity suggesting a
continuous DGR-driven diversity likely controlled by purifying selection. Finally, other positions with
either all  samples with entropy ≤0.25 (low entropy) or all  similarities between samples ≥0.9 (high
similarity) were considered as “inactive”. We chose to interpret these as sign that the corresponding
DGR was not active, although similar allele frequency profiles could be obtained from active DGR
associated with very strong purifying selection if the fitness of different variants was constant across
the time series. 

Overall, >97% of the “control” positions (i.e. positions from the target gene but not in the VR region)
were classified as “inactive”, as would be expected for positions under strong purifying selection. In
contrast,  only 43% of the VR positions were classified as “inactive”,  despite  the fact that  the VR
regions were determined automatically and likely include non-VR positions in 5’ and 3’ of the actual
TR-VR repeat. The other VR positions distributed between “constant diversity” (35%), “alternating”
(15%), and “constant selection” (7%). This is consistent with the high rate of non-synonymous SNV
identified  from individual  metagenome mapping (Fig.  3A & B),  and confirms that  the  population
diversity observed at VR locus is fundamentally different from the one observed at other positions even
in the same target gene and the same samples.

Estimation of the contribution of DGRs to overall amino acid changes in viral genomes
To conservatively estimate the contribution of DGRs to overall amino acid turnover in viral genomes,

we first selected DGRs from clades 1, 4, and 6 for which longitudinal data was available, and excluded
data  from  laboratory  incubations  (Supplementary  Table  6).  For  each  type  of  dataset
(“Temperate_Lakes”,  “Antarctic_Lakes”,  “Human_microbiome”,  “Human_microbiome_perturbed”),
the total number of changes in dominant allele observed on VR and control positions (see above) was
tallied and divided by the total number of observation for each group to obtain a “frequency of change”
for  each  group.  Based  on  an  average  genome  size  of  ~50kb  and  coding  density  of  ~90%  for
Caudovirales  (based on genomes in NCBI Viral RefSeq v93), we estimated an average number of
position per genome of 15,000 (45,000 nucleotide positions in protein-coding gene leading to 15,000
codons/amino acid residues). For VR positions, we used the average number of VR positions predicted
by DGR, i.e. 17. For each dataset, the average frequency of change for each group (background and
VR) was thus multiplied by the estimated number of positions for each group in an average genome
(15,000 and 17) to obtain estimates of total number of changes for each group. The ratio between the
number  of  changes  in  VR and the  total  number  of  changes  was  then  used  as  an  estimate  of  the
contribution of DGRs to amino acid turnover in an average DGR-encoding viral genome.

The  estimated  proportions  of  amino  acid  changes  associated  with  DGRs  were  6.14%  in
“Human_microbiome”, 8.05% in “Human_microbiome_perturbed”, 9.67% in “Temperate_Lakes”, and
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16.35% in “Antarctic_Lakes”.  Importantly,  we consider these estimates as conservative because all
positions randomly selected as ‘control’ were taken from outside the predicted VR but within the same
DGR target gene. These genes are likely to experience more frequent changes even outside of the VR
region  than  other  housekeeping  genes  because  most  of  them are  directly  involved  into  virus-host
interactions. Hence, these estimated proportion of DGR-driven amino acid changes should be seen as
lower boundaries of the actual value.
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