
Private Genomes and Public SNPs: Homomorphic encryption of genotypes and
phenotypes for shared quantitative genetics

Richard Mott1*, Christian Fischer2, Pjotr Prins2, and Robert William Davies3

Abstract

Sharing human genotype and phenotype data presents a challenge because of privacy
concerns, but is essential in order to discover otherwise inaccessible genetic associations.
Here we present a method of homomorphic encryption that obscures individuals’ genotypes
and phenotypes and is suited to quantitative genetic association analysis. Encrypted
ciphertext and unencrypted plaintext are interchangeable from an analytical perspective.
This allows one to store ciphertext on public web services and share data across multiple
studies, while maintaining privacy. The encryption method uses as its key a high-
dimensional random linear orthogonal transformation that leaves the likelihood of
quantitative trait data unchanged under a linear model with normally distributed errors. It
also preserves linkage disequilibrium between genetic variants and associations between
variants and phenotypes. It scrambles relationships between individuals: encrypted
genotype dosages closely resemble Gaussian deviates, and in fact can be replaced by
quantiles from a Gaussian with only negligible effects on accuracy. Standard likelihood-
based inferences are unaffected by orthogonal encryption. These include the use of mixed
linear models to control for unequal relatedness between individuals, the estimation of
heritability, and the inclusion of covariates when testing for association. Orthogonal
transformations can also be applied in a modular fashion that permits multi-party federated
mega-analyses. Under this scheme any number of parties first agree to share a common set
of genotype sites and covariates prior to encryption. Each party then privately encrypts and
shares their own ciphertext, and analyses the other parties’ ciphertexts. In the absence of
private variants, or knowledge of the key, we show that it is infeasible to decrypt ciphertext
using existing brute-force or noise reduction attacks. Therefore, we present the method as a
challenge to the community to determine its security.

1 Genetics Institute, University College London, Gower St London WC1E 6BT.
2Genetics, Genomics and Informatics, University of Tennessee Health Science Center, 71 S
Manassas St, Memphis TN, USA
3 Department of Statistics, University of Oxford, 29 St Giles', Oxford OX1 3LB, UK

*Corresponding author: r.mott@ucl.ac.uk

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 3, 2020. ; https://doi.org/10.1101/2020.04.02.021865doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.02.021865
http://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction

With the growth of clinical genome sequencing, the numbers of individual human genomes
available for analysis is expected to increase dramatically. To make the most of this resource
we need to be able to share and analyse genetic and phenotypic data securely, and the
conflicting demands of individual privacy and medical research have led to a spectrum of
ways of sharing human genotype and phenotype data(Azencott 2018).

In a small minority of studies, anonymised data (that is, where the names of individuals have
been replaced by anonymous identifiers) are freely available for users to download and
analyse. More usually - as for the UK BioBank and UK 10k project, and studies deposited in
NCBI dbGAP and the EBI GPA - anonymised data are distributed only to researchers
approved for access, and whose institutions demonstrate that their computer systems are
secure, and where they agree not to redistribute the data. The host data archive then
prepares datasets, encrypted with keys that may be specific to each data request, for
transfer over a public network. After downloading the encrypted files within the firewall of
the researcher's computer system, they are decrypted into plain text. The advantage of this
approach is that the researcher then has complete access to the anonymised genotypes and
phenotypes, with only the identities of the samples being redacted; there is then no
technical limitation as to the genetic analysis that can be performed. However, this carries
certain risks because a data breach cannot be ruled out, and even if the data are
anonymised, comparing anonymous genotypes with those of genotyped relatives might still
reveal genetic relationships(Hansson et al. 2016). In the clinical field, methods such as the
random time-shifting of anonymised patient records(Hripcsak et al. 2016) offer some
protection whilst not being cryptographically secure.

At the other extreme, datasets are not distributed, but researchers may negotiate access to
analyse the data on the host's computer system (as in the UK 100,000 genomes project), or
the host may agree to perform an analysis on behalf of an external user. No direct access to
the raw data is granted, but analyses are shared. In still other cases, only the summary
statistics of Genome Wide Association Studies (GWAS) are distributed, typically comprising
the regression coefficients and p-values of the genetic variants tested for association with
the phenotype, for a federated meta-analysis. Such analyses combine sets of summary
statistics from different GWAS, where participating laboratories have collected phenotypes
and genotypes for different sets of subjects imputed at the same SNPs, and wish to test
association across all studies(Pasaniuc and Price 2017).

Another approach that is gaining traction is to encrypt genotypes and phenotypes in such a
way that it is still possible to perform relevant computations on the data - possibly on a
remote or cloud computer - without decrypting them, i.e., one can ‘throw away the key’.
Homomorphic encryption (HE) are cryptographic systems that allow computations to be
performed on encrypted data (the ciphertext) without decrypting, it and which yield the
same answers as when the analogous computations are performed on the original data (the
plaintext). It is an active area of research in computer science because it could make cloud
computing much more secure, for both genetic and other applications. With HE, it is
possible to build systems that store and process encrypted data, such that the data always

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 3, 2020. ; https://doi.org/10.1101/2020.04.02.021865doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.02.021865
http://creativecommons.org/licenses/by-nc-nd/4.0/

stays encrypted both in transit and at rest. Should a cloud service be compromised, any
stolen ciphertext would be valueless.

We define Homomorphic Encryption for Genotypes and Phenotypes (HEGP) to mean a
transformation of the data that preserves the structure necessary for analysis whilst
obscuring the individuals' identities, phenotypes and genotypes. Only the encrypted data is
moved and shared between systems. HEGP is attractive because it enables testing genetic
association across multiple data sets, in a federated mega-analysis based on the genotypes
instead of a less powerful meta-analysis based on the summary statistics.

In statistical genetics, a number of approaches to HEGP have been proposed. In(Jagadeesh
et al. 2017) Yao’s protocol is used to identify rare Mendelian-type mutations shared
between affected individuals. In(Cho et al. 2018) secure multi-party communication is used
to perform GWAS using principal components to control for population structure. (Bonte et
al. 2018; Tkachenko et al. 2018; Sim et al. 2019) describe cryptographically secure protocols
for computing P-values for case-control studies using contingency table chi-squared tests.
All these methods are thought to be cryptographically secure, but they limit the types of
computation and data exploration possible. In particular, they cannot control for population
structure using a mixed linear model, which is the current gold standard for quantitative
trait analysis. In addition, they tend to be slower than analyses of un-encrypted data.

Here we consider whether linear transformations of genotypes and phenotypes can be used
as keys for homomorphic encryption. The first class of transformations we investigate are
random orthogonal transformations. These leave invariant essential parts of the linear
mixed model framework for complex trait analysis commonly used in quantitative genetics,
preserving genotype correlations between Single Nucleotide Polymorphisms (SNPs) whilst
obscuring those between individuals. They share the same likelihood functions as un-
encrypted data. Any standard mixed-model type of analysis (including estimating
heritability) will produce the same output as with unencrypted data. We ask if an
orthogonal key can be generated in a sufficiently random manner to make the data
unrecognizable, and show that keys sampled from the Steiffel manifold have this property:
however, not all orthogonal matrices make suitable keys. Once encryption has taken place,
we show computations are essentially identical to those using unencrypted data. They also
can be extended to perform federated mega-analyses in a natural way. Their major
drawbacks are that they are unsuitable for logistic regression, and that the method is not
provably secure. In particular, individuals with private variants are not securely encrypted by
orthogonal transformation. However, for variants present in multiple individuals we present
arguments that suggest it would be very challenging to find the key and hence decrypt the
data.

The second type of linear transformation we consider is based on the mixed-model
transformation. We show that this is likely to be more secure than orthogonal
transformation but is more limited in its applications.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 3, 2020. ; https://doi.org/10.1101/2020.04.02.021865doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.02.021865
http://creativecommons.org/licenses/by-nc-nd/4.0/

METHODS AND RESULTS

Conceptual Overview

Figure 1. Privacy in relation to genetic association testing. A: A phenotype vector 𝒚 (left) and
genotype matrix 𝑮 (right) are represented as colours and shades of grey. Each row of the
matrix is one individual and each column one SNP. Genotypes are encoded as imputed
dosages clustered at the values 0,1,2 giving the numbers of minor alleles. A typical
distribution of dosages for one SNP is shown to the right. The aim is to hide information
about rows but make public the relationships between the columns and the phenotype. B:
the same data after multiplication by an orthogonal matrix 𝑃 (a rotation represented by the
curved orange arrow). The genotype dosages are now represented by a continuum of real

A Unencrypted Dosage Matrix

y G

B Encrypted Dosage Matrix

Py PG

0 1 2

C Genotype Dosages D Encrypted Dosages

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

● ●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−3
−1

0
1

2
3

Sa
m

pl
e

Q
ua

nt
ile

s

E QQ Plot of Encrypted Dosages! = #$ + &

! → (!
→ (#
) → (*)(

(! = (#$ + (&

(*(= + ,$ = ,$

Individuals
(Private)

SNPs
(Public)

SNPs
(Public)

E F

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 3, 2020. ; https://doi.org/10.1101/2020.04.02.021865doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.02.021865
http://creativecommons.org/licenses/by-nc-nd/4.0/

numbers. C: The distribution of dosages for a particular SNP (column of G), clustered around
0,1,2. D: The distribution of the same dosages after orthogonal transformation by 𝑷 (black
histogram) with the Normal distribution with same mean and variance superimposed in red.
F: the Normal qq-plot for the data in D, showing the transformed dosages are very close to a
Normal distribution. E: A cartoon of the HEGP scheme. The top black arrow and equation
shows the linear mixed model relating the phenotype 𝒚 to genotype 𝑮 with regression
coefficients 𝜷 representing the allelic effects. The variance matrix for the residuals is 𝑽. After
multiplication by orthogonal matrix P, the data 𝒚, 𝑮 and	𝑽 and the mixed linear model are
transformed as shown in orange. The likelihood and regression estimates	𝜷, are preserved.

The conflict between respecting individuals’ privacy and establishing allelic effects is
sketched in Figure 1A. We have a vector of phenotypes 𝒚 and a matrix of genotypes, 𝑮. Each
row of the matrix corresponds to genotypes for a given individual, and each column to a
given SNP. The phenotype and each genotype vector (column of 𝑮) is standardised to have
mean 0 and variance 1. The genotypes are dosages proportional to the estimated number of
alternative alleles; a typical trimodal distribution of dosages is also shown in Figure 1C. We
want to preserve the privacy of the individuals (rows) but make public certain information
about the effects of the SNPs (columns) in relation to each other and to the phenotype.

Conceptually, it is helpful to recall that the standardised genotype dosages for a given SNP
across 𝑛 subjects (a column in Figure 1A) can be thought of geometrically as a unit vector in
𝑛-dimensional space lying on the unit-dimensional hypersphere, and the vector of
phenotypes as another point on the same hypersphere. We measure the association
between phenotype and SNP from the angle 𝜃 between their 𝑛-dimensional vectors. Their
Pearson correlation coefficient (an invertible transformation of the t-statistic used to
determine significance of a linear regression of phenotype on genotype dosage) is equal to
their dot-product, i.e. 𝑐𝑜𝑠𝜃. Similarly, linkage disequilibrium 𝑅! between any pair of SNPs is
the square of the cosine of the angle between the SNPs. It is intuitively obvious that any
orthogonal transformation – a rotation or reflection of the space - will leave all the angles
between unit vectors unchanged (Figure 2). Thus all the associations between phenotype
and genotypes, and correlations within genotypes, are preserved by orthogonal
transformations. Figure 1B shows the phenotypes and genotypes after orthogonal
transformation. Even though the original distribution of the genotypes dosages is trimodal
(Figure 1C) the transformed genotypes resemble a sample from a Normal distribution
(Figure 1D,F).

It follows that, if the encryption key is an 𝑛 × 𝑛 orthogonal matrix 𝑷 of floating point values
such that 𝑷𝑷𝑻 = 𝑰 (where 𝑷𝑻is the transpose of 𝑷), then multiplication of the key with the
genotype/phenotype matrix acts like a rotation (or reflection). In this way each SNP column
is rotated by multiplication by the key, and as discussed below, if the key is sampled
randomly, then the elements of each column vector of the resulting encrypted
genotype/phenotype matrix are approximately normally distributed (Figure 1D,F). We next
show that these transformations preserve key components of the linear mixed model
relating the phenotype to the genotypes (Figure 1E)

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 3, 2020. ; https://doi.org/10.1101/2020.04.02.021865doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.02.021865
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 2. Geometric interpretation of genetic association. Phenotypes and genotypes are
represented as vectors in a high-dimensional space. The cosines of the angles between the
phenotype vector y and various SNPs equal the corresponding Pearson correlations, which
are closely related to the t-statistics for testing association. In the example, SNP 1 has a
smaller angle with the phenotype, than SNP 2, and hence a stronger genetic association.

Statistical Preliminaries
Mixed model GWAS

In order to make this geometric intuition rigorous, we first review the core standard
computations required for a mixed-model GWAS. Suppose we have a 𝑛 subjects and 𝑚
SNPs, a quantitative phenotype vector 𝒚 of length 𝑛, a 𝑛 × 𝑝 covariate matrix 𝑿 (containing
information about e.g. sex, age, environmental covariates and principal components for
controlling population structure) and a 𝑛 × 𝑚 genotype dosage matrix 𝑮 in which the
entries typically take the values 0,1,2, such that 𝐺#$ is the number of alternate alleles for the
genotype of subject 𝑖 at SNP 𝑗 (𝑮 can also represent imputed dosages without any change to
the argument). It is necessary to standardise the genotype matrix into the matrix 𝑯 such
that

𝐻#$ =
𝐺#$ − 2𝜋$

@2𝜋$A1 − 𝜋$B
(1)

where 𝜋$ is the minor allele frequency of the SNP 𝑗. [Alternatively, each vector of dosages
can be standardised empirically by subtracting its sample mean and dividing by its empirical
standard deviation.] The phenotype vector 𝒚 and each column of 𝑿 must also be
standardised to have mean 0 and variance 1.

The additive genetic relationship matrix

𝑲 =
1
𝑚𝑯𝑯𝑻 (2)

q1

q2
phenotype y

SNP genotype g1

SNP genotype g2

cos q1 > cos q2

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 3, 2020. ; https://doi.org/10.1101/2020.04.02.021865doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.02.021865
http://creativecommons.org/licenses/by-nc-nd/4.0/

is used to model the variance-covariance structure of the phenotype as

Var(𝑦) = 𝑽 = 𝑲𝜎%! + 𝑰𝜎&! (3)

where 𝜎%!, 𝜎&! are the genetic and environmental variance components and

ℎ! =
𝜎%!

𝜎%! + 𝜎&!
(4)

is the additive heritability. These variance components are typically estimated by restricted
maximum-likelihood(Yang et al. 2011). The linear model to test the significance of the SNP 𝑗
is

𝒚 = 𝑿𝜶 + 𝒉𝒋𝛽$ + 𝒆 (5)

where 𝜶 is a vector of fixed effects, 𝒉𝒋 is the 𝑗th column of 𝑯, 𝛽$ is the regression coefficient
for SNP 𝑗 and 𝒆 is the residual, with variance matrix 𝑽.

The mixed model transformation

𝑨(𝟏𝒚 = (𝑨(𝟏𝑿)𝜶 + 𝑨(𝟏𝒉𝒋𝛽𝒋 + 𝑨(𝟏𝒆 (6)

converts the mixed model into an Ordinary Least Squares problem in which the variance
matrix is the identity, i.e. Var(𝑨(𝟏𝑽) = 𝑰. Here 𝑨 is the matrix square root of 𝑽, i.e. 𝑨𝟐 = 𝑽,
which can be computed efficiently by eigen-decomposition of 𝑲, alongside the estimation of
the variance components 𝜎%!, 𝜎&! (Kang et al. 2008).

The genetic relationship between individuals 𝑖, 𝑘 is summarised as 𝐾#+ and the relationship
(Pearson correlation coefficient) between SNPs 𝑗, 𝑙 as the element 𝐿$, in the matrix

𝐿 =
1
𝑛𝑯

𝑻𝑯 (7)

Orthogonal Transformations

We wish to find an encoding of the genotypes, covariates and phenotype such that their
plaintexts are obscured, but such that we can compute all the above quantities and test
association between genotypes and phenotypes using the same mixed model.

Consider the eigen decomposition of the variance matrix 𝑽 = 𝑬𝑻𝜦𝑬 where 𝑬 is an
orthonormal matrix of eigenvectors and 𝜦 the diagonal matrix of eigenvalues. These
quantities are determined (up to permutation and rotation) by the matrix 𝑽. The
(symmetric) matrix square root used in the mixed-model transformation is defined as

𝑨 = 𝑬𝑻𝜦𝟎.𝟓𝑬 (8)

where 𝜦𝟎.𝟓 is the diagonal matrix whose entries are the square roots of the eigenvalues.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 3, 2020. ; https://doi.org/10.1101/2020.04.02.021865doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.02.021865
http://creativecommons.org/licenses/by-nc-nd/4.0/

Suppose 𝑷 is any orthogonal 𝑛 × 𝑛 matrix, i.e. so that 𝑷(𝟏 = 𝑷𝑻. Then consider working
with the transformed genotype matrix 𝑭 = 𝑷𝑯, phenotype vector 𝒛 = 𝑷𝒚 and covariate
matrix 𝑾 = 𝑷𝑿 in place of the plaintext. Such a transformation corresponds to finding a
new coordinate system, so the rows ("subjects") in the transformed space no longer
correspond to individuals.

First note that

𝑭𝑻𝑭 = 𝑯𝑻𝑷𝑻𝑷𝑯 = 𝑯𝑻𝑯 = 𝑛𝑳 (9)

so the 𝑚 ×𝑚 SNP-relationship matrix 𝑳 is preserved, while the 𝑛 × 𝑛 additive genetic
relationship matrix, or GRM,

𝑭𝑭𝑻 = 𝑷𝑯𝑯𝑻𝑷𝑻 = 𝑚𝑷𝑲𝑷𝑻 (10)

is transformed. In other words, linkage disequilibrium (as measured by Pearson correlation)
between SNPs is unaltered, but since the original subjects are transformed, inter-subject
correlations are destroyed. In fact, since after orthogonal transformation each “subject” is a
weighted combination of the originals, it is not even meaningful to even describe them as
subjects. Nonetheless,

Var(𝒛) = Var(𝑷𝒚) = 𝑷𝑽𝑷𝑻 = 𝑷𝑲𝑷𝑻𝜎%! + 𝑰𝜎&! (11)

and hence the transformed phenotype has the same variance components 𝜎%!, 𝜎&! and
heritability ℎ!, even though the genetic relationship matrix is transformed. Define 𝑩 = 𝑨𝑷.
as the 𝒛- analogue of the 𝒚 mixed-model transformation. That is,

Var(𝑩(𝟏𝒛) = Var(𝑷𝑻𝑨(𝟏𝒚) = 𝑷𝑻Var(𝑨(𝟏𝒚)𝑷 = 𝑷𝑻𝑰𝑷 = 𝑰 (12)

and hence the ciphertext “rotated mixed model”

𝒛 = 𝑾𝜶+ 𝒇$𝛽$ + 𝑷𝒆 (13)

which is expressed entirely using the transformed quantities 𝐷(𝑷) = {𝒛,𝑾, 𝑭} is equivalent
to the original plaintext model and can be converted to ordinary least squares by
multiplication by 𝑩(𝟏. Furthermore, the log-likelihood for the data (provided the errors are
Normally distributed) is invariant after orthogonal transformation. That is, using standard
change-of-variable rules for 𝒚 = 𝑷𝑻𝒛 for the multivariate normal distribution, and recalling
that the determinant of an orthogonal matrix |𝑷| = ±1, then the plaintext log likelihood for
𝒚:
−2 log 𝑙A𝜶, 𝛽$, 𝜎%!, 𝜎&!B = A𝒚 − 𝑿𝜶 − 𝒉𝒋𝛽$B

𝑻𝑽(𝟏A𝒚 − 𝑿𝜶 − 𝒉𝒋𝛽$B + log|𝑽| + 𝑛 log(2𝜋) (14)

is identical to the log likelihood for ciphertext 𝒛 when evaluated at the same parameters:

A𝒛 −𝑾𝜶 − 𝒇𝒋𝛽$B
0(𝑷𝑽𝑷𝑻)(1A𝑧 −𝑾𝜶 − 𝒇𝒋𝛽$B + log|𝑷𝑻𝑽𝑷| + 𝑛 log(2𝜋) (15)

Hence all inferences about the parameters based on the likelihood are unaffected by the
transformation. In particular they yield identical maximum likelihood parameter estimates
and p-values for likelihood-based tests of significance. Furthermore, any analyses based on

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 3, 2020. ; https://doi.org/10.1101/2020.04.02.021865doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.02.021865
http://creativecommons.org/licenses/by-nc-nd/4.0/

LD between SNPs are unaffected by the transformation. It is also possible to compute GRMs
corresponding to subsets of SNPs (e.g. per-chromosome) from the transformed genotypes.

Generalisations

Here we sketch various generalisations to the orthogonal encryption scheme.

(i) Analyses that are unaffected by orthogonal transformation include the estimation of
parameters by ridge regression or by Henderson’s mixed model equations. The proof for
ridge regression follows from the observation that the ridge estimator

𝛽m2#3%& = (𝑿𝑻𝑿 + 𝑰𝑘)(1𝑿𝑻𝒚 = ((𝑷𝑿)𝑻(𝑷𝑿) + 𝑰𝑘)(𝟏(𝑷𝑿)𝑻(𝑷𝒚) (16)

for any orthogonal matrix 𝑷 and ridge scale parameter 𝑘. The proof for Henderson’s
equations follows in a similar way, as under orthogonal transformation any data matrix
transforms as 𝑿 → 𝑷𝑿 and any variance matrix as 𝑽 → 𝑷𝑽𝑷𝑻 (since Henderson’s model is a
special case of a mixed model it also follows from Equation 6). Consequently, genomic
prediction from estimated fixed effects (BLUE) and predicted random effects (BLUP) is also
unaffected, provided of course we have access to some unencrypted genotypes with which
to make predictions.

(ii) Dominance effects might be incorporated in the following way. The additive genotype
dosage matrix 𝑮 can be augmented in the usual way by a matrix 𝑻 defined as

𝑇#$ = q 0	if	𝐺#$ = 0
	1	otherwise

(17)

representing a dominance effect. Then any combination of additive and dominance effects
can be modelled as a linear combination of 𝑮, 𝑻, so that Equation (5) that models the effect
of SNP	𝑗 becomes

𝒚 = 𝑿𝜶 + 𝒉𝒋𝛽$ + 𝒕$𝛾$ + 𝒆 (18)

where 𝒕$ is the jth column of T and 𝛾$ is the dominance effect
Multiplying by the orthogonal matrix 𝑷 produces

𝑷𝒚 = (𝑷𝑿)𝜶 + (𝑷𝑯)𝒋𝜷𝒋 + (𝑷𝒕𝒋)𝜸𝒋 + 𝑷𝒆	 (19)

The rest of the development is similar to the purely additive case. Investigators would need
to share both the transformed additive and dominance matrices. It is not clear if this would
make decryption easier.

(iii) Finally, the major principal components of the genotype dosage matrix are sometimes
included as covariates, in place of or in addition to fitting a mixed model, in order to further
control for population structure. That the 𝑛 × 𝑚 dosage matrix 𝑯 has singular value
decomposition 𝑯 = 𝑼𝜮𝑽𝑻, where 𝑼 is the 𝑛 × 𝑛 orthogonal matrix of principal
components, 𝜮 is 𝑛 × 𝑛 diagonal and 𝑽𝑻 is 𝑛 × 𝑚 orthogonal. Thus 𝑭 = 𝑷𝑯 = 𝑷𝑼𝜮𝑽𝑻. This
means the principal components 𝑼 of 𝑯 are transformed to 𝑷𝑼 so that if necessary, the

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 3, 2020. ; https://doi.org/10.1101/2020.04.02.021865doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.02.021865
http://creativecommons.org/licenses/by-nc-nd/4.0/

principal components of 𝑭 may be calculated and included in the linear mixed model
without explicitly including them as covariates to be transformed.

Orthogonal Homomorphic Encryption

We propose that, if the orthogonal key 𝑷 is appropriately sampled at random and
independently of the untransformed data 𝐷(𝐼) = {𝒚, 𝑿,𝑯}, then it homomorphically
encrypts 𝐷(𝑰) → 𝐷(𝑷), sufficient to allow full mixed-model GWAS without revealing the
plaintext.

The Pearson correlation between a standardised vector 𝒙 and 𝑷𝒙 is

𝜌𝑷(𝒙) =
𝒙𝑻𝑷𝒙
𝑛 − 1

(20)

Thus, provided 𝑷 is "far" from the identity matrix 𝑰 then we expect 𝜌𝑷(𝒙) to be distributed
like the correlation of two random vectors. An effective way to do this is to sample
orthogonal matrices from the Steifel Manifold (i.e. the Haar measure over the orthogonal
group)(Hoff 2009). This can be thought of as a uniform sampling distribution for orthogonal
matrices (Anderson et al. 2005).

To investigate this experimentally, we sampled a 1000 × 1000 matrix 𝑃1555 using the R
library "rstiefel". This uses the following scheme to simulate an orthogonal 𝑛 × 𝑛 matrix (i)
simulate an 𝑛 × 𝑛 matrix 𝑴 whose entries are all iid 𝑁(0,1). (ii) compute the eigen-
decomposition of the symmetric matrix 𝑴𝑻𝑴 = 𝑸𝑻𝑺𝑸 where 𝑸 is 𝑛 × 𝑛 orthogonal and 𝑺
is diagonal with positive entries. (iii) Return the orthogonal matrix 𝑷 = 𝑴𝑸𝑻𝑺(𝟎.𝟓𝑸 where
𝑺(𝟎.𝟓 is the diagonal matrix whose elements are the reciprocals of the square roots of the
eigenvalues.

Now the eigen-decomposition of an orthogonal matrix can be written as

𝑷 = 𝑪(𝟏 exp(𝑖𝜣)𝑪 (21)

where 𝑪 is a (non-orthogonal) matrix of eigenvectors and 𝜣 is a diagonal matrix of angles,
so that the eigenvalues exp(𝑖𝜣) are pairs of conjugate complex numbers on the unit circle.
Then, for 𝜆 real, define the set of orthogonal matrices 𝑷(𝜆) = 𝑪(𝟏 exp(𝑖𝜆𝜣)𝑪, which vary
smoothly between 𝑷(𝜆 = 0) = 𝑰 and 𝑷(𝜆 = 1) = 𝑷.

Studying this set as 𝜆 varies lets us explore the encryption properties of a particular “linear
direction” in the space of orthogonal matrices, starting at the identity matrix and passing
through 𝑷. [Incidentally, the set 𝑷(𝜆) forms a subgroup of the orthogonal matrices, such
that 𝑷(𝜆)𝑷(𝜇) = 𝑷(𝜆 + 𝜇), with inverse 𝑷(𝜆)(1 = 𝑷(−𝜆). This subgroup is of course
isomorphic to the real numbers under addition.]

The Figure 3 shows the mean and standard deviation of the correlation 𝜌𝑷(𝝀)(𝒙) for a
1000 × 1000 matrix 𝑃1555 with 1,000 SNPs sampled from the CONVERGE study of major
depressive disorder(Cai et al. 2015), for a subset of 1,000 randomly-sampled individuals.
When 𝜆 = 0 then the correlations are all unity, as would be expected, but as 𝜆 increases we

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 3, 2020. ; https://doi.org/10.1101/2020.04.02.021865doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.02.021865
http://creativecommons.org/licenses/by-nc-nd/4.0/

observe a damped oscillatory behaviour, with mean correlation of 0 at approximately 𝜆 =
1,2,3, …

Figure 3 Correlation of unencrypted SNP dosages with encrypted versions as a function of 𝜆.
The black line shows the mean correlation 𝜌9(:)(𝑥) and the red lines the mean ± standard
deviation, estimated from 1,000 individuals sampled from the CONVERGE study of major
depressive disorder, at 1,000 randomly chosen SNP sites.

Thus, it is possible to sample a random orthogonal matrix such that on average there is no
correlation between a random input vector of genotypes and its orthogonal transformation.

We applied these ideas to Human genotype dosages from the CONVERGE study of major
depressive disorder in 𝑛 = 10,465 individuals (Cai et al. 2015). We generated a random
10,465 × 10,465 orthogonal matrix 𝑷𝟏𝟎𝒌, which took about one hour with 2 cores and 8GB
of RAM. Figure 4A shows the distribution of the correlations 𝜌15+(𝒙) evaluated at 10,000

randomly chosen SNPs, after Z-transformation 𝑧 = 𝜌@ <(!
1(=!

, and Figure 4B shows the qqplot

confirming the transformed correlations have a the expected null normal distribution.
Figure 4C shows the distribution of standardised genotype dosages for a randomly selected
SNP from that study, with values concentrated at the three modes corresponding to 0,1,2
reference alleles across the 10,465 individuals. Figure 4D shows the distribution of
genotype dosages for the same SNP. It demonstrates that the values are close to normally
distributed, centred at zero. Thus, transformed dosages are uncorrelated with their
untransformed values, despite being a deterministic, invertible linear transformation of the
latter. We return to this point later.

0 2 4 6 8 10

−0
.2

0.
2

0.
6

1.
0

λ

m
ea

n
co

rre
la

tio
n

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 3, 2020. ; https://doi.org/10.1101/2020.04.02.021865doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.02.021865
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 4. A: The distribution of Z-transformed correlations 𝜌15+(𝑥) evaluated at 10,000
randomly chosen CONVERGE SNPs. The red line is the Normal density with the same mean
and standard deviation. B: Normal quantile-quantile plot for the data in A.

A potential concern is that rounding errors might arise due to the very large dimension of
the key 𝑷. To test this, we computed 𝑷𝑻𝑷 which should equal the identity matrix 𝑰. When
𝑷 = 𝑷𝟏𝟎𝒌The off-diagonal values (which should all equal 0) had typical magnitude 10(11,
indicating the accuracy is acceptable. Nonetheless the average magnitude of off-diagonal
elements drifts upwards as the dimension of the matrix increases – when 𝑷 = 𝑷𝟏𝟎𝟎𝟎 the
magnitudes are typically only 10(1>. Therefore, we might eventually encounter rounding
issues when sampling very large orthogonal matrices, but not for matrix dimensions up to at
least 10,000. One solution would be to divide the samples into randomly chosen blocks of
10,000 individuals, sample a different transformation matrix to encrypt each block, and
then permute all transformed data so that the block structure is hidden.

Supplementary Material S1 contains R functions to generate random orthogonal matrices,
encrypt genotype dosages and phenotypes, and to download and analyse an example
publicly available mouse dataset from (Nicod et al. 2016) and perform a basic association
study for platelet count on mouse chromosome 11 to demonstrate the methodology. These
data and software are also available from UCL Figshare at
https://rdr.ucl.ac.uk/account/home#/projects/76434.

Applications of Orthogonal Genotype Encryption

It might be thought that orthogonal encryption is of little use, because both genotypes and
phenotypes are transformed with the same orthogonal matrix, which must be known to
those performing the transformation. However, there are uses for such a system. First, if the
number of phenotypes is large (e.g. from a gene expression study) then it might be
necessary to analyse the data on an insecure remote computing platform. Second, the
encrypted data could be archived without special security concerns. Third, as we show next,
it is possible to share and analyse federated independently-transformed data sets.

correlation z−score

fre
qu

en
cy

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

A

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●●

●●

●

●

●

●

●

●

●
●

●

●
●

●●●

●

●

●

●

●

●
●

●●●
●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●
●●

●

●

●

●

●

●●

●
●●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●●

●

●

●
●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●●

●

●●

●

●

●
●

●

●
●

●

●●

●
●
●●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●●
●

●

●

●

●

●●

●

●●
●
●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●●

●

●●
●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●
●

●●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●
●

●
●●

●

●●
●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●
●●

●

●

●●

●

●

●

●
●

●

●
●
●●

●
●
●

●

●

●

●

●

●
●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●●

●

●●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●●

●●
●

●
●

●
●

●

●
●

●

●●

●

●

●
●

●●●

●
●●

●

●

●

●

●
●

●
●
●

●●

●

●●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●

●●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●●

●

●

●

●
●

●
●

●
●●

●●
●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●
●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●●

●

●

●●●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●●●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●
●

●

●
●

●
●

●
●●●
●●

●

●●

●

●

●

●

●
●

●

●
●●
●

●

●

●●

●

●●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●●

●
●

●

●

●●

●

●

●

●
●

●

●
●

●

●●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●
●

●●
●

●

●
●

●
●

●

●

●

●●

●

●●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●●●●
●

●
●

●
●

●

●
●●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●
●●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●●●

●
●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●
●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●
●
●

●
●

●

●

●

●

●
●

●
●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●
●

●

●●

●

●
●

●

●

●
●

●
●

●

●●
●

●
●

●

●●

●

●

●

●●
●
●●●

●

●

●

●

●
●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●●
●●
●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●●
●

●
●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●
●

●●

●

●●
●

●

●

●

●
●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●
●

●●

●●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●●

●
●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●
●●

●●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●●●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●
●●

●

●●

●
●

●
●

●

●●
●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●●●●●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●●

●●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●
●

●

●

●●●

●●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●
●
●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●●

●

●

●

●●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●
●

●

●●
●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●
●●

●

●

●

●
●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●●

●
●

●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●
●

●●●

●

●
●

●

●

●
●

●●●

●

●

●
●

●

●

●●
●

●

●

●

●
●●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●
●

●

●

●
●
●

●
●

●

●
●
●

●

●

●●●

●

●
●

●
●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●●
●

●●

●

●
●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●
●●

●

●●

●

●●
●

●
●●●

●●

●●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●●

●
●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●●●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●●
●
●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●
●●●
●
●

●

●

●●
●

●

●
●
●●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●●

●
●●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●●

●●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●●●

●

●

●
●

●

●●

●

●

●

●●
●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●●●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●
●

●
●

●
●

●

●
●

●

●

●
●

●

●

●
●●

●

●●

●

●

●

●●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●
●

●

●

●●

●

●
●●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●
●

●
●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●
●●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●
●
●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●●
●

●

●

●
●

●

●●●
●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●
●●

●
●

●

●

●●

●

●
●

●

●

●

●●

●

●

●●

●

●●
●●

●

●
●●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●●
●●●

●
●●

●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●●●●

●

●

●●●

●

●
●
●

●

●

●
●●

●
●

●
●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●●
●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●
●

●
●●

●

●
●

●
●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●●●●
●●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●
●●

●

●

●

●

●●

●

●
●

●●
●

●

●●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●
●

●
●●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●
●

●

●●

●

●

●

●●
●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●●●

●

●

●

●
●

●

●
●

●●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●
●

●

●
●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●●
●

●●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●●
●●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●●
●

●●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●
●

●
●

●

●●

●
●●

●

●●
●

●
●●●

●

●●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●●

●

●

●
●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●
●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●●●●

●

●
●

●

●
●

●●

●

●

●

●
●

●
●

●●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●
●

●●

●

●

●

●
●

●
●

●

●
●

●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●●

●

●

●

●
●●●

●

●
●
●

●

●●

●
●
●

●

●

●

●

●

●

●

●●

●●
●

●
●

●

●

●●

●

●

●

●

●
●
●

●
●

●

●

●
●

●●
●

●
●

●

●

●●

●

●

●

●
●

●●

●●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●
●
●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●
●●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●●

●

●
●●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●

●●
●

●

●●●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●●

●

●

●
●●

●

●

●●

●●
●

●

●

●
●

●

●

●●●

●

●

●
●

●

●●

●
●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●●

●
●●

●

●●

●

●

●

●
●●

●

●

●

●

●●

●

●
●

●
●

●

●

●●●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●
●

●

●

●●

●●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●●

●

●

●

●

●●

●

●
●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●●●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●●●●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●
●●●

●

●

●

●

●

●

●●

●

●
●

●
●
●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●●
●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●●●●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●●

●●●
●

●
●

●

●
●

●
●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●
●

●
●

●

●

●

●

●

●
●

●

●●●●

●

●

●

●●

●
●

●●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●
●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●●

●●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●●

●

●

●
●

●

●

●
●●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●●

●

●

●
●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●●
●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●
●

●●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●
●●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●
●●●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●
●
●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●●

●

●

●

●
●

●●

●

●

●

●

●
●

●●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●
●

●

●

●●
●

●●

●

●

●●●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

−4 −2 0 2 4

−4
−2

0
2

4

Theoretical Quantiles

Sa
m

pl
e

Q
ua

nt
ile

s

B

raw genotype dosage

fre
qu

en
cy

0.0 0.5 1.0 1.5 2.0

0
20

00
40

00
60

00
80

00

C

encrypted dosage

fre
qu

en
cy

−5 0 5

0.
00

0.
05

0.
10

0.
15

0.
20

D

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 3, 2020. ; https://doi.org/10.1101/2020.04.02.021865doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.02.021865
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sharing Federated Transformed Genotype Data Sets

Suppose we wish to perform a federated mega-analysis on several genotype and phenotype
sets. We assume that each set has first been imputed onto a common set of SNPs which are
ordered consistently across data sets. Similarly, any covariates must be consistently defined
and ordered across sets. Within each data set 𝐷? , with 𝑛? , subjects, an independent, private,
orthogonal transformation is made using an 𝑛? × 𝑛? orthogonal matrix 𝑷𝒕 sampled at
random to generate transformed data 𝐷?(𝑷𝒕)as above. We combine the shared
transformed data by stacking them top of each other. Thus, for three sets we have:

𝐷(𝑰, 𝒛𝑪, 𝑭𝑪,𝑾𝑪) = �
𝐷(𝒛𝟏, 𝑭𝟏,𝑾𝟏)
𝐷(𝒛𝟐, 𝑭𝟐,𝑾𝟐)
𝐷(𝒛𝟐, 𝑭𝟑,𝑾𝟑)

� = �
𝒛𝟏 𝑭𝟏 𝑾𝟏
𝒛𝟐 𝑭𝟐 𝑾𝟐
𝒛𝟐 𝑭𝟑 𝑾𝟑

� = �
𝑷𝟏𝒚𝟏 𝑷𝟏𝑯𝟏 𝑷𝟏𝑿𝟏
𝑷𝟐𝒚𝟐 𝑷𝟐𝑯𝟐 𝑷𝟐𝑿𝟐
𝑷𝟑𝒚𝟑 𝑷𝟑𝑯𝟑 𝑷𝟑𝑿𝟑

�

= �
𝑷𝟏 0 0
0 𝑷𝟐 0
0 0 𝑷>

� �
𝒚𝟏 𝑯𝟏 𝑿𝟏
𝒚𝟐 𝑯𝟐 𝑿𝟐
𝒚𝟑 𝑯𝟑 𝑿𝟑

� = 𝐷(𝑷𝑪, 𝒚𝑪, 𝑯𝑪, 𝑿𝑪) (22)

where the subscript 𝑪 denotes the combined data and where the individual orthogonal
matrices have been combined in a block-diagonal manner:

𝑷𝑪 = �
𝑷𝟏 𝟎 𝟎
𝟎 𝑷𝟐 𝟎
𝟎 𝟎 𝑷𝟑

� (23)

𝑷𝑪 is orthogonal ∑ 𝑛? ×? ∑ 𝑛?? and hence the combined data can be analysed as if it were a
single untransformed data set that had been encrypted using 𝑷𝑪. However, in reality each
laboratory contributing a dataset 𝐷? independently encrypts their data using their private
key 𝑷𝒕 before sharing it.

Similarly, a dataset could also be subdivided into subsets (e.g. into male vs female subjects)
and each part encrypted separately so that sub-analyses could be performed, and the
subsets distributed separately. We emphasise that for federated analysis to work, it is
necessary for the parties to agree in advance on a common set of SNPs and covariates.

Removing Duplicates and Close Relatives: Dual Encryption

One potential difficulty when sharing encrypted data is the possibility of duplicates or close
relatives occurring in different cohorts. Because HEGP disguises genetic relationships it
would not be possible to identify duplicates in the shared ciphertexts. Whilst there are
simple practical ways of eliminating individuals with identical IDs in different studies (eg first
sharing the hashes of their sample IDs) or with identical genotypes at a small set of test
SNPs (by sharing hashes of their genotype vectors), these methods would fail if the IDs were
different or if the test genotypes differed even slightly (as might happen if the same samples
were genotyped twice).

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 3, 2020. ; https://doi.org/10.1101/2020.04.02.021865doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.02.021865
http://creativecommons.org/licenses/by-nc-nd/4.0/

A solution would be for all parties to first agree on a restricted subset of 𝑁C common test
SNPs (say no more than 100 common SNPs chosen genome-wide at random). Each party
computes their normalised plaintext 𝑯𝑹 restricted to just these SNPs, and they share the
dual ciphertext 𝑭𝑹 = 𝑯𝑹𝑷𝑹, where 𝑷𝑹 is a random 𝑁C × 𝑁C orthogonal key, instead of
sharing 𝑭 = 𝑷𝑯.

Importantly, 𝑭𝑹 defines a dual form of encryption that has complementary properties to
those of 𝑭; for the dual GRM

𝑭𝑹𝑭𝑹𝑻 = 𝑯𝑹𝑷𝑹𝑷𝑹𝑻𝑯𝑹
𝑻 = 𝑯𝑹𝑯𝑹

𝑻 = 𝑁C𝑲𝑹 (24)

is the same as the plaintext GRM and instead the SNP correlation matrix is scrambled: dual
encryption is therefore useless for genetic association. Close relatives and duplicates may
then be identified from the GRM 𝑲𝑹, and then agreement reached on a revised subset of
individuals from each study to be shared using the original scheme of encryption applied to
all SNPs. However, it should be pointed out that sharing information in any way that reveals
relationships between people is inherently risky.

How Secure is Orthogonal Encryption?

Can we determine 𝑷 given only 𝐷(𝑷)?. Although we have shown that 𝑷𝑯 is uncorrelated
with 𝑯, we have not shown this renders the transformation truly secure. Since the
encryption and decryption keys are essentially the same, this form of encryption has very
different properties from public-key methods. Orthogonal encryption is certainly insecure
for certain choices of 𝑷. As Figure 3 shows, any orthogonal matrix close to the identity
matrix is clearly a poor choice, so one should restrict attention to random orthogonal
matrices sampled from either the Steifel Manifold or using another scheme with similar
sampling properties. One should also check that the mean of the correlations of the
columns of 𝑭 with the columns of 𝑯 is close to zero.

It is obvious that any permutation of the rows of any key will transform the phenotype and
genotypes in the same way, and so are functionally equivalent. Consequently, orthogonal
permutation matrices are useless as keys. However, it also means that any permutation of
any good key is also a good key.

The singular value decomposition of the unencrypted 𝑛 × 𝑚 dosage matrix 𝑯 has 𝑯 =
𝑼𝜮𝑽𝑻, where 𝑼 is 𝑛 × 𝑛 orthogonal, 𝜮 is 𝑛 × 𝑛 diagonal and 𝑽𝑻 is 𝑛 × 𝑚 orthogonal. Thus
𝑭 = 𝑷𝑯 = 𝑷𝑼𝜮𝑽𝑻, so the rotation 𝑼 is simply replaced by another rotation 𝑷𝑼. If 𝑷 is truly
random then we seek 𝑼 given 𝑷𝑼 which appears to be hard problem, since 𝑷𝑼 resembles
another random orthogonal transformation.

Next we discuss strategies that might be used to decrypt the data, in likely increasing order
of effectiveness:

Brute Force

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 3, 2020. ; https://doi.org/10.1101/2020.04.02.021865doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.02.021865
http://creativecommons.org/licenses/by-nc-nd/4.0/

(a) We first tried sampling random decryption keys using the rustiefel method. Each key
contains 𝑛(𝑛 + 1)/2 independent double precision numbers, each of which can take about
10!5	possible values. We defined a distance function between matrices equal to the mean
of the absolute difference between each pair of corresponding elements (i.e. the L1 norm),
to compare the plaintext genotype matrix to an attempted decryption. We defined a “good”
key as one that gives a mean distance of less than 0.4 between the genotype matrix and the
attempted decryption. Empirically this upper limit gave results that are visually fairly close
to the original, at least for small datasets. Extrapolating from small matrices, we estimated
a lower bound on the number of attempts required for solving an 𝑛 × 𝑛 key, of one "good"
key generated per 10<(1 incorrect keys. thus, if 𝑛 = 100, at least 10EE keys have to be tried
before a good one is found. Interestingly, even for an 8 × 8 matrix we could not a key that
regenerated the plaintext, and even ‘good’ keys do not reflect the underlying genotypes
fully.

Generating orthogonal random keys is computationally expensive – the computational
complexity of the Stiefel manifold is 𝑂(𝑛>); if 𝑛 = 100 a few hundred keys can be
generated and evaluated per second on one CPU core. Our estimated bound suggests that it
would take in the order of 1092 CPU hours to get close to a solution. Larger keys of realistic
size take significantly longer – e.g when 𝑛 = 10,000, a single key takes about one CPU hour
to generate. Rather than generating orthogonal keys, a naive brute force attack where
potential keys are randomly selected would be even slower because the search space
becomes much larger including all non-orthogonal matrices. Thus our method takes a great
deal of CPU power to guess large orthogonal matrices.

These experiments show that there is no consistent relationship between generated keys
and their decryption outcomes using this simple metric. Moreover, as the distance function
we used is defined in terms of distance to the known plaintext, it only works when we know
the end result. In reality, an attacker would have to use a less accurate score function. The
number of possible permutations of the result matrix is so large that it is not feasible to
brute force an attack without a method optimized to compute orthogonal matrices while
optimizing for a metric that has an open-ended end result.

Exploiting non-Gaussian Distributions of Genotype Dosages

Another potential attack, that exploits specific features of the problem, is as follows. We
note that the SNP identities (genomic positions) need to be distributed with the data in
order to interpret the biology of any GWAS hits. Population allele frequencies for SNPs are
generally available, and so for a SNP 𝑗 with frequency 𝜋$ that is in Hardy-Weinberg
equilibrium, we expect to observe genotype dosages in the proportions

0: 𝜋$!, 1: 2𝜋$A1 − 𝜋$B, 2: A1 − 𝜋$B
! (25)

After standardisation the dosages will be rescaled but will still be tri-modal with modes
𝑑$5, 𝑑$1, 𝑑$! that are completely determined by 𝜋$ and the constraints that the standardised
dosages have mean=0, variance=1 and that 𝑑$5 − 𝑑$1 = 𝑑$1 − 𝑑$!.	

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 3, 2020. ; https://doi.org/10.1101/2020.04.02.021865doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.02.021865
http://creativecommons.org/licenses/by-nc-nd/4.0/

Consequently, we might seek an orthogonal matrix approximation 𝜱 ≈ 𝑷(𝟏 = 𝑷𝑻 that
maps 𝑭 → 𝜱𝑭 with columns such that each has the frequency distribution close to that
predicted by HWE. That is, for each SNP, the decrypted genotype dosages will be expected
to have been sampled from a distribution with modes at 𝑑$5, 𝑑$1, 𝑑$! corresponding to the
rescaled dosages 0,1,2 (like Figure 1C), which can be modelled using a kernel density
estimate

𝜙$(𝑥, 𝜏) = 𝜋$!𝜑
𝑑$5 − 𝑥
𝜏 ¡ + 2𝜋$A1 − 𝜋$B𝜑

𝑑$1 − 𝑥
𝜏 ¡ + A1 − 𝜋$B

!𝜑
𝑑$! − 𝑥
𝜏 ¡ (26)

where 𝜑(𝑧) is a standard normal density kernel and 𝜏 is the standard deviation of the
kernel. Then we seek an orthogonal matrix 𝛷∗ that maximises

𝛷∗ = argmaxG¤¤𝜙$A(𝑭𝜱)#$, 𝜏B
#$

(27)

We also require 𝜏 to be small in order to concentrate the data around the modes. However,
if the plaintext dosages were imputed then they might well not be exactly integral, so it is
necessary that 𝜏 > 0 but still as small as reasonably possible.

Equation (27) describes a non-convex and non-linear objective function. One potential
approach to minimisation is via robust non-convex optimisation based on the Cayley
transform(Bertsimas et al. 2010; Wen and Yin 2013). Whether such an attack is feasible is
unclear: the space of 𝑛 × 𝑛 orthogonal matrices has dimension 𝑛 (𝑛 − 1) 2⁄ , so if 𝑛 = 10H
the minimisation is over 4.995 × 10I ≈ 50 million free parameters. There are likely to be
local minima. It is also unclear if the minimiser 𝛷∗ is unique, or that the true answer
necessarily minimises this quantity (by unique we mean if two distinct solutions 𝛷∗∗, 𝛷∗
exist then they are permutations of each other.

Fast Independent Components Analysis (FastICA) (Hyvärinen and Oja 1997), is another
method that attempts to split non-Gaussian signal from Gaussian noise. FastICA(Hyvärinen
and Oja 1997)(Hyvärinen and Oja 1997)(Hyvärinen and Oja 1997)(Hyvärinen and Oja
1997)(Hyvärinen and Oja 1997) finds an orthogonal transformation to map the data onto
“interesting directions” such that the projections of the data are strongly non-Gaussian
along these directions: in our case, we seek directions in which the distributions are
trimodal. In this context, FastICA may be thought of as maximising a different function from
the likelihood with a particular choice of optimisation algorithm. However, we found that
applying the implementation in the “fastICA” R package does not improve on our random
brute force attacks. We configured FastICA to produce an orthogonal matrix of the same
size as the encryption key and computed the distance score of the resulting matrix. We
found these scores were much higher than the best keys generated during the brute-force
attack. This is the case whether using a random initial matrix, or providing an already
generated key with a relatively good score. Table 1 shows the results of applying FastICA to
the seven best keys from the brute-force attempt on a 4x4 key, with a 4x636 dataset. The
per-entry error in the decrypted data of 0.079 on average, which is quite good, while
anything greater than 0.4 is unusable.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 3, 2020. ; https://doi.org/10.1101/2020.04.02.021865doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.02.021865
http://creativecommons.org/licenses/by-nc-nd/4.0/

Generated key scorea Score of FastICA output
initialized with
generated keyb

0.07327044 0.39261006

0.07877358 0.44937107

0.08148585 0.39339623

0.08309748 2.67963836

0.08384434 0.4735456

0.08388365 2.67763365

0.08694969 2.82252358

Table 1. Examples of attempted decryption using FastICA. Seven 4x636 genotype matrices
were first encrypted and then attempts at decryption made either by (a) brute force random
attempts or (b) FastICA. The score is the L1 distance between matrices

As FastICA attempts to maximize non-Gaussianity in the decrypted data, these results imply
that non-Gaussianity does not describe the desired decrypted data sufficiently uniquely.
While the decrypted data is non-Gaussian, there are many other transformations the
encrypted data that also produce highly non-Gaussian results.

Another form of mathematical optimization is constrained convex programming, where
constraints could be imposed to ensure the decrypted genotypes take plausible values. The
main difficulty with applying convex programming (and linear programming, which also
handles constraints) is the choice of a suitable objective function to minimise. There is good
reason to believe convex programming cannot produce good results. Optimizing a key to
improve its decryption results would entail finding a path through the 𝑛-dimensional space
of rotations, choosing both a correct direction to rotate in, and degree of rotation at each
step. Specifically, the score function is not locally convex, and any naive optimization
attempt is bound to fall into local minima. Similarly, gradient descent is also unlikely to be
useful, as each iteration would require calculating a number (linear to the size of the key) of
matrix multiplications (of the entire dataset with the key at each step).

Compression

A restatement is that the plaintext is highly compressible (at least, if all the genotypes are
integral), so we might instead seek

𝛷∗ = argmin𝑭	𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝑭𝜱) (28)

where "compress" is some program like gzip. Again, we do not know if the most
compressible encoding of the genotypes is identical to the true answer, or whether this
could be computed efficiently. We expect it would be very slow for large datasets.

Pedigrees

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 3, 2020. ; https://doi.org/10.1101/2020.04.02.021865doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.02.021865
http://creativecommons.org/licenses/by-nc-nd/4.0/

If all the individuals in the study are from a set of known pedigrees (for example a large set
of trios) then the expected plaintext GRM 𝔼A𝑲𝒑𝒍𝒂𝒊𝒏𝒕𝒆𝒙𝒕B is known (ie entries for full sibs and
parent-offspring will be ½, unrelateds will be 0, etc) and we can assume the samples are
ordered so that the matrix is block-diagonal. Then the original and encrypted GRMs are
linked via the approximation

𝔼A𝑲𝒑𝒍𝒂𝒊𝒏𝒕𝒆𝒙𝒕B ≈ 𝑷𝑻𝑲𝒄𝒊𝒑𝒉𝒆𝒓𝒕𝒆𝒙𝒕𝑷 (29)

which is a system of 𝑛(𝑛 + 1)/2 quadratic equations in 𝑛(𝑛 + 1)/2 independent unknowns
(the number of degrees of freedom in an 𝑛 × 𝑛 orthogonal or symmetric matrix). Thus an
approximation to 𝑷	could be obtained and might be a useful initial guess for further
refinement, if 𝑛 is small. When 𝑛 is large the problem has exponential time complexity
(Grigoriev and Pasechnik 2005). Moreover, any permutation of the ordering of pedigrees
that left 𝑲𝒑𝒍𝒂𝒊𝒏𝒕𝒆𝒙𝒕 unchanged would have the same solution so it would be impossible to
assign phenotypes to pedigrees uniquely. Finally, if everyone is unrelated then
𝔼A𝑲𝒑𝒍𝒂𝒊𝒏𝒕𝒆𝒙𝒕B = 𝟎 and the method would not work.

Incremental Decryption

Another way of thinking about the effects of the group of orthogonal transformations is that
they define sets of equivalence classes of data sets 𝐷. That is, two sets 𝐷1, 𝐷! are equivalent
if there exists and orthogonal matrix 𝑷 such that 𝐷1(𝑷) = 𝐷! i.e. that maps one to the
other. The transitive property of the group of orthogonal matrices means that there is
always an orthogonal matrix that will transform any pair of datasets provided they are in the
same equivalence class. All data sets in the same equivalence class have the same likelihood
so these classes can be thought of as likelihood contours in a high-dimensional space.

This suggests another attack on the problem: find a series of 𝑁 incremental orthogonal
transformations that successively resolve individuals by “factorising along the contour”.
That is, we seek a sequence of orthogonal keys {𝜱𝒌} and partially decrypted genotype
matrices {𝐹+} such that (a) ∏ 𝜱𝒌+ = 𝑷𝑻, (b) 𝑭𝒌𝜱𝒌 → 𝑭𝒌U𝟏 with 𝑭𝟏 = 𝑭, 𝑭𝑵 = 𝑯. There
certainly exist infinitely many orthogonal keys that decrypt any subset of individuals.
Suppose we want to decrypt the first 𝑘 individuals. Then if 𝑸𝒏(𝒌 is any 𝑛 − 𝑘 × 𝑛 − 𝑘
orthogonal matrix and 𝑰𝒌 is the 𝑘 × 𝑘 identity, and we partition 𝑷 = [𝑷𝒌|𝑷𝒏(𝒌], such that
𝑷𝒌 is the 𝑛 × 𝑘 matrix comprising the first 𝑘 columns of 𝑷, and 𝑷𝒏(𝒌 is the last 𝑛 − 𝑘
columns, then

¯𝑰𝒌 𝟎
𝟎 𝑸𝒏(𝒌

°𝑷𝑻 =
𝑷𝒌𝑻

𝑸𝒏(𝒌𝑷𝒏(𝒌𝑻 ¡ = ¯ 𝑷𝒌
𝑻

𝑹𝒏(𝒌
° (30)

where 𝑹𝒏(𝒌 is any (𝑛 − 𝑘) × 𝑛 orthogonal matrix, will decrypt just the first 𝑘	individuals.
Thus, a sequence of matrices of the above form would decrypt the data. Using this scheme,
in principle one could either try to decrypt individuals one-by-one in 𝑁 = 𝑛 steps or use a
divide-and-conquer strategy with 𝑁 ≈ log! 𝑛	 more difficult steps. Of course, since we do
not know 𝑷𝑻 this merely proves existence: it is not clear that this type of approach is

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 3, 2020. ; https://doi.org/10.1101/2020.04.02.021865doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.02.021865
http://creativecommons.org/licenses/by-nc-nd/4.0/

intrinsically better than trying to estimate 𝑷𝑻directly – one still needs to estimate each
column of 𝑷𝑻, a non-trivial task.

Private Variants

There is one clear-cut weakness to orthogonal encryption, which occurs when ultra-rare
private variants are present. Suppose a SNP 𝑗 is private to the individual 𝑖. Then the
genotype dosages for this SNP (column 𝑗 of 𝑮) comprises 𝑛 − 1 zeros and one non-zero
value, say 1 at row 𝑖. After standardisation this pattern is preserved in 𝑯 although the
numerical values are now scaled so the 𝑗’th column mean is zero and its variance is unity.
The column 𝑗 of 𝑷𝑯 is then

(𝑷𝑯)$ =
(𝑛 − 1)𝑷𝒊 − 𝒑
³𝑛(𝑛 − 1)

(31)

i.e. a linear combination of column 𝑖 of 𝑷 and a fixed vector 𝒑 equal to the row sums of 𝑷.
This reveals the decryption key for individual	𝑖 if 𝒑 can be guessed.

Thus, in an extreme case, should every individual carry a private variant, or equivalently if 𝑛
covariates were defined that uniquely identify each individual, then the system can be
attacked successfully. While this is an unlikely situation in practice, and one that could easily
be avoided, it does suggest that an attack focussed on lower frequency variants might be
able to extract useful information. Further, once an individual has been decrypted in this
way then close relatives might be more easily identifiable as well.

Equation (30) shows how private variants could be factored out, leaving a smaller
orthogonal key representing common variants still to be discovered. Note however that
factoring out those individuals with private variants does not reveal useful information
about other unrelated individuals because the remaining columns of 𝑷 are in the subspace
orthogonal to that spanned by the factored columns. In addition, population allele
frequencies need not perfectly match those in the sample, so it is not necessarily clear
which variants are in fact private. Moreover, there is no relationship between allele
frequency and the correlation between cyphertext and plaintext dosages, as is shown in
Figure 5, which plots the squared correlations as a function of allele frequency for
simulations.

Figure 5. Correlation 𝑅! of plaintext and ciphertext dosages as a function of minor allele
frequency. Simulations are of genotypes for 1000 subjects with minor allele frequencies in

●

●
●
●

●●●

●

●

●

●

●
●●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●●●

●●

●●
●
●

●

●

●

●

●

●

●●●●

●

●

●●
●●
●

●

●

●
●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●

●

●

●●

●
●

●

●
●
●
●
●

●

●

●●●●

●

●●

●●

●
●
●

●

●

●
●
●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●●

●

●
●
●

●

●●

●
●●
●

●
●●
●

●
●

●●●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●●
●

●

●

●
●
●

●

●
●

●

●
●

●

●●
●

●●●
●

●

●●
●
●

●

●
●●●

●

●●

●●

●

●

●
●

●
●●●

●

●
●

●

●

●●●●●●

●
●●

●●

●

●
●
●
●

●
●

●
●●●
●●

●
●

●●

●●●
●
●

●

●

●

●

●

●
●●●

●

●
●

●

●

●

●●●●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●●
●

●

●

●

●●●●

●

●

●

●

●

●●

●

●
●
●

●

●

●●
●
●●

●

●●
●
●

●
●

●

●

●

●
●●
●●
●
●●

●

●
●
●

●

●●●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●

●

●

●

●

●

●●

●

●●
●●

●

●

●

●

●●

●

●

●
●●
● ●●

●●

●

●

●

●

●●●

●

●●
●●

●●●●
●

●

●●

●

●●
●●

●

●

●●

●

●●●

●
●
●
●

●

●●●

●

●

●

●

●●

●
●
●

●●●●●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●
●
●
●●

●

●●

●

●

●

●

●

●
●

●

●●●●
●
●●●

●
●

●

●

●

●●●●

●

●●●
●
●

●

●●

●

●
●

●

●

●

●

●

●●
●
●●●
●
●

●
●
●

●

●

●

●

●
●

●

●
●
●●
●
●
●
●

●

●●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●
●●●●

●
●
●
●

●
●

●

●

●●
●
●

●●

●

●

●●●●

●

●

●

●● ●●●

●

●
●●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●●●

●
●

●●●
●
●

●

●●

●

●

●

●

●
●
●●
●●

●

●●

●

●

●

●

●
●

●

●
●

●

●●●●

●

●

●

●●●

●

●
●

●
●

●
●
●●
●
●

●●

●

●
●
●

●●

●

●

●●●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●●
●●

●

●
●

●

●

●

●
●
●●
●

●
●

●

●●

●

●●
●
●

●

●●

●

●●

●●●●●

●

●●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●
●
●
●

●

●
●
●

●

●●

●

●●
●

●●
●
●

●

●

●●●●●●
●●

●
●

●

●

●
●●
●

●
●●

●

●

●

●
●

●

●
●

●●●
●

●

●●
●

●●
●●

●

●

●

●
●

●

●

●

●

●●●●

●

●
●

●

●

●

●

●

●●
●

●

●
●●
●
●●

●

●●
●
●●●
●●

●
●●

●
●

●

●

●

●
●

●
●●●●

●

●

●●
●

●
●

●●
●
●●
●

●●

●

●●
●●

●
●
●

●

● ●●●●
●●●●●

●

●●●●●
●
●●●●●●

●

●

●●

●

●

●●

●

●

●

●

●●●
●
●

●

●

●

●

●
●

●
●●
●

●

●
●
●●

●●
●
●

●

●

●
●
●●
●

●

●

●

●●

●

●●●
●
●

●●
●
●●●

●

●

●
●

●

●

●●

●

●
●

●

●

●
●●

●

●

●
●●

●

●
●●
●

●

●●

●

●

●

●●
●●●●

●

●
●●
●

●

●

●
●
●

●

●●●

●

●●●●

●

●●

●●

●

●●
●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●●

●

●
●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●●
●
●●

●

●●●●
●

●

●●●●●

●

●●●

●

●
●

●●●●●
●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●●

●

●●●●●●
●

●

●

●●
●●

●●●●

●

●
●●●●●

●

●

●●●●●

●

●

●

●

●

●

●●

●

●

●
●
●

●●●

●

●

●

●
●

●●●

●

●●
●●
●

●

●
●●

●

●●●

●

●●●●

●

●

●●●

●

●●●●●●

●
●

●

●
●
●

●
●

●

●●●●

●

●●●
●●

●

●●
●

●

●
●
●●

●

●
●
●
●
●
●●

●●●
●
●

●

●●

●

●

●

●●

●

●●●●
●
●

●
●
●●●
●

●

●●
●

●

●●●●
●●●●

●

●
●●

●
●

●
●

●

●

●
●
●

●
●

●

●●●

●
●●
●

●

●

●

●

●

●
●●
●●●

●

●●

●

●●

●●

●

●

●

●

●
●
●

●
●
●

●

●

●

●●

●

●
●●

●●

●

●

●

●

●

●

●

●
●

●

●
●
●●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●●
●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●●●

●

●
●

●
●

●●
●
●
●
●●

●

●
●
●
●
●●
●
●●
●

●

●

●
●
●
●
●

●

●●

●●

●●

●

●

●

●
●

●

●

●

●
●●
●

●

●

●

●
●
●

●

●●●●
●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●
●
●

●

●

●
●●

●●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●●●●●
●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●●●

●

●

●

●●

●

●

●

●●
●
●●●

●

●●

●●
●

●
●
●●
●
●

●

●

●

●●

●

●

●

●●●●

●

●●
●
●●
●
●●
●●

●●

●●

●

●

●

●

●

●●

●●

●

●

●

●
●
●●●●
●

●

●

●●

●

●●

●

●●●●●

●

●

●●

●
●●●
●●●
●●
●

●

●

●
●

●

●

●●

●●●

●

●
●
●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●●

●
●

●

●

●
●

●

●●●●

●

●
●

●
●●
●

●●●

●
●

●

●

●
●

●
●

●

●
●

●

●

●●
●

●

●
●

●●

●
●
●

●

●

●

●

●

●
●●
●

●●

●

●●●●●

●

●

●●●

●

●●

●●

●
●
●

●

●
●●

●

●

●

●

●

●
●
●

●

●

●

●

●●
●
●

●

● ●●
●
●●

●

●

●
●

●

●

●

●
●●●●●
●

●

●●
●

●

●
●
●

●

●

●

●●

●

●●
●

●

●

●

●

●
●
●
●

●

●
●

●

●

●
●

●
●●
●
●
●

●

●

●
●●

●

●

●●●

●
●

●

●

●●●
●
●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●
●
●●●●

●●●

●
●

●

●●●●●

●

●
●●●

●
●

●

●●

●

●●

●

●

●

●
●
●

●●

●
●
●
●
●
●
●
●

●

●●
●●

●

●●

●

●

●●●●

●

●●
●
●

●

●

●●

●

●
●
●
●

●

●

●
●
●●

●

●

●

●
●

●

●

●

●

●

●

●●
●
●

●●

●

●●●
●
●
●

●

●

●●

●

●

●●
●
●
●
●
●

●
●

●
●

●●●

●

●
●

●

●●

●

●
●●

●●

●●

●

●

●

●

●

●

●
●
●

●●●
●

●

●

●

●

●

●

●

●
●
●●
●●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●●

●●

●

●●●●●●

●

●
●

●

●

●●●

●

●

●●

●

●

●
●
●

●

●

●
●

●

●

●
●

●●

●

●

●
●

●●●

●

●●
●
●
●

●

●

●

●

●●

●●
●
●

●

●

●

●●
●

●

●●●

●

●●

●●

●

●

●
●●●

●●

●●
●●

●

●●●
●

●

●

●

●

●

●●

●
●
●

●

●

●

●●

●

●
●
●●

●
●
●●
●

●●

●

●

●

●

●

●●●

●

●●

●

●●
●●
●

●●
●

●

●●

●

●

●●

●

●●

●

●●
●

●●
●

●

●●●
●

●

●

●

●

●

●
●
●

●●
●

●

●
●

●

●

●
●●

●

●●
●

●

●

●

●
●
●

●

●

●●

●

●

●●

●

●●●●●●
●●
●

●

●
●
●●●

●
●

●

●●

●
●●

●●

●

●● ●

●

●

●●
●

●
●

●

●●●●●
●
●●●●●●

●

●●
●
●

●

●

●

●

●

●
●
●
●●

●
●

●

●●
●
●

●

●

●

●●

●

●●
●
●

●
●●
●
●●

●
●
●●●●

●

●

●

●●
●

●

●

●
●●●
●●

●

●●●
●●

●

●●

●

●

●

●●●

●

●
●

●

●● ●●
●
●
●●
●
●
●

●

●
●
●●●
●

●

●

●

●

●
●
●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●
●●●

●

●

●

●●●
●

●

●

●
●

●

●

●●

●●

●

●

●
●

●●●

●

●●

●

●●

●●

●
●

●

●●●●

●

●
●

●

●
●

●●

●
●

●●

●

●

●● ●●
●

●

●

●●

●

●●●

●
●●

●

●
●

●

●●

●

●

●

●

●

●●
●●●

●

●

●

●

●

●

●

●●

●

●●
●

●

●●

●●

●

●

●
●
●

●●
●
●
●

●

●

●
●

●●●
●
●●●

●
●
●

●

●●
●

●

●
●

●●●
●●●●●●●

●
●●●

●

●●●

●

●
●

●

●

●●

●

●
●●●

●

●

●●
●●

●

●

●

●
●●●
●
●

●

●●
●
●●●●
●

●

●

●

●

●
●●

●

●●
●
●

●●●
●
●●●●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●
●●●
●●
●●

●●●
●

●

●

●●● ●
●

●

●

●

●

●●

●

●

●

●
●

●

●●●●●

●

●
●

●

●

●

●●●●

●●

●●

●

●●●●●

●

●

●●●

●

●●●●

●

●
●●●

●

●

●●

●
●

●

●
●●
●●●●
●
●●
●
●

●

●

●●

●

●
●

●

●●●
●●
●●

●
●
●●

●

●
●●
●

●

●

●

●

●

●●●

●●●

●

●●
●

●

●

●

●●●●●●
●

●●
●●●●

●

●●

●

●

●
●

●

●
●
●●●
●
●●

●

●●●
●
●

●●

●
●

●

●

●

●●

●●

●
●

●

●
●
●●●
●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●●
●
●

●

●●
●
●

●

●

●

●●
● ●

●

●●
●●
●●
●●

●

●●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●●
●
●
●

●
●

●●●
●
●●●
●●

●

●●
●
●

●

●
●
●

●●
●●●●
●●

●●

●

●
●●●
●●

●

●●
●
●

●

●●●

●

●

●

●

●

●
●

●

●
●●

●

●● ●

●

●●
●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●
●
●●
●
●

●

●●●

●

●
●

●●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●●

●

●

●●●●●

●

●

●●
●
●●
●●

●

●
●
●
●●

●

●
●

●

●●●●

●

●

●

●

●
● ●

●

●

●

●

●●

●

●

●
●

●●●●●
●
●

●

●
●

●

●
●

●●●
●

●

●

●

●●●●●
●

●

●
●●●
●●●●
●
●●

●

●
●

●●●

●

●●

●

●

●●

●
●

●
●

●

●●

●

●

●

●●

●

●
●●

●
●

●●
●
●

●

●

●
●

●

●
●
●
●
●
●

●

●

●

●

●

●●●
●
●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●●
●

●

●●
●
●

●
●

●●
●
●

●●

●●
●

●

●●

●

●

●

●
●

●

●

●

●●
●
●

●

●

●

●

●

●

●●●

●

●
●
●
●

●

●

●

●●●●●●●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●●
●

●

●

●

●●

●

●

●

●
●●

●

●
●●●●
●
●●●

●

●●
●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●
●

●●●●
●●●
●
●

●●

●

●

●

●
●●●

●

●

●
●●
●
●●
●
●●

●●

●

●
●

●

●

●

●●
●
●●
●●●

●

●
●
●
●

●

●

●
●●

●

●

●●
●

●

●

●

●

●

●

●
●
●
●
●●

●

●●●

●●
●

●

●●

●●

●

●

●

●

●

●

●
●

●
●
●
●
●●●●●●●
●
●●●

●

●●
●

●

●●

●
●
●
●●

●●●

●
●

●

●
●

●

●●
●
●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●
●

●

●
●●

●

●

●

●●

●

●

●

●
●

●

●●●●

●

●
●

●

●

●●●
●●

●

●

●●●●

●
●

●●
●

●

●

●●
●
●●

●

●

●

●

●●

●
●

●
●●

●

●●●●
●●

●

●●●●

●

●●●●●
●●●●
●

●

●●

●●

●

●●

●

●

●●●

●

●
●

●

●

●

●

●

●

●●●●●

●

●

●

●●●●●
●

●

●
●

●
●●

●

●●●●
●
●●

●

●

●●

●

●●

●
●

●●

●
●●

●

●●

●

●

●

●
●
●●

●

●
●

●●
●

●

●
●●●●

●

●●
●

●

●●●●

●

●●
●●
●●●●●

●

●
●●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●●●
●

●●

●

●

●●

●●

●
●

●●●●
●
●
●

●

●
●

●

●

●

●

●

●
●●●●●
●

●

●

●

●

●

●●

●
●
●

●
●

●

●

●

●

●

●●

●

●

●●●

●

●

●●
●
●●●●

●

●

●
●●

●

●

●

●●●●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●●●
●
●●●

●

●●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●
●

●

●●●

●

●
●●

●

●
●
●●●
●●●

●

●● ●
●
●

●

●

●

●
●●●●●

●

●

●
●
●

●

●●

●

●

●

●

●
●●●●
●
●

●

●
●●●

●

●
●
●●●
●

●

●●

●

●

●●●
●
●
●

●

●
●●
●
●●

●

●●
●

●●

●

●●

●

●

●
●●●●

●●

●

●
●●●●

●●●

●

●

●

●

●

●●
●
●

●

●

●

●●●●●●●●

●

●
●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●●●

●

●●●

●

●
●
●

●

●●●

●

●

●

●●
●

●

●

●

●
●

●●●●●

●
●

●
●
●

●

●●
●●

●
●

●●●

●

●●

●
●

●●

●
●

●●●●●●●●

●

●

●●●●
●●
●
●
●
●

●●
●
●●●●

●

●●●

●

●●

●

●

●

●●
●
●●●

●
●

●

●●
●

●

●●

●
●

●

●●
●●●

●
●

●

●●

●

●
●●
●●

●

●

●

●

●●

●

●●●

●

●
●

●

●

●●●●

●

●
●

●

●

●

●●●●
●
●

●

●

●
●
●

●●
●
●

●
●●

●

●
●
●

●
●●
●●

●

●

●

●

●

●●●

●

●
●●
●●

●

●●
●
●●

●

●●●●
●●
●
●

●

●
●●

●

●

●
●
●●●
●
●
●
●

●

●

●

●
●●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●●
●

●

●●

●

●

●

●

●
●

●

●
●

●●
●

●

●
●
●

●

●●
●
●●

●

●

●●

●
●●

●

●

●

●

●●

●●
●
●

●
●

●●●●
●

●

●
●
●

●

●
●

●

●

●

●
●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●
●
●●●

●

●

●
●●

●●●●

●

●

●

●●●

●

●●

●

●●
●
●
●
●
●

●●

●
●●

●

●

●
●

●●
●
●

●

●

●

●
●●
●●●

●

●

●

●

●●

●

●

●

●
●
●
●
●

●
●●
●

●

●●●
●

●

●

●

●
●
●

●
●
●●●

●

●

●●●

●

●

●
●

●●

●

●

●●

●●●●

●

●●

●

●

●

●

●
●
●

●

●●

●●

●

●

●
●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●●

●●
●
●●●

●

●●
●●●

●

●●

●

●●●●

●

●

●

●
●●●●●
●

●

●●
●

●
●

●●●●●

●
●

●

●

●

●

●
●
●●●

●

●
●
●

●

●
●

●

●

●

●

●

●●

●

●●

●

●●

●●●

●
●
●●●

●

●

●●
●

●

●
●

●●

●

●

●
●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●
●

●
●●
●●

●

●

●

●●

●

●

●

●

●
●
●

●●●

●

●●●●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●●

●

●

●

●

●

●
●●●
●

●

●

●

●

●

●

●

●
●

●●●●● ●●●

●

●

●●

●

●

●

●

●
●
●

●

●●●●●
●
●
●
●●●

●●

●●●

●

●●

●

●

●●●●
●●

●

●

●●●●●

●

●●

●

●

●

●●
●
●
●

●

●●

●

●●●●●●
●●●
●
●●●●

●

●●

●

●
●

●
●

●

●

●

●

●
●●●

●
●
●
●
●●

●

●

●
●●●
●

●
●

●

●●●
●
●●

●

●

●

●●

●

●

●●●
●●●

●

●

●

●

●●
●●●
●
●

●

●

●
●

●●

●

●
●
●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●●

●

●
●
●
●
●

●

●

●

●

●●●

●

●●
●
●●
●

●

● ●●
●

●
●

●

●

●

●

●

●
●●
●●●

●

●

●

●

●●●
●●●

●

●

●

●

●●

●
●●

●

●
●

●●●●●

●
●

●

●

●

●●
●
●

●
●

●

●

●

●●

●

●●●
●
●

●

●

●●

●

●
●

●

●

●

●
●●

●

●

●

●●

●
●

●

●

●

●

●

●●●
●●
●
●

●

●● ●●●●
●
●
●●
●

●

●●

●

●●
●
●●●●●●

●
●

●●

●●

●

●

●
●

●

●●
●●

●

●
●●●●

●

●

●
●

●

●

●

●

●
●
●
●
●

●

●

●

●
●●

●

●●
●
●
●●
●●

●

●
●●●●
●
●

●

●

●

●
●●

●●

●
●
●
●

●

●●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●

●
●

●

●

●

●
●
●
●

●●●

●●

●

●

●

●
●●●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●
●●
●
●

●

●
●

●

●

●

●

●

●●●

●

●●

●

●
●
●

●

●

●

●

●
●●

●

●

●
●●
●●
●

●

●

●

●

●

●

●●

●

●

●
●●
●●●
●
●

●

●

●
●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●●
●
●
●

●

●
●
●

●

●

●●●

●

●●

●

●

●
●
●
●●
●●
●●

●

●

●
●

●

●

●

●●

●

●●
●
●
●
●●●●●

●
●●
●
●●
●
●●●●
●●

●

●

●●●●
●
●●
●

●

●
●●●●

●

●

●

●

●●
●

●
●●
●●
●
●
●●
●●

●

●●

●

●

●
●
●
●●●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●●

●
●●

●

●

●

●

●

●●
●
●

●●●
●●●●
●

●

●●
●

●

●

●●●●
●
●
●

●

●

●

●

●
●

●

●●

●●
●●●●●
●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●
●

●

●●●
●
●
●●
●

●

●●

●
●
●
●

●

●●
●●●●

●

●●
●

●

●●●

●●
●
●
●
●
●
●

●

●●●

●

●●

●

●●

●

●

●

●

●

●●
●

●

●●
●●
●

●

●
●●

●

●
●●●

●●

●●

●

●

●

●

●

●●
●●●

●

●

●●
●

●
●

●

●
●

●

●

●

●●
●●
●

●

●●
●

●

●●●
●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●●●●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●●●
●
●
●
●

●

●
●

●

●
●
●

●

●
●

●

●●

●

●
●●●●●●

●

●●

●

●

●

●●●
●

●

●

●

●

●

●

●●●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●
●●●

●
●
●
●

●
●

●
●

●
●●
●●

●

●●●

●

●

●

●
●
●●●

●

●●●
●

●

●

●

● ●

●

●

●●

●●

●
●●

●

●
●

●●

●

●

●

●

●●

●

●

●●●
●

●
●●
●
●

●

●●●

●

●

●

●

●●●

●

●

●●

●●

●

●

●●

●
●●●

●

●●
●●●
●
●●
●

●●

●

●
●

●

●

●

●●●

●●●

●

●●
●

●
●

●●●●
●

●

●●

●

●

●

●●

●

●
●

●
●
●●●

●

●●

●

●●●
●

●●

●
●
●●●●●
●
●
●●
●

●

●

●

●●●
●●●●
●
●●●

●
●
●●

●●●●●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●
●●

●

●
●●
●

●

●

●●

●

●
●

●
●

●

●

●●
●●
●●
●
●●●●

●

●

● ●
●

●

●
●

●

●
●

●●

●

●

●●
●
●

●●

●●
●
●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●
●
●●●
●●

●

●

●

●●●●●

●

●●●●
●
●

●

●

●
●

●

●

●●

●●

●

●

●
●

●●

●

●
●
●
●
●

●

●
●●

●

●
●

●●

●●

●

●

●●
●●
●

●

●

●●●

●
●

●●

●
●
●

●

●

●

●

●

●

●

●
●
●●
●
●
●
●●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●●
●●●●

●

●●

●

●

●

●

●

●

●●

●

●

●●●

●

●
●

●

●
●
●●●

●

●●●
●●
●●●

●

●

●●
●

●
●●

●

●

●

●
●

●

●

●●● ●
●

●

●

●

●●

●

●●
●●

●
●

●●●●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●
●
●
●●

●

●●

●
●

●

●
●●
●
●●
●

●

●

●

●●

●

●

●

●
●
●●
●●●

●●

●

●

●

●

●

●●
●
●
●

●

●

●

●
●●●●●

●

●●

●

●

●

●

●

●●

●

●●●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●●●

●

●●

●

●

●

●

●

●

●
●
●

●

●●●●●●●

●
●

●

●

●

●●

●
●

●

●

●

●●●●●●

●
●●
●

●

●

●

●

●

●●●●

●

●

●

●●●

●

●
●

●
●

●

●

●
●
●

●

●

●

●

●
●

●

●
●
●

●

●

●

●●●●
●●
●●

●

●

●●

●●

●
●
●
●

●●
●

●

●

●

●

●

●

●

●●●●

●

●●
●●
●

●

●

●

●
●
●

●

●

●●●

●●

●

●
●

●
●
●

●
●
●●●
●

●

●

●

●

●
●
●●

●

●

●

●●

●

●

●

●
●
●

●

●

●
●
●●

●

●

●
●

●●

●

●

●●

●

●

●

●
●●
●

●●

●

●

●●

●

●

●

●●
●

●

●
●

●

●
●

●

●
●

●

●

●●

●
●

●

●
●

●

●

●

●●
●

●●●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●●
●

●

●
●●●
●

●

●

●

●

●

●
●●

●
●

●
●
●●

●

●

●
●
●

●

●
●

●●●●
●●
●

●
●

●

●

●

●

●

●●●●●

●
●

●●

●
●●

●

●

●
●

●

●
●
●
●●●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●
●●●
●
●
●

●
●

●

●●
●●

●
●
●
●●

●●

●●

●

●

●●
●
●
●●

●

●

●

●

●●

●

●●●●
●
●●

●

●●●
●●
●
●

●

●

●

●

●

●

●●

●

●
●●
●
●●

●

●●

●

●
●

●

●●●
●

●●

●

●●

●●
●
●●

●

●

●

●

●

●

●●
●●
●

●

●

●
●

●
●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●●●●●●
●●●●●●●
●
●

●

●●●
●
●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●●
●
●

●
●

●

●●
●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●●●
●

●

●

●
●
●●●●●

●

●●

●

●

●●
●

●

●

●●●●

●

●●

●

●

●

●

●

●●●

●

●●

●
●●

●

●
●

●●
●
●●●

●

●●●●
●

●

●

●

●●
●●
●●●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●
●

●●

●

●

●
●

●
●

●●●

●

●

●●
●●
●

●

●

●●●

●

●

●

●
●●

●

●●●

●

●

●
●
●
●●●

●

●●

●

●
●
●

●
●
●

●

●●●●
●
●

●

●
●
●●

●●

●●
●

●

●●●

●

●

●

●

●
●●●
●●●
●

●

●

●●●

●

●●●

●

●

●

●

●

●●●
●

●●
●●●●●●

●

●
●●

●

●
●●●

●

●●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●
●

●

●
●
●●

●

●
●
●

●

●

●
●

●
●

●

●

●
●
●

●
●

●
●

●

●

●
●

●

●●

●

●

●●
●
●

●

●

●
●

●●
●
●

●

●

●

●

●
●
●

●
●

●
●

●

●

●

●
●●

●●

●●

●
●

●●

●

●

●

●
●

●

●

●●●●
●

●

●●●

●
●
●

●

●●●
●

●
●●

●

●●●●
●
●

●

●●

●
●
●●
●●

●

●
●

●

●

●

●

●

●

●
●
●●●

●

●

●
●

●●

●●

●

●●

●

●

●

●●

●

●
●
●

●

●

●

●●●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●●●●●

●

●
●

●

●

●

●●●

●

●●●

●

●●●

●

●

●

●

●

●
●

●

●●
●
●●
●

●

●

●
●
●

●

●

●●

●

●

●

●
●

●

●
●●●
●

●

●●
●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●●

●●

●

●

●

●

●● ●●●

●

●
●
●

●

●●
●●

●

●

●
●

●

●
●●
●

●

●
●
●
●

●

●

●

●
●
●●
●
●●●

●●

●

●

●●●
●
●●

●
●

●

●

●

●●

●

●

●

●
●
●

●

●
●
●
●

●

●

●
●

●●●

●

●
●●●

●

●●

●

●
●

●

●

●

●●

●

●
●
●●
●
●●

●●

●
●

●

●●

●
●●
●

●●
●●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●●

●●
●

●

●
●

●
●●●●
●

●

●

●●●

●

●

●

●●●●
●●
●

●

●●●
●
●
●

●

●●
●●

●

●

●

●
●

●

●●
●

●●

●

●

●

●

●●

●●●
●

●

●
●

●

●
●

●

●
●●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●●●●●
●●
●

●

●●

●

●●
●
●
●

●

●

●●●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●
●
●

●

●●●●

●

●

●

●●
●
●●
●
●
●
●
●

●

●

●

●

●

●

●●
●●
●
●
●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●
●

●

●
●●●●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●●

●
●

●
●

●
●

●

●●●

●

●●

●

●●
●

●

●

●●●●●

●

●●●

●

●
●
●

●

●

●●

●

●
●● ●

●

●

●

●

●

●

●

●●●●
●
●
●

●●
●
●

●
●

●

●

●

●●
●
●

●

●●

●

●

●

●
●
●

●

●●●●

●

●●●●●
●

●

●

●
●
●
●

●●●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●
●

●●

●

●●

●

●

●
●
●●

●

●
●
●●
●

●●
●
●

●

●
●● ●●

●●●

●

●

●

●●
●
●

●

●●●●
●
●●

●

●

●

●
●

●●
●
●●

●

●

●
●
●

●

●●●

●

●●●

●

●

●●

●

●

●

●●

●

●

●

●●
●●
●
●

●

●

●

●

●

●
●

●
●●
●

●

●

●
●

●●

●

●

●

●●●

●

●●
●●

●

●●●

●●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●
●

●

●

●
●
●
●

●

●
●●●

●

●
●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●
●●●
●●●
●
●
●●

●

●

●
●

●

●

●

●
●

●
●
●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●
●

●
●

●●
●
●●

●

●

●

●

●●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●●●

●

●●●●

●

●●

●

●
●
●●●●

●

●●●●

●

●

●

●●●●

●●●
●●●

●
●●●
●
●●
●

●

●●
●

●

●

●

●
●
●●
●

●

●

●●

●

●●●

●

●
●

●

●
●

●

●
●

●

●

● ●

●

●●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●
●●●

●

●

●

●●●●

●

●●●●
●

●

●

●

●

●

●
●
●
●

●

●
●●

●

●●●
●
●
●
●
●

●

●
●
●
●

●

●

●
●

●●
●

●

●

●
●

●

●

●
●
●●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●
●
●
●●
●
●●●

●

●●

●

●
●●

●●
●

●

●

●
●

●

●
●

●
●
●●

●

●

●

●

●●●

●

●

●
●●
●

●

●

●

●
●

●

●
●●●

●

●●●
●
●
●
●

●

●

●

●●●

●

●●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●●

●●●●

●

●

●

●

●●

●

●
●
●
●

●

●●

●

●

●

●●●●●●

●

●●●

●

●

●

●
●●●

●

●

●

●

●●
●
●●

●

●

●

●

●

●

●
●

●

●

●●
●
●

●
●

●●
●
●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●
●●

●

●

●

●
●
●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●●

●

●●●

●

●

●

●

●
●

●
●

●

●●
●●
●
●●●●●●
●

●

●●
●

●
●
●

●●●
●
●

●●

●

●●●●

●
●●

●

●
●●

●
●
●
●

●

●

●

●●

●

●
●●

●

●

●

●●

●

●
●
●
●
●
●

●

●●

●

●

●

●

●
●
●
●

●
●

●

●●
●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●●●●

●

●●●
●
●●

●

●●●●

●

●

●

●
●

●
●●

●

●●●

●

●●●

●

●

●●●●

●

●

●
●●●

●
●●●

●

●

●●

●

●

●●●

●

●●
●
●
●

●●●

●●●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●
●●●
●
●

●●

●

●
●●●●

●

●
●●●
●●

●

●

●
●●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●
●

●●
●

●

●

●

●
●●

●

●●

●

●
●
●●

●

●●

●
●

●

●●

●●

●●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●
●

●

●

●●

●

●
●

●

●
●
●
●
●

●

●

●●
●

●

●●●

●

●
●●

●

●

●●
●●

●

●
●
●●●

●

●

●

●
●

●

●
●
●

●

●●

●

●
●●
●

●●●●
●●

●

●

●

●

●
●●

●

●●

●

●
●

●

●

●

●

●

●●●●

●

●
●

●●

●

●
●
●● ●

●
●●

●

●●●

●●
●

●●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●●●●●
●
●●

●

●●
●
●
●●
●●

●

●●
●
●●●●

●●

●●
●●●
●●●●
●
●
●

●
●
●●●●

●

●●●●●●
●
●●
●
●
●●
●●

●

●
●

●

●●●

●
●

●
● ●●

●

●
●●●●
●●
●
●●

●

●●●●●●●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●●
●

●
●

●
●

●

●●

●

●

●

●

●●
●

●

●

●●
●

●
●
●

●
●
●●

●

●

●

●

●●●
●●●

●

●●
●

●●●

●

●●●

●

●●

●●
●
●●

●

●

●
●

●

●

●
●
●

●●

●

●●

●

●
●
●

●

●
●

●

●

●

●●●●
●

●
●
●

●

●●

●

●

●●
●
●●
●●
●

●
●

●
●
●●

●

●

●

●●●
●
●

●

●
●

●
●●●

●

●
●●

●●

●

●●●
●
●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●●●

●

●

●

●

●
●●●●

●

●

●

●

●●

●

●●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●

●●

●

●

●
●

●
●

●●
●
●

●

●
●
●●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●●

●

●
●
●●

●

●
●
●●

●

●
●

●●●●●●●●

●

●●
●

●

●●
●●

●

●

●●●

●

●

●

●

●

●
●●●●

●

●
●

●

●●●

●

●

●

●
●

●
●

●

●
●
●

●

●
●
●●
●
●
●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●●●●

●

●●

●

●
●

●●●

●

●●
●
●

●
●●●

●●
●●

●●

●

●

●

●●

●

●
●

●

●

●●

●

●

●●

●

●●

●

●●
●
●
●

●

●
●●●

●

●

●

●

●

●
●

●

●●

●

●●
●●
●●●●

●●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●●

●●●
●●
●●●
●
●●●●●●●●
●
●
●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●●●●●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●●

●
●
●
●

●

●

●

●
●●●
●

●

●●

●

●

●

●
●
●●

●

●●

●●●●
●●
●
●

●●●
●
●

●

●

●●●

●

●●●●●

●

●●●●●●●●

●

●

●
●

●

●

●

●

●
●

●

●
●●
●

●
●

●
●●

●

●

●

●

●

●

●●
●
●●

●

●

●

●

●●
●

●
●

●

●●
●

●

●●●●●●

●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●
●
●

●

●●

●

●●
●●
●●

●

●

●

●

●
●

●

●

●

●●●
●●

●

●●●●●

●

●

●

●●

●

●

●

●●

●

●●●
●
●

●

●●

●

●

●
●
●●●

●

●●●●●

●

●
●

●

●

●

●
●

●

●
●

●●●
●

●●●

●

●

●

●●●●●

●

●

●

●

●
●

●

●●●●●●●
●●
●

●

●●●●

●

●

●

●

●

●
●
●

●

●●●●●

●

●

●●
●

●

●●●●●●

●

●

●

●●

●

●●●
●●

●

●

●●
●
●

●

●

●●
●

●

●

●●

●
●●

●●

●●

●

●

●●

●●●

●

●

●

●●●
●

●

●●●

●●

●

●●

●

● ●
●
●

●

●

●

●

●●

●●

●

●

●●
●●●●●●●

●
●
●

●

●

●

●●●

●

●●

●

●

●

●●

●

●
●

●

●●●●

●

●
●
●
●

●

●
●

●

●●●

●

●

●

●●●●●●

●

●
●●
●●●
●

●

●

●
●
●

●

●
●●

●●●●

●●

●

●

●

●

●●

●
●

●

●

●●

●

●
●●

●

●

●●

●

●●

●

●●
●

●
●
●
●
●

●

●
●

●●●

●

●
●
●●●●●●

●

●●●

●

●

●
●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●●●
●
●

●

●

●

●

●

●

●●

●

●

●
●

●●

●●●

●

●

●

●●
●●

●●

●
●●

●
●

●

●

0 20 40 60 80 100

0.
00
0

0.
01
0

0.
02
0

frequency

R
2

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 3, 2020. ; https://doi.org/10.1101/2020.04.02.021865doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.02.021865
http://creativecommons.org/licenses/by-nc-nd/4.0/

the range (1…100)/1000. Each black dot represents one vector of genotypes. y-axis: squared
correlation 𝑅!, x-axis: allele frequency. Red line is the smoothed moving average of 𝑅!.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 3, 2020. ; https://doi.org/10.1101/2020.04.02.021865doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.02.021865
http://creativecommons.org/licenses/by-nc-nd/4.0/

Practical Implementation Issues
We tested our encryption scheme on 10,640 individuals from the CONVERGE study of major
depressive disorder (Cai et al. 2017), and on the smaller mouse dataset of 1,329 individuals
and 19,877 SNPs from (Nicod et al. 2016) for platelet counts on mouse chromosome 11,
that are publicly available as described in Supplementary Data 1. We use the mouse data
for the majority of the analyses in this study so that users may replicate our analyses by
downloading the data and code.

HEGP leaves the calculation of genetic association unchanged, so should analyse ciphertext
in the same execution time as with plaintext. Software that runs off genotype dosage data
should run altered since the rotated data are dosage-like. HEGP cannot deal with missing
data, and which should be imputed first. Another restriction is that it is impossible to
analyse subsets of the individuals (eg all those of one sex) once they have been encrypted,
unless each subset was encrypted separately. However, if a covariate specifying sex is also
encrypted then it would be possible totake sex into account when fitting the model.

The simulation of very large orthogonal keys (e.g. for hundreds of thousands of individuals)
might also present technical difficulties. A simple solution would be to first permute the
rows of 𝐷, ad then group them into a maximum of about 1,000 − 10,000 individuals per
group, sample an independent orthogonal key to encrypt each group separately, as
described above. The initial permutation would enhance the security of the data by
separating potentially similar individuals. [Permutations are also orthogonal
transformations, although in isolation they are useless encryptors as they rearrange
phenotype and genotype identically.]

For the human data, we encrypted the phenotype and genotype dosages in 10 groups of
1000 individuals plus a final block of 664. We computed association across 160k SNPs using
both unencrypted and encrypted dosages. The correlation between the logP values of the
tests of association was 0.999. The average absolute difference between the logP values
was 0.002. All calculations were performed in R using standard matrix arithmetic. Bearing in
mind that usually only the first two decimal places of a logP value are of interest when
interpreting the significance of genetic association, we conclude the numerical inaccuracies
introduced by the encryption are negligible.

For the mouse data the mean absolute difference in logP values for simple association was
6.406e-03, with a maximum of 3.775e-02. We also implemented the mixed model (Equation
13) to confirm that heritability estimates and association p-values are numerically stable
after encryption. For the mixed model the mean absolute difference was 3.141e-03,
maximum 2.635e-02. The mixed-model heritability estimated from the unencrypted data
was 0.02534315, compared to 0.025049 after encryption, a discrepancy of 1.1%. We
conclude that HEGP does not noticeably affect GWAS results.

Quantile Normalisation to Improve Security

Figure 1D shows the distribution of ciphertext dosages for a given SNP is almost Gaussian.
This suggests quantile normalising the ciphertext might improve security. In this scheme,
the values in each column of 𝑭 are first ranked and then replaced by their corresponding

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 3, 2020. ; https://doi.org/10.1101/2020.04.02.021865doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.02.021865
http://creativecommons.org/licenses/by-nc-nd/4.0/

standard Normal quantiles. After quantile normalisation the the columns of 𝑭 contain
different permutations of the Normal quantiles of 1 (𝑛 + 1)…𝑛 (𝑛 + 1)⁄⁄ 	that respect the
rank orders of the original ciphertext for each column, applying a small non-linear
perturbation to the encrypted genotypes, 𝑭 → 𝑭𝒒. Attacks that exploit non-normality in the
encrypted data would be frustrated, potentially increasing security. A further refinement
might iterate an alternating sequence of independent rotations and quantile normalisations.

We evaluated the effects of quantile normalisation on the ciphertext mouse genotypes and
platelet phenotypes. First, the mean absolute discrepancy for mixed-model association logP
values for the plaintext vs HEGP ciphertext was 0.003141, (maximum 0.0263), and the
overall correlation of logP values was 0.999: a close agreement. The mean absolute
difference between the plaintext and ciphertext dosages (i.e. L1 norm) ⟦𝑯 − 𝑷𝑻𝑭⟧ was
3.561 × 10(E, maximum 1.773 × 10(Y. Thus HEGP alone induces only negligible reductions
in accuracy of association statistics and genotypes. However, after encryption and quantile
normalisation, the mean logP discrepancy rose slightly to 2.402 × 10(!, maximum
2.257 × 10(1, but the correlation was still over 0.99. Similarly, the estimated heritability
changed 1.3% from 0.02472 to 0.0250. However, the mean absolute error in the decrypted
quantile-normalised standardised genotype dosages ¶𝑯 − 𝑷𝑻𝑭𝒒· rose to 0.03585 (i.e. mean
discrepancy 18%), maximum 0.06980.

Our interpretation of this observation is that plaintext dosages correspond to a very special
choice of coordinates where the standardised genotype dosages for a SNP are concentrated
on three modes depending on the SNP allele frequency. Any random rotation of the
genotypes produces coordinates such that the ciphertext dosages closely resemble a
Gaussian sample. After rotating into such a coordinate frame it is then possible to make
small non-linear perturbations that have little effect on association statistics or heritability
but degrade the decryption back into the true coordinate system.

We also explored adding further security by quantile normalising and rounding the
encrypted dosages. As would be expected, there is a trade-off between the number of
significant digits retained after rounding and the accuracy of association and decryption.

Logistic Regression

So far we have considered quantitative traits with Normally distributed errors, analysed in a
mixed model framework. Whilst case-control studies (ie where the phenotype 𝑦 ∈ {0,1})
are often analysed as if they were quantitative traits, under some circumstances it is
preferable to use logistic regression, where

Pr(𝑦# = 1) = 𝑝# =
𝑒Z[\U%"]"^#

1 + 𝑒Z[\U%"]"^#
(32)

where A𝑿𝜶 + 𝑔$𝛽$B# is the 𝑖th element of the vector 𝑿𝜶 + 𝑔$𝛽$. Write 𝑿𝒋 = [𝑿|𝒈𝒋] and
𝜶𝒋 = [𝜶|𝛽$]. The likelihood for the data at SNP 𝑗 is

log 𝑙 =¼log(𝑝#
`#(1 − 𝑝#)1(`#)

#

+ 𝐶(𝒚)

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 3, 2020. ; https://doi.org/10.1101/2020.04.02.021865doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.02.021865
http://creativecommons.org/licenses/by-nc-nd/4.0/

= 𝒚𝑻𝑿𝒋𝜶𝒋 −¼log ¾1 + 𝑒Z𝑿𝒋𝜶𝒋^#¿
#

+ 𝐶(𝑦)

= (𝑷𝒚)𝑻A𝑷𝑿𝒋B𝜶𝒋 −¼log ¾1 + 𝑒Z𝑿𝒋𝜶𝒋^#¿
#

+ 𝐶(𝑦) (33)

for any orthogonal matrix 𝑷, and where 𝐶(𝒚) is a function of 𝒚 only that can be ignored
when maximising the likelihood. Thus, the likelihood function comprises two components,
namely 𝒚𝑻𝑿𝒋𝜶𝒋, which is invariant under orthogonal transformation, and ∑ log ¾1 +#

𝑒Z𝑿𝒋𝜶𝒋^#¿, which is not invariant, instead transforming like ∑ log ¾1 + 𝑒Z𝑷𝑿𝒋𝜶𝒋^#¿# . However,
only the first component involves both the dependent and independent variables. This
component is shared with the log-likelihood for the Normal linear model, which is why
fitting a linear model to case-control data generates p-values resembling those from logistic
regression. It should be clear that case-control data (i.e. 𝑦# ∈ {0,1}) is no longer of the same
form after an orthogonal transformation, so strictly speaking the likelihood no longer
represents a logistic model after transformation. Nonetheless we can attempt to estimate
parameters by maximising the transformed likelihood (Equation 33).

We fitted the logistic log-likelihood model to simulated SNP data, using untransformed and
orthogonally transformed data in order to assess the change in maximum likelihood
parameter estimates under transformation. We found that the estimates changed
considerably and therefore orthogonal encryption is not homomorphic for logistic
regression, for which we therefore recommend methods such as (Wang et al. 2015).

The Mixed-Model Linear Transformation as an alternative Encryptor

Are any non-orthogonal transformations suitable for homomorphic encryption? The mixed-
model transformation 𝐴(1 shares some, but not all, of the invariant properties of the
orthogonal group. If we set

𝒛𝑨 = 𝑨(𝟏𝒚,𝑾𝑨 = 𝑨(𝟏𝑿, 𝑭𝑨 = 𝑨(𝟏𝑭, 𝒇𝑨𝒋 = 𝑨(𝟏𝒉𝒋 (34)

Then the Var(𝒛𝑨) = 𝑰 and the log-likelihood transforms thus:

−2 log 𝑙 = A𝒚 − 𝑿𝜶 − 𝒉𝒋𝜷𝒋B
𝑻𝑽(𝟏A𝒚 − 𝑿𝜶 − 𝒉𝒋𝜷𝒋B + 𝑛log|𝑽|

→	A𝒛𝑨 −𝑾𝑨𝜶 − 𝒇𝑨𝒋𝜷𝒋B
𝑻A𝒛𝑨 −𝑾𝑨𝜶 − 𝒇𝑨𝒋𝜷𝒋B (35)

Thus the log-likelihood is preserved so we can extract the mixed-model GWAS p-values as
before. Moreover, 𝑨(𝟏 has 𝑛! free parameters, compared to 𝑛 (𝑛 − 1) 2⁄ for 𝑷, so the
decryption problem is presumably harder. Furthermore, it is easily seen that 𝑨(𝟏 may be
replaced by 𝑷𝑨(𝟏 for any orthogonal 𝑷 making the decryption harder still. However, there
is some loss of information: It is no longer possible to estimate the variance components
𝜎%!, 𝜎&! nor the heritability ℎ!. Furthermore, a federated analysis along the lines described
above would not give exactly the same p-values as would orthogonal transformation
followed by a mixed-model transformation applied to the combined dataset, because each
component study has been transformed separately without guaranteeing the federated

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 3, 2020. ; https://doi.org/10.1101/2020.04.02.021865doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.02.021865
http://creativecommons.org/licenses/by-nc-nd/4.0/

transformed GRM is also the identity; the structure of the federated variance matrix will be
of the form

𝑽𝑪 = Á
𝑰𝟏 ? ?
? 𝑰𝟐 ?
? ? 𝑰𝟑

…

… …
Ã (36)

Lastly, linkage disequilibrium between the SNPs is no longer conserved:

𝑭𝑨𝑻𝑭𝑨 = 𝑯𝑻(𝑨(𝟏)𝑻𝑨(𝟏𝑯 = 𝑯𝑻𝑨(𝟐𝑯 ≠ 𝑛𝑳 (37)

(using the fact that 𝑨(𝟏 is symmetric).

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 3, 2020. ; https://doi.org/10.1101/2020.04.02.021865doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.02.021865
http://creativecommons.org/licenses/by-nc-nd/4.0/

Discussion: A Community Challenge

HEGP has many desirable properties for quantitative genetics. It preserves linkage
disequilibrium between genetic variants, and key association statistics including heritability
between variants and phenotypes, while obscuring relationships between individuals.
However, we do not yet fully understand when HEGP is cryptographically secure. Where
private variants are available, decryption is straightforward. While it is simple to remove low
frequency variants and therefore protect against this weakness, the larger question of
security remains. We have sketched out several potential attacks but so our investigations
have not found a workable method. To settle this question, one would need either to find
an efficient inversion algorithm - perhaps a version non-convex minimisation under
constraints(Bertsimas et al. 2010) - that recovers the correct genotypes accurately, or
alternatively to show there are too many incorrect “genotype-like” decoy solutions far from
the true answer, and that therefore the problem is essentially non-invertible. It is likely that
the inversion problem might be solvable for small data sets, but much harder for larger
ones.

Orthogonal encryption also has the potential weakness that the key space is continuous; in
conventional crypto, a small change in the key used leads to a completely different
ciphertext. In contrast a small change to an orthogonal key leads to small changes in the
ciphertext. However, at this point, we know of no algorithm that can exploit this. We found
that transformed genotypes closely resemble samples from a Normal distribution, and so
can be replaced by exact Normal quantiles with only small effects on accuracy. Hence we
can certainly protect the ciphertext from attacks that rely on Non-Gaussianity.

The hardness of the inversion problem depends not only on avoiding private variants, but
on choosing a good key. Those sampled from the Steifel manifold work well at obscuring
correlations between plaintext and ciphertext genotypes, such that - as measured by mean
correlation across all sites - transformed individuals do not resemble the originals more
closely than do simulated individuals with matched allele frequencies. However, it is
possible that other measures of genetic similarity between individuals might not be
randomised to the same extent.

Thus more work is needed to determine precisely when random orthogonal keys are
cryptographically secure. We submit this problem as an open challenge to the community.

While HEGP lacks mathematical proof of security compared to normal crypto schemes, most
schemes are broken due to weaknesses in implementation (bad random number
generators, sidechannel attacks, etc.), not algorithm. HEGP has the advantage of an
extremely simple algorithm, and is probably immune to sidechannel attacks (and to an
extent social engineering and rubber-hose cryptanalysis).

Given our current knowledge, we claim that random orthogonal keys provide an encryption
scheme where it is - at the least - very difficult to recover individual genetic or phenotypic
data. This is at least equal to the level of security of a date shift of medical records which is
also not completely secure but makes it difficult for researchers to identify an individual if
they do not intend to do so.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 3, 2020. ; https://doi.org/10.1101/2020.04.02.021865doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.02.021865
http://creativecommons.org/licenses/by-nc-nd/4.0/

Thus, should an effective attack be discovered, orthogonal keys still offer “pretty good
genetic privacy” in the sense that they would prevent straightforward copying of
information about individuals’ genotypes. We argue that routine orthogonal transformation
of genotypes and phenotypes, in combination with existing legal protocols, would enhance
security, increase collaboration and data sharing, and thereby accelerate progress.

In summary, we have shown how to make a distinction between public information about
genetic architecture and allelic effects, and private information about individuals. This
general principle could be applied more widely. We mention two examples:

First, to the extent that medical records can be analysed in a linear modelling framework
with a suitable design matrix, orthogonal encryption offers a means to perform federated
analyses on orthogonally encrypted medical records.

Second, genetic improvement of crops and farm animals could be accelerated. Whilst some
germplasm and genetic variation data are in the public domain, commercial breeders are
developing new varieties and breeds and have extensive proprietary genetic and phenotypic
data that could be usefully shared using HEGP, so that alleles conferring a beneficial trait
could be discovered and published without revealing the genomes of proprietary
germplasm under development.

Such a move - towards the idea that an allele’s effects are public property whilst an
individual’s genotypes are private - is more important than the encryption mechanism used
to attain it.

Acknowledgments: We thank Rob Williams, the Genetics Editors and the anonymous
reviewers for valuable comments.

References

Anderson T. W., Olkin I., Underhill L. G., 2005 Generation of Random Orthogonal Matrices.

SIAM J. Sci. Stat. Comput. 8: 625–629.
Azencott C. A., 2018 Machine learning and genomics: Precision medicine versus patient

privacy. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376: 20170350.
Bertsimas D., Nohadani O., Teo K. M., 2010 Nonconvex robust optimization for problems

with constraints. INFORMS J. Comput. 22: 44–58.
Bonte C., Makri E., Ardeshirdavani A., Simm J., Moreau Y., et al., 2018 Towards practical

privacy-preserving genome-wide association study. BMC Bioinformatics 19: 537.
Cai N. N., Bigdeli T. B. T. B., Kretzschmar W., Lei Y., Liang J., et al., 2015 Sparse whole-

genome sequencing identifies two loci for major depressive disorder. Nature 523: 588–
591.

Cai N., Bigdeli T. B., Kretzschmar W. W., Li Y., Liang J., et al., 2017 11,670 whole-genome
sequences representative of the Han Chinese population from the CONVERGE project.
Sci. data 4: 170011.

Cho H., Wu D. J., Berger B., 2018 Secure genome-wide association analysis using multiparty

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 3, 2020. ; https://doi.org/10.1101/2020.04.02.021865doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.02.021865
http://creativecommons.org/licenses/by-nc-nd/4.0/

computation. Nat. Biotechnol. 36: 547–551.
Grigoriev D., Pasechnik D. V., 2005 Polynomial-time computing over quadratic maps i:

Sampling in real algebraic sets. Comput. Complex. 14: 20–52.
Hansson M. G., Lochmüller H., Riess O., Schaefer F., Orth M., et al., 2016 The risk of re-

identification versus the need to identify individuals in rare disease research. Eur. J.
Hum. Genet. 24: 1553–1558.

Hoff P. D., 2009 Simulation of the matrix Bingham-von Mises-Fisher distribution, with
applications to multivariate and relational data. J. Comput. Graph. Stat. 18: 438–456.

Hripcsak G., Mirhaji P., Low A. F. H., Malin B. A., 2016 Preserving temporal relations in
clinical data while maintaining privacy. J. Am. Med. Informatics Assoc. 23: 1040–1045.

Hyvärinen A., Oja E., 1997 A Fast Fixed-Point Algorithm for Independent Component
Analysis 1 Introduction. Most 9: 1483–1492.

Jagadeesh K. A., Wu D. J., Birgmeier J. A., Boneh D., Bejerano G., 2017 Deriving genomic
diagnoses without revealing patient genomes. Science (80-.). 357: 692–695.

Kang H. M., Zaitlen N. A., Wade C. M., Kirby A., Heckerman D., et al., 2008 Efficient control
of population structure in model organism association mapping. Genetics 178: 1709–
1723.

Nicod J., Davies R. W. R. W., Cai N. N., Hassett C., Goodstadt L., et al., 2016 Genome-wide
association of multiple complex traits in outbred mice by ultra-low-coverage
sequencing. Nat. Genet. 48: 912–918.

Pasaniuc B., Price A. L., 2017 Dissecting the genetics of complex traits using summary
association statistics. Nat. Rev. Genet. 8: 117–127.

Sim J. J., Chan F. M., Chen S., Tan B. H. M., Aung K. M. M., 2019 Achieving GWAS with
Homomorphic Encryption. ArXiV.

Tkachenko O., Weinert C., Schneider T., Hamacher K., 2018 Large-Scale Privacy-Preserving
Statistical Computations for Distributed Genome-Wide Association Studies. In:
Proceedings of the 2018 on Asia Conference on Computer and Communications
Security,, pp. 221–235.

Wang S., Zhang Y., Dai W., Lauter K., Kim M., et al., 2015 HEALER: Homomorphic
computation of ExAct Logistic rEgRession for secure rare disease variants analysis in
GWAS. Bioinformatics 32: 211–218.

Wen Z., Yin W., 2013 A feasible method for optimization with orthogonality constraints.
Math. Program.

Yang J., Lee S. H., Goddard M. E., Visscher P. M., 2011 GCTA: a tool for genome-wide
complex trait analysis. Am. J. Hum. Genet. 88: 76–82.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 3, 2020. ; https://doi.org/10.1101/2020.04.02.021865doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.02.021865
http://creativecommons.org/licenses/by-nc-nd/4.0/

