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Abstract

The Allee effect describes populations that deviate from logistic growth models and arises in applica-

tions from ecology to cell biology. A common justification for incorporating Allee effects into population

models is that the population in question has altered growth mechanisms at some critical density, often

referred to as threshold effects. Despite the ubiquitous nature of threshold effects arising in various

biological applications, the explicit link between local threshold effects and global Allee effects has not

been considered. In this work, we examine a continuum population model that incorporates threshold

effects in the local growth mechanisms. We show that this model gives rise to a diverse family of Allee

effects and we provide a comprehensive analysis of which choices of local growth mechanisms give rise to

specific Allee effects. This model is then calibrated to a recent set of experimental data known to deviate

from logistic growth, which in turn provides an interpretation of the threshold population density and

growth mechanisms associated with the population.
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1 Introduction

Mathematical models of population dynamics often include an Allee effect to account for dynamics that

deviate from logistic growth (Allee and Bowen, 1932; Courchamp et al., 1999; Stephens et al., 1999; Taylor

and Hastings, 2005). The logistic growth model can be written as

dC(t)

dt
= rC(t)

(
1− C(t)

K

)
, with solution C(t) =

KC(0)ert

K + C(0)(ert − 1)
. (1)
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Here, C(t) ≥ 0 is the density at time t, dC(t)/dt is the growth rate, r > 0 is the low-density growth rate,

C(0) is the initial density, and K > 0 is the carrying capacity density. Equation (1) has two equilibria:

C∗ = 0 and C∗ = K, where an equilibrium is any value C∗ such that dC(t)/dt = 0 when C(t) ≡ C∗. Since

densities near C(t) ≡ K remain close to K, while densities near C(t) ≡ 0 diverge away from zero, we say that

C∗ = K is a stable equilibrium, while C∗ = 0 is an unstable equilibrium. This means that the logistic growth

model implicitly assumes that all densities, no matter how small, eventually thrive, since lim
t→∞

C(t) = K for

C(0) > 0.

Mathematical models that include an Allee effect relax the assumption that all population densities

will thrive and survive, which is inherent in (1) (Edelstein-Keshet, 2005; Murray, 2003; Stephens et al.,

1999; Taylor and Hastings, 2005). Consequently, populations described using Allee effect models exhibit

more complicated and nuanced dynamics, including reduced growth at low densities (Gerlee, 2013; Johnson

et al., 2006; Neufeld et al., 2017) and extinction below a critical density threshold (Allee and Bowen, 1932;

Courchamp et al., 1999; Taylor and Hastings, 2005). The phrase Allee effect can have many different

interpretations in different parts of the literature. For instance, the Weak Allee effect is used to describe

density growth rates that deviate from logistic growth, but do not include additional equilibria (Edelstein-

Keshet, 2005; Murray, 2003; Stephens et al., 1999; Taylor and Hastings, 2005). A common mathematical

description of the Weak Allee effect is

dC(t)

dt
= rC(t)

(
1− C(t)

K

)(
1 +

C(t)

A

)
, A > 0, (2)

where the factor 1 + C(t)/A represents the deviation from the classical logistic growth model. Despite the

similarity between (1) and (2), it is not possible to write down an explicit solution for (2) in terms of C(t),

like we can for (1). Despite this, we are still able to examine the equilibria of (2) to understand the salient

features of the Weak Allee effect. Since A > 0, (2) does not incorporate any additional equilibria other than

C∗ = 0 and C∗ = K. Noting that the main feature of an Allee effect is a deviation from logistic growth,

this cubic representation of the growth rate is employed predominantly for simplicity rather than explicit

biological significance (Stefan et al., 2012; Stephens et al., 1999; Taylor and Hastings, 2005). Therefore, in

this work, we refer to the Weak Allee effect as any population density growth rate that deviates from logistic

growth without incorporating additional equilibria.

Another common type of Allee effect is the Strong Allee effect, in which an additional unstable intermedi-

ate equilibrium, C∗ = B, with 0 < B < K, is incorporated (Courchamp et al., 1999; Edelstein-Keshet, 2005;

Murray, 2003; Stephens et al., 1999; Taylor and Hastings, 2005). In such models, lim
t→∞

C(t) = 0 if C(0) < B

and lim
t→∞

C(t) = K if C(0) > B, implying that C∗ = 0 and C∗ = K are stable equilibria and C∗ = B is
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unstable. Typically, mathematical models incorporating a Strong Allee effect are written as

dC(t)

dt
= rC(t)

(
1− C(t)

K

)(
C(t)

B
− 1

)
, 0 < B < K. (3)

In a similar fashion to the Weak Allee effect, the cubic form of the Strong Allee effect is chosen predominantly

for simplicity (Stefan et al., 2012; Stephens et al., 1999; Taylor and Hastings, 2005). Therefore, we will refer

to any growth rate with two stable equilibria, C∗ = 0 and C∗ = K, and an additional intermediate unstable

equilibrium as the Strong Allee effect. Throughout this work, we refer to growth rates that deviate from

logistic growth as an Allee effect, whereas specific Allee effects (e.g., the Weak Allee effect and the Strong

Allee effect) are referred to using more specific terminologies.

While Allee effects were originally used to describe population dynamics arising in ecology (Courchamp

et al., 1999; Drake, 2004; Johnson et al., 2006; Seebens et al., 2017; Simberloff et al., 2013; Taylor and

Hastings, 2005; Tu et al., 2019), there has been increasing interest in examining the potential for Allee

effects in population dynamics relating to cell biology (Axelrod et al., 2006; Bobadilla et al., 2019; Böttger

et al., 2015; Gerlee, 2013; Jin et al., 2017; Johnson et al., 2019; Johnston et al., 2017; Korolev et al., 2014;

Lolas et al., 2016; Neufeld et al., 2017; Sarapata and de Pillis, 2014). In both cell biology and ecological

applications, the Allee effect provides a suitable modelling framework to describe the dynamics of well-

mixed populations that exhibit non-logistic features. However, because standard models incorporating Allee

effects are continuum models that describe global, population-level features of the population dynamics, the

interpretation of Allee effects at the individual scale remains less clear (Böttger et al., 2015; Johnston et al.,

2017).

Understanding how local, stochastic growth mechanisms give rise to global Allee effects in a population

is important, since these individual-level mechanisms can ultimately determine whether a population will

survive or be driven to extinction (Böttger et al., 2015; Colon et al., 2015; Johnston et al., 2017; Scott

et al., 2014). Certain individual-level biological features are ubiquitous among populations displaying Allee

effects, providing a unifying feature in both cell biology and ecological applications. One of these phenomena

is a threshold effect (Frankham, 1995; Metzger and Décamps, 1997; Rossignol et al., 1999), which we also

refer to as a binary switch. We define a binary switch as a local feature of a population that behaves

differently when a particular biological mechanism is present or absent. Some examples of binary switches

include: the go-or-grow hypothesis in cell biology (Hatzikirou et al., 2012; Vittadello et al., 2020), phenotypic

plasticity (Böttger et al., 2015; Friedl and Alexander, 2011), tree masting (Koenig and Knops, 2005), external

harvesting pressure (Courchamp et al., 1999; Kuparinen et al., 2014), and resource depletion (Hopf and Hopf,

1985). For all of these examples, Allee effects have been proposed to potentially explain more complicated
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and nuanced population dynamics than are possible in a logistic growth framework. However, the link

between the details of such a local binary switch and the resulting population-level Allee effect is unclear.

Given that local binary switches are thought to be widely important in biology and ecology, we ask two

questions: (i) how does the incorporation of a local binary switch in proliferation and death rates affect the

global dynamics of a population? and, (ii) how does this local binary switch relate to different forms of Allee

effects?

In this work, we show that incorporating local-level binary switches in a continuum, population-level

mathematical modelling framework gives rise to a surprisingly diverse family of Allee effects. Some switches

in proliferation and death rates give rise to established Allee effects, whereas other binary switches lead to

more generalised Allee effects that have not been previously reported. We show that incorporating local-level

binary switches in proliferation and death rates leads to a diverse family of Allee effects with only a few model

parameters. This model, which we refer to as the Binary Switch Model, captures key biological features,

but continues to exhibit the same qualitative features as various Allee effects. We conclude by applying the

Binary Switch Model to a recent cell biology data set. Interpreting this data with our modelling framework

suggests that the observed growth is non-logistic and that the phenomena is best explained by a binary

switch at low density.

2 The Binary Switch Model

We consider an individual-based model framework that incorporates individual-level growth mechanisms

varying with local population density to describe the temporal evolution of the global population density.

One framework incorporating these aforementioned features is the stochastic agent-based model framework

that we proposed in Fadai et al. (2019), in which individuals of the same size move, die, and proliferate on

a two-dimensional hexagonal lattice. This discrete model incorporates exclusion (crowding) effects, allowing

the population density to saturate at a finite capacity, as well as proliferation and death rates that vary with

the local population density of the individual. While local population density can be measured in many

different ways, Fadai et al. (2019) take the simplest approach and use the number of nearest neighbours as

a measure of local density (Fig. 1).

As the individual dynamics of the stochastic agent-based model are difficult to analyse mathematically, we

examine the continuum limit per-capita growth rate as a means of representing the average dynamics of the

spatially uniform population, noting that there is good agreement between these two modelling approaches

(Fig. 2). Full details of the discrete-continuum comparison is summarised in the Supplementary Information.

Since the average population dynamics obtained from the discrete stochastic individual-based model agree
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Figure 1: Schematic for the Binary Switch Model. Individuals in a population (a) can sense nearby indi-
viduals, providing a simple measure of local density. Individuals who sense higher than a threshold density,
M , are shown in blue, while more isolated individuals are shown in red. This threshold density determines
the constant rates at which individuals proliferate and die. (b,c) The binary switch shown here occurs when
individuals can sense more than M = 2 neighbours.

well with its continuum description (Fig. 2), we will only consider the features of the continuum description

of the model, whose per-capita growth rate is given by

1

C(t)

dC(t)

dt
= (1− C(t))

5∑
n=0

γn

(
5

n

)
C(t)n (1− C(t))

5−n − γ6C(t)6, (4)

where

γn =


pn −

6dn
6− n

, n = 0, . . . , 5,

d6, n = 6.

(5)

Here, C(t) is the population density at time t, while pn and dn are the proliferation and death rates that vary

with the number of nearest neighbours, n (Fadai et al., 2019). The parameter grouping γn can be interpreted

as the net growth mechanism for a particular local population density. Noting that C(t) ≡ 1 represents the

maximum packing density, we have that C(t) ∈ [0, 1]. Equation (4) has a thirteen-dimensional parameter

space: namely, ΘΘΘ = (p0, . . . , p5, d0, . . . , d6).

We incorporate a binary switch into (4) by choosing

pn =


r, n = 0, . . . ,M,

R, n = M + 1, . . . , 6,

dn =


rα, n = 0, . . . ,M,

Rβ, n = M + 1, . . . , 6.

(6)

5
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Figure 2: (a) When no binary switch is present, (4) reduces to logistic growth. (b,c) When a binary switch
is incorporated in proliferation and death rates (M = 2), the continuum limit is no longer logistic. In all
of these parameter regimes, the average density data determined from discrete model simulations, shown in
red dashed curves in the middle column (Supplementary Information), agrees well with the continuum limit
predictions (7), shown in black solid curves. Density growth rates in the right-most column show that (a) is
logistic, while (b,c) are not.
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This choice of parameters means that we have the proliferation rate pn = r when the local density is at or

below the critical density M , or pn = R when the local density is above M . We refer to M ∈ {0, 1, 2, 3, 4, 5}

as the threshold density. For simplicity, we assume that the death rates are a particular fraction of the

proliferation rates: α ∈ [0, 1] and β ∈ [0, 1]. It is useful to note that (4)–(6) relaxes to the classical logistic

growth model, for any choice of M ∈ {0, 1, 2, 3, 4, 5} by setting r = R and α = β (Fig. 2a).

By substituting (6) into (4), we obtain the Binary Switch Model,

1

C(t)

dC(t)

dt
=r

M∑
j=0

(
5

j

)
C(t)j (1− C(t))

6−j
[
1− 6α

6− j

]
−RβC(t)6

+ 1(M ≤ 4) ·R
5∑

j=M+1

(
5

j

)
C(t)j (1− C(t))

6−j
[
1− 6β

6− j

]
,

(7)

where

1(M ≤ 4) =


1, M ≤ 4,

0, M = 5,

(8)

is an indicator function. The Binary Switch Model shows, for the first time, how a local binary switch in

individual-level proliferation and death rates leads to a particular global density growth rate. A summary

of parameters and their particular biological interpretation is shown in Table 1. In particular, we note

that the Binary Switch Model reduces the thirteen-dimensional parameter space in (4) to a five-dimensional

parameter space: ΘΘΘ = (r,R, α, β,M). This reduced parameter space means that the Binary Switch Model

can be used with less risk of over-fitting than (4) (Warne et al., 2019). We will discuss further merits of this

reduced parameter space when calibrating the Binary Switch Model to experimental data in Section 3.

In Fig. 2, we show how the Binary Switch Model gives rise to non-logistic growth mechanisms. When

no binary switch is present (Fig. 2a), the growth mechanisms are independent of local density and assume a

single proliferation and death rate, resulting in logistic growth. However, when a binary switch is incorporated

into the proliferation and death rates (Fig. 2b,c), the population dynamics described by (7) deviates from the

classical logistic growth model. Consequently, we now wish to examine the various kinds of Allee effects the

Binary Switch Model can give rise to. The main qualitative differences between logistic growth and various

Allee effects are based on the number of equilibria and their stability; therefore, we now examine the roots

of (7) for various parameter values. In all parameter regimes considered in the work, the zero equilibrium,

C∗ = 0, will always be present. Additional equilibria, if present, will be denoted as C∗ = Ci ∈ (0, 1], where

i = 1, 2, ... and are ordered such that Ci < Ci+1 for all i. Since the right-hand side of (7) is a sixth-degree

polynomial, a maximum of six equilibria can be present in (0, 1], but expressions for the solutions of the

7
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Table 1: Summary of parameters used in the Binary Switch Model.
Parameter Biological interpretation

r ∈ [0,∞) Low-density proliferation rate

R ∈ [0,∞) High-density proliferation rate

α ∈ [0, 1]
Ratio of low-density death rate to low-density
proliferation rate

β ∈ [0, 1]
Ratio of high-density death rate to high-density
proliferation rate

M ∈ {0, 1, 2, 3, 4, 5} Threshold density

polynomial cannot be determined in general. We will show that in the Binary Switch Model, a maximum

of three equilibria can be present in (0, 1]. Setting r = 0 and R > 0 (Case 1) or R = 0 and r > 0 (Case

2), we will show that fewer equilibria are present in (0, 1]. In Case 3, corresponding to r > 0 and R > 0,

certain combinations of parameter values produce equilibria with additional qualitative features, such as

double-root and triple-root equilibria. For these special equilibria, we will designate particular symbols to

Ci, which appear as required.

2.1 Case 1: r = 0 and R > 0

This case corresponds to situations where individuals below the threshold density M do not proliferate or

die. We will now show that in Case 1, either no equilibria are present in (0, 1], or we have one equilibrium

C1 ∈ (0, 1], depending on the choice of β and M . In this regime, (7) simplifies to

1

RC(t)

dC(t)

dt
=S(C(t);β,M)

:=− βC(t)6 + 1(M ≤ 4) ·
5∑

j=M+1

(
5

j

)
C(t)j (1− C(t))

6−j
[
1− 6β

6− j

]
.

(9)

Since β appears as a linear coefficient in (9), it is easier to solve S(C1, β,M) = 0 for β than for C1. The

resulting relationship between C1 and β depends on the integer value of M ∈ {0, 1, 2, 3, 4, 5}; however, a

general solution in terms of arbitrary M is difficult to obtain. Instead, we define the family of functions,
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Table 2: Relation between the non-zero equilibrium of the Binary Switch Model, C1, to β andM when r = 0
(9).

M β = fM (C1) Range of β : C1 ∈ (0, 1]

0
C5

1 − 6C4
1 + 15C3

1 − 20C2
1 + 15C1 − 5

C5
1 − 6C4

1 + 15C3
1 − 20C2

1 + 15C1 − 6
β ∈ [0, 5/6)

1
4C4

1 − 19C3
1 + 35C2

1 − 30C1 + 10

5C4
1 − 24C3

1 + 45C2
1 − 40C1 + 15

β ∈ [0, 2/3)

2
−6C3

1 + 21C2
1 − 25C1 + 10

−10C3
1 + 36C2

1 − 45C1 + 20
β ∈ [0, 1/2)

3
4C2

1 − 9C1 + 5

10C2
1 − 24C1 + 15

β ∈ [0, 1/3)

4
−C1 + 1

−5C1 + 6
β ∈ [0, 1/6)

5 0 ∅

fM (C1), for a particular value of M , such that

β = fM (C1) ⇐⇒ S(C1, fM (C1),M) = 0. (10)

Using fM (C1), we determine the unique value of β that solves S(C1, β,M) = 0 for a given value of C1 ∈ (0, 1],

shown in Table 2. Plotting β = fM (C1) for all M ∈ {0, 1, 2, 3, 4, 5} and C1 ∈ (0, 1] indicates that fM (C1) is

one-to-one on C1 ∈ (0, 1]. Therefore, the inverse function C1 = f−1M (β) also has one solution, provided that

β ∈ [0, (5−M)/6). This range of β is obtained by mapping the C1 interval (0, 1] via the functions fM (C1).

The functions fM (C1) in Table 2 provide a link between β and C1: if C1 is known, β = fM (C1) provides

the parameter value to input in the model to obtain such an equilibrium. Conversely, if β is known, Table

2 indicates whether or not C1 ∈ (0, 1]. Finally, we note that when β ≥ (5−M)/6, or when M = 5, only the

zero equilibrium, C∗ = 0, is present.

To determine the stability of the equilibria, we consider the cases when β ∈ [0, (5 − M)/6) and when

β ≥ (5 −M)/6 separately. When β ∈ [0, (5 − M)/6), two distinct equilibria are present: C∗ = 0 and

C∗ = C1 ∈ (0, 1]. Based on the sign of ∂S(C; fM (C∗),M)/∂C at these equilibria, C∗ = 0 is always unstable

and C∗ = C1 is always stable. These features qualitatively match those of the Weak Allee effect, whereby

9
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Figure 3: Bifurcation diagram of the Binary Switch Model, shown in (9), with r = 0. Varying β produces
different qualitative features in terms of equilibria and their stability. The resulting density growth rates,
dC/dt, are shown as a function of C, where a stable equilibrium is represented with a black circle and an
unstable equilibrium with a white circle.

the density growth rate deviates from logistic growth without incorporating additional equilibria. When

β ≥ (5−M)/6, or when M = 5, C∗ = 0 is the only equilibrium and it is always stable, corresponding to the

qualitative features of an extinction density growth rate, where lim
t→∞

C(t) = 0 for all C(0). Both qualitative

features in this parameter regime are shown in the bifurcation diagram in Fig. 3. We conclude that in Case

1, either zero or one equilibria is present in the interval (0, 1], corresponding to extinction and Weak Allee

parameter regimes, respectively.

2.2 Case 2: r > 0 and R = 0

This case corresponds to when individuals above M do not proliferate or die. When R = 0, we have

1

rC(t)

dC(t)

dt
=T (C(t);α,M)

:= (1− C(t))
M∑
j=0

(
5

j

)
C(t)j (1− C(t))

5−j
[
1− 6α

6− j

]
,

(11)

which is independent of β. In a similar fashion to Case 1, we consider the equilibria for various choices of

α and M , noting that C∗ = 0 and C∗ = 1 are always equilibria in this case. However, we will show that in

Case 2, we have the possibility of a third equilibrium in (0, 1). When this additional equilibria is present,

then C2 = 1 and C1 ∈ (0, 1); otherwise, C1 = 1. To determine if C∗ = 1 is the first or second non-zero

10
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Table 3: Relation between non-zero equilibrium, 0 < C1 < 1, to α and M when R = 0 (11).
M α = gM (C1) Range of α : C1 ∈ (0, 1)

0 1 ∅

1
4C1 + 1

5C1 + 1
α ∈ (5/6, 1)

2
6C2

1 + 3C1 + 1

10C2
1 + 4C1 + 1

α ∈ (2/3, 1)

3
4C3

1 + 3C2
1 + 2C1 + 1

10C3
1 + 6C2

1 + 3C1 + 1
α ∈ (1/2, 1)

4
C4

1 + C3
1 + C2

1 + C1 + 1

5C4
1 + 4C3

1 + 3C2
1 + 2C1 + 1

α ∈ (1/3, 1)

5
1

C5
1 + C4

1 + C3
1 + C2

1 + C1 + 1
α ∈ (1/6, 1)

equilibrium, we define

α = gM (C1) ⇐⇒ T (C1, gM (C1),M) = 0, (12)

and determine the value of α that solves T (C1, α,M) = 0 for a given value of C1 ∈ (0, 1), shown in Table 3.

Like Case 1, the family of functions α = gM (C1) provide an explicit relationship between α and C1. Since

α = gM (C1) is one-to-one on C1 ∈ (0, 1), the inverse function C1 = g−1M (α) also has one solution, C1 ∈ (0, 1),

provided α ∈ ((6−M)/6, 1). This value of C1 ∈ (0, 1) provides a third equilibrium of (11); conversely, when

α ≤ (6−M)/6, or when M = 0, the only two equilibria are C∗ = 0 and C1 = 1.

In the case where C1 ∈ (0, 1), examining the sign of ∂S(C; fM (C∗),M)/∂C shows that C∗ = 0 and

C∗ = 1 are unstable, whereas C∗ = C1 is stable. This combination of equilibria has the opposite stability

properties of the Strong Allee effect (3), and we refer to density growth rates with these stability properties

as the Reverse Allee effect. In the case where α ≤ (6−M)/6, or when M = 0, stability analysis shows that

C1 = 1 is stable and C∗ = 0 is unstable, retrieving the qualitative features of the Weak Allee effect. Finally,

when α = 1, we return to having only two equilibria, C∗ = 0 and C∗ = 1, but the stability has reversed from

the Weak Allee effect. Therefore, when α = 1, lim
t→∞

C(t) = 0 for C(0) < 1. All these qualitative features in

this parameter regime are shown in the bifurcation diagram in Fig. 4. We conclude that in Case 2, either
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Figure 4: Bifurcation diagram of the Binary Switch Model, shown in (11), with R = 0. Varying α produces
different qualitative features in terms of equilibria and their stability. The resulting density growth rates,
dC/dt, are shown as a function of C, where a stable equilibrium is represented with a black circle and an
unstable equilibrium with a white circle.

one or two equilibria are present in (0, 1], with the Extinction regime occurring when α = 1. For α < 1, a

new kind of Allee effect (the Reverse Allee effect) occurs if two equilibria are present in (0, 1]; otherwise, we

retrieve the Weak Allee effect.

2.3 Case 3: r > 0 and R > 0

In the most general case, the proliferation and death rates of individuals change at the threshold density M ,

but do not stop completely. As a result, (7) can be written as

1

rC(t)

dC(t)

dt
=− R

r
βC(t)6 +

M∑
j=0

(
5

j

)
C(t)j (1− C(t))

6−j
[
1− 6α

6− j

]

+ 1(M ≤ 4) · R
r

5∑
j=M+1

(
5

j

)
C(t)j (1− C(t))

6−j
[
1− 6β

6− j

]
.

(13)

Without loss of generality, we assume that r = 1, since other non-zero values or r can be rescaled to unity

by changing the timescale in (7), which does not affect its equilibria. Consequently, with some rearranging,
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we have
1

C(t)

dC(t)

dt
=V(C(t);R,α, β,M)

:=1− C(t)− α(1− C(t)6)−RβC(t)6

+ 1(M ≤ 4) ·
5∑

j=M+1

(
5

j

)
C(t)j (1− C(t))

6−j
[
R− 1 +

6(α− βR)

6− j

]
.

(14)

We will show that in Case 3, there can be between zero and three equilibria in (0, 1], noting that C∗ = 1

is an equilibrium of (14) if and only if β = 0. When three distinct equilibria are in (0, 1], we obtain a

new type of Allee effect, referred to here as the Hyper-Allee effect (Fadai et al., 2019), in which the zero

equilibrium is unstable, and an intermediate unstable equilibrium is contained between two positive, stable

equilibria. However, in order for the parameter space to continuously transition from the Weak Allee effect,

seen in Cases 1 and 2, to the Hyper-Allee effect, there must exist a critical set of model parameters at which

a double-root equilibrium occurs. Therefore, in order to determine what regions of (R,α, β,M) parameter

space exhibit Hyper-Allee effects instead of the Weak Allee effect, we focus on determining the boundary of

these effects in terms of model parameters and equilibria. This boundary, defined as the Tangential Manifold,

will be the focus of our analysis in this section.

In addition to determining the boundary between Weak Allee and Hyper-Allee parameter spaces, we will

also show that even more Allee effects are present when α = 1. In particular, we show that in Case 3, the

Extinction parameter regime continues to exist, along with the Strong Allee effect, when α = 1. We also

determine an explicit relationship between R, β, and M for when the Extinction regime becomes the Strong

Allee effect, which is linked to the aforementioned Tangential Manifold. We now focus our attention on

determining additional equilibria Ci ∈ (0, 1].

Numerical observations indicate that certain combinations of (R,α, β,M) can produce up to three distinct

values of Ci ∈ (0, 1] satisfying V = 0. Furthermore, in parameter regimes where three distinct equilibria

are present in (0, 1], stability analysis about these equilibria reveals that C∗ = 0 and C∗ = C2 are unstable

equilibria, whereas C∗ = C1 and C∗ = C3 are stable equilibria. These qualitative features are consistent

with the aforementioned Hyper-Allee effect, which is a higher-order effect unable to be described by the

Weak Allee or Strong Allee effects (Fig. 5).

For solutions to continuously transition from one equilibrium in (0, 1], like the Weak Allee effect in Cases 1

and 2, to three equilibria in (0, 1], such as the Hyper-Allee effect, we must have certain values of (R,α, β,M)

that produce a double root for Ci. We denote this special case of a double root equilibrium as Ĉ, which

can occur in either the C1 or C2 equilibrium position. In addition to satisfying V = 0, the double root
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Figure 5: Bifurcation diagram of the Binary Switch Model, shown in (14), with β = 0.06, r = 1, R > 0, and
M = 4. Pairs of (α,R) parameters produce different qualitative features, in terms of equilibria and their
stability. The resulting density growth rates, dC/dt, are shown as a function of C, where a stable equilibrium
is represented with a black circle, an unstable equilibrium with a white circle, and a semi-stable equilibrium
with a half-filled circle.
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equilibrium, C∗ = Ĉ, must also satisfy

V(Ĉ;R,α, β,M) =
∂

∂C
V(C;R,α, β,M)

∣∣∣∣
C=Ĉ

= 0. (15)

The set of parameters satisfying (15) is referred to as the Tangential Manifold, where the double root

equilibrium, Ĉ, is a semi-stable equilibrium of (14) (Strogatz, 2018). A semi-stable equilibrium C∗ = Ĉ has

the properties that populations slightly larger than C(t) ≡ Ĉ remain close to Ĉ, but populations slightly

smaller than C(t) ≡ Ĉ diverge away from Ĉ, or vice-versa. Since we have two equations with four unknowns,

we parametrise the Tangential Manifold as (R,α) = (FM (Ĉ, β), GM (Ĉ, β)), for particular values of Ĉ and β

(Fig. 5). The functions FM (Ĉ, β) and GM (Ĉ, β) describing the Tangential Manifold are shown in Table 4.

While the Tangential Manifold can be determined explicitly by solving (15), we observe that two forms

of a semi-stable equilibrium can occur (Fig. 5). If the double root Ĉ is below some critical value, C, then this

semi-stable equilibrium occurs between C∗ = 0, which is unstable, and some larger equilibrium C∗ = C2,

which is stable. If Ĉ exceeds C, then this semi-stable equilibrium is larger than both C∗ = 0 and C∗ = C1,

which remain unstable and stable, respectively. We refer to the branch of the Tangential Manifold where

Ĉ < C as the Positive Tangential Manifold, based on the sign of the density growth rate between Ĉ and C2

(Fig. 5). In a similar fashion, we refer to the branch of the Tangential Manifold where Ĉ > C as the Negative

Tangential Manifold. When Ĉ = C, the double root becomes a stable triple root and C satisfies

∂2

∂C2
V (C;FM (C, β), GM (C, β), β,M)

∣∣∣∣
C=C

= 0, (16)

where R = FM (C, β) and α = GM (C, β) are chosen to ensure we remain on the Tangential Manifold. Equation

(16) provides an additional constraint on the Tangential Manifold, implying that we can relate C to a unique

value of β. We denote β = HM (C) if (16) is satisfied, with C denoting the Triple Point of (14) (Table 4).

Additionally, from Fig. 5, we note that when α = 1, the equilibria and their resulting stability change.

When α = 1, the Negative Tangential Manifold is valid for a unique pair of (β,R) parameters, for a particular

equilibrium value, C∗ = C̃. We define this critical equilibrium value as the Junction Point, which satisfies

GM (C̃, β) = 1. (17)

We denote β = JM (C̃) if (17) is satisfied (Table 4); furthermore, we determine the corresponding value of R

at the Junction Point by evaluating R = FM (C̃, JM (C̃)). When α = 1 and R < R, the only equilibrium value

of (14) is C∗ = 0, which is stable. This implies that all population densities go extinct in this parameter

regime. When α = 1 and R > R, (14) has three solutions: C∗ = 0, which is stable, an intermediate-valued

15
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Table 4: Relation between the semi-stable equilibrium, Ĉ, to α, β,R and M . Parameter values satisfying
R = FM (Ĉ, β) and α = GM (Ĉ, β) are members of the Tangential Manifold. If Ĉ < C, then Ĉ is a member
of the Positive Tangential Manifold; if C < Ĉ < C̃, then Ĉ is a member of the Negative Tangential Manifold.
The Triple Point, C, is defined implicitly via β = HM (C), while the Junction Point, C̃, is defined implicitly
via β = JM (C̃).

M R = FM (Ĉ, β) β = HM (C)

0 0 ∅

1
(Ĉ − 1)6

Ĉ(Ĉ5 − 6Ĉ4 + 15Ĉ3 − 20Ĉ2 − 10Ĉ − 30β + 20)

2(1− C)
3

2
(Ĉ − 1)5(6Ĉ2 + 8Ĉ + 1)

Ĉ2(6Ĉ5 − 22Ĉ4 + 21Ĉ3 + 15Ĉ2 + 10Ĉ + 60β − 30)

(1− C)(1 + 2C)
3C + 2

3
(Ĉ − 1)4(6Ĉ4 + 16Ĉ3 + 21Ĉ2 + 6Ĉ + 1)

Ĉ3(6Ĉ5 − 8Ĉ4 − 7Ĉ3 − 6Ĉ2 − 5Ĉ − 60β + 20)

(1− C)(1 + 2C + 2C2)
3C2 + 4C + 3

4
(Ĉ − 1)3(Ĉ6 + 4Ĉ5 + 10Ĉ4 + 20Ĉ3 + 10Ĉ2 + 4Ĉ + 1)

Ĉ4(Ĉ5 + Ĉ4 + Ĉ3 + Ĉ2 + Ĉ + 30β − 5)

(1− C2)(2C2 + C + 2)

3(C3 + 2C2 + 3C + 4)

5 0 ∅

M α = GM (Ĉ, β) β = JM (C̃)

0 1 ∅

1
β(Ĉ5 − 6Ĉ4 + 15Ĉ3 − 20Ĉ2 + 15Ĉ − 30)− 20(Ĉ − 1)

Ĉ5 − 6Ĉ4 + 15Ĉ3 − 20Ĉ2 − 10Ĉ − 30β + 20

(C̃ − 1)(C̃3 − 5C̃2 + 10C̃ − 10)

C̃4 − 6C̃3 + 15C̃2 − 20C̃ + 15

2
β(6Ĉ5 − 22Ĉ4 + 21Ĉ3 + 15Ĉ2 − 40Ĉ + 60) + 30(Ĉ − 1)

6Ĉ5 − 22Ĉ4 + 21Ĉ3 + 15Ĉ2 + 10Ĉ + 60β − 30

(C̃ − 1)(6C̃3 − 16C̃2 + 5C̃ + 20)

6C̃4 − 22C̃3 + 21C̃2 + 15C̃ − 40

3
β(6Ĉ5 − 8Ĉ4 − 7Ĉ3 − 6Ĉ2 + 45Ĉ − 60)− 20(Ĉ − 1)

6Ĉ5 − 8Ĉ4 − 7Ĉ3 − 6Ĉ2 − 5Ĉ − 60β + 20

(C̃ − 1)(6C̃3 − 2C̃2 − 9C̃ − 15)

6C̃4 − 8C̃3 − 7C̃2 − 6C̃ + 45

4
β(Ĉ5 + Ĉ4 + Ĉ3 + Ĉ2 − 24Ĉ + 30) + 5(Ĉ − 1)

Ĉ5 + Ĉ4 + Ĉ3 + Ĉ2 + Ĉ + 30β − 5

(C̃ − 1)(C̃3 + 2C̃2 + 3C̃ + 4)

C̃4 + C̃3 + C̃2 + C̃ − 24

5 1/6 ∅
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Table 5: Summary of qualitative features seen in the Binary Switch Model. The stability of each equilibrium,
listed in increasing order of magnitude, can be stable (S), unstable (U), or semi-stable (SS).

Effect name Equilibria Stability Notes

Extinction {0} {S}

Logistic Growth {0, C1} {U, S} r = R, α = β

Weak Allee / Triple Point {0, C1} {U, S} Triple: C1 = C

Junction Point {0, C1} {S, SS} C1 = C̃

Strong Allee {0, C1, C2} {S,U, S}

Reverse Allee {0, C1, C2} {U, S, U} C2 = 1

Positive Tangential Manifold {0, C1, C2} {U, SS, S} C1 = Ĉ

Negative Tangential Manifold {0, C1, C2} {U, S, SS} C2 = Ĉ

Hyper-Allee {0, C1, C2, C3} {U, S, U, S}

unstable equilibrium C∗ = C1, and a larger-valued stable equilibrium C∗ = C2 (Fig. 5). Thus, the stability

features of this density growth rate are the same as the Strong Allee effect. When R = R, the Junction

Point, C∗ = C̃, is semi-stable, while C∗ = 0 remains stable. A summary of this diverse family of Allee effects,

in terms of the number and stability of the equilibria, is shown in Table 5.

From Table 4, we note some key features of the Tangential Manifold. Firstly, when β = 0, we note that

the Triple Point is C = 1 for 1 ≤ M ≤ 4. Since the Negative Tangential Manifold must have Ĉ > C, we

conclude that the Negative Tangential Manifold does not exist when β = 0, which is also observed in Fig. 6.

When β = (5−M)/6 and 1 ≤M ≤ 4, the Triple Point and the Junction Point are both C = C̃ = 0, implying

that no points are contained in the Tangential Manifold. Consequently, parameter pairs (α,R) that result

in qualitative features other than the Extinction regime or the Weak Allee effect can only occur when α < 1

and β ∈ [0, (5 −M)/6), as shown in Fig. 6. Finally, we note that when M = 0 or M = 5, the Tangential

Manifold does not exist, since the solution of (15) requires R = 0. Therefore, the qualitative features of (14)
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Figure 6: Bifurcation diagram of the Binary Switch Model, shown in (14), with M = 4, r = 1, R > 0, and
varying β. The qualitative forms of various effects are shown in the legend, described in further detail in
Fig. 5. The parameter space exhibiting Hyper-Allee features vanishes as β → 1/6.
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Figure 7: Population density of U87 glioblastoma cells compared to Binary Switch Model predictions. U87
glioblastoma cells, with initial densities of c1(0) = 0.02, c2(0) = 0.06, and c3(0) = 0.2, are observed over
the span of 120 hours (black circles) (Neufeld et al., 2017). The Binary Switch Model (solid curves) is fit to
minimise the combined least-square error (18), Σχ2, of three experimental datasets shown in Neufeld et al.
(2017). The estimates of the optimal model parameter set, for each value of M , is shown in Table 6. (b) A
semi-log plot makes it easier to visually compare the quality of match between the data and the model.

in the entire (α,R) parameter space are those seen in the Weak Allee effect when α < 1 and the Extinction

regime when α = 1.

To summarise, we determine that in Case 3 whenM ∈ {1, 2, 3, 4}, and β ∈ [0, (5−M)/6), a diverse family

of Allee effects can be found. Among these Allee effects are: the Weak Allee effect, the Extinction regime,

the Strong Allee effect, and a Hyper-Allee effect parameter regime with three distinct equilibria in (0, 1].

Additional Allee effects can be observed at the boundaries of the aforementioned Allee effects, including the

Tangential Manifold and Junction Point with semi-stable equilibria, as well as the Triple Point with a single

stable equilibria in (0, 1]. In all of these cases, there are between zero and three equilibria in the interval

(0, 1].

3 Interpreting experimental data using the Binary Switch Model

To demonstrate how the Binary Switch Model can be used to provide biological insight, we consider

population-level datasets describing the growth of populations of cancer cells. Neufeld et al. (2017) per-

form three experiments with U87 glioblastoma cells. Uniform monolayers of cells are grown from three

different initial densities, with the data shown in Fig. 7. Here, we see that all three experiments lead to

increasing population densities with time. The two experiments with the smallest initial densities lead to

increasing, concave up C(t) profiles. The experiment with the largest initial density leads to an increasing

C(t) profile that changes concavity at approximately t = 100 h.
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Table 6: Estimates of the Binary Switch Model parameters that minimise the combined least-squres error
(18) between model predicitions and experimental data from Neufeld et al. (2017). The optimal parameter
set with M = 1, highlighted in yellow, provides the smallest combined least-squres error for all values of M .

M r R α β C1(0) C2(0) C3(0) Σχ2

0 0.0113 0.0262 0.174 2.82×10−6 0.0250 0.0661 0.184 0.0179
1 0.0168 0.0345 0.0608 0.0692 0.0192 0.0652 0.188 0.0154
2 0.0180 0.0576 2.84×10−5 0.139 0.0160 0.0619 0.191 0.0169
3 0.0206 0.0642 3.66×10−9 0.0892 0.0126 0.0534 0.193 0.0268
4 0.0218 0.134 3.43×10−9 0.0623 0.0112 0.0489 0.191 0.0366
5 0.0237 0.0110 3.73×10−10 2.34×10−4 0.00933 0.0420 0.183 0.0571

The density of U87 glioblastoma cells has already been rescaled by its maximum packing density in

Neufeld et al. (2017), so we assume that C = 1 corresponds to the maximum rescaled density. Our aim is to

choose ΘΘΘ = (α, β, r, R,M), with C1(0), C2(0), and C3(0) as initial conditions, such that the model parameters

provide the best match to all three experimental conditions simultaneously. It is important to calibrate

the model to match all three datasets simultaneously, because if (7) is consistent with the experimental

data, there should be a single choice of model parameters that matches the observed population dynamics,

regardless of initial density (Jin et al., 2016b).

To match all experimental datasets simultaneously, we consider the combined least-squares error between

model predictions and all data:

Σχ2(ΘΘΘ) :=
∑
j

[C(tj ;ΘΘΘ)− cj ]2 . (18)

Here, we treat the initial densities, C1(0), C2(0), C3(0) as parameters to be determined; therefore we consider

the extended parameter vector, ΘΘΘ = (M, r,R, α, β, C1(0), C2(0), C3(0)). In (18), cj represents all three

experimental datasets obtained at times tj , concatenated into a single vector. While the Binary Switch

Model uses the initial conditions C1(0), C2(0), and C3(0), we denote the experimental measurements at

t = 0 h as c1(0), c2(0), and c3(0), respectively (Fig. 7). Using fminsearch in MATLAB (MathWorks,

2020), we estimate ΘΘΘ∗ such that Σχ2 is minimised. Since M is discrete, while (r,R, α, β, C1(0), C2(0),

C3(0)) are continuous, we estimate ΘΘΘ∗ for each value of M ∈ {0, 1, 2, 3, 4, 5} and then choose the value

of M that minimises Σχ2. A MATLAB implementation of this least-squares procedure is discussed in the

Supplementary Information.

In Fig. 7, we show the best match that the Binary Switch Model can provide to all three datasets from

Neufeld et al. (2017) for each value of M . The optimal parameter set ΘΘΘ∗ and minimal Σχ2 for each value

of M are reported in Table 6. We conclude that M = 1 provides the best match to these datasets. While

larger values of M clearly deviate from the experimental datasets at low population densities (Fig. 7b),

setting M = 0 or M = 2 leads to a reasonable visual match for all three experimental datasets (Fig. 7).

Furthermore, the optimal model parameters obtained for small values ofM correspond to non-logistic growth
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features, since logistic growth can only be obtained when r = R and α = β (Table 6). The match between

the experimental data and the model at M = 1 has several consequences: (i) this exercise confirms that the

data reported by Neufeld et al. (2017) does not follow standard logistic growth; (ii) the high-quality match

between the Binary Switch Model and the data for M = 1 is consistent with population dynamics similar to

a Weak Allee effect, and; (iii) interpreting this data using the Binary Switch Model indicates that the best

way to explain the population dynamics with a relatively small threshold population density.

4 Conclusions

In this work, we examine the link between threshold effects in population growth mechanisms and Allee

effects. An abrupt change in growth mechanisms, which we define as a binary switch, is a common feature

of biological populations. Despite the ubiquitous nature of local binary switches in population dynamics, an

explicit connection to Allee effects has not been considered. To explore this connection in greater detail, we

examine a population density growth model, in which the proliferation and death rates vary with the local

density of the population. By incorporating a local binary switch in these proliferation and death rates, we

greatly reduce the size of the parameter space while explicitly incorporating a biologically realistic threshold

effect in the proliferation and death rates.

To provide insight into the qualitative features of population dynamics arising in the Binary Switch

Model, we examine the presence and stability of the resulting equilibria. We show that when the binary

switch occurs at some intermediate population density and the high-density death rate is not too large, a

diverse family of Allee effects is supported by the model. Among these Allee effects are: (i) logistic growth,

when no binary switch is present; (ii) the Weak Allee effect, which modifies the simpler logistic growth model

without changing its equilibria or their stability; (iii) an Extinction regime, where all population densities will

die; (iv) the Strong Allee effect, where population below a critical density will go extinct rather than grow,

and; (v) the Hyper-Allee effect, which has two distinct positive stable population densities. Furthermore, we

show that there are additional forms of Allee effects at the boundaries in the parameter space that separate

these five main classes of Allee effects.

Along with exhibiting a wide range of Allee effects, the Binary Switch Model has a restricted parameter

regime, making the interpretation of the local binary switch clearer while requiring fewer parameters to

identify when calibrating to experimental data. To demonstrate these advantages, we calibrate the Binary

Switch Model to experimental datasets arising in cell biology. Not only is the Binary Switch Model able to

match the observed data, but the parameters used to match the data provide a more explicit interpretation

of the underlying local growth mechanisms arising in the population. Specifically, we confirm that the
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experimental data suggests non-logistic growth occurs in the population, and that the phenomena is best

explained by a binary switch at low density. We conclude that the Binary Switch Model is useful to theorists

and experimentalists alike in providing insight into binary switches at the individual scale that produce Allee

effects at the population scale.

While one of the merits of the Binary Switch Model is to show how a single local binary switch gives rise to

a variety of Allee effects, further extensions of the modelling framework can be made. For instance, additional

switches can be incorporated into the modelling framework, representing populations whose proliferation

and death rates change at more than one density. We anticipate that this kind of extension would lead

to additional forms of Allee effects in the resulting population dynamics. Another potential modification

would be to generalise the notion how we measure local density. In this work, we take the simplest possible

approach use the number of nearest neighbours on a hexagonal lattice to represent the local density. Several

generalisations, such as working with next nearest neighbours or working with a weighted average of nearest

neighbours, could be incorporated into our modelling framework (Fadai et al., 2019; Jin et al., 2016a). Again,

we expect that such extensions would lead to an even richer family of population dynamics models. We leave

these extensions for future considerations.
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