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This drastically accelerated the rate of tissue damage, leaving much more basement membrane (the assumed 

 
Figure 3: Version 1 sample model results at 6, 12, 18, and 24 hours. In all plots, epithelial cells are colored from blue (no assembled virions) to 
bright yellow (1000 or more virions). Black cells are apoptotic, and white regions show damaged tissues where apoptotic cells have degraded to 
expose (unmodeled) basement membrane. Bar: 200 �äm. A. Simulation time course for the default parameters. Note the spread of the infection from 
an initial infected cell at the center, with apoptotic death events focused near the center. B. Decreasing the diffusion coefficient of virions by a factor 
of 10 drastically reduces the rate of spread, although focusing exocytosed virions in a smaller diffusion distance increases the number of virions 
infecting nearby cells, leading to faster apoptosis. C. Allowing apoptosed cells to release their assembled virions at lysis had a negligible effect for 
these parameters, given the dominant effects of releasing virions throughout the cells’ survival times. D. Decreasing the cell’s tolerance (half max) of 
assembled virions prior to apoptosis accelerates tissue damage but does not drastically accelerate the spread of the infection. E. Increasing the 
apoptosis rate (or decreasing the survival time) for infected cells drastically increases tissue degradation.  
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surface under the epithelial monolayer) exposed. In a later version of this model framework, we would expect 
this to lead to earlier onset of fluid leakage, edema, and ultimately adverse respiratory outcomes such as 
ARDS. Interestingly, this did not significantly increase the rate of spread of the infection. Compare the final 
frame of row D (higher tolerance to viral load) to row E (lower tolerance to viral load) in Figure 3.  

Key feedback from domain experts and the community  
We gathered feedback from the multidisciplinary community, several of whom joined the coalition for future 
work. We summarize the feedback below.  

Aarthi Narayanan (virology): More detail on endocytosis, viral uncoating, and synthesis would expose more 
actionable points in the replication cycle. Preliminary SARS-CoV-2 experiments in her laboratory suggest that 
the time course (and thus general order of magnitude of rate parameters) is very similar to Venezuelen equine 
encephilitis virus (VEEV) dynamics measured earlier18,19. The exponential progression matches observations: 
the first cell is infected with one virion and so at first produces virus slowly, but neighboring cells can be in-
fected with multiple virions and thus create virus particles more quickly.  

Simon Parkinson identified typographical errors in the original documentation, but verified that that mathemat-
ics in the C++ implementation were not affected. He emphasized the importance of implementing RNA decay 
(as a rate limiting step in virus replication) and the importance of integrating ACE2 receptor trafficking (as a 
rate limiting step in virus adhesion and endocytosis).  

Paul Macklin (multicellular systems biology, open source frameworks) noted the potential to simplify the 
model by removing the diffusing U, R, and P fields, and reported bugs in the initialization (where no cells are 
initially infected for some domain sizes, due to hard-coding of the initial seeding).  

Morgan Craig and Adrianne Jenner (mathematical biology and viral dynamics) emphasized the im-
portance of varying virion “uptake” with ACE2 receptor availability, and hence the need to integrate receptor 
trafficking.  

Amber Smith (mathematical biology and infectious diseases) noted her prior work on SARS-CoV-1 will be 
of tremendous help in estimating parameters and building initial immunologic regulation models. Lung pathol-
ogy and disease severity are closely tied to the immunologic reaction, and prior data and images from influ-
enza will be of tremendous help with calibrating spatial considerations. She noted that she expects mouse and 
drug data available for SARS-CoV-2 in the coming months. She noted the importance of distinguishing be-
tween mild and severe ARDS. One quick possibility to make this match data and distinguish between possibili-
ties is to plot the resulting viral load. 

She suggested that it would be helpful to show multi focal points of initial infection seeding (possibly of different 
initial seeding size) that merge together over time, which would match observations of lung histology. Future 
work will have a better impact if they use a true lung tissue geometry with immune cells limiting the peripheral 
spread. The current model seems more relevant to in vitro growth of a single plaque, which may be scrutinized. 

Richard Allen (quantitative systems pharmacology, Pfizer, Inc.) pointed out the need for clearer scoping 
and diagrams to clearly lay out the design of each submodel component. We will need procedures to choose 
future incorporations and changes of scope. He also pointed out the need to understand what happens if you 
bind up a lot of ACE2 with receptor; there are early insights online111.  

Ashlee M. Ford Versypt (mathematical biology, bioengineering, inflammation and tissue damage) noted 
that the diffusion coefficient of 900 μm2/min = 15 μm2/s = 1.5e-11 m2/s is not particularly small; prior anal-
yses112 considered virion diffusion in an lung epithelial monolayer for influenza with D = 3.18e-15m2 estimating 
from experimental data. The virions for SARS-CoV-2 could be more mobile though-it’s uncertain. There are 
data about the diffusion coefficient for albumin in tissue being on the order of 10-50 μm2/s; see this refer-
ence113. She stated that it makes sense for a viron to move more slowly than a protein with radius < 5 nm un-
less “diffusive transport” is encompassing an active or facilitated transport mode beyond just classic diffusion. 
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She also noted that her laboratory has looked a lot at the renin-angiotensin-system systemically and in kid-
neys: the kinetics of AngII, ACE, and ACE2 in the lungs would be of interest for connecting the next iteration of 
the ACE2 receptor model to connect to ARDS. Pfizer may also have relevant related models. 

Courtney L. Davis (mathematical biology, infectious diseases and ecology) noted that the model could 
study immune responses and the impact of mucosal structure in future versions. She suggested quantifying 
damage or disease metrics. She also noted that ultimately it would be useful to note which parameter esti-
mates might be species-specific and which are not, to be able to switch between experimental and clinical sys-
tems. (e.g., it is worth recording if current estimates are from human, macaque, etc.)  

She also noted that it may be important to determine if apoptotic cells replaced or if there is permanent dam-
age (in the model). If the model is run longer, it would be worthwhile to translate the visual sense of damage to 
a quantitative metric.  

Chase Cockrell and Gary An noted their work on modeling immune expansion in “off screen” lymph nodes, 
and offered to link their model to our immune infiltration functions.  

James Glazier noted the need for clearly specifying each model’s assumptions, inputs and outputs, to drive 
robust parallel development. He noted that it is critical to consider information flow between submodels and 
revise these data flows as the iterations proceed. He suggested that we state separate execution of sub mod-
els as a key design goal to support parallel development. Lastly, he noted that software should be released in 
conjunction with validation data and methodologies 

Core team discussion and priorities for v2 
The core team met by virtual conference on April 1, 2020 to discuss the first preprint, model results, and feed-
back. The core team set as priorities (1) to formalize design specifications for each individual model compo-
nent and interfaces between components, (2) form teams responsible for each component, (3) focus v2 devel-
opment on refactoring into this modular format, (3) begin development of the submodels, and (4) begin refine 
parameter estimates. The clearer specification and organization of submodels was the top priority. As time per-
mits, it was also viewed as important to begin a receptor trafficking model.  
The core team agreed to keep working via the dedicated slack workspace to rapidly coalesce on the submoel 
teams. Each subteam will have a separate channel in the workspace.  

Discussion 
Within three weeks of the World Health Organization’s declaration of a global pandemic of COVID-19114, com-
munity-based prototyping built upon an existing PhysiCell 3D cell-modeling framework to rapidly develop Ver-
sion 1 of an intracellular and tissue-level model of SARS-CoV-282. A growing coalition of domain experts from 
across STEM fields are working together to ensure accuracy and utility of this agent-based model of intracellu-
lar, extracellular, and multicellular SARS-CoV-2 infection dynamics. Version 1 development underscored the 
necessity of clearly explaining model components, defining scope, and communicating progress as it occurs 
for invaluable real-time feedback from collaborators and the broader community. This rapid prototyping already 
helped in growing the coalition and recruiting complementary expertise; for instance, a team modeling lymph 
node dynamics and immune infiltration joined during the Version 1 cycle after seeing initial progress.  

The version 1 prototype also showed the scientific benefit of rapid prototyping: even a basic coupling between 
extracellular virion transport, intracellular replication dynamics, and viral response (apoptosis) showed the di-
rect relationship between the extracellular virion transport rate and the spread of infection in a tissue. More im-
portantly, it showed that for viruses that rapidly create and exocytose new virions, release of additional assem-
bled virions at the time of cell death does not significantly speed the spread of infection. Moreover, decreasing 
the cell tolerance to viral load does not drastically change the rate at which the infection spreads, but it does 
accelerate the rate of tissue damage and loss, which could potentially trigger edema and ARDS earlier. This 
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suggests that working to slow apoptosis may help preserve tissue integrity and delay adverse severe respira-
tory responses. That such a simple model could already point to actionable hypotheses for experimental and 
clinical investigations points to the value of rapid model iteration and investigation, rather than waiting for a 
“perfect” model that incorporates all processes with mechanistic molecular-scale detail.  

As work on future versions progresses, teams will work in parallel on submodels to add, parameterize, and test 
new model components. It will be important to balance the need for new functionality with the requirement for 
constrained scope, while also balancing the importance of model validation with timely dissemination of results. 
Thus, this preprint will be updated with every development cycle to invite feedback and community contribu-
tions. Between cycles, the most up-to-date information about this model can be found at 
http://covid19.physicell.org.  

Getting involved 
To get involved, we welcome biological expertise, especially related to model assumptions, hypotheses, infec-
tion dynamics, and interpretation of results. Mathematical contributions to the underlying model or model analy-
sis as well as data contributions for crafting, parameterizing, and validating model predictions are particularly 
sought.  

We encourage the community to test the web-hosted hosted model at https://nanohub.org/tools/pc4covid19. 
This model will be frequently updated to reflect progress, allowing the public to take advantage of this rapid 
prototyping effort.  

We avidly encourage the community to test the model, offer feedback, and join our growing coalition via 
Google survey (https://forms.gle/SVUMYWhipSHfX8nS8), by direct messaging Paul Macklin on Twitter 
(@MathCancer), or by joining the pc4covid19 slack workspace (invitation link). Updates will frequently be dis-
seminated on social media by Paul Macklin (@MathCancer), the PhysiCell project (@PhysiCell), the Society 
for Mathematical Biology subgroup for Immunobiology and Infection Subgroup (@smb_imin), and others. 

We also encourage developers to watch the pc4covid19 GitHub organization and to contribute bug reports and 
software patches to the corresponding (sub)model repositories. See https://github.com/pc4covid19  

 

We are encouraged by the fast recognition of the computational and infectious disease communities that we 
can make rapid progress against COVID-19 if we pool our expertise and resources. Together, we can make a 
difference in understanding viral dynamics and suggesting treatment strategies to slow infection, improve im-
mune response, and minimize or prevent adverse immune responses. We note that this work will not only help 
us address SARS-CoV-2, but will also provide a framework for readiness for future emerging pathogens.  
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Appendix 1: Code availability 
All code is being made available as open source under the standard 3-Clause BSD license. Users should cite 
this preprint (or the final published paper, as the case may be).  
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Core model releases 

Version 1 model 

Version 0.1.0 (released March 26, 2020) 
GitHub: https://github.com/pc4covid19/COVID19/releases/tag/0.1.0  
Notes: First release.  

Version 0.1.1 (released March 26, 2020) 
GitHub: https://github.com/pc4covid19/COVID19/tree/0.1.1  
Notes: Minor bugfixes and first inclusion of “math” directory.  

Version 0.1.2 (released March 26, 2020) 
GitHub: https://github.com/pc4covid19/COVID19/releases/tag/0.1.2  
Zenodo: https://doi.org/10.5281/zenodo.3733336  
Notes: First release with Zenodo integration. Last release in 0.1.x chain (v1 model chain).  

Version 0.1.3 (released April 1, 2020) 
GitHub: https://github.com/pc4covid19/COVID19/tree/0.1.3  
Zenodo: https://doi.org/10.5281/zenodo.3737166  
Notes: First release after transferring the COVID19 tissue-level model (overall model) from Paul Macklin’s per-
sonal GitHub account to the new pc4covid19 GitHub organization.  

nanoHUB cloud-hosted model releases 
The latest version can always be accessed directly at https://nanohub.org/tools/pc4covid19  

Version 1 model 

Version 1.0 (released March 26, 2020):  
GitHub: https://github.com/rheiland/pc4covid19/releases/tag/v1.0 
Zenodo: https://zenodo.org/record/3733276#.XoOGa9NKi9t 
nanoHUB DOI: http://dx.doi.org/doi:10.21981/19BB-HM69  
Notes: First published version.  
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