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ABSTRACT 12 

Generating new ideas and scientific hypotheses is often the result of extensive literature and 13 

database reviews, overlaid with scientists' own novel data and a creative process of making 14 

connections that were not made before. We have developed a comprehensive approach to guide 15 

this technically challenging data integration task and to make knowledge discovery and 16 

hypotheses generation easier for plant and crop researchers. KnetMiner can digest large volumes 17 

of scientific literature and biological research to find and visualise links between the genetic and 18 

biological properties of complex traits and diseases. Here we report the main design principles 19 

behind KnetMiner and provide use cases for mining public datasets to identify unknown links 20 

between traits such grain colour and pre-harvest sprouting in Triticum aestivum, as well as, an 21 

evidence-based approach to identify candidate genes under an Arabidopsis thaliana petal size 22 

QTL. We have developed KnetMiner knowledge graphs and applications for a range of species 23 

including plants, crops and pathogens. KnetMiner is the first open-source gene discovery platform 24 

that can leverage genome-scale knowledge graphs, generate evidence-based biological networks 25 

and be deployed for any species with a sequenced genome. KnetMiner is available at 26 

http://knetminer.org.  27 
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 31 

INTRODUCTION 32 

Genomics is undergoing a revolution. Unprecedented amounts of data are being generated to gain 33 

deeper insight into the complex nature of many traits and diseases (Boyle et al., 2017; Stephens et 34 

al., 2015). The growing landscape of diverse and interconnected data can often hinder scientists 35 

from translating complex and sometimes contradictory information into biological understanding 36 

and discoveries. Searching for information can quickly become complex and time-consuming, 37 

which is prone to information being overlooked and subjective biases being introduced. Even when 38 

the task of gathering information is complete, it is demanding to assemble a coherent view of how 39 

each piece of evidence might come together to “tell a story” about the biology that can explain how 40 

multiple genes might be implicated in a complex trait or disease. New tools are needed to provide 41 

scientists with a more fine-grained and connected view of the scientific literature and databases, 42 

rather than the conventional information retrieval tools currently at their disposal. 43 

Scientists are not alone with these challenges. Search systems form a core part of the duties of 44 

many professions. Studies have highlighted the need for search systems that give confidence to 45 

the professional searcher and therefore trust, explainability, and accountability remain a significant 46 

challenge when developing such systems (Russell-Rose et al., 2018). The amount of time spent 47 

on a task also influences human choice about whether to continue the task (Sweis et al., 2018). 48 

When implemented well, search systems can give a head start to researchers by cutting the time 49 

and cost to review genes, traits or molecules of interest before initiating expensive experiments. 50 

Additionally, they offer a framework for the prioritization of future research, which can highlight 51 

gaps in knowledge. 52 

Knowledge graphs (KG) are increasingly used to make search and information discovery more 53 

efficient (Fensel et al., 2020). KGs are contributing to various Artificial Intelligence (AI) applications 54 
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including link prediction, node classification, and recommendation and question answering 55 

systems (Ali et al., n.d.; Sheth et al., 2019). KGs model heterogeneous knowledge domains by 56 

integrating information into advanced unified data schemas (i.e. ontologies) and leverage that to 57 

apply formal and statistical inference methods to derive new knowledge (Ehrlinger & Wöß, 2016). 58 

Compared to more traditional data models, knowledge graphs are very flexible at integrating and 59 

searching connected heterogeneous data, where data schemas are not established a-priori (Yoon 60 

et al., 2017), and often subject to frequent changes. KGs in various forms have been widely 61 

adopted in many disciplines, ranging from social sciences to engineering, physics, computer 62 

science, design and manufacturing. Different research labs, including ourselves, are building 63 

biological KGs aimed at supporting crop improvement (Hassani-Pak et al., 2016; Xiaoxue et al., 64 

2019), drug-target discovery (Mohamed et al., 2019), and disease-gene prioritization (Alshahrani & 65 

Hoehndorf, 2018; Messina et al., 2018).  66 

The integrated, semi-structured and machine readable nature of KGs provides an ideal basis for 67 

the development of sophisticated knowledge discovery and data mining (KDD) applications 68 

(Holmes, 2014; Sacchi & Holmes, 2016). Exploratory data mining (EDM), a sub discipline of 69 

knowledge discovery, requires an extensive exploration stage, using both intelligent and intuitive 70 

techniques, before predictive modelling and confirmatory analysis can realistically and usefully be 71 

applied (De Bie, 2013; De Bie & Spyropoulou, 2013). Furthermore, it is considered important to 72 

include the end user into the “interactive” knowledge discovery process with the goal of supporting 73 

human intelligence with artificial intelligence (Holzinger & Jurisica, 2014). Several reports have 74 

described the benefits attained by leveraging the unique human cognitive capabilities we have, 75 

both within the fields of pattern recognition and higher-order reasoning, to interpret complex 76 

biological data and help extract biologically meaningful interpretations (Isenberg et al., 2013; Lee 77 

et al., 2012). Visualising biological information in a concise format and user-centred design can 78 

help achieve this (Fox & Hendler, 2011; Pavelin et al., 2012).  79 

There are, however, a few important research challenges that need resolving before KDD and 80 

EDM techniques can optimally be applied to KGs. These include the formalisation of concepts 81 

such as an ‘interesting pattern’ found in a genome-scale KG, since ‘interestingness’ is subjective 82 
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and will depend on the user’s perspective. The concept of ‘explaining a specific biological story’ 83 

using a minimum set of non-redundant and relevant patterns from the KG also needs to be 84 

formalised. These theoretical insights need to be turned into useful, scalable and interactive tools, 85 

suitable for use by non-experts and tested against real biological problems. 86 

 87 

We have previously described our approaches to build genome-scale KGs (Hassani-Pak et al., 88 

2016), to extend KGs with novel gene-phenotype relations from the literature (Hassani-Pak et al., 89 

2010), to publish KGs as standardised and interoperable data based on FAIR principles (Brandizi 90 

et al., 2018a) and to visualise biological knowledge networks in an interactive web application 91 

(Singh et al., 2018). Our data integration approach to build KGs is based on an intelligent data 92 

model with just enough semantics to capture complex biological relationships between genes, 93 

traits, diseases and many more information types derived from curated or predicted information 94 

sources (Figure 1). In this paper, we describe the KnetMiner knowledge discovery platform 95 

(knetminer.org) for searching large genome-scale KGs and visualising interesting subgraphs of 96 

connected information about the biology of traits and diseases. KnetMiner is customizable and 97 

portable and therefore provides a cost-effective delivery platform for application to new species. 98 

We provide use-cases to demonstrate how KnetMiner has helped scientists to tell the story of 99 

complex traits and diseases in Arabidopsis thaliana and Triticum aestivum (bread wheat). The 100 

methods section describes the algorithms behind core discovery features of KnetMiner, i.e. 101 

identifying interesting subgraphs and using these to rank candidate genes. 102 
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103 

Figure 1: Extract of information available in the KnetMiner Knowledge Graph. 104 

 105 

CASE STUDIES 106 

KnetMiner can assist in various stages of a typical research and discovery project: from early 107 

stages of literature review and hypothesis generation to later stages of biological understanding 108 

and hypothesis validation. The user-centric web interfaces have been designed to provide effective 109 

user journeys for the exploration of complex connected data. A simple search interface triggers a 110 

sophisticated search process and takes the user in two steps through a rich knowledge discovery 111 

experience (Figure 2). We have selected two biological case studies that show the application of 112 

KnetMiner in gene-trait discovery and candidate gene prioritization in a model and non-model 113 

species. 114 

 115 
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116 

Figure 2: User journeys in KnetMiner. Users start with a search for keywords, genes and regions. 117 

KnetMiner provides search term suggestions and real-time query feedback. From a search, a user 118 

is presented with the following views: Gene View is a ranked list of candidate genes along with a 119 

summary of related evidence types. Map View is a chromosome based display of QTL, GWAS 120 

peaks and genes related to the search terms. Evidence View is a ranked list of query related 121 

evidence terms and enrichment scores along with linked genes. By selecting one or multiple 122 

elements in these three views, the user can get to the Network View to explore a gene-centric or 123 

evidence-centric knowledge network related to their query and the subsequent selection.  124 

 125 

Gene-trait discovery  126 

KnetMiner is being used extensively to drive gene-trait discovery research in the publicly funded 127 

Designing Future Wheat programme (https://designingfuturewheat.org.uk/), see for example 128 

(Adamski et al., 2020; Alabdullah et al., 2019; Harrington et al., 2019). Wheat (Triticum aestivum) 129 

is the third most-grown cereal crop in the world after maize and rice, and has a hexaploid 15 Gb 130 

genome which is 5 times the size of the human genome (The International Wheat Genome 131 

Sequencing Consortium (IWGSC) et al., 2018). White-grained wheat varieties lack the red 132 

compounds (flavonoids) of the seed coat and are milder in flavor. However, white grains are prone 133 

to pre-harvest sprouting (PHS) which causes the grain to germinate before harvest and results in a 134 

loss of grain quality. It has been known for some time that PHS is associated with grain colour 135 
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(Nilsson-Ehle, 1914) and that the red pigmentation of wheat grain is controlled by R genes on the 136 

long arms of chromosomes 3A, 3B, and 3D (Sears, 1944). However, after decades of research, it 137 

still remains unclear whether there is a potential link between the grain color gene R (Myb) and 138 

other phenotypes such as PHS. 139 

 140 

We used KnetMiner to search for TRAESCS3D02G468400 - the wheat R gene (the orthologue of 141 

Arabidopsis TT2) on chromosome 3D, and to explore its knowledge network generated by 142 

KnetMiner. The TT2 network has a total of 823 connected nodes of 11 different types (see Supp 143 

Table 1) including wheat specific information sources but also cross-species information from 144 

model organisms such as Arabidopsis and rice. Similarly a range of relation types are present in 145 

the network including homologies, transcription factor target relations, protein protein interactions, 146 

phenotypic observations and correlations from mutant and genetic studies, as well as, curated or 147 

auto generated links to ontology terms and publications.  148 

 149 

Prior to visualising the network, KnetMiner applies a graph filter for interesting subgraphs which 150 

uses the keywords that were provided as part of the search (see Methods - Graph 151 

Interestingness). In our case, since the TT2 gene search was performed without additional 152 

keywords, a default filter is applied which hides all paths but those containing traits and 153 

phenotypes. This reduces the network from 823 nodes down to 245 nodes including 101 Trait, 48 154 

Phenotype, 72 SNP, 22 Gene and 2 Protein nodes (Figure 3A). This network is displayed in the 155 

Network View which provides interactive features to hide or add specific evidence types from the 156 

network. Nodes are displayed in a defined set of shapes, colors and sizes to distinguish different 157 

types of evidence. A shadow effect on nodes indicates that more information is available but has 158 

been hidden. The auto-generated network, however, is not yet telling a story that is specific to our 159 

traits of interest and is limited to evidence that is phenotypic in nature. 160 

 161 

To further refine and extend the search for evidence that links TT2 to grain color and PHS, we can 162 

provide additional keywords relevant to the traits of interest. Seed germination and dormancy are 163 

the underlying developmental processes that activate or prevent pre-harvest sprouting in many 164 
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grains and other seeds. The colour of the grain is known to be determined through accumulation of 165 

proanthocyanidin, an intermediate in the flavonoid pathway, found in the seed coat. These terms 166 

and phrases can be combined using boolean operators (AND, OR, NOT) and used in conjunction 167 

with a list of genes. Thus, we search for TRAESCS3D02G468400 (TT2) and the keywords: “seed 168 

germination” OR “seed dormancy” OR color OR flavonoid OR proanthocyanidin. This time, 169 

KnetMiner filters the extracted TT2 knowledge network (823 nodes) down to a smaller subgraph of 170 

68 nodes and 87 relations in which every path from TT2 to another node corresponds to a line of 171 

evidence to phenotype or molecular characteristics based on our keywords of interest (Figure 3B).  172 

 173 

 174 

 175 

Figure 3: Gene View (top) and Network View (bottom) of KnetMiner. (A) Search results for TT2 176 

only (without keywords). (B) Search results for TT2 and keywords for PHS and grain color.  177 

 178 

This auto-generated subgraph visualises complex information in a concise and connected format, 179 

helping facilitate biologically meaningful conclusions between TT2 and phenotypes such PHS (see 180 

Supp Table 2). The subgraph indicates that TT2 in wheat is predicted to regulate the 181 

transcriptional activation of MFT. It indicates that MFT has been linked in a recent publication to 182 

grain germination and seed dormancy in wheat (Nakamura S, n.d.; Zong Y, n.d.). It also reveals 183 

that the MFT ortholog in Arabidopsis is linked to decreased germination rate in the presence of 184 
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ABA (Xi et al., 2010) and positive regulation of seed germination. To investigate potential links 185 

between grain color and other phenotypes, the TT2 network can be expanded with two clicks, to 186 

add interacting genes in wheat or model species along with their phenotypic information. For 187 

example, the Arabidopsis TT2 ortholog is shown to interact with TTG1 which has links to 188 

phenotypes such as lateral root number and root hair length in Arabidopsis (Bahmani R, n.d.; Bipei 189 

Zhang, 2017). Root hairs are tubular outgrowths from specific epidermal cells that function in 190 

nutrient and water absorption (Larry Peterson & Farquhar, 1996).  191 

 192 

Overall the exploratory link analysis has generated a potential link between grain color and PHS 193 

due to TT2-MFT interaction and suggested a new hypothesis between two traits (PHS and root 194 

hair density) that were not part of the initial investigation and previously thought to be unrelated. 195 

Furthermore, it raises the possibility that TT2 mutants might lead to increased root hairs and to 196 

higher nutrient and water absorption, and therefore cause early germination of the grain. More data 197 

and experiments will be needed to address this hypothesis and close the knowledge gap. 198 

 199 

Candidate gene prioritisation 200 

Forward genetics studies, such as a genome-wide association study (GWAS) or quantitative trait 201 

loci (QTL) mapping, aim to identify regions in the genome where the genetic variation correlates 202 

with variation observed in a quantitative trait (e.g. general intelligence, days to flowering) (Atwell et 203 

al., 2010; Polderman et al., 2015; Sonah et al., 2015). They are based purely on statistical tests 204 

and do not take into account the biology in considering candidates. It is often difficult to elucidate 205 

which exact marker is biologically significant, particularly in the face of epistatic and epigenetic 206 

effects which are often not considered. GWAS and QTL regions can encompass many seemingly 207 

unrelated genes. Candidate gene analysis aims to identify the most likely cause for the phenotypic 208 

variation. The identification of candidate genes underlying QTL is not trivial, therefore genetic 209 

studies often stop after QTL mapping, or perform a basic search for genes with potentially 210 

interesting annotations.  211 

 212 
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For example, in a recent QTL study in Arabidopsis, a region on chromosome 4 was identified that 213 

contained overlapping QTLs for multiple petal traits (Abraham et al., 2013). As this QTL 214 

overlapped with the ULTRAPETALA1 (ULT1) locus, a known floral meristem regulator with a role 215 

in petal development (Fletcher, 2001), the authors tested whether ULT1 might be responsible for 216 

this QTL. However, the authors stated that among the ecotypes used in the study none showed 217 

any polymorphic sites within the ULT1 coding or 2kb upstream region; and the T-DNA insertional 218 

mutation of ULT1 showed no significant effect on petal form either. Taken together, the evidence 219 

suggested that ULT1 was not responsible for the petal size QTL, and the causal gene remained 220 

unidentified as is the case in many other GWAS and QTL studies. Therefore, to explore this 221 

further, we analysed an overlapping petal size QTL (manuscript in preparation) using a more 222 

sophisticated and evidence-based search to see if the authors may have missed something. The 223 

biological processes underpinning the size of plant tissues and organs are likely to be related to 224 

changes on a cellular level. We therefore used as inputs to KnetMiner the location of a petal size 225 

QTL (chromosome 4, 9.92 - 10.18 Mb) and the keywords “cell size” OR “cell cycle” OR “cell 226 

division”. KnetMiner identified 71 genes in the QTL region and ranked them according to their 227 

relevance to the keywords (Figure 4A) (see Methods - Gene Ranking).  228 

 229 

230 

Figure 4: (A) Ranked list of genes shown in the Gene View. The Evidence column summarises the 231 

amount of related information within and across species. AT4G18330 is linked to 10 biological 232 

processes, 2 cellular components, 33 publications and 1 protein related to “cell size” OR “cell 233 

cycle” OR “cell division”. All linked publications are from the yeast ortholog. (B) Automatically 234 
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generated subgraph for AT4G18330 and given keywords. The yeast ortholog YER025W interacts 235 

with several cell size, cell division and cell cycle related proteins.  236 

 237 

The KnetMiner top 5 ranked genes included a poorly studied gene (AT4G18330) with no links to 238 

publications in Arabidopsis and a few high-level GO annotations. However, the KnetMiner 239 

subgraph for AT4G18330 indicated that the yeast ortholog YER025W (eIF-2-gamma) interacts with 240 

cell division cycle proteins such as CDC123 (Figure 4B). Although no knockouts were available for 241 

this gene, a polymorphism in the regulatory region was associated with altered cellular and petal 242 

phenotypes consistent with a role in petal size (manuscript in preparation). The ability to 243 

systematically and visually evaluate different layers of evidence arising from orthologs to 244 

interactions, is highly advantageous; it’s quick to view and as such, the most relevant genes can 245 

immediately be investigated further.  246 

 247 

METHODS 248 

Graph Pattern Mining 249 

We have previously described our tools and methods to build FAIR genome-scale Knowledge 250 

Graphs (KG) using the KnetBuilder and rdf2neo data integration platforms (Brandizi et al., 2018a, 251 

2018b; Hassani-Pak et al., 2016). Here we elaborate how KnetMiner uses the KG to extract 252 

biologically meaningful subgraphs that tell the story of complex traits and diseases. Biologically 253 

plausible patterns in the KG are collections of paths through the connected information that most 254 

biologists would generally agree to be informative when studying the function of a gene. Searching 255 

a KG for such patterns is akin to searching for relevant sentences containing evidence that 256 

supports a particular point of view within a book. Such evidence paths can be short e.g. Gene A 257 

was knocked out and phenotype X was observed; or alternatively the evidence path can be longer, 258 

e.g. Gene A in species X has an ortholog in species Y, which was shown to regulate the 259 

expression of a disease related gene (with a link to the paper). In the first example, the relationship 260 

between gene and disease is directly evident and experimentally proven, while in the second 261 
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example the relationship is indirect and less certain but still biologically meaningful. There are 262 

many evidence types that should be considered for evaluating the relevance of a gene to a trait. In 263 

a KG context, a gene is considered to be, for example, related to ‘early flowering’ if any of its 264 

biologically plausible graph patterns contain nodes related to ‘early flowering’. In this context, the 265 

word ‘related’ doesn’t necessarily mean that the gene in question will have an effect on ‘flowering 266 

time’, but it means that there is a valid piece of evidence that a domain expert should consider 267 

when judging if the gene is related to ‘flowering time’. 268 

 269 

We use the notion of a semantic motif to define a plausible path through the KG (Biemann et al., 270 

2016). Our semantic motifs start with a gene node and end with other nodes representing 271 

biological entities, ontology terms, publications etc. For example, a path that travels from a Gene 272 

node to a GO-term, through an ortholog relation, is biologically plausible (orthologs have often the 273 

same function), while travelling through a paralog relation is not (paralogs often adapt new 274 

functions). KnetMiner instances can have a bespoke set of semantic motifs reflecting the data 275 

model of the KG built for a particular species or domain of interest. We are working towards 276 

migrating KnetMiner to support the Cypher graph query language and the Neo4j graph database 277 

as a practical and expressive way to define the graph searches that capture the semantic motifs of 278 

interest. Supp Table 3 contains example Cypher queries used in the public wheat KnetMiner along 279 

with summary statistics for each query. The KnetMiner gene search and subgraph generation are 280 

essentially based on these well-defined graph queries. Not every gene will necessarily match all 281 

semantic motifs, however, the ones it contains are extracted and their union is taken to produce a 282 

gene-centric subgraph (GCS). For example, the wheat KG has over 114,000 GCSs (one for each 283 

wheat gene) with sizes of min=1, max=6220 and mean=181 nodes. 284 

 285 

Nodes that are included in a GCS are presumed to be transferable to the gene of interest, in 286 

contrast, concepts that are excluded from a GCS (although still part of the KG) are presumed to be 287 

irrelevant to the gene in question. Notably, if a semantic motif fails to capture an important 288 

biological motif, then downstream knowledge mining applications won’t be able to exploit this 289 

information.  290 
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Graph Interestingness 291 

Even a single GCS with hundreds of nodes can be complex and challenging to comprehend when 292 

shown to a user; let alone if combining GCSs for tens to hundreds of genes. There is therefore a 293 

need to filter and visualise the subset of information in the GCSs that is most interesting to a 294 

specific user. However, the interestingness of information is subjective and will depend on the 295 

biological question or the hypothesis that needs to be tested. A scientist with an interest in disease 296 

biology is likely to be interested in links to publications, pathways, and annotations related to 297 

diseases, while someone studying the biological process of grain filling is likely more interested in 298 

links to physiological or anatomical traits. To reduce information overload and visualise the most 299 

interesting pieces of information, we have devised two strategies. 1) In the case of a combined 300 

gene and keyword search, we use the keywords as a filter to show only paths in the GCS that 301 

connect genes with keyword related nodes, i.e. nodes that contain the given keywords in one of 302 

their node properties. In the special case where too many publications remain even after keyword 303 

filtering, we select the most recent N publications (default N=20). Nodes not matching the keyword 304 

are hidden but not removed from the GCS. 2) In the case of a simple gene query (without 305 

additional keywords), we initially show all paths between the gene and nodes of type 306 

phenotype/trait, i.e. any semantic motif that ends with a trait/phenotype, as this is considered the 307 

most important relationship to many KnetMiner users. 308 

Gene Ranking 309 

We have developed a simple and fast algorithm to rank genes and their GCS for their importance. 310 

We give every node in the KG a weight composed of three components, referred to as SDR, 311 

standing for the Specificity to the gene, Distance to the gene and Relevance to the search terms. 312 

Specificity reflects how specific a node is to a gene in question. For example, a publication that is 313 

cited (linked) by hundreds of genes receives a smaller weight than a publication which is linked to 314 

one or two genes only. We define the specificity of a node x as: ���� � ��� �

�
 where n is the 315 

frequency of the node occurring in all N GCS. Distance assumes information which is associated 316 

more closely to a gene can generally be considered more certain, versus one that’s further away, 317 

e.g. inferred through homology and other interactions increases the uncertainty of annotation 318 
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propagation. A short semantic motif is therefore given a stronger weight, whereas a long motif 319 

receives a weaker weight. Thus, we define the second weight as the inverse shortest path distance 320 

of a gene g and a node x: 
 ��, ��  �  �

|�� � ��|
. Both weights S and D are not influenced by the 321 

search terms and can therefore be pre-computed for every node in the KG. Relevance reflects the 322 

relevance or importance of a node to user-provided search terms using the well-established 323 

measure of inverse document frequency (IDF) and term frequency (TF) (Salton & Yang, 1973). 324 

TF*IDF forms the basis of the Lucene search engine library (https://lucene.apache.org/), used in 325 

KnetMiner. We define the relevance of node x to a search term t as ��, ��= �� � �
� �, ��, where 326 

R=0 when no match is found and R=1 when the user does not provide any keywords. The three 327 

measures (S, D, and R) have unique and uncorrelated characteristics. Each node in KnetMiner is 328 

given a combined SDR weight. Therefore, for a given GCS �� � ��, �	 , . . . , ��� and search terms t, 329 

we define the KnetScore of a gene as:  330 

���������, ��� � �

����
���

 �����  �  
��, ��  �  ��, ���  

The sum considers only GCS nodes that contain the search terms. In the absence of search terms, 331 

we sum over all nodes of the GCS with R=1 for each node. The computation of the KnetScore 332 

(SDR-weights) requires graph traversals and string searches over the KG. Performing these 333 

operations on-the-fly would slow down the responsiveness of the application. Therefore at 334 

initialisation, KnetMiner pre-processes the KG and builds indices to speed up the SDR weight 335 

calculation. The pre-indexing time depends on a number of factors including number of available 336 

cores, the KG size, number of genes and number of semantic motifs. With the indices in place, the 337 

SDR-weight can be computed in constant time O(1). A KnetMiner search that returns n genes and 338 

m evidence nodes, can rank all genes in linear time O(n+m).  339 

 340 

DISCUSSION 341 

Biological knowledge discovery is often hampered by the challenges of data integration and new 342 

approaches are needed to improve the efficiency, reproducibility, and objectivity of the process that 343 
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leads to new ideas and hypotheses. KnetMiner provides a sophisticated search across a 344 

semantically rich knowledge graph built from large scale integration of public and private data sets. 345 

It addresses the needs of scientists who generally lack the time and the broad expertise that is 346 

necessary to connect, explore, and compare the wealth of genetic, ‘omics, and phenotypic 347 

information available in the literature and a wide range of related biological databases from key 348 

model and non-model species. 349 

 350 

KnetMiner is commonly used by scientists in academia and industry to accelerate gene-trait 351 

discovery research. In several biological studies, KnetMiner enabled the identification of hidden 352 

relationships between important agronomic traits and potential candidate genes. The presented 353 

case studies have shown practical applications of KnetMiner to the understanding of challenging 354 

and complex traits in wheat and Arabidopsis. KnetMiner was used in 2014 to investigate traits such 355 

as height of biomass willows (Hanley & Karp, 2014) and has more recently become part of a wider 356 

roadmap for gene function characterization in crops (Adamski et al., 2020). Public KnetMiner 357 

resources (e.g. Arabidopsis, wheat, and rice) give a flavour of the capabilities that are in 358 

KnetMiner. While we have so far mostly concentrated on customising KnetMiner for plant sciences 359 

and crop improvement, the software we have developed is generic and KGs and KnetMiner can 360 

readily be built for other species. Compared to biological discovery platforms available for specific 361 

species (Carvalho-Silva et al., 2019; Miller et al., 2017; Mungall et al., 2017), KnetMiner is species-362 

agnostic and therefore provides a more cost-effective delivery platform for application to new 363 

species. KnetMiner is available as a Docker image from DockerHub and can easily be deployed 364 

with a provided sample KG.  365 

 366 

Different KnetMiner views for exploring the search output have been developed; each view has a 367 

different aim and helps address different questions. The main design principle was to divide the 368 

visualisation into two steps. First, to present the results in formats that are intuitive and familiar to 369 

biologists, such as tables and chromosome views, allowing them to explore the data, make 370 

choices as to which gene to view, or refine the query if needed. These initial views help users to 371 

reach a certain level of confidence with the selection of potential candidate genes. However, they 372 
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do not tell the biological story that links candidate genes to traits and diseases. In a second step, to 373 

enable the stories and their evidence to be investigated in full detail, the Network View visualises 374 

highly complex information in a concise and connected format, helping facilitate biologically 375 

meaningful conclusions. Consistent graphical symbols are used for representing evidence types 376 

throughout the different views, so that users develop a certain level of familiarity, before being 377 

exposed to networks with complex interactions and rich content. 378 

 379 

The methods (graph pattern mining, graph interestingness and gene ranking) that power the 380 

KnetMiner user interface are also available as API calls and can be used to embed visualisations 381 

of gene-centric subgraphs in third party web applications or to integrate graph analytics and gene 382 

ranking in custom workflows. For example, the KnetMiner REST API is used in Ensembl Plants 383 

(Bolser et al., 2017), The Triticeae Toolbox (Blake et al., 2016) and GrainGenes (Blake et al., 384 

2019) to link gene sequences to rich gene knowledge graphs. The graph database backend, as 385 

well as the FAIR-based data management policies, are another development in which we are 386 

investing our efforts, which have the main advantage of allowing us to build a data asset that has 387 

the potential to be useful to a wealth of applications, complementary to KnetMiner. The SPARQL 388 

and Cypher endpoints have the benefit of providing a layer of access to data that have a more 389 

general use than gene-centric knowledge exploration and which, for instance, could be obtained 390 

with scripts accessing APIs, workflow tools like Galaxy (Afgan et al., 2018), or data analytics 391 

workbenches like Jupyter (Kluyver et al., 2016). This is facilitated by adhering to the well-known 392 

good practice of the FAIR principles, which includes the adoption of common data schemas and 393 

ontologies (Garcia et al., 2017). 394 

 395 

CONCLUSION 396 

Scientists spend a considerable amount of time searching for new clues and ideas by synthesizing 397 

many different sources of information and using their expertise to generate hypotheses. KnetMiner 398 

is a user-friendly platform for biological knowledge discovery and exploratory data mining. It allows 399 

humans and machines to effectively connect the dots in life science data and literature, search the 400 
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connected data in an innovative way, and then return the results in an accessible, explorable, yet 401 

concise format that can be easily interrogated to generate new insights. We have developed 402 

KnetMiner knowledge graphs and applications for a range of species including plants, crops, 403 

insects, pathogens, livestock and even a Human SARS-CoV-2 knowledge graph to help 404 

investigate Covid-19. We are beginning to explore new use cases of KnetMiner to crop 405 

improvement and breeding, microbial ecology, pathogen-host interaction and other domains. We 406 

are rapidly improving the usability of the software, adding new features and extending the 407 

knowledge mining approaches. The latest version of the KnetMiner software and documentation is 408 

available at: https://knetminer.org  409 
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