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Abstract

Climate change is predicted to increase the severity of environmental perturbations, including

storms and droughts, which act as strong selective agents. These extreme events are often of3

finite duration (pulse disturbances). Hence, while evolution during an extreme event may be

adaptive, the resulting phenotypic changes may become maladaptive when the event ends. Us-

ing individual-based models and analytic approximations that fuse quantitative genetics and6

demography, we explore how heritability and phenotypic variance affect population size and ex-

tinction risk in finite populations under an extreme event of fixed duration. Since more evolution

leads to greater maladaptation and slower population recovery following an extreme event, slow-9

ing population recovery, greater heritability can increase extinction risk when the extreme event

is short, as in random environments with low autocorrelation. Alternatively, when an extreme

event is sufficiently long, heritability often helps a population persist, as under a press perturba-12

tion. We also find that when events are severe, the buffering effect of phenotypic variance can

outweigh the increased load it causes. Our results highlight the importance of the length and

severity of a disturbance when assessing the role of evolution on population recovery; the rapid15

adaptive evolution observed during extreme events may be bad for persistence.
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Introduction

Globally, humans are causing substantial environmental perturbations, and these perturbations18

are likely to become more severe in the future. In particular, climate change is projected to

lead to more extreme weather events, including droughts and major storms (Ummenhofer and

Meehl, 2017). With more severe events comes the potential for dramatic demographic and genetic21

consequences.

In the process of causing mass mortality, extreme events can act as catalysts of evolutionary

change. In fact, there are many examples of rapid evolution in response to extreme events24

(reviewed in Grant et al., 2017). Famously, Bumpus (1899) documented phenotypic differences

in house sparrows that survived a strong winter storm. More recently, Donihue et al. (2018)

measured lizards before and after a series of hurricanes and found evidence for selection on27

body size, relative limb length, and toepad size. Another example is a study of the annual

plant Brassica rapa in response to summer drought, in which, post-drought seeds flowered earlier

when planted alongside pre-drought seeds (Franks et al., 2007). Finally, Grant and Grant (2014)30

not only documented shifts in beak depth of Darwin’s ground finches in response to drought,

but also the reversal of that evolution and population recovery in subsequent years. We have

many fewer examples like this latter case, where the recovery from an extreme event is recorded.33

Hence exploring what factors influence recovery patterns is currently best done with theory.

Extreme events such as storms, hurricanes, and droughts are pulse disturbances, defined as

a transient or short-term change in the environment (Bender et al., 1984). In the ecological lit-36

erature, pulse disturbances lie at the crossroads of two other forms of environmental change:

press perturbations, a permanent or long-term change in the environment (Ives and Carpen-

ter, 2007; Kéfi et al., 2019; Yodzis, 1988), and fluctuating environments such as a sequence of39

pulse disturbances of varying durations and intensities (Lande, 1993; Ozgul et al., 2012). De-

spite their transient nature, pulse disturbances can substantially impact ecological systems from

large, long-term transients in ecological dynamics to permanent shifts in ecological states (Fox42
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and Gurevitch, 2000; Hastings et al., 2018; Holling, 1973, 1996; Holt, 2008; Ives and Carpenter,

2007). While the most extreme form of a permanent shift is species extinction, we know of no

studies that examine the effects of pulse disturbances of varying length on extinction risk (see,45

however, Figure 1 in Holt, 2008). In contrast, there have been many studies examining the effect

of repeated disturbances on extinction risk (Cuddington and Yodzis, 1999; Mangel and Tier, 1994;

Petchey et al., 1997). For example, Wilson and MacArthur (1967) showed that the mean time to48

extinction plateaus as a function of the initial population size. This plateau, which allows one

to define a minimum viable population size, is lost when populations experience repeated large

disturbances; there is a continual gradual increase in the mean time to extinction with increasing51

initial population sizes (Mangel and Tier, 1994). In these studies of repeated disturbances, ex-

tinction occurs eventually. Consequently, the focus is on when the extinction event occurs, not on

whether it occurs after a particular disturbance. However, understanding short-term exinction54

risk after a single disturbance is critical for conservation and management.

Previous work on evolution in changing environments can provide intuition for how evolu-

tion might affect extinction risk during or after a pulse disturbance. One focus of the evolution-57

ary rescue literature has been on understanding the consequences of phenotypic change in the

context of a sudden, long-term or permanent environmental shift (a press perturbation). These

studies, some of which account for demographic stochasticity, underline the importance of ge-60

netic variance for increasing the probability of rescue (Gomulkiewicz and Holt, 1995, reviewed

in Alexander et al., 2014; Bell, 2017). That is, populations that are able to adapt rapidly to the

new environment have a higher chance of persisting. Similarly, studies of adaptation in fluctu-63

ating environments suggest that if an environment is predictable, such as the case of positively

autocorrelated fluctuations, genetic variation reduces lag load (Charlesworth, 1993; Lande and

Shannon, 1996; Chevin, 2013). This reduction in the lag load leads to higher population per-66

capita growth rates and, consequently, is expected to reduce extinction risk. Whereas, when the

environment is unpredictable, genetic variance typically increases the lag load. These studies cal-

culated lag load and per-capita growth rates in a number of environmental contexts including a69

4

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 11, 2020. ; https://doi.org/10.1101/2020.04.02.014951doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.02.014951
http://creativecommons.org/licenses/by/4.0/


press perturbation, randomly fluctuating environments, and cyclic environments. However, they

did not account for demographic stochasticity, the ultimate cause of extinction. Furthermore, we

explore the impact of phenotypic variance on the probability of persistence, which has not been72

emphasized as much in previous studies.

To understand extinction risk during and following a pulse disturbance, we introduce an

individual-based model that fuses population demography with quantitative genetics. Using a75

mixture of computational and analytical methods, we examine how phenotypic variation and the

heritability of this variation influences population growth, lag load, and extinction risk during

and following a pulse perturbation. Moreover, we examine how the magnitude and direction of78

these effects depend on the duration and intensity of the pulse perturbation.

Model

We use an individual-based model that combines the infinitesimal-model of an evolving quanti-81

tative trait with density-dependent demography. To gain insights beyond simulating the model,

we derive analytical approximations of the probability of extinction using a mixture of deter-

ministic recursion equations and branching process theory (Harris, 1964). We assume discrete,84

non-overlapping generations. The life cycle starts with viability selection. In each generation t,

we impose stabilizing selection around some optimal trait value θt, which is set by the environ-

ment in that generation, by making the probability of survival87

st(z) = exp
[
−(θt − z)2

2ω2

]
, (1)

a Gaussian function of phenotype, z, with a strength of selection proportional to 1/ω2.

Following viability selection, survivors are randomly drawn with replacement to form mating

pairs. Each pair then produces a Poisson number of offspring with mean 2λ. The population90

lives in a habitat that supports at most K individuals. Hence, if more than K offspring are

produced, K are randomly chosen without replacement. The genetics of the population follows

the infinitesimal model in which breeding values are determined by many loci of small effect93
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(Fisher, 1918; Turelli, 2017). Under this model, an offspring’s breeding value is a draw from a

normal distribution centered on the mean of its parents’ breeding values and with segregation

variance V0 (which we assume is a constant). Its phenotype, z, is this breeding value, g, plus a96

random environmental component, e, which is a draw from a normal distribution with mean 0

and variance Ve. We ignore dominance and epistasis, thus the phenotypic variance in generation t

is the additive genetic variance plus the environmental variance, Vp,t = Vg,t + Ve. At equilibrium,99

V̂p = V̂g + Ve.

Prior to experiencing an extreme event, the populations in the individual-based simulations

start with a 100-generation burn-in from an initial state where all N = K individuals have breed-102

ing value θ = 0 and the optimal trait value θt equals 0 throughout this period. The 100 generation

burn-in is sufficiently long to ensure the model reaches a quasi-stationary state (Supplementary

Figure S1). To model the extreme event of length τ after the burn-in period from generation -100105

to 0, we increase the optimum trait value by ∆θ and revert it back to its original value after τ

generations. For example, in a single-generation event, the optimum trait value changes before

selection in generation 1 and then reverts back before selection in generation 2 (Figure 1). Unless108

otherwise stated, we use the parameter values ω2 = 1, V̂p = 1, ∆θ = 3, λ = 2, and K = 500.

These ω2 and V̂p values represent strong selection and large phenotypic variance relative to those

estimated in Turelli (1984), which we use to show the qualitative effect of variance load. Reduc-111

ing the strength of selection (or decreasing the phenotypic variance) does not otherwise change

our qualitative results. The values for ∆θ scale the strength of selection. For this set of parameter

values, the optimum shift (∆θ = 3) corresponds to three standard deviations beyond the mean114

of the trait distribution, and consequently, roughly 99.5 percent of the trait distribution will ini-

tially be smaller than the optimum and we expect roughly 80% of the population to die in the

first generation. We have chosen a high growth rate, λ, to reduce extinction from demographic117

stochasticity in the absence of disturbance. We have chosen a large enough starting population

size and carrying capacity, K = 500, to make approximations reasonable (e.g. normal distribution

of traits).120
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Figure 1: Population size over time for populations with h2 = 0 (red) and h2 = 1 (black) after

a single-generation extreme event of size ∆θ = 3. Phenotypic variance is the same for both

populations (V̂p = 1). Faded lines are 100 simulations and solid lines are the model predictions

using Equations (2) and (4). Parameters: ω = 1, λ = 2. Red: V0 = 0, Ve = 1, Black: V0 = 3/4,

Ve = 0.

Approximations

Approximating the evolutionary and population size dynamics

In Appendix A (see the supplementary Mathematica file for more details), we derive determin-123

istic approximations for the dynamics of the mean breeding value ḡt, genetic variance Vg,t, and

population size Nt. Briefly, if we assume the distribution of breeding values remains normally

distributed, then we know the whole phenotypic distribution by tracking the mean and variance126

in the breeding values. Given the mean and variance in a given generation, we can then calculate

the mean and variance in the next generation,

ḡt+1 = ḡt

(
1−

Vg,t

Vt

)
+ θt

Vg,t

Vt
(2)
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129

Vg,t+1 =
Vg,tVs

Vt

1
2
+ V0, (3)

where Vt = Vg,t + Vs, Vs = ω2 + Ve is the inverse of the effective strength of selection, and V0 is

the variance in breeding values among siblings. We can also calculate the population size in the

next generation132

Nt+1 = min (Nt s̄tλ, K) , (4)

where the mean survival probability, s̄t, is calculated by integrating Equation (1) over the distri-

bution of phenotypes in the population,

s̄t =
√

ω2/Vt exp[−(θt − ḡt)
2/(2Vt)]. (5)

Regardless of the trait or environmental dynamics, the genetic variance approaches an equi-135

librium V̂g =
(

2V0 −Vs +
√

4V2
0 + 12V0Vs + V2

s

)
/4 which increases with segregation variance

and decreases with the strength of selection. In a constant environment, θt = θ for all t, the mean

breeding value approaches the optimum, ̂̄g = θ, and, provided λ > 1, N0s̄0 is large enough, and138

V̂p = V̂g + Ve is small enough, the population size reaches carrying capacity, N̂ = K. Starting

from this equilibrium, we can then approximate the response of the population to a shift in the

optimum using Equations (2)-(4).141

Approximating Extinction Risk

We next approximate the probability of extinction using branching processes (Harris, 1964). The

probability generating function for the number of offspring produced by an individual with144

survival probability s is

f (x, s) = 1− s + s exp [−(1− x)λ] . (6)

The probability of no offspring is f (0, s). Further, if s1, . . . , sNt are the survival probabilities of the

Nt individuals in generation t, then the probability of extinction in generation t is ∏Nt
i=1 f (0, si).147

Here we approximate this by assuming all individuals in generation t have the average proba-

bility of survival, s̄t, which is a reasonable approximation when the strength of selection is weak
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relative to the phenotypic variance. Defining ft(x) = f (x, s̄t) , the probability of extinction in150

generation t is then simply ft(0)Nt . Assuming that the effects of density-dependence are negligi-

ble from generation t to generation T > t, we can approximate the probability of extinction by

the end of generation T as ( ft ◦ ft+1 ◦ . . . fT(0))Nt , where ◦ denotes function composition (Harris,153

1964).

We take t = 1 to be the first generation of the extreme event and assume the population

begins at carrying capacity. For an extreme event of duration τ, we define156

Pextinct(τ, T) = ( f1 ◦ f2 ◦ . . . fT(0))K (7)

as our approximation for the probability of extinction by generation T since an extreme event of

length τ began. To calculate the s̄t in Equation (7) we assume Vg,t = V̂g and use Equation (2) to

get ḡt, which together give s̄t (Equation (1)).159

Results

Demographic recovery

We first explore extreme events lasting a single generation. To characterize the impact of pheno-162

typic variance and heritability on population size, we compare the demographic response of pop-

ulations with low or high phenotypic variance, V̂p, across a range of heritabilities, h2 = V̂g/V̂p.

During the event, heritability has no effect on population size (compare black and red curves165

in 2A). In contrast, we see that phenotypic variation can have a large effect. A population with

high phenotypic variance (thick gray curve) has a smaller population size than one with low

phenoytpic variance (thin gray curve) immediately following a low severity extreme event, but168

a higher population size following more severe events. We also see this effect in the generation

after the event (Figure 2B,C). This pattern stems from the dual role of phenotypic variance, in

that it both increases variance load and contributes individuals with extreme traits who are then171

able to survive an extreme event. High phenotypic variance therefore reduces both mean fitness

9
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Figure 2: Population size response during the generation of a single-generation extreme event

(A), the generation after the event (B), and the growth rate ( Nt
Nt−1

) calculated as the population size

in the generation after the event divided by the population size in the generation of (C) shown

over a range of event severities ∆θ. Expectations using Equation (4) as curves and simulation

results (mean of 100 replicates) as crosses. Parameters: ω = 1, λ = 2. Red: V0 = 0, Ve = 1. Thick

gray: V0 = 2/3, Ve = 1. Thin gray: V0 = 5/16, Ve = 1/2. Black: V0 = 3/4, Ve = 0.

within a generation and the variance in fitness across generations – a form of short-term bet-

hedging which can increase the geometric mean of fitness in the generations during and after174

the the disturbance event. The positive effect of bet hedging is seen when the event is severe and

variation means more individuals on the tail of the distribution will survive the event.

While heritability has no effect on survival during the event, it has a strong effect on pop-177

ulation recovery in subsequent generations. In particular, heritability dampens the growth rate

( Nt
Nt−1

) in subsequent generations (Figure 2C) as evolution in the generation of the event induces

10
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future maladaptation. This explains why in the generation after the event increasing segrega-180

tion variance increases population size (thick gray curve crosses red near ∆θ = 3 in panel B) at a

higher severity than the point which increasing environmental variance becomes beneficial (thick

gray curve crosses black near ∆θ = 2 in panel B). The maladaptation induced by heritability con-183

tinues past the generation after the event, generally slowing population recovery (Figure 1). In

conclusion, phenotypic variance can be beneficial for population growth under single-generation

severe events, but heritability is generally deleterious.186

Extinction Risk

When a single-generation extreme event is severe enough, increasing phenotypic variation lowers

extinction risk both during and after the event (compare thick and thin gray curves in Figure189

3A,C). The biological intuition behind this pattern is the same as in Figure 2A, where increased

variance means more individuals survive the extreme event. However, at such large population

sizes the extinction risk is essentially zero during a mild event. In other words, while having too192

much variance leads to considerable reduction in population size when events are mild, it is very

unlikely to lead to extinction unless there is extremely high phenotypic variance or if carrying

capacity is very low. In the former case load will cause extinction in the absence of extreme195

events (Supplementary Figure S2).

Next, we compare populations with the same phenotypic variance but different heritabilities,

to control for the effect of variance (i.e., variance load and bet hedging) and isolate the effect of198

evolution (compare black and red in Figure 3). When the extreme event lasts only one generation

(Figure 3A,C), hertiability increases extinction risk in the generation following moderately severe

extreme events. There is little effect when events are very mild or incredibly strong. Whereas,201

when an extreme event lasts two generations (Figure 3B,D), heritability reduces the risk of ex-

tinction in the generation following a moderately severe extreme event.

Finally, we explored how extinction risk varies across time for one- to four-generation mod-204

erately (∆θ = 3.5) extreme events across a range of heritabilities. For single generation events,
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Figure 3: Extinction risk across increasingly severe events in the first generation of an extreme

event, (A,B) and two generations later, (C,D). In A and C, the extreme event persists for a single

generation, and in B and D, the extreme event persists for two generations. Expectations using

Equation (7) as curves and simulation results (mean of 100 replicates) as crosses. Parameters:

ω = 1, λ = 2. Red: V0 = 0, Ve = 1. Thick gray: V0 = 2/3, Ve = 1. Thin gray: V0 = 5/16,

Ve = 1/2. Black: V0 = 3/4, Ve = 0.
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Figure 4: Extinction risk through time T across a range of heritability for extreme events lasting

1, 2, 3, or 4 generations. Time starts the generation the event began. Parameters: V̂p = 1, ω = 1,

λ = 2, ∆θ = 3.5. Expectations using Equation (7) as curves and simulation results (mean of 100

replicates) as crosses.

long-term extinction risk (10,000 generations) increases with heritability (Figure 4A), for the rea-

sons above. However, for two generation events, long-term extinction risk is lowest at intermedi-207

ate heritabilities (Figure 4B). And for three and four generation events, long-term extinction risk

decreases with heritability (Figure 4C,D). These patterns hold for milder (∆θ = 2.5) and more

severe (∆θ = 4.5) extreme events (Supplementary Figures S3-S4).210

While Equation (7) gives a good approximation of extinction risk, the function itself is too

complex to give us intuition. Next, by writing down the geometric mean fitness of a population,

we reproduce the general trends in long-term extinction risk, but with added clarity for how213

maladaptation contributes to these outcomes.

Contribution of Lag Load

To better understand how evolution affects the probability of extinction, we approximate the216

geometric mean fitness of a population under the assumption that the genetic variance remains

13
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at the equilibrium value, V̂g, as expected based on Equation (3). If the extreme event lasts τ

generations, then the geometric mean of fitness after T > τ generations is219

W(τ, T) =

(
T

∏
t=1

λs̄t

)1/T

= λ

√
ω2/V̂ exp

[
− 1

2V̂T

T

∑
t=1

(θt − ḡt)
2

]
.

(8)

From Equation (8) we see that geometric mean fitness depends on the cumulative lag load,

∑T
t=1(θt − ḡt)2/(2V̂).

Using Equation (2), we show in Appendix C that the cumulative lag load over T > τ genera-222

tions for an event of length τ is

L(τ, T) =
1

2V̂

T

∑
t=1

(θt − ḡt)
2

=
∆θ2

2V̂
[1− (1− v)τ][2− (1− v)2(T−τ) + (1− v)2T−τ]

(2− v)v
,

(9)

where v = V̂g/V̂ is a measure of evolvability (see Equation (2) and, e.g., equation 1 in Charlesworth

1993).225

Taking the limit as time, T, goes to infinity, the cumulative lag load is

L∞(τ) = lim
T→∞

L(τ, T)

=
∆θ2

V̂
1− (1− v)τ

(2− v)v
.

(10)

Generally, increasing the event length or increasing the event severity increases the cumulative

lag load.228

As v = h2V̂p/(V̂p + ω2), we can use Equation (10) to determine how heritability affects the

cumulative lag load in the long term (Figure 5), holding V̂p and ω2 (and thus the variance load)

constant. When the extreme event only lasts one generation (τ = 1), the cumulative lag load231

equals ∆θ2

2(V̂p+ω2)−h2V̂p
. Hence, increasing heritability while holding V̂p constant increases the cu-

mulative lag load (solid purple curve in Figure 5), a trend consistent with the extinction probabil-

ities for τ = 1 (Figure 4A). Alternatively, when the extreme event lasts two generations (τ = 2),234
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the cumulative lag load equals ∆θ2

V̂p+ω2 and is therefore independent of heritability when V̂p and

ω2 are held constant (solid pink curve in Figure 5). Finally, when the extreme event lasts for

more than two generations, the cumulative lag load is a decreasing function of heritability (yel-237

low and green curves in Figure 5), a trend consistent with extinction probabilities decreasing

with heritability when τ ≥ 3 (Figure 4C,D).

Figure 5: Cumulative lag load as a function of heritability. Dashed curves are Equation (9) with

T = τ + 1 and solid are Equation (10). Colors correspond to the length of the extreme event.

Parameters: V̂p = 1, ω = 1, ∆θ = 1.

Taking the limit as both the time and event length go to infinity in Equation (9) and assuming240

weak selection (Vs → ∞) we recover the cumulative lag load following a sudden non-reversing

shift in the environment, ∆θ2

4Vg
(equation 10 in Chevin, 2013). This is roughly half of Equation (10),

since the environment never reverts back. Equation (9) can therefore be seen as a generalization243

of Chevin’s result to arbitrary time and event length under arbitrarily strong selection (provided

our approximations in Appendix A hold).
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Discussion246

Although it has been long recognized that evolution may affect a population’s response to a

changing environment, previous studies have primarily focused on understanding this effect over

the long term in the context of a single non-reversing environmental shift (a press disturbance) or249

a constantly fluctuating environment. Here, we are concerned with the short-term effect (finite T)

of a pulse disturbance on population growth and extinction risk. By allowing pulses to be of any

duration, this allows us to connect our results with those of both the press disturbance (large τ)252

literature and the constantly changing environment literature while providing insights into the

transient effects (small T) following a disturbance. Our results provide two general conclusions

about the effect of trait variation and its heritability on population growth and extinction risk255

during and following a pulse disturbance. First, trait variance, whether it is heritable or not,

is a double-edged sword: adding a variance load due to stabilizing selection, yet providing

individuals with more extreme traits who can survive large shifts in the environment. Second,258

while variance can be useful in the generation of a severe event, if heritable it slows demographic

recovery and can therefore increase extinction risk in the generations after the event.

Phenotypic Variance261

Phenotypic variance, whether heritable or not, can be beneficial or deleterious. A simultaneous

reduction in the mean and variance in fitness during the generations immediately prior, during,

and immediately after an extreme event can increase the geometric mean of fitness during this264

time frame (Figure 2). This increase occurs when disturbances are sufficiently severe, in which

case phenotypic variation can serve as a kind of short-term bet-hedging strategy. In addition to

its effect on the geometric mean across multiple generations, variation in survival rates due to267

phenotypic variation, in and of itself, reduces variation in the total number of offspring produced

by the population (Kendall and Fox, 2002) and, thereby, lowers extinction risk (Lloyd-Smith et al.,

2005). This effect contributes to phenotypic variation reducing extinction risk.270
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Prior studies of evolutionary rescue have emphasized the beneficial aspect of genetic variance,

but not non-heritable phenotypic variance, in rescuing a population from an abrupt shift in envi-

ronment. For example, for constantly fluctuating environments, Charlesworth (1993) found that273

higher genetic variance reduces lag load when environmental fluctuations are large and, thereby,

increases the long-term geometric mean of fitness. Similarly, studies of a sudden or gradual

directional environmental shift found that high genetic variance at the time of the environmen-276

tal shift promotes rescue (Alexander et al., 2014; Barfield and Holt, 2016; Bell and Collins, 2008;

Gomulkiewicz and Holt, 1995).Here, by teasing out the effects of heritability and phenotypic

variance, we emphasize the costs and benefits of each.279

Heritability

Contrary to evolutionary rescue for populations experiencing a press-perturbation (Barfield and

Holt, 2016; Gomulkiewicz and Holt, 1995), we find that heritability increases extinction risk when282

pulse perturbations only last a single generation. We can gain some intuition for why this is by

considering the limiting cases of traits not evolving versus tracking the optimal trait perfectly

with a one generation lag. When the population is adapted to the original environment, but285

does not evolve in response to the extreme event, it experiences a reduction in fitness for the

duration τ of the extreme event. In contrast, when selection tracks the optimal trait with a

one generation lag, the population experiences a reduction in fitness only in the first and last288

generation of the extreme event. Hence, when the extreme event lasts one generation, extinction

risk is higher for the evolving populations and when the extreme event lasts more than two

generations, extinction risk is higher for the non-evolving populations. A similar understanding291

can be gained by adapting a classic population genetic model of allele frequency change with

time-varying selection (Dempster, 1955; Felsenstein, 1976, see Appendix D).

In general, the trends in short-term extinction risk are parallel to the lag load predictions294

(Figures 4 and 5). However, they differ in two ways. When the extreme event lasts exactly

two generations, the non-evolving population experiences the reduction in fitness in successive
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generations while the evolving population experiences this reduction in alternate generations.297

Hence, the evolving population is slightly less likely to go extinct (see Appendix B). Also, when a

population exhibits an intermediate amount of tracking of the optimum, the variance in survival

from year to year is reduced and therefore can lower the overall extinction probability. This effect300

is especially apparent in the result of two year events (Figure 4B).

While previous studies continuously varying environments have focused on large popula-

tions in the long term, calculating lag load and growth rates when rare, they provide intuition303

for our results on short-term extinction risk after a one-time event. A single-generation extreme

event functions most like a negatively autocorrelated fluctuating or randomly fluctuating envi-

ronment, in that a strong genetic response to selection in one generation is likely maladaptive306

in the next generation (Benaı̈m and Schreiber, 2019; Charlesworth, 1993; Chevin, 2013; Lande

and Shannon, 1996). However, an extreme event lasting three or more generations acts like a

positively autocorrelated environment in that the environment is more predictable and hence309

evolvability is favored. Cyclic oscillations with a high amplitude and long period would also fall

into this category.

Future Challenges and Directions312

Our models include a number of simplifications to both evolutionary and demographic pro-

cesses. First, we do not model the erosion of genetic variance with decreasing population size,

which is expected due to greater genetic drift in smaller populations (Barfield and Holt, 2016;315

Lande and Barrowclough, 1987). Furthermore, we have limited our analysis to truly quantitative

genetic traits (i.e. infinitely many small-effect alleles) where adaptation is not mutation-limited

and evolution is easily reversed. Different genetic architectures, such as a few loci of large ef-318

fect, likely will respond differently (Barghi et al., 2020). Second, in our model, the phenotypic

variation due to environmental variation is random, which ignores the potential for phenotypic

plasticity. Phenotypic plasticity has been shown to have variable effects on evolution and ex-321

tinction risk that depend on the nature of environmental change (Kopp and Matuszewski, 2014;
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Lande, 2015). Third, we are only tracking a single trait, whereas extreme events likely select on

many correlated traits. As genetic covariance can change the outcome of selection, further work324

is needed to explore the effects of multiple correlated traits. Fourth, we used the simplest pos-

sible model for density-dependence, the ceiling model, as used in previous evolutionary rescue

studies (e.g., Bürger and Lynch, 1995). For other models of compensating density-dependence,327

such as the Beverton-Holt model (Beverton and Holt, 1957), we expect similar results. However,

over-compensatory density-dependence, as seen in the Ricker model (Ricker, 1954), can result

in oscillatory population-dynamics for which the timing of the extreme event relative to the330

oscillations may play a subtle role.

Our results call for the need of more empirical studies assessing trait and fitness changes after

an extreme event has ended. The many case studies of evolution in response to extreme events333

focus on the adaptive nature of species responses in the short-term (e.g. Campbell-Staton et al.,

2017; Coleman et al., 2020). What these studies often fail to mention is that this evolution can

be maladaptive in the longer term. When the environment returns to normal, populations with336

shifted trait means could be worse off. To explore this effect, future empirical studies could be

extended to track changes in trait values and population size over several generations following

extreme events. For example, lizards can be tracked for several generations following a hurricane339

(Donihue et al., 2018) or a cold snap (Campbell-Staton et al., 2017). We highlight the Darwin’s

finch example as one such study to do this (Grant and Grant, 2002), where finch traits and

selection gradients were found to fluctuate in response to extreme events that lasted less than342

a generation. Larger beak sizes were selected for immediately following a drought due to the

change in the seed composition, but in later years these beak sizes were maladaptive. However,

because mean survival is higher in an average wet year regardless of beak size, the effect of this345

maladaptation on population recovery is not readily apparent. Ideally, this recovery could be

compared to one causing similar mortality but less evolution.

An important next step will be to understand evolution and extinction risk under repeated348

extreme events. Extreme events, or catastrophic events, can be characterized by causing abrupt,
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infrequent, and large reductions in biomass or population size. Hence, prior work on adap-

tation and persistence using autoregressive processes to model environmental fluctuations (e.g.,351

Benaı̈m and Schreiber, 2019; Charlesworth, 1993; Chevin, 2013; Lande and Shannon, 1996), do not

accurately capture the nature of extreme events such as those presented in the continuous-time

ecological models of Mangel and Tier (1994). We hope future studies exploring the impact of dis-354

turbance regime on evolution and extinction risk will benefit from the detailed understanding,

like that provided here, of an evolving population’s response to a single extreme event.
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Appendix A Dynamics of the breeding value distribution and357

population size

Let the trait value of an individual be the sum of a genetic component (breeding value) and

an environmental component, z = g + e. Assume we start with a population, in generation t,360

that has a normal distribution of breeding values, pg(g, t), with mean ḡt and variance Vg,t. And

assume each environmental component is independently chosen from a normal distribution,

pe(e), with mean 0 and variance Ve. The joint distribution of g and e, pg,e(g, e, t), is then initially363

multivariate normal with mean (ḡt, 0), variances Vg,t and Ve, and no covariance.

Let the probability of survival for an individual with trait value z in generation t be

s(z, t) = exp
[
− (θt − z)2

2ω2

]
, (A1)

where θt is the optimum trait value in generation t and 1/ω2 is the strength of selection. The366

joint distribution of g and e following viability selection is

p′g,e(g, e, t) =
s(z, t)pg,e(g, e, t)

s̄t
, (A2)

where

s̄t =
∫ ∞

−∞

∫ ∞

−∞
s(z, t)pg,e(g, e, t)dgde

=

√
ω2

Vt
exp

[
− (θt − ḡ)2

2Vt

]
,

(A3)

is the expected fraction of the population that survives in generation t (i.e., the population mean369

survival probability), with Vt = Vg,t + Vs and Vs = ω2 + Ve the inverse of the effective strength of

selection. Integrating over environmental effects then gives the distribution of breeding values

amongst the survivors372

p′g(g, t) =
∫ ∞

−∞
p′g,e(g, e, t)de, (A4)

which is normal with mean ḡt(1−Vg,t/Vt) + θtVg,t/Vt and variance Vg,t(1−Vg,t/Vt). The mean

breeding value is thus shifted towards θt with a weight of Vg,t/Vt and the genetic variance has

been reduced by this fraction.375
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We next assume that the breeding value is determined by a large number of small effect loci,

such that the distribution of breeding values amongst siblings, pg,sibs(g|gmid), is normal with a

mean equal to the midpoint of the parental breeding values, gmid, and a variance, V0, that does378

not depend on the parental genotypes or trait values (i.e., the infinitesimal model; Barton et al.,

2017; Fisher, 1918). The distribution of breeding values among the offspring is then

pg(g, t + 1) =
∫ ∞

−∞

∫ ∞

−∞
p′g(gm, t)p′g(gp, t)pg,sibs(g|(gm + gp)/2)dgmdgp, (A5)

which is normal with mean381

ḡt+1 = ḡt

(
1−

Vg,t

Vt

)
+ θt

Vg,t

Vt
(A6)

and variance

Vg,t+1 =
Vg,tVs

Vt

1
2
+ V0. (A7)

That is, the mean breeding value remains constant through reproduction while the variance

before reproduction is first halved (due to essentially ”blending inheritance” between the parents)384

and then increased by segregation, V0.

So we see that given the initial distribution of breeding values is normal, with Gaussian

selection the breeding value distribution remains normal, allowing us to track the entire dis-387

tribution of breeding values (and therefore phenotypes) across generations by keeping track of

only its mean and variance. The variance dynamics are independent of the environment (θt) and

the breeding values; solving Equation (A7) gives the genetic variance in generation any t. This390

expression is rather complicated (see Mathematica file), however it reaches an equilibrium

V̂g =
2V0 −Vs +

√
4V2

0 + 12V0Vs + V2
s

4
. (A8)

Holding genetic variance constant at its equilibrium (which is reasonable given the variance is

not expected to change with the environment or breeding values), in a constant environment,393

θt = θ, the mean breeding value in any generation t is found by solving Equation (A6),

ḡt = θ − (θ − ḡ0)

(
1−

V̂g

Vs + V̂g

)t

, (A9)

22

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 11, 2020. ; https://doi.org/10.1101/2020.04.02.014951doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.02.014951
http://creativecommons.org/licenses/by/4.0/


implying a geometric approach to ̂̄g = θ that becomes faster with V̂g/(Vs + V̂g).

We assume each individual that survives viability selection produces λ offspring, and that396

if more than K offspring are produced then K of these are randomly chosen to start the next

generation. If the population size in generation t was Nt then the population size in generation

t + 1 is expected to be399

Nt+1 = min (Nt s̄tλ, K) . (A10)

Appendix B Extinction Risk in Single and Two Generation Events

In this Appendix, we examine the effect of long-term extinction risk when populations are either

not evolving or are perfectly tracking, with a one-generation lag behind the optimal trait value.402

Let so and sm be the survivorship of individuals with the optimal trait or the maladaptive trait.

The offspring probability generating functions for these individuals are fo(x) = f (x, so) and

fm(x) = f (x, sm), respectively, where f (x, s) = 1− s + s exp(λ(1− x)). Let x∗o and x∗m be the405

asymptotic extinction probability for the lineage of a single individual if it always exhibits the

optimal trait and if it always is maladapted, respectively. Namely, x∗o and x∗m are the smallest

fixed points of fo and fm, respectively, on the interval 0 ≤ x ≤ 1.408

If a disturbance event lasts τ ≥ 1 generations, then the eventual extinction probability of the

lineage of a non-evolving individual equals

em := lim
T→∞

f τ
m( f T−τ

o (0)) = f τ
m( lim

T→∞
f T−τ
o (0)) = f τ

m(x∗o ).

While the eventual extinction probability of the lineage of an individual with a one-generation411

lagged tracking of the optimal trait equals

eo := lim
T→∞

fm( f τ−1
o ( fm( f T−τ−1

o (0)) = fm( f τ−1
o ( fm( lim

T→∞
f T−τ−1
o (0)) = fm( f τ−1

o ( fm(x∗o ))).

As so > sm, we have fo(x) < fm(x) for all 0 ≤ x < 1, and x∗o < x∗m. Furthermore, fi(x) are

strictly increasing functions of x, fi(x) > x for x < x∗i , and fi(x) < x for x > x∗i for i = o, m. Now414

suppose τ = 1. Then em = fm(x∗o ) and eo = fm( fm(x∗o )). As x∗o < x∗m, fm(x∗o ) > x∗o . As fm is an
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increasing function, it follows that eo = fm( fm(x∗o )) > fm(x∗o ) = em. Now suppose τ = 2. Then

em = f 2
m(x∗o ) and eo = fm( fo( fm(x∗o ))). As fm(xo∗) > x∗o , fo( fm(x∗o )) < fm(x∗0). As fm is increasing,417

it follows that eo = fm( fo( fm(x∗o ))) < fm( fm(x∗o )) = em.

Appendix C Cumulative lag load

Here we show how to derive Equation (9). Our goal is to develop a formula for the cumulative420

squared displacement, C(τ, T) = ∑T
t=1(θt − ḡt)2, given event length τ. First note that Equation

(2) implies that, with constant genetic variance V̂g, the mean trait displacement in the next gener-

ation is gt+1 − θt+1 = (gt − θt)(1− v), where v = V̂g/V̂ is a measure of evolvability. Thus, if the423

optimum is fixed at some arbitrary value for τ generations then the displacement in generation t,

dt = gt− θt, is dt = d0(1− v)t and the cumulative squared displacement over those τ generations

is d2
0 ∑τ−1

t=0 (1− v)2t. If the optimum then reverts to its original value for a further T− τ > 0 gener-426

ations then the initial displacement is d0(1− v)τ − d0 and the cumulative squared displacement

over this period is d2
0[(1− v)τ − 1]2 ∑T−1

t=τ (1− v)2(t−τ). Combining these two sums we get

C(τ, T) ≡
T

∑
t=1

(θt − ḡt)
2

= d2
0

τ−1

∑
t=0

(1− v)2t + d2
0[(1− v)τ − 1]2

T−1

∑
t=τ

(1− v)2(t−τ).

Multiplying by 1−v
2Vs

, evaluating the sums, and setting the initial displacement as d0 = ∆θ gives429

Equation (9) in the main text.

Appendix D Adapting a Population Genetic Model

To gain a better understanding of why cumulative lag load depends on event length, we adapt432

previous population genetic models of temporally variable selection. Consider a haploid case

with the ratio of the initial frequencies of two alleles being q0
1−q0

. The ratio of the frequencies of

the alleles at time t + 1, qt+1
1−qt+1

, equals the product of the selection coefficients st from t = 0 to435
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time t = T, multiplied by the ratio of the initial frequencies (Dempster, 1955; Felsenstein, 1976).

qt+1

1− qt+1
=

T

∏
t=0

(1 + st)
qt

1− qt
(B1)

Here, rather than allele frequency change, we consider the product of fitnesses over one extreme

event of length tau, where s is the selection coefficient corresponding to the change in the opti-438

mum during the event. When a population starting at the optimum perfectly tracks the extreme

event, the product of fitnesses is

(1− s)(1)τ−1(1− s)(1)T−τ = (1− s)2 ∗ 1T−2 (B2)

where fitness is reduced by s initially when the environment shifts to a new optimum, and441

then again when the environment returns to the original optimum. On the other hand, when a

population starting at the optimum does not track the extreme event, the product of fitnesses is

(1− s)(1− s)τ−1(1)(1)T−τ = (1− s)τ(1)T−τ (B3)

In the case of a two generation event, the product of fitnesses is (1− s)2 regardless of whether it444

is a perfectly tracking population or a population that does not track the event. In events longer

than two generations, perfectly tracking the environment is better.
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Supplementary Figures546

Figure S1: Rapid expansion and stabilization of phenotypic variance during the 100 generation

burn-in with Ve = 0, V0 = 1. Black line is mean trait value and gray shaded region extends from

minimum to maximum trait values. The dashed blue curve indicates a one generation extreme

event.
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Figure S2: Extinction in a population with high variance load with V0 = 3, Ve = 0. Black line is

mean trait value, grey shaded region extends from minimum to maximum trait values.

Figure S3: Extinction risk through time across a range of heritability for extreme events lasting 1,

2, 3, or 4 generations. Time starts the generation the event began. V̂p = 1, ω = 1, ∆θ = 2.5.
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Figure S4: Extinction risk through time across a range of heritability for extreme events lasting 1,

2, 3, or 4 generations. Time starts the generation the event began. V̂p = 1, Vs = 1, ∆θ = 4.5.
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