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Abstract 
 
Sharing human genotype and phenotype data presents a challenge because of privacy 
concerns, but is essential in order to discover otherwise inaccessible genetic associations. 
Here we present a method of homomorphic encryption that obscures individuals’ genotypes 
and phenotypes and is suited to quantitative genetic association analysis. Encrypted 
ciphertext and unencrypted plaintext are interchangeable from an analytical perspective. 
This allows one to store ciphertext on public web services and share data across multiple 
studies, while maintaining privacy. The encryption method uses as its key a high-
dimensional random linear orthogonal transformation that leaves the likelihood of 
quantitative trait data unchanged under a linear model with normally distributed errors.  It 
also preserves linkage disequilibrium between genetic variants and associations between 
variants and phenotypes. It scrambles relationships between individuals: encrypted 
genotype dosages closely resemble Gaussian deviates, and in fact can be replaced by 
quantiles from a Gaussian with only negligible effects on accuracy. Standard likelihood-
based inferences are unaffected by orthogonal encryption. These include the use of mixed 
linear models to control for unequal relatedness between individuals, the estimation of 
heritability, and the inclusion of covariates when testing for association. Orthogonal 
transformations can also be applied in a modular fashion that permits multi-party federated 
mega-analyses. Under this scheme any number of parties first agree to share a common set 
of genotype sites and covariates prior to encryption. Each party then privately encrypts and 
shares their own ciphertext, and analyses the other parties’ ciphertexts. In the absence of 
private variants, or knowledge of the key, we show that it is infeasible to decrypt ciphertext 
using existing brute-force or noise reduction attacks. Therefore, we present the method as a 
challenge to the community to determine its security. 
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Introduction 
 
With the growth of clinical genome sequencing, the numbers of individual human genomes 
available for analysis is expected to increase dramatically. To make the most of this resource 
we need to be able to share and analyse genetic and phenotypic data securely, and the 
conflicting demands of individual privacy and medical research have led to a spectrum of 
ways of sharing human genotype and phenotype data(Azencott 2018).  
 
In a small minority of studies, anonymised data (that is, where the names of individuals have 
been replaced by anonymous identifiers) are freely available for users to download and 
analyse. More usually - as for the UK BioBank and UK 10k project, and studies deposited in 
NCBI dbGAP and the EBI GPA - anonymised data are distributed only to researchers 
approved for access, and whose institutions demonstrate that their computer systems are 
secure, and where they agree not to redistribute the data. The host data archive then 
prepares datasets, encrypted with keys that may be specific to each data request, for 
transfer over a public network. After downloading the encrypted files within the firewall of 
the researcher's computer system, they are decrypted into plain text. The advantage of this 
approach is that the researcher then has complete access to the anonymised genotypes and 
phenotypes, with only the identities of the samples being redacted; there is then no 
technical limitation as to the genetic analysis that can be performed. However, this carries 
certain risks because a data breach cannot be ruled out, and even if the data are 
anonymised, comparing anonymous genotypes with those of genotyped relatives might still 
reveal genetic relationships(Hansson et al. 2016). In the clinical field, methods such as the 
random time-shifting of anonymised patient records(Hripcsak et al. 2016) offer some 
protection whilst not being cryptographically secure. 
 
At the other extreme, datasets are not distributed, but researchers may negotiate access to 
analyse the data on the host's computer system (as in the UK 100,000 genomes project), or 
the host may agree to perform an analysis on behalf of an external user. No direct access to 
the raw data is granted, but analyses are shared. In still other cases, only the summary 
statistics of Genome Wide Association Studies (GWAS) are distributed, typically comprising 
the regression coefficients and p-values of the genetic variants tested for association with 
the phenotype, for a federated meta-analysis. Such analyses combine sets of summary 
statistics from different GWAS, where participating laboratories have collected phenotypes 
and genotypes for different sets of subjects imputed at the same SNPs, and wish to test 
association across all studies(Pasaniuc and Price 2017). 
 
Another approach that is gaining traction is to encrypt genotypes and phenotypes in such a 
way that it is still possible to perform relevant computations on the data - possibly on a 
remote or cloud computer - without decrypting them, i.e., one can ‘throw away the key’. 
Homomorphic encryption (HE) are cryptographic systems that allow computations to be 
performed on encrypted data (the ciphertext) without decrypting, it and which yield the 
same answers as when the analogous computations are performed on the original data (the 
plaintext). It is an active area of research in computer science because it could make cloud 
computing much more secure, for both genetic and other applications. With HE, it is 
possible to build systems that store and process encrypted data, such that the data always 
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stays encrypted both in transit and at rest. Should a cloud service be compromised, any 
stolen ciphertext would be valueless.  
 
We define Homomorphic Encryption for Genotypes and Phenotypes (HEGP) to mean a 
transformation of the data that preserves the structure necessary for analysis whilst 
obscuring the individuals' identities, phenotypes and genotypes. Only the encrypted data is 
moved and shared between systems. HEGP is attractive because it enables testing genetic 
association across multiple data sets, in a federated mega-analysis based on the genotypes 
instead of a less powerful meta-analysis based on the summary statistics.  
 
In statistical genetics, a number of approaches to HEGP have been proposed. In(Jagadeesh 
et al. 2017) Yao’s protocol is used to identify rare Mendelian-type mutations shared 
between affected individuals. In(Cho et al. 2018) secure multi-party communication is used 
to perform GWAS using principal components to control for population structure. (Bonte et 
al. 2018; Tkachenko et al. 2018; Sim et al. 2019) describe cryptographically secure protocols 
for computing P-values for case-control studies using contingency table chi-squared tests.  
All these methods are thought to be cryptographically secure, but they limit the types of 
computation and data exploration possible. In particular, they cannot control for population 
structure using a mixed linear model, which is the current gold standard for quantitative 
trait analysis. In addition, they tend to be slower than analyses of un-encrypted data.  
 
Here we consider whether linear transformations of genotypes and phenotypes can be used 
as keys for homomorphic encryption. The first class of transformations we investigate are 
random orthogonal transformations. These leave invariant essential parts of the linear 
mixed model framework for complex trait analysis commonly used in quantitative genetics, 
preserving genotype correlations between Single Nucleotide Polymorphisms (SNPs) whilst 
obscuring those between individuals. They share the same likelihood functions as un-
encrypted data. Any standard mixed-model type of analysis (including estimating 
heritability) will produce the same output as with unencrypted data. We ask if an 
orthogonal key can be generated in a sufficiently random manner to make the data 
unrecognizable, and show that keys sampled from the Steiffel manifold have this property: 
however, not all orthogonal matrices make suitable keys. Once encryption has taken place, 
we show computations are essentially identical to those using unencrypted data.  They also 
can be extended to perform federated mega-analyses in a natural way. Their major 
drawbacks are that they are unsuitable for logistic regression, and that the method is not 
provably secure. In particular, individuals with private variants are not securely encrypted by 
orthogonal transformation. However, for variants present in multiple individuals we present 
arguments that suggest it would be very challenging to find the key and hence decrypt the 
data.  
 
The second type of linear transformation we consider is based on the mixed-model 
transformation. We show that this is likely to be more secure than orthogonal 
transformation but is more limited in its applications. 
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METHODS AND RESULTS  
 
Conceptual Overview 
 
 

 
 
Figure 1. Privacy in relation to genetic association testing. A: A phenotype vector 𝒚 (left) and 
genotype matrix 𝑮 (right) are represented as colours and shades of grey. Each row of the 
matrix is one individual and each column one SNP. Genotypes are encoded as imputed 
dosages clustered at the values 0,1,2 giving the numbers of minor alleles. A typical 
distribution of dosages for one SNP is shown to the right. The aim is to hide information 
about rows but make public the relationships between the columns and the phenotype. B: 
the same data after multiplication by an orthogonal matrix 𝑃 (a rotation represented by the 
curved orange arrow). The genotype dosages are now represented by a continuum of real 
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numbers. C: The distribution of dosages for a particular SNP (column of G), clustered around 
0,1,2. D: The distribution of the same dosages after orthogonal transformation by 𝑷 (black 
histogram) with the Normal distribution with same mean and variance superimposed in red. 
F: the Normal qq-plot for the data in D, showing the transformed dosages are very close to a 
Normal distribution. E: A cartoon of the HEGP scheme. The top black arrow and equation 
shows the linear mixed model relating the phenotype 𝒚 to genotype 𝑮 with regression 
coefficients 𝜷 representing the allelic effects. The variance matrix for the residuals is 𝑽. After 
multiplication by orthogonal matrix P, the data 𝒚, 𝑮 and	𝑽 and the mixed linear model are 
transformed as shown in orange. The likelihood and regression estimates	𝜷, are preserved. 
 
The conflict between respecting individuals’ privacy and establishing allelic effects is 
sketched in Figure 1A. We have a vector of phenotypes 𝒚 and a matrix of genotypes, 𝑮. Each 
row of the matrix corresponds to genotypes for a given individual, and each column to a 
given SNP. The phenotype and each genotype vector (column of 𝑮) is standardised to have 
mean 0 and variance 1. The genotypes are dosages proportional to the estimated number of 
alternative alleles; a typical trimodal distribution of dosages is also shown in Figure 1C. We 
want to preserve the privacy of the individuals (rows) but make public certain information 
about the effects of the SNPs (columns) in relation to each other and to the phenotype. 
 
Conceptually, it is helpful to recall that the standardised genotype dosages for a given SNP 
across 𝑛 subjects (a column in Figure 1A) can be thought of geometrically as a unit vector in 
𝑛-dimensional space lying on the unit-dimensional hypersphere, and the vector of 
phenotypes as another point on the same hypersphere. We measure the association 
between phenotype and SNP from the angle 𝜃 between their 𝑛-dimensional vectors. Their 
Pearson correlation coefficient (an invertible transformation of the t-statistic used to 
determine significance of a linear regression of phenotype on genotype dosage) is equal to 
their dot-product, i.e. 𝑐𝑜𝑠𝜃. Similarly, linkage disequilibrium 𝑅! between any pair of SNPs is 
the square of the cosine of the angle between the SNPs. It is intuitively obvious that any 
orthogonal transformation – a rotation or reflection of the space - will leave all the angles 
between unit vectors unchanged (Figure 2). Thus all the associations between phenotype 
and genotypes, and correlations within genotypes, are preserved by orthogonal 
transformations. Figure 1B shows the phenotypes and genotypes after orthogonal 
transformation. Even though the original distribution of the genotypes dosages is trimodal 
(Figure 1C) the transformed genotypes resemble a sample from a Normal distribution 
(Figure 1D,F).  
 
It follows that, if the encryption key is an 𝑛 × 𝑛 orthogonal matrix 𝑷 of floating point values 
such that 𝑷𝑷𝑻 = 𝑰 (where 𝑷𝑻is the transpose of  𝑷), then multiplication of the key with the 
genotype/phenotype matrix acts like a rotation (or reflection). In this way each SNP column 
is rotated by multiplication by the key, and as discussed below, if the key is sampled 
randomly, then the elements of each column vector of the resulting encrypted 
genotype/phenotype matrix are approximately normally distributed (Figure 1D,F). We next 
show that these transformations preserve key components of the linear mixed model 
relating the phenotype to the genotypes (Figure 1E) 
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Figure 2. Geometric interpretation of genetic association. Phenotypes and genotypes are 
represented as vectors in a high-dimensional space. The cosines of the angles between the 
phenotype vector y and various SNPs equal the corresponding Pearson correlations, which 
are closely related to the t-statistics for testing association. In the example, SNP 1 has a 
smaller angle with the phenotype, than SNP 2, and hence a stronger genetic association. 
 
Statistical Preliminaries 
Mixed model GWAS 
 
In order to make this geometric intuition rigorous, we first review the core standard 
computations required for a mixed-model GWAS. Suppose we have a 𝑛 subjects and 𝑚 
SNPs, a quantitative phenotype vector 𝒚 of length 𝑛, a 𝑛 × 𝑝 covariate matrix 𝑿 (containing 
information about e.g. sex, age, environmental covariates and principal components for 
controlling population structure) and a 𝑛 × 𝑚 genotype dosage matrix 𝑮 in which the 
entries typically take the values 0,1,2, such that 𝐺#$  is the number of alternate alleles for the 
genotype of subject 𝑖 at SNP 𝑗 (𝑮 can also represent imputed dosages without any change to 
the argument). It is necessary to standardise the genotype matrix into the matrix 𝑯 such 
that 

𝐻#$ =
𝐺#$ − 2𝜋$

@2𝜋$A1 − 𝜋$B
(1)

 

 
 
where 𝜋$ is the minor allele frequency of the SNP 𝑗. [Alternatively, each vector of dosages 
can be standardised empirically by subtracting its sample mean and dividing by its empirical 
standard deviation.] The phenotype vector 𝒚 and each column of 𝑿 must also be 
standardised to have mean 0 and variance 1.  
 
The additive genetic relationship matrix 

𝑲 =
1
𝑚𝑯𝑯𝑻 (2) 

q1

q2
phenotype y

SNP genotype g1

SNP genotype g2

cos q1 > cos q2
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is used to model the variance-covariance structure of the phenotype as 

Var(𝑦) = 𝑽 = 𝑲𝜎%! + 𝑰𝜎&! (3) 
 
where 𝜎%!, 𝜎&! are the genetic and environmental variance components and 

ℎ! =
𝜎%!

𝜎%! + 𝜎&!
(4) 

 
is the additive heritability. These variance components are typically estimated by restricted 
maximum-likelihood(Yang et al. 2011).  The linear model to test the significance of the SNP 𝑗 
is 

𝒚 = 𝑿𝜶 + 𝒉𝒋𝛽$ + 𝒆 (5) 
 
 
where 𝜶 is a vector of fixed effects, 𝒉𝒋 is the 𝑗th column of 𝑯, 𝛽$  is the regression coefficient 
for SNP 𝑗 and 𝒆 is the residual, with variance matrix 𝑽.  
 
The mixed model transformation  

𝑨(𝟏𝒚 = (𝑨(𝟏𝑿)𝜶 + 𝑨(𝟏𝒉𝒋𝛽𝒋 + 𝑨(𝟏𝒆 (6) 
 
 
converts the mixed model into an Ordinary Least Squares problem in which the variance 
matrix is the identity, i.e. Var(𝑨(𝟏𝑽) = 𝑰. Here 𝑨 is the matrix square root of 𝑽, i.e. 𝑨𝟐 = 𝑽, 
which can be computed efficiently by eigen-decomposition of 𝑲, alongside the estimation of 
the variance components 𝜎%!, 𝜎&! (Kang et al. 2008).  
 
The genetic relationship between individuals 𝑖, 𝑘 is summarised as 𝐾#+ and the relationship 
(Pearson correlation coefficient) between SNPs 𝑗, 𝑙 as the element 𝐿$,  in the matrix 

𝐿 =
1
𝑛𝑯

𝑻𝑯 (7) 

 
Orthogonal Transformations 
 
We wish to find an encoding of the genotypes, covariates and phenotype such that their 
plaintexts are obscured, but such that we can compute all the above quantities and test 
association between genotypes and phenotypes using the same mixed model.  
 
Consider the eigen decomposition of the variance matrix 𝑽 = 𝑬𝑻𝜦𝑬 where 𝑬 is an 
orthonormal matrix of eigenvectors and 𝜦 the diagonal matrix of eigenvalues. These 
quantities are determined (up to permutation and rotation) by the matrix 𝑽. The 
(symmetric) matrix square root used in the mixed-model transformation is defined as  

𝑨 = 𝑬𝑻𝜦𝟎.𝟓𝑬 (8) 
 
where 𝜦𝟎.𝟓 is the diagonal matrix whose entries are the square roots of the eigenvalues.  
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Suppose 𝑷 is any orthogonal 𝑛 × 𝑛 matrix, i.e. so that 𝑷(𝟏 = 𝑷𝑻.  Then consider working 
with the transformed genotype matrix 𝑭 = 𝑷𝑯, phenotype vector 𝒛 = 𝑷𝒚 and covariate 
matrix 𝑾 = 𝑷𝑿 in place of the plaintext. Such a transformation corresponds to finding a 
new coordinate system, so the rows ("subjects") in the transformed space no longer 
correspond to individuals.  
 
First note that  

𝑭𝑻𝑭 = 𝑯𝑻𝑷𝑻𝑷𝑯 = 𝑯𝑻𝑯 = 𝑛𝑳 (9) 
 
 
so the 𝑚 ×𝑚 SNP-relationship matrix 𝑳 is preserved, while the 𝑛 × 𝑛 additive genetic 
relationship matrix, or GRM, 

𝑭𝑭𝑻 = 𝑷𝑯𝑯𝑻𝑷𝑻 = 𝑚𝑷𝑲𝑷𝑻 (10) 
 
is transformed. In other words, linkage disequilibrium (as measured by Pearson correlation) 
between SNPs is unaltered, but since the original subjects are transformed, inter-subject 
correlations are destroyed. In fact, since after orthogonal transformation each “subject” is a 
weighted combination of the originals, it is not even meaningful to even describe them as 
subjects. Nonetheless, 

Var(𝒛) = Var(𝑷𝒚) = 𝑷𝑽𝑷𝑻 = 𝑷𝑲𝑷𝑻𝜎%! + 𝑰𝜎&! (11) 
 
and hence the transformed phenotype has the same variance components 𝜎%!, 𝜎&! and 
heritability ℎ!, even though the genetic relationship matrix is transformed. Define 𝑩 = 𝑨𝑷. 
as the 𝒛- analogue of the 𝒚 mixed-model transformation. That is, 

Var(𝑩(𝟏𝒛) = Var(𝑷𝑻𝑨(𝟏𝒚) = 𝑷𝑻Var(𝑨(𝟏𝒚)𝑷 = 𝑷𝑻𝑰𝑷 = 𝑰 (12) 
 
and hence the ciphertext “rotated mixed model” 

𝒛 = 𝑾𝜶+ 𝒇$𝛽$ + 𝑷𝒆 (13) 
 
which is expressed entirely using the transformed quantities 𝐷(𝑷) = {𝒛,𝑾, 𝑭} is equivalent 
to the original plaintext model and can be converted to ordinary least squares by 
multiplication by 𝑩(𝟏. Furthermore, the log-likelihood for the data (provided the errors are 
Normally distributed) is invariant after orthogonal transformation. That is, using standard 
change-of-variable rules for 𝒚 = 𝑷𝑻𝒛 for the multivariate normal distribution, and recalling 
that the determinant of an orthogonal matrix |𝑷| = ±1, then the plaintext log likelihood for 
𝒚: 
−2 log 𝑙A𝜶, 𝛽$ , 𝜎%!, 𝜎&!B = A𝒚 − 𝑿𝜶 − 𝒉𝒋𝛽$B

𝑻𝑽(𝟏A𝒚 − 𝑿𝜶 − 𝒉𝒋𝛽$B + log|𝑽| + 𝑛 log(2𝜋) (14) 
 
is identical to the log likelihood for ciphertext 𝒛 when evaluated at the same parameters: 

A𝒛 −𝑾𝜶 − 𝒇𝒋𝛽$B
0(𝑷𝑽𝑷𝑻)(1A𝑧 −𝑾𝜶 − 𝒇𝒋𝛽$B + log|𝑷𝑻𝑽𝑷| + 𝑛 log(2𝜋) (15) 

 
Hence all inferences about the parameters based on the likelihood are unaffected by the 
transformation. In particular they yield identical maximum likelihood parameter estimates 
and p-values for likelihood-based tests of significance. Furthermore, any analyses based on 
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LD between SNPs are unaffected by the transformation. It is also possible to compute GRMs 
corresponding to subsets of SNPs (e.g. per-chromosome) from the transformed genotypes.  
 
Generalisations  
 
Here we sketch various generalisations to the orthogonal encryption scheme. 
 
(i) Analyses that are unaffected by orthogonal transformation include the estimation of 
parameters by ridge regression or by Henderson’s mixed model equations. The proof for 
ridge regression follows from the observation that the ridge estimator 

𝛽m2#3%& = (𝑿𝑻𝑿 + 𝑰𝑘)(1𝑿𝑻𝒚 = ((𝑷𝑿)𝑻(𝑷𝑿) + 𝑰𝑘)(𝟏(𝑷𝑿)𝑻(𝑷𝒚) (16) 
 
for any orthogonal matrix 𝑷 and ridge scale parameter 𝑘. The proof for Henderson’s 
equations follows in a similar way, as under orthogonal transformation any data matrix 
transforms as 𝑿 → 𝑷𝑿 and any variance matrix as 𝑽 → 𝑷𝑽𝑷𝑻 (since Henderson’s model is a 
special case of a mixed model it also follows from Equation 6).  Consequently, genomic 
prediction from estimated fixed effects (BLUE) and predicted random effects (BLUP) is also 
unaffected, provided of course we have access to some unencrypted genotypes with which 
to make predictions. 
 
(ii) Dominance effects might be incorporated in the following way. The additive genotype 
dosage matrix 𝑮 can be augmented in the usual way by a matrix  𝑻 defined as  
 

𝑇#$ = q 0	if	𝐺#$ = 0
	1	otherwise

(17) 

 
representing a dominance effect. Then any combination of additive and dominance effects 
can be modelled as a linear combination of 𝑮, 𝑻, so that Equation (5) that models the effect 
of SNP	𝑗 becomes 

𝒚 = 𝑿𝜶 + 𝒉𝒋𝛽$ + 𝒕$𝛾$ + 𝒆 (18) 
 
where 𝒕$  is the jth column of T and 𝛾$  is the dominance effect 
Multiplying by the orthogonal matrix 𝑷 produces  
 

𝑷𝒚 = (𝑷𝑿)𝜶 + (𝑷𝑯)𝒋𝜷𝒋 + (𝑷𝒕𝒋)𝜸𝒋 + 𝑷𝒆	 (19) 
 
The rest of the development is similar to the purely additive case. Investigators would need 
to share both the transformed additive and dominance matrices.  It is not clear if this would 
make decryption easier. 
 
(iii) Finally, the major principal components of the genotype dosage matrix are sometimes 
included as covariates, in place of or in addition to fitting a mixed model, in order to further 
control for population structure. That the 𝑛 × 𝑚 dosage matrix 𝑯 has singular value 
decomposition 𝑯 = 𝑼𝜮𝑽𝑻, where 𝑼 is the 𝑛 × 𝑛 orthogonal matrix of principal 
components, 𝜮 is 𝑛 × 𝑛 diagonal and 𝑽𝑻 is 𝑛 × 𝑚 orthogonal. Thus 𝑭 = 𝑷𝑯 = 𝑷𝑼𝜮𝑽𝑻. This 
means the principal components 𝑼 of 𝑯 are transformed to 𝑷𝑼 so that if necessary, the 
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principal components of 𝑭 may be calculated and included in the linear mixed model 
without explicitly including them as covariates to be transformed. 
 
Orthogonal Homomorphic Encryption 
 
We propose that, if the orthogonal key 𝑷 is appropriately sampled at random and 
independently of the untransformed data 𝐷(𝐼) = {𝒚, 𝑿,𝑯}, then it homomorphically 
encrypts 𝐷(𝑰) → 𝐷(𝑷), sufficient to allow full mixed-model GWAS without revealing the 
plaintext.  
  
The Pearson correlation between a standardised vector 𝒙 and 𝑷𝒙 is 

𝜌𝑷(𝒙) =
𝒙𝑻𝑷𝒙
𝑛 − 1

(20) 

 
Thus, provided 𝑷 is "far" from the identity matrix 𝑰 then we expect 𝜌𝑷(𝒙) to be distributed 
like the correlation of two random vectors. An effective way to do this is to sample 
orthogonal matrices from the Steifel Manifold (i.e. the Haar measure over the orthogonal 
group)(Hoff 2009). This can be thought of as a uniform sampling distribution for orthogonal 
matrices (Anderson et al. 2005). 
 
To investigate this experimentally, we sampled a 1000 × 1000 matrix 𝑃1555 using the R 
library "rstiefel". This uses the following scheme to simulate an orthogonal 𝑛 × 𝑛 matrix (i) 
simulate an 𝑛 × 𝑛 matrix 𝑴 whose entries are all iid 𝑁(0,1). (ii) compute the eigen-
decomposition of the symmetric matrix 𝑴𝑻𝑴 = 𝑸𝑻𝑺𝑸 where 𝑸 is 𝑛 × 𝑛 orthogonal and 𝑺 
is diagonal with positive entries. (iii) Return the orthogonal matrix 𝑷 = 𝑴𝑸𝑻𝑺(𝟎.𝟓𝑸 where 
𝑺(𝟎.𝟓 is the diagonal matrix whose elements are the reciprocals of the square roots of the 
eigenvalues. 
 
Now the eigen-decomposition of an orthogonal matrix can be written as 

𝑷 = 𝑪(𝟏 exp(𝑖𝜣)𝑪 (21) 
 
where 𝑪 is a (non-orthogonal) matrix of eigenvectors and 𝜣 is a diagonal matrix of angles, 
so that the eigenvalues exp(𝑖𝜣) are pairs of conjugate complex numbers on the unit circle. 
Then, for 𝜆 real, define the set of orthogonal matrices 𝑷(𝜆) = 𝑪(𝟏 exp(𝑖𝜆𝜣)𝑪, which vary 
smoothly between 𝑷(𝜆 = 0) = 𝑰 and 𝑷(𝜆 = 1) = 𝑷.  
 
Studying this set as 𝜆 varies lets us explore the encryption properties of a particular “linear 
direction” in the space of orthogonal matrices, starting at the identity matrix and passing 
through 𝑷. [Incidentally, the set 𝑷(𝜆) forms a subgroup of the orthogonal matrices, such 
that 𝑷(𝜆)𝑷(𝜇) = 𝑷(𝜆 + 𝜇),  with inverse 𝑷(𝜆)(1 = 𝑷(−𝜆). This subgroup is of course 
isomorphic to the real numbers under addition.]  
 
The Figure 3 shows the mean and standard deviation of the correlation 𝜌𝑷(𝝀)(𝒙) for a 
1000 × 1000 matrix 𝑃1555 with 1,000 SNPs sampled from the CONVERGE study of major 
depressive disorder(Cai et al. 2015), for a subset of 1,000 randomly-sampled individuals. 
When 𝜆 = 0 then the correlations are all unity, as would be expected, but as 𝜆 increases we 
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observe a damped oscillatory behaviour, with mean correlation of 0 at approximately 𝜆 =
1,2,3, …  

 
Figure 3 Correlation of unencrypted SNP dosages with encrypted versions as a function of 𝜆. 
The black line shows the mean correlation 𝜌9(:)(𝑥) and the red lines the mean ± standard 
deviation, estimated from 1,000 individuals sampled from the CONVERGE study of major 
depressive disorder, at 1,000 randomly chosen SNP sites.  
 
Thus, it is possible to sample a random orthogonal matrix such that on average there is no 
correlation between a random input vector of genotypes and its orthogonal transformation.  
 
We applied these ideas to Human genotype dosages from the CONVERGE study of major 
depressive disorder in 𝑛 = 10,465 individuals (Cai et al. 2015). We generated a random 
10,465 × 10,465 orthogonal matrix 𝑷𝟏𝟎𝒌, which took about one hour with 2 cores and 8GB 
of RAM. Figure 4A shows the distribution of the correlations 𝜌15+(𝒙) evaluated at 10,000 

randomly chosen SNPs, after Z-transformation 𝑧 = 𝜌@ <(!
1(=!

, and  Figure 4B shows the qqplot 

confirming the transformed correlations have a the expected null normal distribution. 
Figure 4C shows the distribution of standardised genotype dosages for a randomly selected 
SNP from that study, with values concentrated at the three modes corresponding to 0,1,2 
reference alleles across the 10,465 individuals. Figure 4D shows the distribution of 
genotype dosages for the same SNP. It demonstrates that the values are close to normally 
distributed, centred at zero.  Thus, transformed dosages are uncorrelated with their 
untransformed values, despite being a deterministic, invertible linear transformation of the 
latter. We return to this point later. 
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Figure 4. A: The distribution of Z-transformed correlations 𝜌15+(𝑥) evaluated at 10,000 
randomly chosen CONVERGE SNPs. The red line is the Normal density with the same mean 
and standard deviation. B: Normal quantile-quantile plot for the data in A. 
  
A potential concern is that rounding errors might arise due to the very large dimension of 
the key 𝑷. To test this, we computed 𝑷𝑻𝑷 which should equal the identity matrix 𝑰. When 
𝑷 = 𝑷𝟏𝟎𝒌The off-diagonal values (which should all equal 0) had typical magnitude 10(11, 
indicating the accuracy is acceptable. Nonetheless the average magnitude of off-diagonal 
elements drifts upwards as the dimension of the matrix increases – when 𝑷 = 𝑷𝟏𝟎𝟎𝟎 the 
magnitudes are typically only 10(1>. Therefore, we might eventually encounter rounding 
issues when sampling very large orthogonal matrices, but not for matrix dimensions up to at 
least 10,000. One solution would be to divide the samples into randomly chosen blocks of 
10,000 individuals, sample a different transformation matrix to encrypt each block, and 
then permute all transformed data so that the block structure is hidden. 
 
Supplementary Material S1 contains R functions to generate random orthogonal matrices, 
encrypt genotype dosages and phenotypes, and to download and analyse an example 
publicly available mouse dataset from (Nicod et al. 2016) and perform a basic association 
study for platelet count on mouse chromosome 11 to demonstrate the methodology. These 
data and software are also available from UCL Figshare at 
https://rdr.ucl.ac.uk/account/home#/projects/76434. 
 
Applications of Orthogonal Genotype Encryption 
 
It might be thought that orthogonal encryption is of little use, because both genotypes and 
phenotypes are transformed with the same orthogonal matrix, which must be known to 
those performing the transformation. However, there are uses for such a system. First, if the 
number of phenotypes is large (e.g. from a gene expression study) then it might be 
necessary to analyse the data on an insecure remote computing platform. Second, the 
encrypted data could be archived without special security concerns. Third, as we show next, 
it is possible to share and analyse federated independently-transformed data sets.   
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Sharing Federated Transformed Genotype Data Sets 
 
Suppose we wish to perform a federated mega-analysis on several genotype and phenotype 
sets. We assume that each set has first been imputed onto a common set of SNPs which are 
ordered consistently across data sets. Similarly, any covariates must be consistently defined 
and ordered across sets. Within each data set 𝐷? , with 𝑛? , subjects, an independent, private, 
orthogonal transformation is made using an 𝑛? × 𝑛? orthogonal matrix 𝑷𝒕 sampled at 
random to generate transformed data 𝐷?(𝑷𝒕)as above. We combine the shared 
transformed data by stacking them top of each other. Thus, for three sets we have: 
 

𝐷(𝑰, 𝒛𝑪, 𝑭𝑪,𝑾𝑪) = �
𝐷(𝒛𝟏, 𝑭𝟏,𝑾𝟏)
𝐷(𝒛𝟐, 𝑭𝟐,𝑾𝟐)
𝐷(𝒛𝟐, 𝑭𝟑,𝑾𝟑)

� = �
𝒛𝟏 𝑭𝟏 𝑾𝟏
𝒛𝟐 𝑭𝟐 𝑾𝟐
𝒛𝟐 𝑭𝟑 𝑾𝟑

� = �
𝑷𝟏𝒚𝟏 𝑷𝟏𝑯𝟏 𝑷𝟏𝑿𝟏
𝑷𝟐𝒚𝟐 𝑷𝟐𝑯𝟐 𝑷𝟐𝑿𝟐
𝑷𝟑𝒚𝟑 𝑷𝟑𝑯𝟑 𝑷𝟑𝑿𝟑

�

= �
𝑷𝟏 0 0
0 𝑷𝟐 0
0 0 𝑷>

� �
𝒚𝟏 𝑯𝟏 𝑿𝟏
𝒚𝟐 𝑯𝟐 𝑿𝟐
𝒚𝟑 𝑯𝟑 𝑿𝟑

� = 𝐷(𝑷𝑪, 𝒚𝑪, 𝑯𝑪, 𝑿𝑪) (22)

 

     
 
where the subscript 𝑪 denotes the combined data and where the individual orthogonal 
matrices have been combined in a block-diagonal manner: 
 

𝑷𝑪 = �
𝑷𝟏 𝟎 𝟎
𝟎 𝑷𝟐 𝟎
𝟎 𝟎 𝑷𝟑

� (23) 

 
𝑷𝑪 is orthogonal ∑ 𝑛? ×? ∑ 𝑛??  and hence the combined data can be analysed as if it were a 
single untransformed data set that had been encrypted using 𝑷𝑪. However, in reality each 
laboratory contributing a dataset 𝐷? independently encrypts their data using their private 
key 𝑷𝒕 before sharing it.  
 
Similarly, a dataset could also be subdivided into subsets (e.g. into male vs female subjects) 
and each part encrypted separately so that sub-analyses could be performed, and the 
subsets distributed separately. We emphasise that for federated analysis to work, it is 
necessary for the parties to agree in advance on a common set of SNPs and covariates.  
 
Removing Duplicates and Close Relatives: Dual Encryption 
 
One potential difficulty when sharing encrypted data is the possibility of duplicates or close 
relatives occurring in different cohorts. Because HEGP disguises genetic relationships it 
would not be possible to identify duplicates in the shared ciphertexts. Whilst there are 
simple practical ways of eliminating individuals with identical IDs in different studies (eg first 
sharing the hashes of their sample IDs) or with identical genotypes at a small set of test 
SNPs (by sharing hashes of their genotype vectors), these methods would fail if the IDs were 
different or if the test genotypes differed even slightly (as might happen if the same samples 
were genotyped twice).  
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A solution would be for all parties to first agree on a restricted subset of 𝑁C  common test 
SNPs (say no more than 100 common SNPs chosen genome-wide at random). Each party 
computes their normalised plaintext 𝑯𝑹 restricted to just these SNPs, and they share the 
dual ciphertext 𝑭𝑹 = 𝑯𝑹𝑷𝑹, where 𝑷𝑹 is a random 𝑁C × 𝑁C   orthogonal key, instead of 
sharing 𝑭 = 𝑷𝑯.  
 
Importantly, 𝑭𝑹 defines a dual form of encryption that has complementary properties to 
those of 𝑭; for the dual GRM 

𝑭𝑹𝑭𝑹𝑻 = 𝑯𝑹𝑷𝑹𝑷𝑹𝑻𝑯𝑹
𝑻 = 𝑯𝑹𝑯𝑹

𝑻 = 𝑁C𝑲𝑹 (24) 
 
is the same as the plaintext GRM and instead the SNP correlation matrix is scrambled: dual 
encryption is therefore useless for genetic association. Close relatives and duplicates may 
then be identified from the GRM 𝑲𝑹, and then agreement reached on a revised subset of 
individuals from each study to be shared using the original scheme of encryption applied to 
all SNPs. However, it should be pointed out that sharing information in any way that reveals 
relationships between people is inherently risky.  
 
How Secure is Orthogonal Encryption? 
 
Can we determine 𝑷 given only 𝐷(𝑷)?. Although we have shown that 𝑷𝑯 is uncorrelated 
with 𝑯, we have not shown this renders the transformation truly secure. Since the 
encryption and decryption keys are essentially the same, this form of encryption has very 
different properties from public-key methods. Orthogonal encryption is certainly insecure 
for certain choices of 𝑷. As Figure 3 shows, any orthogonal matrix close to the identity 
matrix is clearly a poor choice, so one should restrict attention to random orthogonal 
matrices sampled from either the Steifel Manifold or using another scheme with similar 
sampling properties. One should also check that the mean of the correlations of the 
columns of 𝑭 with the columns of 𝑯 is close to zero.  
 
It is obvious that any permutation of the rows of any key will transform the phenotype and 
genotypes in the same way, and so are functionally equivalent. Consequently, orthogonal 
permutation matrices are useless as keys. However, it also means that any permutation of 
any good key is also a good key. 
 
The singular value decomposition of the unencrypted 𝑛 × 𝑚 dosage matrix 𝑯 has 𝑯 =
𝑼𝜮𝑽𝑻, where 𝑼 is 𝑛 × 𝑛 orthogonal, 𝜮 is 𝑛 × 𝑛 diagonal and 𝑽𝑻 is 𝑛 × 𝑚 orthogonal. Thus 
𝑭 = 𝑷𝑯 = 𝑷𝑼𝜮𝑽𝑻, so the rotation 𝑼 is simply replaced by another rotation 𝑷𝑼. If 𝑷 is truly 
random then we seek 𝑼 given 𝑷𝑼 which appears to be hard problem, since 𝑷𝑼 resembles 
another random orthogonal transformation. 
 
Next we discuss strategies that might be used to decrypt the data, in likely increasing order 
of effectiveness: 
 
Brute Force 
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(a) We first tried sampling random decryption keys using the rustiefel method. Each key 
contains 𝑛(𝑛 + 1)/2 independent double precision numbers, each of which can take about 
10!5	possible values.  We defined a distance function between matrices equal to the mean 
of the absolute difference between each pair of corresponding elements (i.e. the L1 norm), 
to compare the plaintext genotype matrix to an attempted decryption. We defined a “good” 
key as one that gives a mean distance of less than 0.4 between the genotype matrix and the 
attempted decryption. Empirically this upper limit gave results that are visually fairly close 
to the original, at least for small datasets.  Extrapolating from small matrices, we estimated 
a lower bound on the number of attempts required for solving an 𝑛 × 𝑛 key, of one "good" 
key generated per 10<(1 incorrect keys. thus, if 𝑛 = 100, at least 10EE keys have to be tried 
before a good one is found. Interestingly, even for an 8 × 8 matrix we could not a key that 
regenerated the plaintext, and even ‘good’ keys do not reflect the underlying genotypes 
fully. 
 
Generating orthogonal random keys is computationally expensive – the computational 
complexity of the Stiefel manifold is 𝑂(𝑛>); if 𝑛 = 100 a few hundred keys can be 
generated and evaluated per second on one CPU core. Our estimated bound suggests that it 
would take in the order of 1092 CPU hours to get close to a solution. Larger keys of realistic 
size take significantly longer – e.g when 𝑛 = 10,000, a single key takes about one CPU hour 
to generate. Rather than generating orthogonal keys, a naive brute force attack where 
potential keys are randomly selected would be even slower because the search space 
becomes much larger including all non-orthogonal matrices. Thus our method takes a great 
deal of CPU power to guess large orthogonal matrices. 
 
These experiments show that there is no consistent relationship between generated keys 
and their decryption outcomes using this simple metric. Moreover, as the distance function 
we used is defined in terms of distance to the known plaintext, it only works when we know 
the end result. In reality, an attacker would have to use a less accurate score function. The 
number of possible permutations of the result matrix is so large that it is not feasible to 
brute force an attack without a method optimized to compute orthogonal matrices while 
optimizing for a metric that has an open-ended end result. 
 
Exploiting non-Gaussian Distributions of Genotype Dosages 
 
Another potential attack, that exploits specific features of the problem, is as follows. We 
note that the SNP identities (genomic positions) need to be distributed with the data in 
order to interpret the biology of any GWAS hits.  Population allele frequencies for SNPs are 
generally available, and so for a SNP 𝑗 with frequency 𝜋$  that is in Hardy-Weinberg 
equilibrium, we expect to observe genotype dosages in the proportions  
 

0: 𝜋$!, 1: 2𝜋$A1 − 𝜋$B, 2: A1 − 𝜋$B
! (25) 

 
After standardisation the dosages will be rescaled but will still be tri-modal with modes 
𝑑$5, 𝑑$1, 𝑑$! that are completely determined by 𝜋$  and the constraints that the standardised 
dosages have mean=0, variance=1 and that 𝑑$5 − 𝑑$1 = 𝑑$1 − 𝑑$!.	 
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Consequently, we might seek an orthogonal matrix approximation 𝜱 ≈ 𝑷(𝟏 = 𝑷𝑻 that 
maps 𝑭 → 𝜱𝑭 with columns such that each has the frequency distribution close to that 
predicted by HWE. That is, for each SNP, the decrypted genotype dosages will be expected 
to have been sampled from a distribution with modes at 𝑑$5, 𝑑$1, 𝑑$! corresponding to the 
rescaled dosages 0,1,2 (like Figure 1C), which can be modelled using a kernel density 
estimate 

𝜙$(𝑥, 𝜏) = 𝜋$!𝜑 
𝑑$5 − 𝑥
𝜏 ¡ + 2𝜋$A1 − 𝜋$B𝜑  

𝑑$1 − 𝑥
𝜏 ¡ + A1 − 𝜋$B

!𝜑  
𝑑$! − 𝑥
𝜏 ¡ (26) 

 
where 𝜑(𝑧) is a standard normal density kernel and 𝜏 is the standard deviation of the 
kernel. Then we seek an orthogonal matrix 𝛷∗ that maximises  

𝛷∗ = argmaxG¤¤𝜙$A(𝑭𝜱)#$ , 𝜏B
#$

(27) 

We also require 𝜏 to be small in order to concentrate the data around the modes. However, 
if the plaintext dosages were imputed then they might well not be exactly integral, so it is 
necessary that 𝜏 > 0 but still as small as reasonably possible.  
 
Equation (27) describes a non-convex and non-linear objective function. One potential 
approach to minimisation is via robust non-convex optimisation based on the Cayley 
transform(Bertsimas et al. 2010; Wen and Yin 2013).  Whether such an attack is feasible is 
unclear: the space of 𝑛 × 𝑛 orthogonal matrices has dimension 𝑛 (𝑛 − 1) 2⁄ , so if 𝑛 = 10H 
the minimisation is over 4.995 × 10I ≈ 50 million free parameters. There are likely to be 
local minima. It is also unclear if the minimiser 𝛷∗ is unique, or that the true answer 
necessarily minimises this quantity (by unique we mean if two distinct solutions 𝛷∗∗, 𝛷∗ 
exist then they are permutations of each other.  
 
Fast Independent Components Analysis (FastICA) (Hyvärinen and Oja 1997), is another 
method that attempts to split non-Gaussian signal from Gaussian noise. FastICA(Hyvärinen 
and Oja 1997)(Hyvärinen and Oja 1997)(Hyvärinen and Oja 1997)(Hyvärinen and Oja 
1997)(Hyvärinen and Oja 1997) finds an orthogonal transformation to map the data onto 
“interesting directions” such that the projections of the data are strongly non-Gaussian 
along these directions: in our case, we seek directions in which the distributions are 
trimodal. In this context, FastICA may be thought of as maximising a different function from 
the likelihood with a particular choice of optimisation algorithm. However, we found that 
applying the implementation in the “fastICA” R package does not improve on our random 
brute force attacks. We configured FastICA to produce an orthogonal matrix of the same 
size as the encryption key and computed the distance score of the resulting matrix. We 
found these scores were much higher than the best keys generated during the brute-force 
attack. This is the case whether using a random initial matrix, or providing an already 
generated key with a relatively good score. Table 1 shows the results of applying FastICA to 
the seven best keys from the brute-force attempt on a 4x4 key, with a 4x636 dataset. The 
per-entry error in the decrypted data of 0.079 on average, which is quite good, while 
anything greater than 0.4 is unusable.  
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Generated key scorea Score of FastICA output 
initialized with 
generated keyb 

0.07327044 0.39261006 

0.07877358 0.44937107 

0.08148585 0.39339623 

0.08309748 2.67963836 

0.08384434 0.4735456 

0.08388365 2.67763365 

0.08694969 2.82252358 
 
Table 1. Examples of attempted decryption using FastICA. Seven 4x636 genotype matrices 
were first encrypted and then attempts at decryption made either by (a) brute force random 
attempts or (b) FastICA. The score is the L1 distance between matrices 
 
As FastICA attempts to maximize non-Gaussianity in the decrypted data, these results imply 
that non-Gaussianity does not describe the desired decrypted data sufficiently uniquely. 
While the decrypted data is non-Gaussian, there are many other transformations the 
encrypted data that also produce highly non-Gaussian results. 
 
Another form of mathematical optimization is constrained convex programming, where 
constraints could be imposed to ensure the decrypted genotypes take plausible values. The 
main difficulty with applying convex programming (and linear programming, which also 
handles constraints) is the choice of a suitable objective function to minimise. There is good 
reason to believe convex programming cannot produce good results. Optimizing a key to 
improve its decryption results would entail finding a path through the 𝑛-dimensional space 
of rotations, choosing both a correct direction to rotate in, and degree of rotation at each 
step. Specifically, the score function is not locally convex, and any naive optimization 
attempt is bound to fall into local minima.  Similarly, gradient descent is also unlikely to be 
useful, as each iteration would require calculating a number (linear to the size of the key) of 
matrix multiplications (of the entire dataset with the key at each step). 
 
Compression 
 
A restatement is that the plaintext is highly compressible (at least, if all the genotypes are 
integral), so we might instead seek 
 

𝛷∗ = argmin𝑭	𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝑭𝜱) (28) 
 
where "compress" is some program like gzip. Again, we do not know if the most 
compressible encoding of the genotypes is identical to the true answer, or whether this 
could be computed efficiently. We expect it would be very slow for large datasets. 
 
Pedigrees 
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If all the individuals in the study are from a set of known pedigrees (for example a large set 
of trios) then the expected plaintext GRM 𝔼A𝑲𝒑𝒍𝒂𝒊𝒏𝒕𝒆𝒙𝒕B is known (ie entries for full sibs and 
parent-offspring will be ½, unrelateds will be 0, etc) and we can assume the samples are 
ordered so that the matrix is block-diagonal. Then the original and encrypted GRMs are 
linked via the approximation 
 

𝔼A𝑲𝒑𝒍𝒂𝒊𝒏𝒕𝒆𝒙𝒕B ≈ 𝑷𝑻𝑲𝒄𝒊𝒑𝒉𝒆𝒓𝒕𝒆𝒙𝒕𝑷 (29) 
 
which is a system of 𝑛(𝑛 + 1)/2 quadratic equations in 𝑛(𝑛 + 1)/2 independent unknowns 
(the number of degrees of freedom in an 𝑛 × 𝑛 orthogonal or symmetric matrix). Thus an 
approximation to 𝑷	could be obtained and might be a useful initial guess for further 
refinement, if 𝑛 is small. When 𝑛 is large the problem has exponential time complexity 
(Grigoriev and Pasechnik 2005). Moreover, any permutation of the ordering of pedigrees 
that left 𝑲𝒑𝒍𝒂𝒊𝒏𝒕𝒆𝒙𝒕 unchanged would have the same solution so it would be impossible to 
assign phenotypes to pedigrees uniquely. Finally, if everyone is unrelated then 
𝔼A𝑲𝒑𝒍𝒂𝒊𝒏𝒕𝒆𝒙𝒕B = 𝟎  and the method would not work. 
 
Incremental Decryption 
 
Another way of thinking about the effects of the group of orthogonal transformations is that 
they define sets of equivalence classes of data sets 𝐷. That is, two sets 𝐷1, 𝐷! are equivalent 
if there exists and orthogonal matrix 𝑷 such that 𝐷1(𝑷) = 𝐷!  i.e. that maps one to the 
other. The transitive property of the group of orthogonal matrices means that there is 
always an orthogonal matrix that will transform any pair of datasets provided they are in the 
same equivalence class. All data sets in the same equivalence class have the same likelihood 
so these classes can be thought of as likelihood contours in a high-dimensional space. 
 
This suggests another attack on the problem: find a series of 𝑁 incremental orthogonal 
transformations that successively resolve individuals by “factorising along the contour”. 
That is, we seek a sequence of orthogonal keys {𝜱𝒌} and partially decrypted genotype 
matrices {𝐹+} such that (a) ∏ 𝜱𝒌+ = 𝑷𝑻, (b) 𝑭𝒌𝜱𝒌 → 𝑭𝒌U𝟏 with 𝑭𝟏 = 𝑭, 𝑭𝑵 = 𝑯. There 
certainly exist infinitely many orthogonal keys that decrypt any subset of individuals. 
Suppose we want to decrypt the first 𝑘 individuals. Then if 𝑸𝒏(𝒌 is any 𝑛 − 𝑘 × 𝑛 − 𝑘 
orthogonal matrix and 𝑰𝒌 is the 𝑘 × 𝑘 identity, and we partition 𝑷 = [𝑷𝒌|𝑷𝒏(𝒌], such that 
𝑷𝒌 is the 𝑛 × 𝑘 matrix comprising the first 𝑘 columns of 𝑷, and 𝑷𝒏(𝒌 is the last 𝑛 − 𝑘 
columns, then  
 

¯𝑰𝒌 𝟎
𝟎 𝑸𝒏(𝒌

°𝑷𝑻 =  
𝑷𝒌𝑻

𝑸𝒏(𝒌𝑷𝒏(𝒌𝑻 ¡ = ¯ 𝑷𝒌
𝑻

𝑹𝒏(𝒌
° (30) 

 
where 𝑹𝒏(𝒌 is any (𝑛 − 𝑘) × 𝑛 orthogonal matrix, will decrypt just the first 𝑘	individuals. 
Thus, a sequence of matrices of the above form would decrypt the data. Using this scheme, 
in principle one could either try to decrypt individuals one-by-one in 𝑁 = 𝑛 steps or use a 
divide-and-conquer strategy with 𝑁 ≈ log! 𝑛	 more difficult steps. Of course, since we do 
not know 𝑷𝑻 this merely proves existence: it is not clear that this type of approach is 
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intrinsically better than trying to estimate 𝑷𝑻directly – one still needs to estimate each 
column of 𝑷𝑻, a non-trivial task. 
 
Private Variants 
 
There is one clear-cut weakness to orthogonal encryption, which occurs when ultra-rare 
private variants are present. Suppose a SNP 𝑗 is private to the individual 𝑖. Then the 
genotype dosages for this SNP (column 𝑗 of 𝑮) comprises 𝑛 − 1 zeros and one non-zero 
value, say 1 at row 𝑖. After standardisation this pattern is preserved in 𝑯 although the 
numerical values are now scaled so the 𝑗’th column mean is zero and its variance is unity. 
The column 𝑗 of 𝑷𝑯 is then  

(𝑷𝑯)$ =
(𝑛 − 1)𝑷𝒊 − 𝒑
³𝑛(𝑛 − 1)

(31) 

 
i.e. a linear combination of column 𝑖 of 𝑷 and a fixed vector 𝒑 equal to the row sums of 𝑷. 
This reveals the decryption key for individual	𝑖 if 𝒑 can be guessed. 
 
Thus, in an extreme case, should every individual carry a private variant, or equivalently if 𝑛 
covariates were defined that uniquely identify each individual, then the system can be 
attacked successfully. While this is an unlikely situation in practice, and one that could easily 
be avoided, it does suggest that an attack focussed on lower frequency variants might be 
able to extract useful information. Further, once an individual has been decrypted in this 
way then close relatives might be more easily identifiable as well. 
 
Equation (30) shows how private variants could be factored out, leaving a smaller 
orthogonal key representing common variants still to be discovered. Note however that 
factoring out those individuals with private variants does not reveal useful information 
about other unrelated individuals because the remaining columns of 𝑷 are in the subspace 
orthogonal to that spanned by the factored columns. In addition, population allele 
frequencies need not perfectly match those in the sample, so it is not necessarily clear 
which variants are in fact private. Moreover,  there is no relationship between allele 
frequency and the correlation between cyphertext and plaintext dosages, as is shown in 
Figure 5, which plots the squared correlations as a function of allele frequency for 
simulations. 
 

 
Figure 5. Correlation 𝑅! of plaintext and ciphertext dosages as a function of minor allele 
frequency. Simulations are of genotypes for 1000 subjects with minor allele frequencies in 
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the range (1…100)/1000. Each black dot represents one vector of genotypes. y-axis: squared 
correlation 𝑅!, x-axis: allele frequency. Red line is the smoothed moving average of 𝑅!. 
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Practical Implementation Issues 
We tested our encryption scheme on 10,640 individuals from the CONVERGE study of major 
depressive disorder (Cai et al. 2017), and on the smaller mouse dataset of 1,329 individuals 
and 19,877 SNPs from (Nicod et al. 2016) for platelet counts on mouse chromosome 11, 
that are publicly available as described in Supplementary Data 1.  We use the mouse data 
for the majority of the analyses in this study so that users may replicate our analyses by 
downloading the data and code. 
 
HEGP leaves the calculation of genetic association unchanged, so should analyse ciphertext 
in the same execution time as with plaintext. Software that runs off genotype dosage data 
should run altered since the rotated data are dosage-like. HEGP cannot deal with missing 
data, and which should be imputed first. Another restriction is that it is impossible to 
analyse subsets of the individuals (eg all those of one sex) once they have been encrypted, 
unless each subset was encrypted separately. However, if a covariate specifying sex is also 
encrypted then it would be possible totake sex into account when fitting the model.  
 
The simulation of very large orthogonal keys (e.g. for hundreds of thousands of individuals) 
might also present technical difficulties. A simple solution would be to first permute the 
rows of 𝐷, ad then group them into a maximum of about 1,000 − 10,000 individuals per 
group, sample an independent orthogonal key to encrypt each group separately, as 
described above. The initial permutation would enhance the security of the data by 
separating potentially similar individuals. [Permutations are also orthogonal 
transformations, although in isolation they are useless encryptors as they rearrange 
phenotype and genotype identically.]  
 
For the human data, we encrypted the phenotype and genotype dosages in 10 groups of 
1000 individuals plus a final block of 664.  We computed association across 160k SNPs using 
both unencrypted and encrypted dosages. The correlation between the logP values of the 
tests of association was 0.999. The average absolute difference between the logP values 
was 0.002. All calculations were performed in R using standard matrix arithmetic. Bearing in 
mind that usually only the first two decimal places of a logP value are of interest when 
interpreting the significance of genetic association, we conclude the numerical inaccuracies 
introduced by the encryption are negligible.  
 
For the mouse data the mean absolute difference in logP values for simple association was 
6.406e-03, with a maximum of 3.775e-02. We also implemented the mixed model (Equation 
13) to confirm that heritability estimates and association p-values are numerically stable 
after encryption. For the mixed model the mean absolute difference was 3.141e-03, 
maximum 2.635e-02. The mixed-model heritability estimated from the unencrypted data 
was 0.02534315, compared to 0.025049 after encryption, a discrepancy of 1.1%. We 
conclude that HEGP does not noticeably affect GWAS results.  
  
Quantile Normalisation to Improve Security 
 
Figure 1D shows the distribution of ciphertext dosages for a given SNP is almost Gaussian. 
This suggests quantile normalising the ciphertext might improve security. In this scheme, 
the values in each column of 𝑭 are first ranked and then replaced by their corresponding 
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standard Normal quantiles. After quantile normalisation the the columns of 𝑭 contain 
different permutations of the Normal quantiles of 1 (𝑛 + 1)…𝑛 (𝑛 + 1)⁄⁄ 	that respect the 
rank orders of the original ciphertext for each column,  applying a small non-linear 
perturbation to the encrypted genotypes, 𝑭 → 𝑭𝒒. Attacks that exploit non-normality in the 
encrypted data would be frustrated, potentially increasing security. A further refinement 
might iterate an alternating sequence of independent rotations and quantile normalisations.  
 
We evaluated the effects of quantile normalisation on the ciphertext mouse genotypes and 
platelet phenotypes. First, the mean absolute discrepancy for mixed-model association logP 
values for the plaintext vs HEGP ciphertext was 0.003141, (maximum 0.0263), and the 
overall correlation of logP values was 0.999: a close agreement. The mean absolute 
difference between the plaintext and ciphertext dosages (i.e. L1 norm) ⟦𝑯 − 𝑷𝑻𝑭⟧ was 
3.561 × 10(E, maximum 1.773 × 10(Y. Thus HEGP alone induces only negligible reductions 
in accuracy of association statistics and genotypes. However, after encryption and quantile 
normalisation, the mean logP discrepancy rose slightly to 2.402 × 10(!, maximum 
2.257 × 10(1, but the correlation was still over 0.99.  Similarly, the estimated heritability 
changed 1.3% from 0.02472 to 0.0250. However, the mean absolute error in the decrypted 
quantile-normalised standardised genotype dosages ¶𝑯 − 𝑷𝑻𝑭𝒒· rose to 0.03585 (i.e. mean 
discrepancy 18%), maximum 0.06980.  
 
Our interpretation of this observation is that plaintext dosages correspond to a very special 
choice of coordinates where the standardised genotype dosages for a SNP are concentrated 
on three modes depending on the SNP allele frequency. Any random rotation of the 
genotypes produces coordinates such that the ciphertext dosages closely resemble a 
Gaussian sample.  After rotating into such a coordinate frame it is then possible to make 
small non-linear perturbations that have little effect on association statistics or heritability 
but degrade the decryption back into the true coordinate system.   
 
We also explored adding further security by quantile normalising and rounding the 
encrypted dosages. As would be expected, there is a trade-off between the number of 
significant digits retained after rounding and the accuracy of association and decryption. 
 
Logistic Regression 
 
So far we have considered quantitative traits with Normally distributed errors, analysed in a 
mixed model framework. Whilst case-control studies (ie where the phenotype 𝑦 ∈ {0,1}) 
are often analysed as if they were quantitative traits, under some circumstances it is 
preferable to use logistic regression, where  

Pr(𝑦# = 1) = 𝑝# =
𝑒Z[\U%"]"^#

1 + 𝑒Z[\U%"]"^#
(32) 

 
where A𝑿𝜶 + 𝑔$𝛽$B#  is the 𝑖th element of the vector 𝑿𝜶 + 𝑔$𝛽$. Write 𝑿𝒋 = [𝑿|𝒈𝒋] and 
𝜶𝒋 = [𝜶|𝛽$]. The likelihood for the data at SNP 𝑗 is  

log 𝑙 =¼log(𝑝#
`#(1 − 𝑝#)1(`#)

#

+ 𝐶(𝒚) 
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= 𝒚𝑻𝑿𝒋𝜶𝒋 −¼log ¾1 + 𝑒Z𝑿𝒋𝜶𝒋^#¿
#

+ 𝐶(𝑦) 

= (𝑷𝒚)𝑻A𝑷𝑿𝒋B𝜶𝒋 −¼log ¾1 + 𝑒Z𝑿𝒋𝜶𝒋^#¿
#

+ 𝐶(𝑦) (33) 

 
for any orthogonal matrix 𝑷, and where 𝐶(𝒚) is a function of 𝒚 only that can be ignored 
when maximising the likelihood. Thus, the likelihood function comprises two components, 
namely 𝒚𝑻𝑿𝒋𝜶𝒋, which is invariant under orthogonal transformation, and ∑ log ¾1 +#

𝑒Z𝑿𝒋𝜶𝒋^#¿, which is not invariant, instead transforming like ∑ log ¾1 + 𝑒Z𝑷𝑿𝒋𝜶𝒋^#¿# . However, 
only the first component involves both the dependent and independent variables. This 
component is shared with the log-likelihood for the Normal linear model, which is why 
fitting a linear model to case-control data generates p-values resembling those from logistic 
regression. It should be clear that case-control data (i.e. 𝑦# ∈ {0,1}) is no longer of the same 
form after an orthogonal transformation, so strictly speaking the likelihood no longer 
represents a logistic model after transformation. Nonetheless we can attempt to estimate 
parameters by maximising the transformed likelihood (Equation 33). 
 
We fitted the logistic log-likelihood model to simulated SNP data, using untransformed and 
orthogonally transformed data in order to assess the change in maximum likelihood 
parameter estimates under transformation. We found that the estimates changed 
considerably and therefore orthogonal encryption is not homomorphic for logistic 
regression, for which we therefore recommend methods such as (Wang et al. 2015). 
 
 
The Mixed-Model Linear Transformation as an alternative Encryptor 
 
Are any non-orthogonal transformations suitable for homomorphic encryption? The mixed-
model transformation 𝐴(1 shares some, but not all, of the invariant properties of the 
orthogonal group. If we set 

𝒛𝑨 = 𝑨(𝟏𝒚,𝑾𝑨 = 𝑨(𝟏𝑿, 𝑭𝑨 = 𝑨(𝟏𝑭, 𝒇𝑨𝒋 = 𝑨(𝟏𝒉𝒋 (34) 
 
Then the Var(𝒛𝑨) = 𝑰 and the log-likelihood transforms thus: 

−2 log 𝑙 = A𝒚 − 𝑿𝜶 − 𝒉𝒋𝜷𝒋B
𝑻𝑽(𝟏A𝒚 − 𝑿𝜶 − 𝒉𝒋𝜷𝒋B + 𝑛log|𝑽| 

→	A𝒛𝑨 −𝑾𝑨𝜶 − 𝒇𝑨𝒋𝜷𝒋B
𝑻A𝒛𝑨 −𝑾𝑨𝜶 − 𝒇𝑨𝒋𝜷𝒋B (35) 

 
Thus the log-likelihood is preserved so we can extract the mixed-model GWAS p-values as 
before. Moreover, 𝑨(𝟏 has 𝑛! free parameters, compared to 𝑛 (𝑛 − 1) 2⁄  for 𝑷, so the 
decryption problem is presumably harder.  Furthermore, it is easily seen that 𝑨(𝟏 may be 
replaced by 𝑷𝑨(𝟏 for any orthogonal 𝑷 making the decryption harder still. However, there 
is some loss of information: It is no longer possible to estimate the variance components 
𝜎%!, 𝜎&! nor the heritability ℎ!. Furthermore, a federated analysis along the lines described 
above would not give exactly the same p-values as would orthogonal transformation 
followed by a mixed-model transformation applied to the combined dataset, because each 
component study has been transformed separately without guaranteeing the federated 
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transformed GRM is also the identity; the structure of the federated variance matrix will be 
of the form 

𝑽𝑪 = Á
𝑰𝟏 ? ?
? 𝑰𝟐 ?
? ? 𝑰𝟑

…

… …
Ã (36) 

 
Lastly, linkage disequilibrium between the SNPs is no longer conserved: 
 

𝑭𝑨𝑻𝑭𝑨 = 𝑯𝑻(𝑨(𝟏)𝑻𝑨(𝟏𝑯 = 𝑯𝑻𝑨(𝟐𝑯 ≠ 𝑛𝑳 (37) 
 
(using the fact that 𝑨(𝟏 is symmetric).  
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Discussion: A Community Challenge 
 
HEGP has many desirable properties for quantitative genetics. It preserves linkage 
disequilibrium between genetic variants, and key association statistics including heritability 
between variants and phenotypes, while obscuring relationships between individuals. 
However, we do not yet fully understand when HEGP is cryptographically secure. Where 
private variants are available, decryption is straightforward. While it is simple to remove low 
frequency variants and therefore protect against this weakness, the larger question of 
security remains. We have sketched out several potential attacks but so our investigations 
have not found a workable method.  To settle this question, one would need either to find 
an efficient inversion algorithm - perhaps a version non-convex minimisation under 
constraints(Bertsimas et al. 2010) - that recovers the correct genotypes accurately, or 
alternatively to show there are too many incorrect “genotype-like” decoy solutions far from 
the true answer, and that therefore the problem is essentially non-invertible. It is likely that 
the inversion problem might be solvable for small data sets, but much harder for larger 
ones. 
 
Orthogonal encryption also has the potential weakness that the key space is continuous; in 
conventional crypto, a small change in the key used leads to a completely different 
ciphertext. In contrast a small change to an orthogonal key leads to small changes in the 
ciphertext. However, at this point, we know of no algorithm that can exploit this. We found 
that transformed genotypes closely resemble samples from a Normal distribution, and so 
can be replaced by exact Normal quantiles with only small effects on accuracy. Hence we 
can certainly protect the ciphertext from attacks that rely on Non-Gaussianity. 
 
The hardness of the inversion problem depends not only on avoiding private variants, but 
on choosing a good key. Those sampled from the Steifel manifold work well at obscuring 
correlations between plaintext and ciphertext genotypes, such that - as measured by mean 
correlation across all sites - transformed individuals do not resemble the originals more 
closely than do simulated individuals with matched allele frequencies. However, it is 
possible that other measures of genetic similarity between individuals might not be 
randomised to the same extent.  
 
Thus more work is needed to determine precisely when random orthogonal keys are 
cryptographically secure. We submit this problem as an open challenge to the community.  
 
While HEGP lacks mathematical proof of security compared to normal crypto schemes, most 
schemes are broken due to weaknesses in implementation (bad random number 
generators, sidechannel attacks, etc.), not algorithm. HEGP has the advantage of an 
extremely simple algorithm, and is probably immune to sidechannel attacks (and to an 
extent social engineering and rubber-hose cryptanalysis).  
 
Given our current knowledge, we claim that random orthogonal keys provide an encryption 
scheme where it is - at the least - very difficult to recover individual genetic or phenotypic 
data. This is at least equal to the level of security of a date shift of medical records which is 
also not completely secure but makes it difficult for researchers to identify an individual if 
they do not intend to do so.  
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Thus, should an effective attack be discovered, orthogonal keys still offer “pretty good 
genetic privacy” in the sense that they would prevent straightforward copying of 
information about individuals’ genotypes.  We argue that routine orthogonal transformation 
of genotypes and phenotypes, in combination with existing legal protocols, would enhance 
security, increase collaboration and data sharing, and thereby accelerate progress. 
 
In summary, we have shown how to make a distinction between public information about 
genetic architecture and allelic effects, and private information about individuals. This 
general principle could be applied more widely. We mention two examples:  
 
First, to the extent that medical records can be analysed in a linear modelling framework 
with a suitable design matrix, orthogonal encryption offers a means to perform federated 
analyses on orthogonally encrypted medical records.  
 
Second, genetic improvement of crops and farm animals could be accelerated. Whilst some 
germplasm and genetic variation data are in the public domain, commercial breeders are 
developing new varieties and breeds and have extensive proprietary genetic and phenotypic 
data that could be usefully shared using HEGP, so that alleles conferring a beneficial trait 
could be discovered and published without revealing the genomes of proprietary 
germplasm under development.  
 
Such a move - towards the idea that an allele’s effects are public property whilst an 
individual’s genotypes are private - is more important than the encryption mechanism used 
to attain it.  
 
Acknowledgments: We thank Rob Williams, the Genetics Editors and the anonymous 
reviewers for valuable comments. 
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