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Abstract 
 

Neurons and oligodendrocytes are terminally differentiated cells that perform highly 

specialized functions, which depend on cascades of gene activation and repression 

to retain homeostatic control over a lifespan. Gene expression is regulated by three-

dimensional (3D) genome organisation, from local levels of chromatin compaction to 

the organisation of topological domains and chromosome compartments. Whereas 

our understanding of 3D genome architecture has vastly increased in the past 

decade, it remains difficult to study specialized cells in their native environment 

without disturbing their activity. To develop the application of Genome Architecture 

Mapping (GAM) in small numbers of specialized cells in complex tissues, we 

combined GAM with immunoselection. We applied immunoGAM to map the genome 

architecture of specific cell populations in the juvenile/adult mouse brain:  

dopaminergic neurons (DNs) from the midbrain, pyramidal glutamatergic neurons 

(PGNs) from the hippocampus, and oligodendrocyte lineage cells (OLGs) from the 

cortex. We integrate 3D genome organisation with single-cell transcriptomics data, 

and find specific chromatin structures that relate with cell-type specific patterns of 

gene expression. We discover abundant changes in compartment organisation, 

especially a strengthening of heterochromatin compartments which establish strong 

contacts spanning tens of megabases, especially in brain cells. These compartments 

contain olfactory and taste receptor genes, which are de-repressed in a 

subpopulation of PGNs with molecular signatures of long-term potentiation (LTP). We 

also show extensive reorganisation of topological domains where activation of 

neuronal or oligodendrocyte genes coincides with formation of new TAD borders. 

Finally, we discover loss of TAD organisation, or ‘TAD melting’, at long (>1Mb) 

neuronal genes when they are most highly expressed. Our work shows that the 3D 
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organisation of the genome is highly cell-type specific in terminally differentiated cells 

of the brain, and essential to better understand brain-specific mechanisms of gene 

regulation.  

 

Introduction 

 

The genome-wide study of three-dimensional (3D) organization has revealed 

its intrinsically association with gene regulation and cell function1-3. Genome-wide 

sequencing approaches such as Hi-C4, GAM5 and SPRITE6 have shown that the 

genome is organized hierarchically, from specific promoter-enhancer contacts, to 

topological associating domains (TADs), to broader compartments of open and 

closed chromatin (compartments A and B, respectively), up to whole chromosome 

territories4-7. Dynamic changes of chromatin organization during neuronal 

development have been previously reported using in-vitro differentiated neurons or 

glutamatergic neurons which are abundant in the cortex, or from whole hippocampi, 

after tissue dissociation and FACS isolation from pools of mice8-10. However, it has 

been particularly difficult to assess chromatin structure of specific cell types from the 

brain, especially without disrupting tissue organization, and in single animals. 

Understanding 3D chromatin structure of rare cell populations is of exceptional 

importance in the brain, where connecting disease-associated genetic variants in 

non-coding genomic regions with their target genes remains particularly 

challenging11-13, and where cell state and cell localization within the tissue can 

influence both transcriptional and physiological outcomes14-17. 

 

Here, we have developed immunoGAM, an extension of the GAM technology5 

that allows the genome-wide mapping of chromatin topology in specific cell 
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populations, leveraging its advantages to work directly in intact tissue without prior 

dissociation, and with small cell numbers (~400-1500 cells). To demonstrate the 

versatility of immunoGAM, we applied it in three different tissues of the brain to study 

specific cell types in the brain with diverse functions. We selected dopaminergic 

neurons (DNs) from the ventral tegmental area of the midbrain (VTA), pyramidal 

glutamatergic neurons (PGNs) from the cornu ammonis 1 (CA1) region of the 

hippocampus, and oligodendrocytes (OLGs) from the somatosensory cortex, which 

we compared with mouse embryonic stem cells (mESCs). We find that chromatin 

organization reflects cell-type specialization at all genomic scales. GAM data from 

the three brain cell types shows that clusters of sensory receptor genes (e.g. 

olfactory receptor genes, Olfrs) form strong contacts that can span very long 

distances (~5 – 40 Mb), in contrast with dividing mESCs where Olfrs are occasionally 

expressed. Interestingly, we find that Olfr expression escape is more abundant in the 

CA1 PGNs where it coincides with neuronal activation as assessed by the 

expression of Fos, Egr1 and Nrxn2 and other activation related genes. We also 

detect a large reorganisation of TADs, with 67% of all TAD borders being found in at 

least one of the three brain cell types and not in mESCs, while only 9% of TAD 

borders are common to all cell types. Cell-type specific TAD borders contain genes 

expressed in the relevant cell types, and are related with cell identity and 

specialization, showing that 3D genome reorganisation is highly connected with cell-

type specific gene expression. Finally, we investigated the 3D topology of ~1-Mb long 

neuronal genes, which span either large or more than one TAD, and detected 

significant loss of TAD structure, which we call ‘TAD melting’, in the cell type where 

long neuronal genes are most active. 
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Results 

 

In-situ mapping of chromatin contacts in specific cell types of the brain 

 

To study chromatin topology in specific cell populations in their native 

environment in the brain, we mapped genome-wide 3D chromatin contacts by 

adapting Genome Architecture Mapping (GAM)5 to three brain areas. GAM is a 

ligation-free technology that maps 3D genome topology by extracting and 

sequencing the genomic content of ultrathin cryosections from nuclei, followed by 

spatial statistics to detected interactions between genomic loci from their increased 

probability of co-segregation in a large population of nuclear slices. GAM was 

previously applied to mESCs and shown to capture TADs, A/B compartments and 

pair-wise contacts across long genomic distances. Here, we developed immunoGAM 

to allow the selection of nuclear slices from specific cell types within a complex 

tissue. Nuclear sections from specific brain cell types were collected from mice 

perfused with fixative, by laser microdissection after immunofluorescence detection, 

followed by genomic DNA extraction and sequencing (Fig. 1).  

 

After cryopreservation, tissues were sectioned into ~230 nm thin cryosections, 

which were incubated with specific antibodies to mark cells of interest, before laser 

microdissection of individual nuclear sections (nuclear profiles; NPs), collected in 

groups of three into individual PCR lids. A detailed flowchart of the data collection is 

presented in Supplemental Fig. S1a. After extraction, amplification and sequencing 

of the DNA content of each GAM sample, we produced GAM matrices that represent 
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the co-segregation of pairs of loci in the collection of GAM samples, and which inform 

about their 3D physical distance inside the nucleus5. GAM matrices were also used 

to map TAD borders, compartments A and B, and to investigate differential contacts 

between the cell types analysed (Fig. 1b). To explore how dynamic changes in 

chromatin topology relate with cell-type specific patterns of gene expression, we also 

collected published single-cell gene expression (scRNA-seq) from the relevant brain 

cell types, and produced scRNA-seq data from mESCs (Fig. 1b). 

 

To select the cell types of interest from the complex brain samples, we used 

immunofluorescence to detect specific cell markers (Fig. 1c). We selected OLGs 

from 3-weeks old mouse somatosensory cortex based on immunofluorescence 

detection of GFP expression from a Sox10-cre-LoxP-GFP mice18, and produced a 

GAM dataset consisting of 290 libraries each from three independent NPs, 

corresponding to a total of 870 cells. PGNs were selected from the CA1 region of the 

dorsal hippocampus based on their position within the CA1 pyramidal cell layer and 

immunofluorescence detection of pan-histone, as a nuclear marker. We collected 

PGN GAM samples from two separate mice in a total of 209 x 3NPs (627 cells) and 

275 x 3NPs (825 cells). DNs were selected from the midbrain VTA based on 

immunofluorescence detection of tyrosine hydroxylase (TH), in most samples in 

combination with pan-histone, from two separate mice from two different genotypes 

(wild-type and with a TH-GFP reporter, used initially to guide the tissue dissection). 

We collected 585 x3NP (1755) and 291 x3NP (873) DNs from wildtype and TH-GFP 

midbrains, respectively. As a reference for comparison, we used a dataset produced 

from mESCs consisting of 249 x3NP (747) mESCs. To detect lower quality samples 

where DNA extraction or amplification was less efficient or where laser 

microdissection failed, we performed quality control analyses which assess different 
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parameters of each library, including the percentage of positive genomic windows 

surrounded by non-detected windows or the number of uniquely mapped reads; 86-

96% of GAM libraries passed the quality control analyses (see Methods for more 

details; Supplemental Table 1). To assess the quality of sampling in each GAM 

dataset, we measured the frequency with which all possible intra-chromosomal pairs 

of genomic windows are found in the same GAM sample, and found that 98.8 – 

99.9% of all mappable pairs of windows were sampled at least once at resolution 50 

kb at all genomic distances (and 92.7-99.7% of all pairs of windows were sampled at 

least 5 times within the shorter distances of 5 Mb, except for OLGs with 83.3%). 

 

To begin exploring the differences in chromatin contacts between mESCs, 

OLGs, PGNs and DNs, we plotted normalized chromatin contact matrices (using 

normalized pointwise mutual information, NPMI; see Methods) for each cell type and 

biological replicate, which represent the frequency of locus co-segregation 

normalized to the frequency of locus detection5 (Fig. 1d). Visual inspection of contact 

matrices across a 60-Mb genomic region on chromosome 17 shows cell-type specific 

local domain structures. Further, we also detect strong patches of long-range 

contacts for all three brain cell types that are absent in mESCs, which are separated 

by ~35-Mb (Fig. 1d) and are reproduced in the biological replicates (Supplemental 

Fig. S1d). Closer inspection of local contacts, for example across a 5-Mb region on 

chromosome 13 centered on the Ht1ra gene, confirms clear cell-type specific 3D 

genome topologies (Fig. 1e). The Ht1ra gene encodes the 5-hydroxytryptamine 

(serotonin) receptor 1A, which is an important modulator of synaptic transmission in 

the hippocampus and has single-nucleotide polymorphisms (SNPs) associated with 

schizophrenia19,20. Htr1a is not expressed in mESCs nor OLGs, and is embedded in 

domains that change conformation in DNs and in PGNs. Our visual inspections of 
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contact matrices showed clear differences in pairwise contacts between all four cell 

types, with the PGNs and DNs having the most similarity between cell types, while 

contacts were conserved between biological replicates collected from different 

animals. 

	
	
A/B compartments are altered and present different contact frequencies in 

brain cells, in comparison to mESCs   

 

	 To further investigate the cell-type specific contacts detected across 

megabase distances in GAM datasets, we started by computing compartments A/B 

after performing PCA from GAM matrices and choosing the compartment 

eigenvectors most correlated with GC content, as previously described5 (Fig. 2a). 

Visual comparisons of compartment eigenvectors show extensive variation between 

mESCs and the three brain cell types considered here. As expected from the 

developmental stage and origin of each cell type, compartment eigenvectors and 

compartment A/B assignment per genomic window were best correlated between 

biological replicates, next between the two neuronal cell types DNs and PGNs, 

followed by between neurons and oligodendrocyte lineage cells, and least between 

the different post-mitotic cells and mESCs (Supplemental Fig. S2a-c).  

 

Comparisons between different chromosomes showed that the compartment 

B eigenvectors were much stronger in some chromosomes in the brain cell types 

than mESCs, especially in chromosomes 7 and 17 (Fig. 2a), though the total 

compartment A/B lengths were similar between all cell types (Supplemental Fig. 

S2d). Visual inspection of matrices and compartments revealed that the strong long-

range patches of contacts observed in the brain cell types are often established 
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between B compartments and can be separated by linear genomic distances above 

10 Mb and up to 50 Mb. Contacts between B compartments in chromosome 7 can be 

strongest in one brain cell type, but clearly visible in the other cell types (Fig. 2b,c). 

To quantify the homotypic contact frequencies within A or B compartments, 

and heterotypic contacts between A and B compartments in the different cell types, 

we calculated the mean contacts score from normalized matrices per chromosome 

(Fig. 2d). For most chromosomes and in all cell types, the average normalized 

contact score is similar between A-A or B-B contacts, and A-B contacts are less 

intense, as expected. Interestingly, we found that average contacts between B 

compartment windows had higher contact scores especially on chromosomes 7 and 

17 in the three brain cell types than in mESCs (Fig. 2d); these average values were 

confirmed across the whole range of compartment score intensities (Fig. S2e). B-B 

contacts in chromosome 7 in DNs have the highest average contact score of any 

chromosome or cell type (0.33 ± 0.16), followed by PGNs (0.25 ± 0.14) and OLGs 

(0.25 ± 0.14), while mESCs had the lowest B-B average NPMI contact score (0.16 ± 

0.11). 

To further explore the more extensive frequency of long-range contacts in 

different cell types and specifically in chromosome 7, we calculated the decay of 

average contact frequency across genomic distances for all chromosomes and 

chromosome 7 (Supplemental Figs. S2f and S2g, respectively). We observed that 

terminally differentiated brain cells have higher average contact frequency at long 

distances (> 10-Mb) than mESCs, while chromosome 7 displays more frequent long-

range chromatin contacts especially in PGNs and in DNs than the average behaviour 

of all chromosomes in the corresponding cell types. 
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Strong B compartments in brain cells establish long-range interactions 

between clusters of sensory receptor genes  

 

To explore possible biological roles of the strong B compartments of 

chromosome 7 observed in all three brain cell types, we searched for enriched Gene 

Ontologies (GOs) in the different cell types (Supplemental Fig. 2h). For all cell 

types, we found a significant enrichment for GO terms containing sensory receptor 

clusters. These included Olfrs and vomeronasal receptor (Vmns) genes, which are 

most often found in gene clusters20,21. In particular, Olfrs have been reported to be 

stochastically and minimally expressed in PGNs and substantia nigra DNs22,23, have 

non-sensory organ functions, and are mis-expressed in several neurodegenerative 

diseases23,24. 

 

A sub-population of activated PGNs express a single Olfr gene, and co-express 

surrounding genes  

To investigate the cell-type specific 3D genome topologies and how they relate 

with gene expression, we analysed single-cell transcriptomes of mature OLGs (8 

subtypes) and OLG progenitors15, CA1 PGN (3 subtypes)25 and VTA DNs (4 

subtypes)14 from the brain regions of interest, and collected single cell mESC 

transcriptomes (Fig. 3a, Supplemental Fig. S3a). Separation of the different 

transcriptomes into cell-type specific clusters was confirmed by Uniform Manifold 

Approximation and Projection (UMAP) dimensionality reduction, coloured according 

to the cell-type definitions provided in the published datasets (Fig. 3b) and validated 

by overlaying the expression of known marker genes for each cell type, which 
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confirmed that the different transcriptomes were grouped into cell-type specific 

clusters (Supplemental Fig. S3b). 

 

To investigate further the strong B compartment features of Olfr genes, we 

started by exploring their expression state in single cells of each cell type (Fig. 3c). 

We found that 52% of mESCs express at least one Olfr gene (51/98 single cells), in 

comparison with 5/170 and 2/113 cells in OLGs and DNs, suggesting that the tighter 

B compartmentalization of Olfr genes might be important for their repression in the 

brain cell types. However, a large proportion of PGNs (19%; 165/875 cells) 

expressed one or more Olfr genes (up to 11). Most often the Olfr genes expressed in 

mESC or PGNs were found in chromosome 7 (20%, 10/51; and 29%, 47/165, 

respectively), which is consistent with the genome-wide distribution of Olfrs (21% Olfr 

genes in chromosome 7; Supplemental Fig. S3c). To better understand the 

significance of Olfr expression in mESCs and PGNs, we compared Olfr gene 

expression with the expression of all genes in each cell type. While Olfr expression is 

low in mESCs (mean TPM for all expressed Olfr genes: 23.0 ± 33.7), expressed Olfr 

genes in PGNs had higher expression (156.8 ± 121.5; Fig. 3d), suggesting that Olfr 

silencing mechanisms might be strongly disrupted in a subpopulation of PGNs, in 

contrast to being weakly expressed in many PGNs.  

 

To determine whether Olfr escapee expression in PGNs was stochastic or 

related with functional differences between cell states within the PGN population, we 

measured differential gene expression between cells expressing at least one Olfr 

gene (Olfr-expressing PGNs) or none (non-expressing Olfr PGNs). Remarkably, we 

found 83 genes significantly upregulated in the PGNs expressing at least one Olfr 

gene, and 295 genes which were significantly downregulated (Fig. 3e). We asked 
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whether the differentially expressed genes were related to cell function by searching 

for enriched Gene Ontologies (GO) in each group of PGNs (Fig. 3f). We found that 

genes upregulated in Olfr-expressing PGNs are related to neuronal activation and 

long-term potentiation (LTP). For example, the GO term ‘learning or memory’ 

(GO:0007611) contained genes such as Fos, Jun, Nrxn2, Egr1 and Grin1, which are 

all genes involved in the early response to neuronal activation and LTP27-29. 

Additional GO terms in upregulated genes were related to ‘calcium ion transport’, 

containing Camk2a and Camk2b, which are involved in calcium-dependent signaling 

during synaptic plasticity30, and the calcium channel Ryr3, which is an epilepsy 

candidate gene31. Significantly downregulated genes mostly included mitochondrial 

related processes, which are coupled to and finely tuned during neuronal activation32. 

These data suggest that Olfr de-repression in PGNs coincides with the cascade of 

transcriptional responses to recent strong activation, which naturally occurs in CA1 

PGNs during spatial tasks and is critical for long-term memory formation33-35. 

 

As Olfr genes are often found in clusters, we asked whether their de-

repression in PGNs was also related to the expression of the surrounding genes (Fig. 

3f-i). We selected Olfr genes that were active in at least one PGN or mESC and are 

located in one of two Olfr gene clusters on chromosome 7 (Fig. 3f-i). In mESCs, we 

found that other genes in the region (e.g. genes from the tripartite motif-containing 

(Trim) family) were active in some single cells, in the absence of Olfr expression. Of 

the 23 single PGNs that expressed at least one Olfr gene, seven PGNs (30%) co-

expressed several genes in their neighborhood of the two Olfr clusters (Fig. 3h). The 

co-expressed genes included several Trim genes, which are E3-ubiquitin ligases 

involved in immune responses36, and are involved in neuron development and spatial 

memory formation37. In contrast, PGNs that did not express Olfr genes had almost no 
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detectable expression for the genes in the represented region (23 randomly selected 

PGNs are shown in Fig. 3i; full heatmap is presented in Supplemental Fig. S3d). 

Inspection of GAM contact matrices in the same region show that expression of Trim 

genes in mESCs coincides with a smaller local hub of contacts, whereas in PGNs the 

locus is more globally open than in OLGs and DNs (Fig. 3j). Taken together, these 

data suggest that although Olfr cluster repression in brain cell types can coincide with 

B compartmentalization, the repression is not strict across the cell population. We 

find that a small number of Olfr genes are de-repressed, especially in PGNs which 

are undergoing neuronal activation, which is known to induce chromatin structure 

reorganisation10. In the same activated PGNs, we find reactivation of neighbouring 

Trim genes that are critical immune and memory response genes in the brain. These 

results raise the possibility that activation of neighboring Trim genes may lead to de-

repression of neighboring Olfrs, irrespectively of their strong long-range contacts and 

membership to heterochromatic compartments B. 

 

Differentially expressed genes are most often found in compartment A  

 To investigate further how changes in compartments relate with cell-type 

specific patterns of gene expression, we extended our analysis to determine genes 

significantly differentially expressed between each brain cell type and mESCs (Fig. 

3j, Supplementary Fig. S3e,f). We found 11,861 differentially expressed genes (p 

adjusted value < 0.05), which could be clustered into 7 categories, including genes 

specifically active in each cell type or expressed in one or more cell types. We 

classified each gene as belonging to either a strong ‘A’, strong ‘B’ or an intermediate 

weak ‘A/B’ compartment, based on determining terciles from the eigenvectors 

distributions for each chromosome. Most differentially expressed genes were found 

in the strong A compartment, followed by the weak A/B, regardless of the cluster and 
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cell type, suggesting that the vast majority of most significant differences in gene 

expression do not coincide with strong B compartmentalization (Fig. 3k). To further 

test this observation, we took advantage of published maps of lamina-associated 

domains (LADs) in mESCs and in neuronal progenitor cells (NPCs)38, and confirmed 

that most differentially expressed genes do not fall in LADs in mESCs or in in-vitro 

differentiated NPCs (Fig. 3k). Although a small number of genes changed their 

compartment definition between cell types, the relative proportion of genes within 

strong A, weak A/B and strong B compartments remained the same for all cell types, 

and consistently infrequent in B compartments.  

 

Differentially expressed genes are targets of regulation by Polycomb repressor 

complexes  

To explore the mechanisms that regulate differential expression between cell 

types in compartments A or intermediate A/B, we investigated the involvement of 

Polycomb regulation. In mESCs, about one fifth of genes are marked by H3K27me3, 

a repressive histone mark catalysed by Polycomb Repressor Complex 2 (PRC2), 

which partially resolves through neuronal differentiation26. As most of H3K27me3 

positive peaks fall in compartment A in mESCs (72%; Supplemental Fig. S3g), we 

asked whether the differentially expressed genes that are upregulated in the brain 

cell types (gene clusters 1, 4, 6 and 7) are under Polycomb repression in mESCs. 

We took advantage of published promoter-state classifications previously defined in 

mESCs26 according to the occupancy of active form of RNA polymerase II (Active 

promoters), contained the initiating form of RNA polymerase II (only RNAPII 

promoters), associated with H3K27me3 (Polycomb promoters) or with none (Inactive) 

(Supplemental Fig. S3h). We find that the genes with upregulated expression in 

brain cell types are often Polycomb repressed in mESCs. For example, Polycomb 
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marks the promoters of up to 36% (688 of 1936) genes in cluster 1. In cluster 7, 

which contains genes highly expressed in DNs, 27% (342 of 1245) genes are 

Polycomb targets in mESCs.  

 

To explore the biological functions of Polycomb-target genes in clusters 1, 4, 6 

and 7 we performed Gene Ontology (GO) analysis (Supplemental Fig. S3i). For 

cluster 1, Polycomb-classified genes which become expressed in all three brain cell 

types are enriched for GO terms related to shared functions such as ‘gated channel 

activity’ (GO:0022836), ‘glutamate receptor signaling pathway’ (GO:0007215) and 

‘synapse organization’ (GO:0050808). Importantly, Polycomb-classified genes in cell-

type specific clusters are critical for cell specialization. For example, GO terms for 

Polycomb-classified genes in the OLGs cluster (cluster 4) include ‘ensheathment of 

neurons’ (GO:0007272), and ‘regulation of cell adhesion’ (GO:0030155). Similarly, 

Polycomb-classified genes expressed in PGNs (cluster 6) are enriched for GO terms 

such as ‘regulation of synaptic plasticity’ (GO:0048167) and ‘learning or memory’ 

(GO:0007611), both critical functions of PGNs29,30. Polycomb-classified DN-specific 

genes in cluster 7 have GO terms including ‘response to cocaine’ (GO:0042220) and 

‘response to alcohol’ (GO:0097305), highlighting their role in dopamine-receptor 

responses related to reward-based learning39,40. Together, these data suggest that 

many differentially expressed genes critical for cell specialization can be found within 

compartment A irrespectively of cell type, and are regulated through specialized 

mechanisms such as Polycomb repression.  

 

Genes important for cell specialization are found within topological domain 

boundaries in brain cells 
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 We found striking changes in compartment organization in cell types from the 

brain, including the strengthening of compartments B, but also that many differentially 

expressed genes between mESCs, OLGs, PGNs and DNs are present in the open 

compartments A. To investigate local changes in chromatin topology that may relate 

with cell-type specific gene expression, we next mapped the organization of 

topologically associating domains (TADs) in the four cell types. We applied the 

insulation score method5,41 and compared the overlaps between TAD borders 

allowing overlap by at least one nucleotide. We found extensive genome-wide 

reorganisation of TADs, with 67% of all TAD borders detected in all datasets being 

found in one or more of the three brain cell types, but not in mESCs, and only 9% of 

all detected TAD borders being common to all cell types (Supplemental Fig. S4a). 

Comparisons of TAD features between cell types show similar average TAD length (~ 

1 Mb) and TAD border length (~ 350 kb) and good conservation between replicates 

(82-93% overlap and correlated insulation scores; Supplemental Fig. S4b-d).  

To visualise the extensive re-organisation of topological domains between 

mESCs and brain cell types, we chose as exemplars a genomic region on 

chromosome 5 containing a group of GABA receptor (Gabr) genes which are not 

expressed in mESCs and most active in PGNs (Fig. 4a) and the Hist1 locus on 

chromosome 13 which contains clusters of replication-dependent histone 1 genes 

interrupted by a cluster of Vmn genes (Supplemental Fig. S4e). In both cases, 

inspection of local contacts revealed topologies that are specific to each cell type. 

 

Pairwise comparisons of TAD boundaries between brain cells and mESCs 

showed the most divergent differences, as expected from the developmental 

distance between the terminally differential and pluripotent cell types, with ~500 

borders specific of each brain cell type in comparison to ~300 – 400 specific of 
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mESCs (Fig. 4b). Comparisons between the two types of neurons, PGNs and DNs 

showed the lowest number of cell-type specific borders (Fig. 4c), and other 

comparisons showed intermediate levels of overlap, as expected (Supplemental 

Fig. S4f). 

  

To assess the strength of TAD boundaries in each case, we computed the 

insulation score centered at the lowest point within each TAD border, and plotted 

average insulation score profiles in ±1-Mb windows centered at the lowest insulation 

score for common or cell-type specific TAD boundaries (Fig. 4d). We find stronger 

insulation scores surrounding the TAD boundaries in brain cell types, with the 

common boundaries being consistently stronger than cell-type specific boundaries. 

Boundaries common to DNs and PGNs had similar insulation profiles for both 

common and unique boundaries, with common being strongest (Fig. 4e).  

 

To investigate whether the cell-type specific boundaries contained genes with 

functions relevant to the corresponding cell type, we investigated the ontology of 

genes at unique TAD boundaries, and observed that they are enriched for GO terms 

relevant for the respective cell function (Fig. 4f). Borders that are specific to mESCs 

are enriched GOs for functions such as ‘retinoid binding’, important for the 

maintenance of pluripotency42, tyrosine phosphate activity and insulin-like growth 

factor binding, that mediate and maintain self-renewal in stem cells43,44. Boundaries 

unique to OLGs are enriched GO terms related to ‘synaptic vesicle transport’ and 

‘NMDA receptors’, containing genes that encode synaptic proteins and 

neurotransmitter receptors expressed in OLGs and with functions in the response to 

neuronal input and modulation of myelin formation45. We found similar specialization-

related genes in PGNs, with GO terms including genes related to ‘phospholipase A2 
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activity’, involved in the modulation of glutamatergic synapses46, and ‘ephrin receptor 

binding’, which can regulate glutamate receptor signaling in the hippocampus47. DN-

specific borders also contained cell specialization related genes, such as genes 

related to circadian regulation. Midbrain DNs have an important role in the 

homeostatic circadian and sleep-related modulation of neuronal activity48. 

Remarkably, comparisons between the smaller numbers of TAD borders specific to 

PGNs and DNs, also resulted in enrichment for genes involved in neuronal functions 

(e.g. ‘GPCR binding’ for DNs, and ‘neurotransmitter’ or ‘glutamate receptor activity’ 

for PGNs) or related to neurodevelopment and maintenance of cell identity (e.g. 

transcription factors such as Foxj114,49 and Neurod614 in DNs). Together, these 

results show that the genome folds into unique TAD boundaries that are cell-type 

specific and which contain genes critical for cell specialization and cell identity, 

suggesting that chromatin architecture holds signatures of the functional state of the 

cell. 

 

Long and highly expressed neuronal genes undergo extensive rearrangement 

and can lose their TAD structure  

Next, we were interested in exploring the genomic organisation of long 

neuronal genes. Many neuronal genes which are involved in specialized cell 

processes, such as synaptic plasticity, are longer than 200 kb in genomic length, 

often have many alternative promoters, and produce a large number of isoforms as a 

result of complex splicing reactions50,51. Transcription of long neuronal genes is also 

sensitive to topoisomerase inhibition suggesting their expression is highly dependent 

on topological constraints52. For example, Neurexin-3 (Nrxn3) is a 1.54-Mb long gene 

that encodes a membrane protein involved in synaptic connections, plasticity, and the 

modulation of neurotransmitter release53. In mESCs, the Nrxn3 gene is folded into 
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two strong TADs that span past the length of the gene on either side, with an 

intervening TAD border near the middle of the gene (Fig. 5a). In mESCs, the region 

was mostly found in B compartment, and no mRNA expression was detected from 

Nrxn3 (TPM = 0). To estimate the contact density for the region, we visualized the 

heatmap of a range of insulation scores (see Methods), and found that both TADs 

had strong contact density in mESCs.  With increasing Nrxn3 gene expression in 

OLGs (TPM = 16.6) and PGNs (TPM = 56.8), the contact density became weaker in 

the first TAD, but was maintained in the second (Fig. 5b,c).In contrast, in VTA DNs, 

where the Nrxn3 is most highly expressed and sequencing reads are abundantly 

detected (TPM = 138.3) until the end of the gene, the contact density of the first 

Nrxn3 TAD was reduced though it was still observed, whereas the contact density of 

the second Nrxn3 TAD was drastically reduced, with nearly no TAD structure 

observable (Fig. 5d).  

 

These observations were confirmed in the other neuronal cell type, PGNs, and 

for other long neuronal genes, for example in Rbfox1 and Nlgn1 in PGNs 

(Supplemental Fig. S5a and S5b, respectively). Rbfox1 and Nlgn1 are not 

expressed in mESCs and are localized within a 1.3-Mb TAD or within a strongly 

insulated and large domain of ~2.5-Mb, respectively. In PGNs, the contact densities 

of both Rbfox1 and Nlgn1 are strongly reduced, coinciding with very high expression 

levels for both genes (Rbfox1 TPM = 204.3; Nlgn1 TPM = 55.0). The loss of 

chromatin contacts within localized genomic regions that coincide with highest gene 

expression suggest that these genes undergo extensive decondensation, a 

phenomenon that we report here as ‘TAD melting’, and is reminiscent of chromatin 

puffs that accompany high transcription levels in polytene chromosomes54.  
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We further quantified the significant changes in contact density around the 

Nrxn3 gene between the different cell types by determining the top 5% significant 

differential contacts between each cell type (Fig. 5e-g, see Methods). Few 

significant differential contacts are found between mESCs and OLGs (Fig. 5e), 

though all significant differential contacts localized within the first Nrxn3 TAD were 

enriched in mESCs. To assess changes in the number of significant contacts more 

broadly across the entire chromosome for each genomic window, we measured how 

many differential contacts each genomic region has across the entire 5-Mb region, 

and observed a depletion of significant contacts in genomic windows across the 

entire gene body in OLGs. The same trend could be seen between mESCs and 

PGNs, though with a larger number of significantly differential contacts, especially 

concentrated within the first Nrxn3 TAD (Fig. 5f). Comparisons between PGNs and 

DNs showed a few differences, with slightly increased contacts in DNs the first Nrxn3 

TAD (Supplemental Fig. S5c). The ‘melting’ of the second Nrxn3 TAD was 

associated with significantly stronger contacts only for PGNs. Comparison between 

DNs and mESCs showed significant depletions of DN contacts across the entire 

Nrxn3 gene body (Fig. 5g), with loss of contacts localized within the melted TAD, but 

also between the two Nrxn3 TADs in DNs. As with the other comparisons between 

mESCs and brain cells, we observed a depletion of significant contacts for DNs 

across the entire gene body. Similar significant depletion of contacts was found for 

Rbfox1 and Nlgn1 in comparisons between mESCs and PGNs (Supplemental Fig. 

S5d,e). For both genes, contacts were depleted at the gene promoter, and for Rbfox1 

between the first half of the gene body and the downstream region. When 

considering genomic windows with significant contacts, we also observed that PGNs 

were depleted for significant contacts across the entire gene body for Rbfox1 and 

Nlgn1.  
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Modelling of loss of Nrxn3 TAD structure shows decompaction of chromatin  

To better understand how the loss of TAD structure could influence 3D 

chromatin folding, we performed a polymer-physics-based approach (PRISMR)55 to 

model the 3D structure of the Nrxn3 region in mESCs and DNs (Fig. 5h-l). Following 

the generation of 3D models, we used an in-silico GAM approach (see Methods) to 

randomly section a single nuclear profile for each model, and then reconstructed an 

“in-silico GAM” chromatin contact matrix for mESCs (Fig. 5h) and DNs (Fig. 5i). In-

silico GAM matrices closely resembled the experimental data for both mESCs 

(Pearson r = 0.72) and DNs (r = 0.79). Importantly, the loss of contacts in the second 

Nrnx3 TAD was captured by the in-silico GAM approach.  

 

Next, we next inspected single polymer models, coloured according to the 

structure of domains found in DNs. In the mESC models, the structure of the region 

was globular and highly intermingled (Fig. 5j). The second Nrxn3 TAD (in green) 

frequently interacted with the surrounding domains, though the highest interactions 

were found with the regions downstream of the gene (blue and yellow domains). 

Remarkably, the second Nrxn3 TAD in DNs was highly extended in DNs (Fig. 5k). 

We observed that the melted TAD tended to envelope the downstream (blue) 

domain, which was reflected in the contacts between the melted domain and the 

downstream region, as seen in both the experimental and in-silico matrices (Fig. 5i). 

In the polymer models from DNs, the second Nrxn3 TAD shows a higher range of 

gyration radii compared to the same genomic regions in mESCs, indicating that the 

region tends to be highly decondensed or ‘melted’ (Fig. 5l). Together, these data 

highlight the complicated restructuring of local and long-range chromatin organization 

for different activation states of long neuronal genes, which can result in the loss of 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 2, 2020. ; https://doi.org/10.1101/2020.04.02.020990doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.02.020990


	 22	

topological structure, decompaction, and melting of an entire TAD. These 

observations open new avenues to better understand how gene expression is 

regulated in terminally differentiated cells of the brain and especially the genome 

topologies that may underly the production of complex transcript isoforms from long 

neuronal genes. 

 
 
Discussion 

Here, we adapted the GAM method to capture genome-wide chromatin 

conformation states of selected cell populations in the brain that perform specialized 

functions. Using immunoGAM, we selected nuclear slices from specific brain cells by 

immunofluorescence prior to laser microdissection, and characterized the 

relationship between 3D chromatin organization and cell specialization in intact 

tissues. We discovered dramatic reorganization of B compartment contacts in brain 

cell types, and specific contacts which spanned mega-base distances. In neurons, 

the tight repression of Olfr genes within these B compartment regions was especially 

noteworthy, as Olfr genes have critical non-sensory organ functions in neurons 

related to specificity of neuronal activation23-24. These functions were emphasized in 

our study, as activation of PGNs coincided with immediate early gene and synaptic 

plasticity related gene expression, activation of Trim genes and de-repression of 

neighbouring Olfr genes. Olfr genes are highly repressed in mature olfactory sensory 

neurons, where they form a large inter-chromosomal hub to regulate specificity of 

single Olfr gene activation56,57. Our results expand these previous findings, 

highlighting that alternative long-range mechanisms of Olfr repression may reflect 

their specialized roles in different cell types of the brain. 
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Of particular importance was the observation that the highest expression 

levels of very long neuronal genes coincide with a massive reorganization of local 

and long-range structure. We show that the highest expression of Nrxn3, Rbfox1 and 

Nlgn1 coincides with the loss of chromatin contacts and unfolding of the entire 

domain, which we call ‘TAD melting’, reminiscent of the formation of chromatin puffs 

previously reported by microscopical assays54. Many long neuronal genes are 

regulated in a specialized manner, for example by the activity of topoisomerases52, 

by the presence of long stretches of broad H3K27ac and H3K4me1 which act as 

enhancer-like domains58, or through repressive mechanisms such as DNA 

methylation59. The regulation of these long neuronal genes is further complicated by 

intricate splicing dynamics50,51, which require highly dynamic and adaptive responses 

based on neuronal activation state. It is therefore not surprising that for many of 

these long genes, including for Nrxn3, Rbfox1 and Nlgn1, genetic variants are often 

associated with or directly result in neuronal diseases60-62. Thus, understanding how 

genome folding relates with the response to environmental challenges is increasingly 

important to further our understanding of the mechanisms of neurological disease.  

  

Our results also indicate that chromatin architecture might allow the prediction 

of functional states of a different cell type. We found that genes involved in very 

specific cell functions as retinoid signaling in ES cells, synaptic proteins involved in 

myelin formation in OLGs, glutamate signaling in PGNs and circadian regulation in 

DNs were in unique TAD boundaries in the corresponding cell types. 

 

Collectively, our work revealed that cell specialization in the brain and 

chromatin structure are intimately linked at multiple genomic scales. ImmunoGAM is 

uniquely positioned for future studies to probe questions related to cell state and 
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specialized function within the brain or in other complex tissues, as local tissue 

structure is maintained. ImmunoGAM also has the potential to be applied in multiple 

cell types within the same tissue while retaining the geographic positions of each cell 

type, a prospect that can further deepen our understanding of coordinated 

interactions between cells in complex diseases. As immunoGAM requires only very 

small cell numbers (~400 – 1500 cells), it may additionally have prognostic value in 

highly precious clinical patient samples, and to provide critical insights into the 

aetiology and progression of neurological disease. 

 

 

Methods 

Animal maintenance  

Collection of GAM data from dopaminergic neurons was performed using 

C57Bl/6NCrl (RRID: IMSR_CR:027; WT) mice which were purchased from Charles 

River, and from TH-GFP (B6.Cg-Tg(TH-GFP)21-31/C57B6) animals were obtained 

as previously described63,64. All procedures involving WT and TH-GFP animals were 

approved by the Imperial College London's Animal Welfare and Ethical Review Body. 

Adult male mice of age 2–3 months were used. All mice had access to food and 

water ad libitum and were kept on a 12 h:12 h day/night cycle. C57Bl/6NCrl and TH-

GFP mice received an intraperitoneal (IP) injection of saline 14 days or 24 h prior to 

the tissue collection, respectively, and they were part of a larger experiment for a 

different study. 

Collection of GAM data from somatosensory oligodendrocyte cells was 

performed using Sox10::Cre-RCE::loxP-EGFP animals which were obtained by 

crossing Sox10::Cre animals65 on a C57BL/6j genetic background with RCE::loxP-

EGFP animals66 on a C57BL/6xCD1 mixed genetic background, both available at 
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The Jackson Laboratories. The Cre allele was maintained in hemizygosity while the 

reporter allele was maintained in hemi- or homozygosity. Experimental procedures 

for Sox10::Cre-RCE::loxP-EGFP animals were performed following the European 

directive 2010/63/EU, local Swedish directive L150/SJVFS/2019:9, Saknr L150 and 

Karolinska Institutet complementary guidelines for procurement and use of laboratory 

animals, Dnr 1937/03-640. The procedures described were approved by the local 

committee for ethical experiments on laboratory animals in Sweden (Stockholms 

Norra Djurförsöksetiska nämnd), lic.nr. 130/15. Animals were sacrificed at P21. Mice 

were housed to a maximum number of 5 per cage in individually ventilated cages 

with the following light/dark cycle: dawn 6:00-7:00, daylight 7:00-18:00, dusk 18:00-

19:00, night 19:00-6:00. 

Collection of GAM data from hippocampal CA1 pyramidal glutamatergic 

neurons was performed using 19 weeks old male Satb2flox/flox mice. C57Bl/6NCrl 

(RRID: IMSR_CR:027; WT) mice were purchased from Charles River, Satb2flox/flox 

mice that carry the floxed exon 4 have been previously described67. The 

experimental procedures were done according to the Austrian Animal 

Experimentation Ethics Board (Bundesministerium für Wissenschaft und Verkehr, 

Kommission für Tierversuchsangelegenheiten). All mice had access to food and 

water ad libitum and were kept on a 12 h:12 h day/night cycle. 

 

Tissue fixation and preparation 

WT, TH-GFP, and Satb2flox/flox mice were anaesthetised under isoflurane (4 %), 

given a lethal IP injection of pentobarbital (0.08 μl; 100 mg/ml; Euthatal), and 

transcardially perfused with 50 ml of ice-cold phosphate buffered saline (PBS) 

followed by 50-100 ml of 4% depolymerised paraformaldehyde (PFA; Electron 

microscopy grade, methanol free) in 250 mM HEPES-NaOH (pH 7.4-7.6). 
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Sox10::Cre-RCE::loxP-EGFP animals were sacrificed with a ketaminol/xylazine 

intraperitoneal injection followed by transcardial perfusion with 20 ml PBS and 20 ml 

4% PFA in 250 mM HEPES (pH 7.4-7.6). From C57Bl/6NCrl or TH-GFP mice, brains 

were removed and the tissue containing the VTA were dissected from each 

hemisphere at room temperature, and quickly transferred to fixative. For SATB2-Cre 

mice, the CA1 field hippocampus was dissected from each hemisphere at room 

temperature. For Sox10Cre/RCE mice, brain tissue containing the somatosensory 

cortex was dissected at room temperature. Following dissection, tissue blocks were 

placed in 4% paraformaldehyde (PFA) in 250 mM HEPES-NaOH (pH 7.4-7.6) for 

post-fixation at 4°C for 1 h. Brains were then placed in 8% PFA in 250mM HEPES 

and incubated at 4°C for 2-3 h. Tissue blocks were then placed in 1% PFA in 250 mM 

HEPES and kept at 4°C until tissue was prepared for cryopreservation (up to 5 days). 

 

Cryoblock preparation and cryosectioning 

Fixed tissue samples from different brain regions were further dissected to 

produce ~1.5x3 mm tissue samples suitable for Tokuyasu cryosectioning5 (Fig. S1a), 

at room temperature in 1% PFA in 250 mM HEPES. For the hippocampus, the dorsal 

CA1 region was further isolated. Approximately 1-3 mm x 1-3 mm blocks were 

dissected from all brain regions and were further incubated in 4% PFA in 250 mM 

HEPES at 4°C for 1 h. The fixed tissue was transferred to 2.1 M sucrose in PBS and 

embedded 16-24 h, at 4°C, positioned at the top of copper stub holders suitable for 

ultracryomicrotomy and frozen in liquid nitrogen. Cryopreserved tissue samples are 

kept indefinitely immersed under liquid nitrogen. 

 Frozen tissue blocks were cryosectioned with a Ultracryomicrotome (Leica 

Biosystems, EM UC7), with an approximate thickness of 220-230nm5. Cryosections 

were captured in drops of 2.1 M sucrose in PBS solution suspended in a copper wire 
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loop and transferred to 10 mm glass coverslips for confocal imaging, or onto a 4.0 

µm polyethylene naphthalate (PEN; Leica Microsystems, 11600289) membrane for 

laser microdissection. 

 

Immunofluorescence detection for confocal microscopy 

For confocal imaging, cryosections were incubated in sheep anti-tyrosine 

hydroxylase (TH, 1:500; Pel Freez #P60101-0), mouse anti-pan-histone H11-4 

(1:500; MAB3422 EMD Milipore #2842169) or chicken anti-GFP (1:500; ab13970 

Abcam) followed by donkey anti-sheep or goat anti-chicken IgG conjugated with 

AlexaFluor-488 (for TH and GFP; Invitrogen) or donkey anti-mouse IgG conjugated 

with AlexaFluor-555 (for pan-histone; Invitrogen).  

For PGNs, cryosections were washed (3x, 30 min total) in PBS, permeabilized 

(5 min) in 0.3% Triton X-100 in PBS (v/v) and incubated (2 h, room temperature) in 

blocking solution (1% BSA (w/v), 5% FBS (w/v) (GibcoTM Cat#10270), 0.3% Triton 

X-100 (v/v) in PBS). After incubation (overnight, 4oC) with primary antibody in 

blocking solution, the cryosections were washed (3-5x; 30 min) in 0.025% Triton X-

100 in PBS (v/v) and immunolabeled (1 h, room temperature) with secondary 

antibodies in blocking solution, followed by 3 (15 min) washes in in 0.025% Triton X-

100 in PBS (v/v). Cryosections were then counterstained with 0.5 µg/ml 4’,6’-

diamino-2-phenylindole (DAPI; Sigma-Aldrich® Cat#D9542), and then rinsed in PBS. 

Coverslips were mounted in Mowiol® 4-88 solutuon in 5% glycerol, 0.1M Tris-Hcl (pH 

8.5).  

The number of SATB2 positive cells present in the hippocampal CA1 area of 

the Satb2flox/flox control mice was determined by counting nuclei positive for the 

SATB2 immunostaining (AB_10563678, Abcam). To avoid counting the same nuclei, 

only every 30th ultrathin section cut through the tissue was collected, and the 
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remaining sections discarded. Twenty-five nuclei were identified in the pyramidal 

neurons layer per image in the DAPI channel only and SATB2-positive cells counted. 

We confirmed that within the CA1 layer most cells (96%) are pyramidal glutamatergic 

neurons (data not shown). 

For DNs and OLGs, cryosections were washed (3x, 30min total) in PBS, 

quenched (20 min) in PBS containing 0.0375g Glycine, then permeabilized (15 min) 

in 0.1% Triton X-100 in PBS (v/v). Cryosections were then incubated (1h, room 

temperature) in blocking solution (1% BSA (w/v), 0.2% fish-skin gelatin (w/v), 0.05% 

casein (w/v) and 0.05% Tween-20 (v/v) in PBS). After incubation (overnight, 4oC) with 

the antibody in blocking solution, the cryosections were washed (3-5x; 1 h) in 

blocking solution and immunolabeled (1 h, room temperature) with secondary 

antibodies in blocking solution, followed by 3 (15 min) washes in in 0.5% Tween-20 in 

PBS (v/v). Cryosections were then counterstained with 0.5 µg/ml, then rinsed in PBS. 

Coverslips were mounted in Mowiol® 4-88. 

Digital images were acquired with a Leica TCS SP8-STED confocal 

microscope (Leica Microsystems) using a 63x oil-immersion objective (NA = 1.4) or a 

20x oil-immersion objective using pinhole equivalent to 1 Airy disk. Images were 

acquired using 405 nm excitation and 420-480 nm emission for DAPI; 488 nm 

excitation and 505-530 nm emission for TH or GFP; and 555 nm excitation and 560 

nm emission using a long-pass filter at 1024x1024 pixel resolution. Images were 

processed using Fiji (version 2.0.0-rc-69/1.52p), where adjustments included the 

optimization of the dynamic signal range with contrast stretching. 

 

Immunofluorescence detection for laser microdissection 

For laser microdissection, cryosections on PEN membranes were washed, 

permeabilized and blocked as for confocal microscopy, and incubated with primary 
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and secondary antibodies as indicated above except for the use of higher 

concentrations of primary antibodies, as follows: anti-TH (1:50), anti-pan-histone 

(1:50) or anti-GFP (1:50). Secondary antibodies were used at the same 

concentration. Cell staining was visualized using a Leica laser microdissection 

microscope (Leica Microsystems, LMD7000) using a 63x dry objective. Following 

detection of cellular sections of the cell types of choice containing nuclear slices 

(nuclear profiles; NPs), individual NPs were laser microdissected from the PEN 

membrane, and collected into PCR adhesive caps (AdhesiveStrip 8C opaque; Carl 

Zeiss Microscopy #415190-9161-000). Three NPs were collected into each adhesive 

cap, and the presence of NPs in each lid was confirmed with a 5x objective using a 

420-480 nm emission filter. Control lids not containing nuclear profiles (water 

controls) were included for each dataset collection, and can be found in 

Supplemental Table 1. 

 

Whole genome amplification of nuclear profiles 

Whole genome amplification (WGA) was performed using an in-house 

protocol68. Briefly, NPs were lysed directly in the PCR adhesive caps for 4 or 24h at 

60°C in 1.2x lysis buffer (30 mM Tris-HCl pH 8.0, 2 mM EDTA pH 8.0, 800 mM 

Guanidinium-HCl, 5 % (v/v) Tween 20, 0.5 % (v/v) Triton X-100), containing 2.116 

units/ml QIAGEN protease (Qiagen, 19155). After protease inactivation at 75°C for 

30 min, the extracted DNA was amplified using random hexamer primers with an 

adaptor sequence. The pre-amplification step was done using 2x DeepVent mix (2x 

Thermo polymerase buffer (10x), 400µm dNTPs, 4 mM MgSO4 in ultrapure water), 

0.5 µM GAT-7N primers and 2 units/µl DeepVent® (exo-) DNA polymerase (New 

England Biolabs, M0259L). Primers that anneal to the general adaptor sequence 

were then used in a second amplification reaction to increase the amount of product. 
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This step was done as previously described (ref Protocols) using 2x DeepVent mix, 

10 mM dNTPs, 100 µM GAM-COM primers and 2 units/µl DeepVent (exo-) DNA 

polymerase. For some NPs from DNs (see Supplementary Table 1), WGA was 

performed using a WGA4 kit (Sigma-Aldrich) using the manufacturer’s instructions 

 

GAM library preparation and high-throughput sequencing 

 Following WGA, the samples were purified using SPRI beads (0.725 or 1.7 

ratio of beads per sample volume). The DNA concentration of each purified sample 

was measured using the Quant-iT® Pico Green dsDNA assay kit (Invitrogen #P7589) 

according to manufacturer’s instructions. GAM libraries were prepared using the 

Illumina Nextera XT library preparation kit (Illumina #FC-131-1096) according to 

manufacturer’s instructions or from an in-house library preparation protocol68. 

Following library preparation, the DNA was purified using SPRI beads (1.7 ratio of 

beads per sample volume) and the concentration for each sample was measured 

using the Quant-iT® PicoGreen dsDNA assay. An equal amount of DNA from each 

sample was pooled together (up to 196 samples), and the final pool was additionally 

purified three times using the SPRI beads (1.7 ratio of beads per sample volume). 

The final pool of libraries was analyzed using DNA High Sensitivity on-chip 

electrophoresis on an Agilent 2100 Bioanalyzer to confirm removal of primer dimers 

and estimate the average size and DNA fragment size distribution in the pool. NGS 

libraries were sequenced on Illumina NextSeq 500 machine, according to 

manufacturer’s instructions, using single-end 75 bp reads. The number of sequenced 

reads for each sample can be found in Supplemental Table 1.  

 

GAM data sequence alignment 
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 Sequenced reads from each GAM library were mapped to the mouse genome 

assembly GRCm38 (Dec. 2011, mm10) with Bowtie2 using default settings69. All non-

uniquely mapped reads, reads with mapping quality < 20 and PCR duplicates were 

removed and excluded from further analyses.   

 

GAM data window calling and sample quality control  

Positive genomic windows that are present within ultrathin nuclear slices were 

identified for each GAM library. Briefly, the genome was split into equal-sized 

windows (50 kb), and number of nucleotides sequenced in each bin was calculated 

for each GAM sample with bedtools70. Next, we determined the percentage of orphan 

windows (i.e. positive windows that were flanked by two adjacent negative windows) 

for every percentile of the nucleotide coverage distribution and identified the 

percentile with the lowest percent of orphan windows for each GAM sample in the 

dataset. The number of nucleotides that corresponds to the percentile with lowest 

percent of orphan windows in each sample was used as optimal coverage threshold 

for window identification in each sample. Windows were called positive if the number 

of nucleotides sequenced in each bin was greater than the determined optimal 

threshold. 

Each dataset was assessed for quality control by determining the percentage 

of orphan windows in each sample, number of uniquely mapped reads to the mouse 

genome, and correlations from cross-well contamination for every sample 

(Supplemental Table 1). Each sample was considered to be of good quality if they 

had < 70% orphan windows, > 50,000 uniquely mapped reads, and a cross-well 

contamination score (Jaccard index) of < 0.4. The number of samples in each cell 

type passing quality control is summarized in Table 1.  
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Publicly available GAM datasets from mouse embryonic stem cells (mESC)  

For mESCs, GAM datasets were downloaded from 4D Nucleome portal. We 

used 249 x 3NP GAM datasets from mESCs (clone 46C) which were grown at 37°C 

in a 5% CO2 incubator in Glasgow Modified Eagle’s Medium, supplemented with 10% 

fetal bovine serum, 2 ng/ml LIF and 1 mM 2-mercaptoethanol, on 0.1% gelatin-

coated dishes. Cells were passaged every other day. After the last passage 24 h 

before harvesting, mESCs were re-plated in serum-free ESGRO Complete Clonal 

Grade medium (Millipore). The list of 4DN sample IDs is provided in Supplementary 

Table S2.  

 

Visualization of pairwise chromatin contact matrices 

 To visualize GAM data, contact matrices were calculated where the frequency 

of window detection is normalized using pointwise mutual information (PMI) for all 

pairs of windows genome-wide. PMI describes the probability of a pair of genomic 

windows being found in the same NP given both their co-segregation frequency and 

their individual frequency across all NPs. PMI was calculated by the following 

formula, where p(x) and p(y) are the individual distributions of genomic windows x 

and y, respectively; and p(x,y) are their joint distribution: 

(1) PMI = log( p(x,y) / p(x)p(y) ) 

PMI can be bounded between -1 and 1, to produce a normalized PMI (NPMI) value 

given by the following formula: 

(2) NPMI = PMI / (-log p(x,y)) 

 

Identification of compartments A and B 

For compartment analysis, matrices of co-segregation frequency were 

determined by the ratio of independent occurrence of a single positive window in 
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each sample over the pairwise co-occurrence of pairs of positive windows in a given 

pair of genomic windows. GAM co-segregation matrices at 250kb resolution were 

assigned to either A- or B-compartments, as previously described5. Briefly, each 

chromosome was represented as a matrix of observed interactions O(i,j) between 

locus i and locus j (co-segregation), and separately for E(i,j) where each pair of 

genomic windows are the mean number of contacts with the same distance between 

i and j. A matrix of observed over expected values O/E(i,j) was produced by dividing 

O by E. A correlation matrix C(i,j) is produced between column i and column j of the 

O/E matrix. Principal component analysis was performed for the first 3 components 

on matrix C, before extracting the component with the best correlation to GC content. 

Finally, loci with PCA eigenvectors with the same sign that correlate best with GC 

content were called A compartments, while regions with the opposite sign were B 

compartments. Compartments were considered common if they had the same 

compartment definition within the same genomic bin. Compartment changes between 

cell types were computed after considering compartments that were common 

between biological replicates, unless otherwise indicated.  

 
Insulation score and topological domain boundary calling 

TAD calling was performed by calculating insulation scores in NPMI 

normalized pairwise GAM contact matrices at 50-kb resolution, as previously 

described41. The insulation score was computed individually for each cell type and 

biological replicate, with insulation square sizes ranging from 100 - 1000 kb. TAD 

boundaries were called using a 500kb-insulation square size and based on local 

minima of the insulation score. Boundaries that were found overlapping by at least 1 

genomic bin were merged. Boundaries separated by at least one genomic bin were 

considered different between datasets. In Figs. 4b, S4c, we considered the genomic 
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window within a boundary with the lowest insulation value as the boundary 

coordinate.   

 

Gene Ontology 

Gene ontology (GO) term enrichment analysis was performed using GOElite 

(version 1.2.4)71. In Figs. 2e, 3l, and 4c, all unique genes annotated to mm10 were 

used as the background dataset, and in Fig. 3f all expressed PGN genes were used.	

Default parameters were used for the GO enrichment: GO terms that were enriched 

above the background (significant permuted p-values < 0.05, 2000 permutations) 

were pruned to select the terms with the largest Z-score (> 1.96) relative to all 

corresponding child or parent paths in a network of related terms (genes changed > 

2). GO terms which had permuted p-value ≥ 0.01, contained fewer than 6 genes per 

GO term, or from the ‘cellular_component’ ontology, were not reported. A full list of 

unfiltered GO terms can be found in Supplemental Table 3.  

 

Determining differential contacts between GAM datasets 

To determine significant differences in pairwise contacts between a pair of 

GAM datasets, genomic windows with low detection, defined as less than 2% of the 

distribution of all detected genomic windows for each chromosome, were removed 

from both datasets to be compared. Next, NPMI contact frequencies at each genomic 

distance of each chromosome were normalized by computing the Z-score 

transformation. A differential matrix D was derived by subtracting the two Z-score 

normalized matrices. A 10-Mb distance threshold was applied after computing the 

normalized matrices. The top significant differential contacts were determined for 

each dataset by fitting a normal distribution to matrix D and defining the upper and 

lower 5% from the fitted curve. Finally, the number of top significant contacts was 
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quantified in each genomic window for each dataset. The difference between the 

number of significant contacts found at each genomic region was computed to define 

a differential window score for each genomic bin.  

 

mESC cell culture for scRNA-seq 

Mouse embryonic stem cells from the 46C clone, derived from E14tg2a and 

expressing GFP under Sox1 promoter72, were a kind gift of D. Henrique (Instituto de 

Medicina Molecular, Faculdade Medicina Lisboa, Lisbon, Portugal). mESCs were 

cultured as previously described26, i.e. cells were routinely grown at 37°C, 5% (v/v) 

CO2, on gelatine-coated (0.1% v/v) Nunc T25 flasks in GMEM medium (Invitrogen, 

Cat# 21710025), supplemented with 10% (v/v) Foetal Calf Serum (FCS; BioScience 

LifeSciences, Cat# 7.01, batch number 110006), 2000 U/ml Leukaemia inhibitory 

factor (LIF, Millipore, Cat# ESG1107), 0.1 mM beta-mercaptoethanol (Invitrogen, 

Cat# 31350-010), 2 mM L-glutamine (Invitrogen, Cat# 25030-024), 1 mM sodium 

pyruvate (Invitrogen, Cat# 11360039), 1% penicillin-streptomycin (Invitrogen, Cat# 

15140122), 1% MEM Non- Essential Amino Acids (Invitrogen, Cat# 11140035). 

Medium was changed every day and cells were split every other day. mESC batches 

were tested for mycoplasma infection. Before collecting material for scRNA-seq, cells 

were grown for 48h in serum-free ESGRO Complete Clonal Grade Medium 

(Millipore, Cat# SF001- B) supplemented with 1000 U/ml LIF, on gelatine (Sigma, 

Cat# G1393-100ml)-coated (0.1% v/v) Nunc 10 cm dishes, with a medium change 

after 24h. 

 

Single-cell mRNA library preparation 

Single-cell mRNA-seq libraries were prepared according to Fluidigm manual 

“Using the C1 Single-Cell Auto Prep System to Generate mRNA from Single Cells 
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and Libraries for Sequencing”. Cell suspension was loaded on 10-17 microns C1 

Single-Cell Auto Prep IFC (Fluidigm, Cat# 100-5760, kit Cat# 100-6201). After 

loading, the chip was observed under the microscope to score cells as singlets, 

doublets, multiplets, debris or other. Chip was then loaded again on Fluidigm C1 and 

cDNA was synthesised and pre-amplified in the chip using Clontech SMARTer kit 

(Takara Clontech, Cat# 634833). Spike-In Mix 1 (Life Technologies, Cat# 4456740), 

diluted 1:1000, was added to batch B ESCs as from Fluidigm manual. Illumina 

sequencing libraries were prepared with Nextera XT kit (Illumina, Cat# FC- 131-

1096) and Nextera Index Kit (Illumina, Cat# FC-131-1002), as previously described73. 

Libraries from each microfluidic chip (96 cells) were pooled and sequenced on 4 

lanes on Illumina HiSeq 2000, 2x100bp paired-end (batch A) or 1 lane on Illumina 

HiSeq 2000, 2x125bp paired-end (batch B) in the Wellcome Trust Sanger Institute 

Sequencing Facility. 

 

ScRNA-seq data processing: mapping and expression estimates 

To calculate expression estimates, mRNA-seq reads were mapped with STAR 

(Spliced Transcripts Alignment to a Reference, v2.4.2a)74 and processed with RSEM, 

using the ‘single-cell-prior’ option (RNA-Seq by Expectation- Maximization, 

v1.2.25)75. The references provided to STAR and RSEM were the gtf annotation from 

UCSC Known Genes (mm10, version 6) and the associated isoform-gene 

relationship information from the Known Isoforms table (UCSC), adding information 

for ERCCs sequences when present. Tables were downloaded from the UCSC Table 

browser (http://genome.ucsc.edu/cgi- bin/hgTables) and, for ERCCs, from 

ThermoFisher website (www.thermofisher.com/order/catalog/product/4456739). 

Gene-level expression estimates in “Expected Counts” from RSEM were used for the 

analysis.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 2, 2020. ; https://doi.org/10.1101/2020.04.02.020990doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.02.020990


	 37	

 

ScRNA-seq data processing: quality control 

Cells scored as doublets/ multiplets, debris or other during visual inspection of 

the C1 chip were excluded from the analysis. Datasets were also excluded if any of 

the following conditions were met: <500,000 reads (calculated using sam-stats from 

ea-utils.1.1.2-537)76; <60% of reads mapped (calculated with sam-stats); <50% reads 

mapped to mRNA (picard-tools-2.5.0, broadinstitute.github.io/picard/); >15% of reads 

mapped to chrM (sam-stats); if present, >20% of reads mapped to ERCCs (sam-

stats). 

Correlations between previously published mRNA-seq bulk26 and single-cell 

RNAseq data collected from mESCs (clone 46C) were performed to assess quality of 

the single cell data.  Correlations were performed as previously described77. Average 

single cell expression was highly correlated with bulk RNA-seq (Supplemental Fig. 

S3a). 

 

ScRNA-seq integration and analysis  

 To integrate single cell transcriptomes from brain cell types of interest, we 

selected p21-22 Oligodendrocytes15, p22-32 CA1 PGNs25, and p21-26 VTA DNs14, 

based on the cell type and subtype definitions provided in their respective 

publications. A summary of all published data used in this study can be found in 

Supplemental Table 4.  The matrices of counts provided in each publication, along 

with the single-cell mESC transcriptomes produced here that passed QC, were 

normalized applying the LogNormalize method and scaled using Seurat78. The 

scaled data was used for a PCA analysis, followed by processing through 

dimensionality reduction using Uniform Manifold Approximation and Projection 

(UMAP)79. Subsequent clustering was performed using the Seurat R package78, with 
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default parameters. To calculate Transcripts Per Million (TPM) for each cell type, 

counts per gene for all cells belonging to the same cell type were pooled and 

normalized by sequencing depth and gene length. Effective gene length was 

calculated by combining the length of all exons for each gene. 

Mean transcription values of olfactory receptor genes (Olfr, n=1120) and non-

Olfr genes (n= 22167) were computed for cells with respective non-zero TPMs. 

Single cell TPM values were log2 transformed (pseudocount=1) and cells 

hierarchically clustered (mean agglomerative clustering with euclidean distance 

metrics) for generation of heatmaps and sample distances. The order of genes along 

the y-axis reflects their genomic position. A randomly chosen subset of cells (n=23) 

not expressing Olfr genes was drawn to illustrate transcription differences of Olfr 

clusters 1 + 2 and interspersed genes.  

To identify co-expressed genes for both groups of PGNs (expressing and not-

expressing Olfr genes) all PGN cells were pooled per group and partitioned into two 

pseudo-replicates. To determine differentially expressed (DE) genes, all 6 possible 

pairwise comparisons between samples were performed using DEseq2 with default 

parameters80. All genes classified as DE (adjusted p-value < 0.05; Benjamini-

Hochberg test) in at least one comparison were considered for further analysis.  A 

summary table for the DE expression analysis of Olfr-expressing PGNs can be found 

in Supplemental Table 5. 

 For differential expression analysis for all cell types, pseudo-bulk replicate 

samples were obtained by randomly partitioning the total number of single cells per 

dataset into three groups.  DE expression analysis was performed as in the Olfr 

analysis and with the same parameters, except with 3 pseudo-replicates. To identify 

and visualize gene expression differences among DE expressed genes, K-means 

clustering was performed using the pheatmap R package with k-means = 7. 
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Expression values from DESeq per gene were centered and scaled for visualization. 

A summary table for the DE expression analysis of cell types can be found in 

Supplemental Table 6. 

To generate bigwig tracks for visualization, raw fastq files from each cell type 

were pool into one fastq file. Reads were mapped to the mouse genome (mm10) 

using STAR81 with default parameters but --outFilterMultimapNmax 10. Bam files 

were sorted and indexed using Samtools82 and normalized (RPKM) bigwigs were 

generated using Deeptools83 bamCoverage. To account for differences in the number 

of runs sequences for OLGs, cells were divided into groups by number of runs (1,2 

and 6).  The median of the reads for the group with the lowest sequencing depth was 

used as a threshold to normalize the other groups (i.e. the rest of the fastq files were 

randomly downsampled to that number of reads). The three groups of raw reads 

were pooled together and processed by applying the same method as for the other 

cell types.   

 

Modeling and In-silico GAM 

To reconstruct 3D conformations of the Nrxn3 locus we employed the Strings & 

Binders Switch (SBS) polymer model of chromatin84,85. In the SBS, a chromatin region 

is modelled as a self-avoiding chain of beads, including different binding sites for 

diffusing, cognate, molecular binders. Binding sites of the same type can be bridged 

by their cognate binders, thus driving the polymer folding. The optimal SBS polymers 

for the Nrxn3 locus in mESCs and DNs were inferred by using PRISMR, a machine 

learning based procedure which finds the minimal arrangement of the polymer binding 

sites best describing input pairwise contact data, such as Hi-C55 or GAM86. Here, 

PRISMR was applied to the GAM experimental data by additionally considering the 

NPMI normalization. We focused on a 4.8Mb region around the Nrxn3 gene (Chr12: 
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87,600,000-92,400,000; mm10) at 50kb resolution in mESCs and DNs. The procedure 

returned optimal SBS polymer chains made of 1440 beads, including 7 different types 

of binding sites, in both cell types. 

Next, to generate thermodynamic ensembles of 3D conformations of the locus, 

we ran massive molecular dynamics simulations of the optimal polymers, performed 

with the freely available LAMMPS software87. In those simulations, the system evolves 

according to Langevin equation, with dynamics parameters derived in classical 

polymer physics studies88.  Polymers are first initialized in self-avoiding conformations 

and then evolve up to reach their equilibrium globular phase84. Beads and binders have 

the same diameter σ =1, expressed in dimensionless units, and experience a hard-

core repulsion by use of a truncated Lennard-Jones (LJ) potential. Analogously, 

attractive interactions are modelled with short-ranged LJ potentials84. We sampled a 

range of affinities between beads and cognate binders in the weak biochemical range, 

from 3.0KBT to 8.0KBT (where KB is the Boltzmann constant and T the system 

temperature). In addition, binders interact non-specifically with the polymer with a lower 

affinity, sampled from 0KBT to 2.7KBT. For sake of simplicity, we used the same affinity 

strengths for all different binding site types. Total binder concentration was taken 

above the polymer coil-globule transition threshold84. For each of the considered 

cases, we derived ensembles of up to ~500 distinct equilibrium configurations. Full 

details about the model and simulations are discussed in84,89.  

In-silico GAM NPMI matrices were obtained from the ensemble of 3D structures 

by applying the in-silico GAM algorithm90, here generalized to simulate the GAM 

protocol with 3NPs per GAM sample and to perform NPMI normalization. Specifically, 

we used the same number of slices of the GAM experiments, 249x3NPs for mESCs 

and 585x3NPs for DNs, respectively. Pearson correlation coefficients were used to 

compare the in-silico and experimental NPMI GAM matrices. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 2, 2020. ; https://doi.org/10.1101/2020.04.02.020990doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.02.020990


	 41	

Example of single 3D conformations were rendered by a third-order spline of 

the polymer beads positions, with regions of interest highlighted in different colors. To 

quantify the size and variability of the 3D structures in mESCs and DNs, we measured 

the average gyration radius, Rg of the TAD encompassing the Nrxn3 gene (chr12: 

89,500,000-90,300,000, green region in Figs. 5j,k), expressed in dimensionless units 

σ in Fig. 5l.  
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Figure 1. GAM captures cell-type specific chromatin contacts in the mouse 
brain.  
 
 
 
a, Schematic representation of the immunoGAM experimental workflow in brain 
tissues. Upon transcardial perfusion with fixative (1), tissues are dissected, 
cryoprotected, and ultrathin cryosectioned (2). After immunodetection using cell-type 
specific markers (3), single nuclear profiles are dissected from independent cells and 
collected in groups of three (4). After extraction of genomic DNA and sequencing (5), 
the frequency of co-segregation of pairs of genomic loci depends on their true 
physical distance inside the nucleus, and is used to map chromatin contacts (6). 
 
b, Schematic representation of immunoGAM data analysis of TADs, compartments 
A/B and contact matrices, which were developed in the present study, together with 
integration with cell-type specific gene expression extracted from scRNA-seq data 
from the same cell types. 
 
c, Cell types used for the present study included cultured mouse ESCs (mESCs), 
oligodendrocytes (OLGs) from the somatosensory cortex (scale bar: 10 µm), 
pyramidal glutamatergic neurons (PGNs) from the CA1 region of the hippocampus 
(scale bar: 100 µm), dopaminergic neurons (DNs) from the midbrain ventral 
tegmental area (scale bar: 10 µm). mESCs were not selected, OLGs were selected 
based on GFP report expression, PGNs on tissue morphology (dotted line), and DNs 
on expression of TH. 
	
d, Observed GAM contact matrices at 50-kb resolution (Chr17: 0-60,000,000) for 
each cell-type used in this study. A long-range patch of contacts involving two large 
genomic regions separated by ~35 Mb was observed for in-situ brain cell-types, but 
not for mESCs. GAM matrices represent co-segregation frequencies of pairs of 
genomic windows using Normalized Point Mutual Information (NPMI; see Methods). 
 
e, GAMcontact matrices at 50-kb resolution show cell-type specific differences in 
local contacts (Chr13: 102,900,000-107,900,000), and reproducible between 
biological replicates taken from single animals. 
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Figure 2. Mouse brain cells have strong B compartment interactions between 
clusters of sensory-receptor genes 
 
a, Open and closed chromatin compartments (A and B, respectively) had different 
genomic distributions in mESCs, OLGs, PGNs and DNs. PCA eigenvectors were 
computed from GAM datasets from mESCs and for brain cell types, and used to 
classify compartments shown here for chromosomes 1, 7 and 17. R1; Mouse 
replicate 1. Purple, compartments A; orange, compartments B.  
 
b, GAM contact matrices at 50-kb resolution for a 20Mb (Chr7: 35,000,000-
55,000,000) region that shows strong interactions separated by 10 Mb that involve B 
compartments in OLGs, PGNs and DNs, but not mESCs.  
 
c, GAM contact matrices at 50-kb resolution for a 43Mb region (Chr7: 52,000,000-
95,000,000), showing strong interactions between B compartment regions in OLGs, 
PGNs and DNs (purple circle), but not mESCs, at a 30Mb distance. 
 
d, Average NPMI score for compartment interactions in each chromosome. Whereas 
A-A and B-B interactions have similar average intensity per chromosome in mESCs, 
brain cells show increased B-B interactions especially for chromosomes 7 (green 
dashed line) and 17 (purple dashed line). A-B compartment interactions were 
detected, but proportionally less abundant, for all chromosomes in all cell types, as 
expected. 
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Figure 3. Single-cell gene expression of brain cell types is related to 
compartment definition. 
 
a, Schematic representation of scRNA-seq datasets used in this study. We generated 
98 single-cell transcriptomes from mESCs, and in parallel processed published 
scRNA-seq datasets from specific cell types in brain regions that were matched with 
GAM data. 
 
b, Single-cell transcriptomes, visualized by UMAP clustering and colored by cell 
types that were defined by published data. Contours are drawn to contain each cell 
type.  
 
c, Number of single cells expressing Olfr genes for each cell type. 52% of mESCs 
and 19% of PGNs expressed mostly one or two, but up to 7 or 11 Olfr genes, in 
single cells. Vast majority of OLGs and DNs did not express Olfr genes, with only five 
and two cells, respectively, that expressed one or two Olfr genes. 
 
d, Mean TPM per gene for all gene (not Olfr) or Olfr genes in mESCs (top) and PGNs 
(bottom). Olfr genes expressed in PGNs had higher expression in single cells, than in 
mESCs.  
 
e, Volcano plot of differentially expressed (DE) genes between Olfr-expressing and 
non-expressing PGNs. Genes with an adjusted p-value < 0.05 were considered DE.   
 
f, Selected enriched gene ontologies (GOs) for DE genes in Olfr-expressing PGNs. 
GO terms of upregulated genes were enriched for neuronal activation, while 
downregulation with mitochondria metabolism.  
 
g-i, Heatmap of single-cell expression for genes within a Olfr- and Trim-rich region in 
chromosome 7 (Chr7: 102,476,700-105,337,714) that are expressed in at least one 
PGN or mESC. In mESCs, genes within or between the two Olfr clusters (green 
boxes) were expressed irrespective of Olfr expression (g). In some PGNs that 
express Olfr genes, genes within or between the two Olfr gene clusters were co-
expressed (h). PGNs that do not express Olfr genes have no expression of genes 
within or between the two Olfr gene clusters (i); exemplar cells were 23 randomly 
selected PGNs. 
 
j, GAM contact matrices at 50-kb resolution for Chr7: 102,000,000-106,000,000 
containing the two Olfr clusters and an intervening region with Trim genes discussed 
in (i). Expression of Trim genes in mESCs coincides with a smaller local hub of 
contacts, whereas in PGNs the locus is more globally open than in OLGs or DNs. 
 
k, Heatmap of differentially expressed (DE) genes, clustered by cell type. 
Compartments are shown classified into terciles- strong A, strong B or an 
intermediate weak A/B. LADs are shown for mESCs and NPCs38. Most DE genes 
were found in A compartment regardless of cluster or cell type. 
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Figure 4. Cell-type specific topological domains in the brain contain genes 
relevant for cell specialization.  
 
a, GAM contact matrices at 50-kb resolution showing cell-type differences in local 
contacts and topological domains for a 5Mb region containing a GABA receptor 
cluster (Chr5: 69,000,000-74,000,000). Mean insulation square is plotted below 
matrices for each cell type and replicate, and shaded regions indicate called TAD 
borders. 
 
b, Overlap between TAD boundaries for pairwise cell-type comparisons. OLGs, CA1 
PGNs, and VTA DNs had ~500 unique TAD borders when compared to mESCs.  
 
c, Overlap between TAD boundaries for DNs and PGNs. The neurons had higher 
TAD border conservation, with only 260 and 371 unique borders for DNs and PGNs, 
respectively. 
 
d, Average insulation score ± 1Mb surrounding the lowest insulation point within a 
TAD border, for pairwise cell-type comparisons. For both shared and unique cell 
borders, all brain cell types had stronger TAD boundaries compared to mESCs.  
 
e, Average insulation score surrounding TAD borders for PGNs and DNs. The two 
neuronal cell types had similar border strengths for both common and unique 
borders.   
 
f, Selected gene ontologies (GOs) for genes found at unique TAD borders for 
pairwise cell-type comparisons. For all brain cell types, enriched GOs were relevant 
for cell specialization.  
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Figure 5. Extensive remodeling of chromatin structure at long and highly 
expressed neuronal genes. 
 
a, GAM contact matrices at 50-kb resolution showing a 5Mb region (Chr12: 
87,600,000-92,400,000) surrounding the Nrxn3 gene. In mESCs, the gene is not 
expressed and is found within two TADs with high contact density as indicated by the 
insulation score heatmap. The Nrxn3 gene is not expressed in mESCs 
 
b, For OLGs, which has a low level of Nrxn3 expression, the contact density is lower 
in the first than in the second TAD. Both TADs are visible, and the second TAD has 
stronger inter-TAD contacts with the downstream region. 
 
c, In PGNs, Nrxn3 expression is increased (16.6 TPM) and shows a similar contact 
density to OLGs, with lower contact density in the first TAD compared to the second. 
Both TADs are maintained. 
 
d, In DNs, highest levels of Nrxn3 expression (138.3) coincided with a loss of contact 
density and a loss of domain structure in the second TAD. 
 
e-g, Differential contact matrices comparing different cell types for the Nrxn3 region 
as shown in (a). OLGs and mESCs had only a few differential contacts, which were 
mostly found in the first Nrxn3 TAD (e). Genomic windows contained more mESC 
significant contacts as compared to OLGs across the Nrxn3 gene body. For PGNs, 
contacts were significantly depleted in the first Nrxn3 TAD as compared to mESCs, 
and genomic windows were also depleted for PGN specific contacts within the first 
TAD (f). For DNs, contacts were significantly depleted in the second Nrxn3 TAD, 
coinciding with the increase in Nrxn3 expression (g). Genomic windows were also 
significantly depleted for DN contacts across the entire Nrxn3 gene body. 
 
h, In-silico GAM performed from PRISMR modelling of the Nrxn3 locus in mESCs 
based on experimental GAM data. The in-silico and experimental GAM matrices 
were well correlated (Pearson r = 0.72). Colour bars indicate domains as defined in 
the DNs. 
 
i, In-silico GAM of the Nrxn3 locus in DNs. The in-silico matrices were well correlated 
(Pearson r = 0.79) with the experimental GAM data. Importantly, TAD melting could 
be seen in the green domain of the in-silico matrix, corresponding to the second 
Nrxn3 TAD. 
 
j, Two examples of polymer models for the Nrxn3 locus in mESCs shows the locus is 
organized as a globular structure. The white and red domains interact closely, while 
the green, blue and yellow domains interact with one another.  
 
k, Two examples of polymer models for the Nrxn3 locus in DNs. Note the extended 
green domain which loops away from the structure, corresponding to the Nrxn3 
melting TAD. 
 
l,  Distribution of gyration radii of the green domain in polymer models for mESCs 
and DNs, shows that the green domain, corresponding to the second Nrxn3 TAD, has 
a range of higher gyration radii in DNs than mESCs, helping to visualise the 
decondensed, melted state of the region in DNs.  
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Table 1. Summary of GAM datasets generated in this study. 

Dataset ID Total 
samples 

Samples 
passing QC 

OW > 70% UMRs < 
50000 

Cross-
Contaminated 

Water 

VTA_DNs_R1 656 585 58 11 4 13 
VTA_DNs_R2 316 291 19 6 3 6 
CA1_PGNs_R1 218 209 7 2 0 2 
CA1_PGNs_R2 288 275 7 1 0 6 
OLIGs 336 290 46 4 3 0 
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Figure S1. GAM method and quality controls. 
 
a, GAM experimental pipeline. VTA and CA1 dissections and cryoblock preparations 
are shown as examples. Tissue is dissected and cryopreserved before sectioning on 
an ultracryomicrotome. Pan-histone was used to identify cell slices that contained 
nuclei on the laser microdissection microscope, with additional TH labelling to identify 
DNs. PGNs were selected using the morphology of the pyramidal neuron layer. 
Three nuclear slices were selected and laser microdissected from the tissue to fall 
into the same PCR lid. DNA was then extracted from each sample and amplified 
using whole-genome amplification, followed by Illumina NextSeq sequencing. 

 
b, Quality control (QC) distributions for uniquely mapped reads, genome coverage, 
and percentage of orphan window for all samples in GAM brain cell types. Each data 
point represents a GAM sample. Samples passing QC are shown in green, samples 
not passing QC in red. 
 
c, QC metrics of uniquely mapped reads versus orphan windows plotted for each 
GAM sample separately for each GAM brain cell type and replicate. Samples not 
passing QC are shown in red, water control samples (without a nuclear profile) are 
shown in black. 

 
d, Example matrices for CA1 PGN and VTA DN replicate 2 for Chr17: 0-60,000,000 
at 50-kb resolution. 
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Figure S2. Identification of compartments and differences between cell types. 
 
a, Open and closed chromatin compartments (A and B, respectively) shown for 
biological replicates of PGNs and DNs biological replicates 2. 

 
b, Correlation of compartments in GAM cell types and replicates. Pearson correlation 
of eigenvectors shows the largest differences between mESCs and brain cell types. 
Mean compartment changes, and comparisons by chromosome show good overlap 
between replicates. 

 
c, Mean compartment changes for each cell type comparison. Only compartments 
common to both replicates were used in the comparison. Brain cell types had lower 
overlap with mESCs then to each other. PGNs and DNs had the most overlap. 

 
d, Violin plots showing the distribution of compartment lengths for each cell type, 
show similar lengths between cell types. 

 
e, Heatmaps of NPMI score for each genomic window pair on chromosome 7, sorted 
by eigenvectors. The histogram of eigenvectors is shown in the upper panel, 
coloured by compartment definition (orange, compartment B; purple, compartment 
A). Note the strong B compartment values in the brain cell types, and higher NPMI 
scores. 

 
f, Average contact decay with genomic length for all chromosomes in logarithmic 
bins, for each cell-type. mESCs have a more rapid decay after 25 Mb, as compared 
to brain cell types. 

 
g, Average contact decay for chromosome 7 across genomic distances in logarithmic 
bins, for each cell type. mESCs and OLGs have decay curves similar to the mean 
value for all chromosomes (black dashed line), while neurons have higher average 
contact frequencies at large genomic distances (> 5 Mb). Grey dashed lines indicate 
mean values ± 30%. 

 
h, Selected enriched gene ontologies (GOs) from compartment B in chromosome 7. 
Enriched GOs were the same in all cell types, and contained multiple olfactory (Olfr) 
or vomeronasal (Vmn) receptor genes. *indicates multiple genes. 
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Figure S3. Integration of mESCs scRNA-seq with published brain cell-types. 
 
a, Correlation plot of gene expression between published bulk26 versus single-cell 
mESC. Average single cell expression was highly correlated with bulk RNA-seq. 
 
b, Cell-type marker expression, represented by UMAP of single cell transcriptomes. 
Nanog and Pou5f1 were used as markers for mESCs, Camk2a and Wfs1 for PGNs, 
SLc6a3 and Th for DNs, and Sox10 and Olig2 for OLGs. Rbfox3 was used as a pan-
neuronal marker. All markers were highly expressed in their respective cell types. 
 
c, Histogram showing the distribution of Olfr genes across the genome (grey bars). 
Olfrs expressed in PGNs are shown in purple. 
 
d, Heatmap of single-cell gene expression for genes that were expressed in at least 
one PGN or mESC, and were within or between two Olfr gene clusters (Chr7: 
102,476,700-105,337,714). In mESCs, genes within or between the two Olfr clusters 
(green boxes) were expressed irrespective of Olfr expression. In some PGNs that 
expressed Olfrs, genes within or between the two Olfr clusters were co-expressed. 
PGNs that do not express Olfrs have no expression of genes within or between the 
two Olfr clusters. 
 
e, PCA of cell types split into three replicates for differential expressionanalysis (see 
Methods). Replicates clustered separately by cell type. 
 
f, Correlation plot of cell type and replicates for differential gene expression analysis. 
Replicates correlate most highly with one another, followed by brain cell types.  
 
g, Proportion of H3K27me3 ChIP-seq peaks26 found within compartments A/B in 
mESCs. 72.3% of H3K27me3 peaks were in compartment A. 
 
h, DE genes were classified by their promoter state of activation for mESCs25 in 
clusters 1, 4, 6 and 7. Most DE genes were found in compartment A, and a large 
subset of genes were classified as Polycomb regulated in mESCs.  
 
i, Selected enriched gene ontologies (GOs) for Polycomb-regulated genes in DE 
clusters from (i). All selected GOs had a permuted p-value of 0. Enriched GOs for 
each brain cell type was specific for their specialized function.  	
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Figure S4. Identification of TADs and TAD boundaries, and differences between 
cell-types. 
 
a, Upset plot showing TAD boundary overlap for 50-kb genomic bins with at least one 
cell type containing a TAD border. Sets that overlapped, or were unique for, mESCs 
are coloured in orange. 

 
b, Violin plots showing the distribution of TAD and TAD boundary lengths. TAD length 
was calculated as the distance between two boundaries points (defined as lowest 
insulation score point within a boundary).   

 
c, Overlap between TAD boundaries for pairwise PGN or DN replicate comparisons.  

 
d, Pearson correlation of insulation scores in GAM cell types and replicates. The 
largest differences were found between mESCs and brain cell types. DN and PGN 
replicates had the highest correlations. 

 
e, GAM contact matrices at 50-kb resolution showing an 8Mb region (Chr13: 
18,000,000-26,000,000) surrounding the Hist1 locus. Mean insulation scores are 
plotted for each cell type and replicate. The Hist1 locus is indicated by the shaded 
grey area. 

 
f, Overlap between TAD boundaries for pairwise cell-type comparisons between 
PGNs or DNs and OLGs. 
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Figure S5. TAD melting at Rbfox1 and Nlgn1. 
 
 
a, GAM contact matrices at 50-kb resolution showing a 4Mb region (Chr16: 
5,500,000-9,500,000) surrounding the Rbfox1 gene. In mESCs, the gene is not 
expressed and was found within a TAD with high contact density as indicated by the 
insulation score heatmap. In PGNs, high expression of Rbfox1 coincided with a loss 
of contact density and a loss of domain structure in the TAD.  

 
b, GAM contact matrices at 50-kb resolution showing a 5Mb region (Chr3: 
23,300,000-28,300,000) surrounding the Nlgn1 gene. In PGNs, high expression of 
Ngln1 also coincided with a loss of contact density and a loss of domain structure.  

 
c, Differential contact matrices for PGNs and DNs at the Nrxn3 locus. Significant DN 
contacts were found outside the Nrxn3 region, and there were few significant 
contacts in the first TAD. The second TAD had some PGN specific contacts. Genomic 
windows were depleted for DN significant contacts in the second TAD 

 
d, Differential contact matrices for mESCs and PGNs at the Rbfox1 locus, showing 
significantly different mESC contacts at the Rbfox1 promoter, contacting the rest of 
the gene and a downstream region. Genomic windows contained more mESC 
significant contacts as compared to PGNs across the Rbfox1 gene body. 

 
e, Differential contact matrices for Nlgn1. Note the differential mESC contacts within 
the Nlgn1 gene. Genomic windows contained more mESC significant contacts as 
compared to PGNs across the entire Nlgn1 gene body, and downstream region. 
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