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ABSTRACT 

The functions of protein kinases have been heavily studied and inhibitors for many human 

kinases have been developed into FDA-approved therapeutics. A substantial fraction of the human 

kinome is nonetheless understudied. In this paper, members of the NIH Understudied Kinome 

Consortium mine public data on “dark” kinases to estimate the likelihood that they are functional. We 

start with a re-analysis of the human kinome and describe the criteria for creation of an inclusive set of 

710 kinase domains and a curated set of 557 protein kinase like (PKL) domains. Nearly all PKLs are 

expressed in one or more CCLE cell lines and a substantial number are also essential in the Cancer 

Dependency Map.  Dark kinases are frequently differentially expressed or mutated in The Cancer 

Genome Atlas and other disease databases and investigational and approved kinase inhibitors appear to 

inhibit them as off-target activities. Thus, it seems likely that the dark human kinome contains multiple 

biologically important genes, a subset of which may be viable drug targets.  

 

INTRODUCTION 

Protein phosphorylation is widespread in eukaryotic cells1 and mediates many critical events in 

cell fate determination, cell cycle control and signal transduction2.  The structures3 and catalytic 

activities4 of eukaryotic protein kinases (ePKs), of which more than 500 are found in humans5, have 

been intensively investigated for many years: to date, structures for over 280 unique domains and 

~4,000 co-complexes have been deposited in the PDB database.. The ePK fold is thought to have arisen 

in procaryotes6 and evolved to include tyrosine kinases in metazoans7,8, resulting in a diverse set of 

enzymes9,10 that are often linked in a single protein to other catalytic domains and to SH2, SH3 and 

protein binding domains. In addition, 13 human proteins have two ePK kinase domains.  An excellent 

recent review describes the structural properties of ePKs and the drugs that bind them11. 
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The kinase domain of protein Kinase A (PKA), a hetero-oligomer of a regulatory and catalytic 

subunit, was the first to be crystalized and is often regarded as the prototype of the ePK fold.3,12  It 

involves two distinct lobes with an ATP-binding catalytic cleft lying between the lobes. With respect to 

sequence, ePK are characterized by 12 recurrent elements involving ~30 highly conserved residues. The 

kinase fold is remarkably adaptable however, and has diverged in multiple ways to generate protein 

families distinct in sequence and structure from PKA. The eukaryotic like kinases (eLKs) retain 

significant sequence similarity to the N-terminal region of ePKs but differ in the substrate binding lobe; 

choline kinase A (CHKA) is a well-studied example of an eLK13. Kinases with an atypical fold (aPKs) 

have weak sequence similarity to ePKs, but nevertheless adopt an ePK like structural fold and include 

some well-studied kinases such as the DNA damage sensing ATM and ATR enzymes as well as lipid 

kinases such as PI3K, one of the most heavily mutated genes in breast cancer14.  

In humans, ePKs, eLKs and aPKs are conventionally organized into ten groups based on 

sequence alignment and structure; this often corresponds to modes of regulation and function. For 

example, tyrosine kinases represent a distinct branch of the kinome tree that includes 58 human receptor 

tyrosine kinases15 (RTKs) that bind extracellular ligands (growth factors) and share an extended 

regulatory spine that allosterically controls catalytic activity16. The AGC group of kinases, in contrast, 

are regulated by a conserved C-terminal tail flanking the kinase domain17. Over 200 additional proteins 

annotated as “kinase” in UniProt but are unrelated to the protein kinase fold enzymes and therefore 

termed uPKs (unrelated to Protein Kinases). Enzymes with phosphotransferase activity in the uPKs 

family include hexokinases that phosphorylate sugars and STK1918, which displays peptide-directed 

phosphotransferase activity and also binds protein kinase inhibitors. 

The human kinome5 includes ~50 pseudokinases that lack one or more residues generally 

required for catalytic activity. These residues include the ATP -binding lysine (K) within the VAIK 

motif, the catalytic D within the HRD motif and the magnesium binding D within the DFG motif19. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 2, 2020. ; https://doi.org/10.1101/2020.04.02.022277doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.02.022277
http://creativecommons.org/licenses/by/4.0/


Page 4 
 

Many pseudokinases function in signal transduction despite the absence of key catalytic residues. For 

example, the EGFR family member ERBB3/HER3 is a pseudokinase that, when bound to 

ERBB2/HER2, forms a high affinity receptor for heregulin growth factors.20  ERBB3 over-expression 

also promotes resistance to therapeutic ERBB2 inhibitors in breast cancer21. Some proteins commonly 

annotated as pseudokinases even have phospho-transfer activity. Haspin, for example, is annotated as a 

pseudokinase in the ProKino database because it lacks a DFG motif in the catalytic domain, but it has 

been shown to phosphorylate histone H3 using a DYT motif instead;22,23 H3 phosphorylation by Haspin 

changes chromatin structure and mitotic outcome and is therefore physiologically important24.  

Protein kinase inhibitors, and the few activators that have been identified (e.g. AMPK activation 

by salicylate and A-76966225), are diverse in mechanism and structure. The molecules include ATP-

competitive inhibitors that bind in the enzyme active site and non-competitive “allosteric” inhibitors that 

bind outside the active site, small molecule PROTAC degraders whose binding to a kinase promotes 

ubiquitin-dependent degradation26 and antibodies that target the growth factor or ligand binding sites of 

receptor kinases or that interfere with a receptor’s ability to homo or hetero-oligomerize27. Kinase 

inhibitors have been intensively studied in human clinical trials and over 50 have been developed into 

FDA-approved drugs11.   

 A substantial subset of the kinome has been little studied, despite the general importance of 

kinases in cellular physiology, their druggability and their frequent mutation in disease. This has given 

rise to a project within the NIH’s Illuminating the Druggable Genome28 (IDG) Program, to investigate 

the understudied “dark kinome” and determine its role in human biology and disease29. IDG has 

distributed a preliminary list of dark kinases based on estimates of the number of publications describing 

that kinase and the presence/absence of grant (NIH R01) funding; we and others have started to study 

the properties of these enzymes30. As described in greater detail below, defining the dark kinome 

necessarily involves a working definition of the full kinome and a survey of the current state of 
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knowledge. The starting point for this survey is the standard list of kinases put forward in a 

groundbreaking 2002 paper by Manning et al5 that found the human kinome to have 514 members; this 

has subsequently been updated via the KinHub Web resource31 to include 522 human kinases (although 

many papers cite a number closer to 520-540). 

While protein kinases could in principle be defined strictly as enzymes that catalyze phospho-

transfer from ATP onto serine, threonine and tyrosine, such a definition would exclude biologically 

active pseudokinases and structurally and functionally related lipid kinases. It would also fail to account 

for a lack of functional data for a substantial number of proteins, potentially excluding kinases that are 

physiologically or catalytically active. An alternative definition uses sequence alignment and structural 

data to identify closely related folds, but excludes uPKs having kinase activity as well as bromodomains 

that are potently bound and inactivated by kinase inhibitors32. A less restrictive list is useful for the 

kinome-wide activity profiling that is a routine part of kinase-focused drug discovery. Profiling typically 

involves screening compounds against panels of recombinant enzymes (e.g. KINOMEscan)33 or chemo-

proteomics in which competitive binding to ATP-like ligands on beads (so-called kinobeads34 or 

multiplexed inhibitor beads - MIBs35) is assayed using mass spectrometry. Such screens benefit from a 

comprehensive list of binding domains for which selectivity can be assayed. 

In this perspective we analyze the composition and properties of the dark kinome, with a focus 

on evidence that understudied kinases are expressed and potentially functional in normal cellular 

physiology and in disease.  As a first step we generate new lists for membership in the full kinome based 

on a variety of inclusion and exclusion criteria. We also re-compute membership in the dark kinome and 

consolidate available data on dark kinase activity and function. This evidence is typically indirect, such 

as data from TCGA (The Cancer Genome Atlas36) on the frequency with which a kinase is mutated in 

particular type of cancer. In aggregate, however, the evidence strongly suggests that the understudied 

kinome is likely to contain many enzymes worthy of in-depth study, a subset of which may be viable 
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therapeutic targets. All of the information in this manuscript is available in supplementary materials, and 

is currently being curated and released via the dark kinome portal. 

 

RESULTS 

The composition of the human kinome 

A list of human kinases was obtained from Manning et al.5 (referred to below as ‘Manning’) and 

a second from Eid et al.31 (via the Kinhub Web resource); a list of dark kinases according to IDG was 

obtained from the NIH solicitation37 (updated in January 2018) and a fourth list of all 684 proteins 

tagged as “kinases” was obtained from UniProt. These lists are overlapping but not identical (Figure 

1A). For example, eight IDG dark kinases absent from Manning and Kinhub (CSNK2A3, PIK3C2B, 

PIK3C2G, PIP4K2C, PI4KA, PIP5K1A, PIP5K1B, and PIP5K1C) are found in the UniProt list. We 

therefore assembled a superset of 710 domains (the “extended kinome”) and used curated alignment 

profiles and structural analysis38 to subdivide the domains into the primary categories: “Protein Kinase 

Like” (PKL), if the kinase domain was similar to known protein kinases in sequence and 3D-structure; 

“Unrelated to Protein Kinase” (uPK), if the kinase domain was distinct from known protein kinases; and 

“Unknown” if there was insufficient information to decide (see methods).38 PKLs were further 

subdivided into eukaryotic protein kinases (ePKs), eukaryotic like kinases (eLKs) and kinases with an 

atypical fold (aPKs) as previously described.38,39 ePKs and eLKs share detectable sequence similarity in 

the ATP binding lobe and some portions of the substrate binding lobe (up to the conserved F-helix38). 

aPKs, on the other hand, display no significant sequence similarity to ePKs and eLKs, but nevertheless 

adopt the canonical protein kinase fold. Most aPK lack the canonical F-helix aspartate in the substrate 

binding lobe, but share structural similarities with ePKs and eLKs in the ATP binding lobe (Figure 

1B)38. Unfortunately, the nomenclature for these families is not consistent across sources. In this 

perspective aPK refers to a subset of PKLs defined by fold and sequence similarity; this is distinct from 
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the so-called “atypical protein kinases” (AKGs). These domains are typically depicted off to the side of 

Coral dendogram40 and include protein kinases such as ATM and ATR as well as bromo-domains and 

TRIM proteins (see below). 

As noted previously5,21, structural, sequence-based and functional classifications of kinases are 

often ambiguous and overlapping. For example, the ATM aPK is known to phosphorylate proteins 

DYRK2, MDM2, MDM4 and TP5341 when activated by DNA double-strand breaks and it is also a 

member of the six-protein family of phosphatidylinositol 3-kinase-related protein kinases (PIKKs). The 

PIKK family has a protein fold significantly similar to lipid kinases in the PI3K/PI4K family but 

PI4K2A, for example, modifies phosphatidylinositol lipids not proteins.42  Thus, even after extensive 

computational analysis, some manual curation of the kinome is necessary. We have therefore created a 

sortable table enumerating all of the inclusion and exclusion criteria for individual kinases described in 

this perspective; it is possible to generate a wide variety sublists from this table based on user-specific 

criteria (Supplemental Table S1).  

One drawback of the 710 extended kinome set is that it is substantially larger than the 525-550 

domains commonly regarded as comprising the set of human protein kinases. We therefore created a 

second “curated kinome” comprising 557 domains (544 genes) that includes all 556 PKLs plus the uPK 

STK19 (Supplemental Table S2); this list omits 15 uPKs found in Manning and 22 found in Kinhub 

(including multiple TRIM family proteins43 that regulate and are regulated by kinases44, but have no 

known known intrinsic kinase activity). The shorter list also omits bromodomains. The curated 557-

domain kinome and the Manning list are compared in Figure 1C and Figure S1A.  

The relevance of the extended kinome to the study of protein kinases and kinase inhibitors is 

demonstrated in part by re-analysis of a large-scale chemo-proteomic dataset collected using 

multiplexed inhibitor beads.34 Overall, 48 domains found in the extended kinome list and not in the 

curated list, were found to bind to kinobeads and 8 were competed-off in the presence of a kinase 
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inhibitor, the criterion for activity in this assay (Figure S1B). Pyridoxal kinase (PDXK) and adenosine 

kinase (ADK) were among the enzymes bound by kinase inhibitors, even though these proteins are not 

conventionally considered when studying kinase inhibitor mechanism of action. We conclude that the 

extended and curated kinomes are useful in different settings. 

 

Identifying understudied kinases  

The original IDG dark kinome list was assembled using a bibliometric tool, TIN-X45, that uses 

natural language processing (NLP) of PubMed abstracts to assess the “novelty” and “ disease 

importance” of a gene or protein. We have previously found that different ways of performing. 

bibliometric evaluation yield varying results when applied to the kinome30.  We therefore took a 

complementary approach based on the recently developed computational tool INDRA (the Integrated 

Network and Dynamical Reasoning Assembler)46,47.  INDRA uses multiple NLP systems to extract 

computable statements about biological mechanism48,49 found in PubMed abstracts and full text articles 

in PubMedCentral. It also aggregates data from multiple pathway databases (such as BioGrid50 and 

PathwayCommons51) and specialized resources such as the LINCS compound database52 and the Target 

Affinity Spectrum from the Small Molecule Suite database53.  

INDRA statements consolidate redundant sources of evidence, link it to the underlying 

knowledge support (the database reference or citation) and they are frequently detailed with respect to 

molecular mechanism. For example, the INDRA network for the WEE2 dark kinases (Figure 2A) 

includes statements such as “Phosphorylation(WEE2(), CDK1())” and “Inhibition(WEE2(), CDK1()).” 

These machine readable assertions state that WEE2 is active in mediating an inhibitory phosphorylation 

event on CDK1 (Figure 2A). INDRA associates each assertion with its underlying evidence (including 

database identifiers or specific sentences extracted from text and their PMIDs). INDRA also 

consolidates overlapping and redundant information: in many cases a single assertion has multiple 
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pieces of evidence (for example, three PMID citations for the phosphorylation reaction described 

above). Collections of INDRA Statements can be visualized as networks of mechanisms comprising 

proteins, small molecules and other biological entities.  Thus, INDRA can be used to efficiently explore 

available information on proteins and protein families. 

We generated INDRA networks for all members of the curated kinome and used the number of 

mechanistic statements as a quantitative measure of knowledge about each kinase; these networks are 

available via NDEx54. We found that prior knowledge about the curated kinome as extracted by INDRA 

varied by >104 fold and was correlated with the TIN-X “novelty” score (Pearson’s correlation 

coefficient=0.81).  There were some cases in which the two measures were discordant; for example, 

PI4K2A has 78 INDRA statements, but a high TIN-X novelty score of ~808. The reason for such 

inconsistency is still under investigation but is likely to reflect the difficulty of linking common names 

for genes and proteins to their unique identifies in resource such as HGNC (this is known as the process 

of entity grounding); INDRA has extensive resources to correctly ground entities and resolve 

ambiguities and can correctly associate MEK kinase with the HGNC name MAP2K1 and not “methyl 

ethyl ketone.”. 

To estimate the intensity of drug development for each kinase we used the Small Molecule 

Suite53, which mines diverse cheminformatic resources to determine which kinases are bound by small 

molecules in a most-selective (MS) and semi-selective (SS) fashion (Figure 2C) as well as PHAROS55 , 

which classifies targets based on whether or not they are bound by an FDA-approved drug (Tclin) or 

tool compound (Tchem).  The selectivity levels in the Small Molecule Suite are assigned to target-

compound interactions (rather than to compounds per se) based on available data on the absolute 

binding affinity (typically obtained from enzymatic or quantitative protein binding assays), differential 

“on target” affinity as compared to the “off-target affinity” (typically obtained from a kinase profiling 

assay), the p-value between the distributions for “on” and “off” targets, and “research bias”; the latter 
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accounts for differences in available binding data (in the absence of bias estimate, a poorly studied 

compound can appear much more selective than a well-studied one simply because few off-targets have 

been tested). The MS assertion is assigned to compounds that have an absolute affinity <100 nM, an on-

target Kd > 100 times lower than off target Kd, p-value of ≤0.1, and research bias ≤0.2 (see Moret et 

al.53 for details). The SS assertion is about 10-fold less strict with regard to absolute and differential 

affinity (see methods). We found that kinases that were more heavily studied were more likely to have 

inhibitors classified as Tclin and Tchem in PHAROS or MS or SS in Small Molecule Suite. However, a 

substantial number of kinases with high INDRA scores are bound by only relatively non-selective 

inhibitors and therefore represent opportunities for development of new chemical probes.  

The original NIH IDG dark kinase list encompassed approximately one-third of the kinome. 

Using INDRA scores, we generated a new list of similar scope (schematized by the magenta box in 

Figure 2A, 2B) of the 182 least-studied domains in 181 proteins in the curated kinome, of which 119 

were on the original NIH list and 156 in Manning or KinHub (Figure 2D). In the analysis that follows 

we use this recomputed dark kinase list as the “dark kinome”. When the distribution of dark kinases is 

viewed using the standard Coral kinase dendrogram40, a remarkably even distribution is observed across 

subfamilies, with the exception that only eight tyrosine kinases are judged to be understudied (Figure 

3). In many cases light and dark kinases are intermingled on the dendrogram (e.g. the CK1 subgroup) 

but in some cases an entire sub-branch is dark (e.g. one with 4 TSSK and another with 3 STK32 kinases; 

dashed red outline).  

 

Evidence for dark kinase expression and function 

To consolidate existing data on the expression and possible functions of understudied kinases, 

we analyzed on-line resources including RNAseq data for 1019 cell lines in the Cancer Cell Line 

Encyclopedia (CCLE)56, proteomic data for 375 cell lines in the CCLE56 and loss of function data in the 
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Cancer Dependency Map (DepMap).57  DepMap data were generated by using lentivius-based RNAi or 

CRISPR/Cas9 libraries in pooled screens to identify essential genes across a large panel of cell lines.  

Based on RNASeq data, non-dark and dark kinases were observed to vary substantially in 

abundance across 1019 CCLE cell lines but evidence of expression (using the common threshold of 

RPKM ≥1 (Reads Per Kilobase of transcript, per Million mapped reads))58 was obtained in at least one 

line for 176 of 181 dark kinases (Figure 4A). Some dark kinases were as highly expressed as well-

studied light kinases:  for example, NRBP1 and PAN3 and the PI4KA and PIP4K2C lipid kinases all 

had maximum expression levels similar to that of the abundant and well-studied LCK tyrosine kinase. 

Overall, however, dark kinases had lower maximum expression than non-dark kinases by multiple 

measures (2.1 vs 5.8 RPKM median expression level, p-value=4.6x10-8; 36 vs 71 RPKM maximum 

expression level, p-value=2.2x10-16 Wilcoxon rank sum test).  In CCLE proteomic data we found that 

367 kinases from the curated kinome could be detected with at least one peptide per protein; 110 of 

these are dark kinases. Analysis of DepMap data showed that 10 dark kinases are essential in at least 1/3 

of the 625 cell lines tested to date (Figure 4B; dark blue shading), and 88 kinases are essential in at least 

two lines (light blue shading).  Thus, a substantial number of dark kinases are expressed in human cells 

lines and a subset are known to be required for cell growth. These data are likely to underestimate the 

breadth of kinase expression and function: proteins can impact cellular physiology when expressed at 

low levels and genes can have important functions without necessarily resulting in growth defects 

assayable by DepMap methodology. 

 

Data on dark kinases in diseases 

To study the roles of dark kinases in pathophysiology, we mined online databases of associations 

between disease and gene mutations or changes in expression, starting with TCGA, the largest such 

database. We compared the frequency of mutations in dark and non-dark kinases under the assumption 
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that the two sets of kinases are characterized by the same ratio of passenger to driver mutations59 and 

looked for differential RNA expression relative to matched normal tissue (Figure 5A).  In common with 

most TCGA analysis, mutations and differential expression were scored at the level of genes and not 

domains and thus, functions other than kinase activity might be affected. We performed these analyses 

for individual tumor types and for all cancers as a set (the PanCan set). With respect to differential gene 

expression, we found that dark and light kinases are equally likely to be over or under-expressed in both 

PanCan data and in data for specific types of cancer (in a Rank-sum test with H0 = light and dark kinases 

have similar aberrations p=0.15) (Figure 5). For example, in colorectal adenocarcinoma the dark kinases 

STK31, LMTK3, NEK5 and PKMYT1 represent four of the seven most high upregulated kinases 

whereas MAPK4 is one of the three most highly downregulated (Figure S3A). In PanCan, we also 

found that five dark kinases were among the 30 most frequently mutated human kinases; for example, 

the ~3% mutation frequency of the dark MYO3A kinase is similar to that of the oncogenic RTKs EGFR 

and ERBB4 (but lower than the ~12% mutation frequency for the lipid kinase PIK3CA) (Figure 4B). 

Similarly, in diffuse large B-cell lymphoma, the dark kinase ITPKB is more frequently mutated than 

KDR/VEGFR2 (~13% vs. 8% of patient samples, Figure S3B); over-expression of KDR is known to 

promote angiogenesis and correlate with poor overall patient survival and poor response to 

immunotherapy60–62. Recurrent mutation, over-expression and under-expression in TCGA data is not 

evidence of biological significance per se, but systematic analysis of TCGA data has been remarkably 

successful in identifying genes involved in cancer initiation, progression, and drug resistance52. Our 

analysis therefore shows that dark kinases are nearly as likely to be mutated or differentially expressed 

in human cancer as their better studied non-dark kinase homologues.  

To explore the roles of dark kinases in other diseases, we analyzed data from the AMP-AD  

program (Accelerating Medicines Partnership - Alzheimer’s Disease (AD) Target Discovery and 

Preclinical Validation)64. This large program aims to identify molecular features of AD at different 
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disease stages. We compared mRNA expression at the earliest stages of AD to those from late-stage 

disease in age matched samples (Figure 5C) and found that the dark kinases ITPKB and PKN3 were 

among the five most upregulated kinases while NEK10 was substantially downregulated. A similar 

analysis was performed for Chronic obstructive pulmonary disease (COPD), a common disease that 

progressively impairs a patients’ ability to breathe and is the third leading cause of death in the US65. A 

study by Rogers et al66 analyzed five COPD microarray datasets from Gene Expression Omnibus (GEO) 

and two COPD datasets from ArrayExpress to identify genes with significant differential expression in 

COPD. By comparing the expression of genes in COPD patients to gene expression in healthy 

individuals, Rogers et al. identified genes significantly up and down regulated in COPD patients 

(adjusted p-value < 0.05). We analyzed these data and found that the dark kinase PIP4K2C, which is 

potentially immune regulating,67 was significantly downregulated in individuals with COPD (adjusted p-

value = 0.048). Additionally, CDC42BPB, nominally involved in cytoskeleton organization and cell 

migration,68,69 was upregulated in COPD patients (adjusted p-value = 0.026) (Figure 5D). In total, 5 

dark kinases versus 15 non-dark kinases were expressed differentially in COPD patients.  As additional 

data on gene expression and mutation become available for other pathophysiologies, it will be possible 

further expand the list of dark kinases potentially implicated in human disease.  

 

A dark kinase network regulating the cell cycle  

Inspection of INDRA networks revealed that multiple dark kinases are likely to function in 

networks of interacting kinases. One illustrative example involves regulation of the central regulator of 

cell cycle progression, CDK1, by the dark kinases PKMYT1, WEE2, BRSK1 and NIM1K (Figure 6).  

WEE2, whose expression is described to be oocyte-specific70 (but can is also be detected in seven CCLE 

lines, six from lung cancer and one from large intestine) as well as its well-studied and widely-expressed 

homologue WEE1, phosphorylate CDK1 on the negative regulatory site T1570 whereas PKMYT1 
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phosphorylates CDK1 on the Y14 site to complete the inhibition of CDK171,72. These modifications are 

removed by the CDC25 phosphatase, which promotes cell cycle progress from G2 into M phase73. 

PKMYT1 and WEE1 are essential in nearly all cells, according to DepMap74 (although WEE2 is not). 

Upstream of WEE1, the dark kinases BRSK1 (127 INDRA statements) and NIM1K (28 INDRA 

statements) and the well-studied BRSK2 (176 INDRA statements) function to regulate WEE1. Neither 

PKMYT1, BRSK1 and NIM1K  have selective small molecule inhibitors described in the public 

literature75; several WEE1 inhibitors are in clinical development76, and these are molecules are likely to 

inhibit WEE2 as well.  It is remarkable that enzymes so closely associated with the essential cell cycle 

regulator CDK1, including several whose homologues have been extensively studied in fission and 

budding yeast, remain relatively understudied in humans77.  This is particularly true of PKMYT1 and 

NIM1K which are frequently upregulated in TCGA data.   

 

Inhibition of dark kinases by approved drugs 

Kinase inhibitors, including those in clinical development or approved as therapeutic drugs, often 

bind multiple targets. We therefore asked whether dark kinases are targets of investigational and FDA-

approved drugs by using the selectivity score53 to mine public data for evidence of known binding and 

known not-binding. We identified 13 dark kinases that are inhibited by approved drugs and an additional 

12 dark kinases for which MS or SS inhibitors exist among compounds that have entered human trials 

(although several of these are no longer in active development). The anti-cancer drug sunitinib, for 

example, is described in the Small Molecule Suite database as binding to the dark kinases STK17A, 

PHGK1 and PHGK2 with binding constants of 1 nM, 5.5 nM and 5.9 nM respectively (Figure 7A, 

Table S3) as opposed to 30 nM to 1 µM for VEGF receptors (the KDR, FLT1 and FLT4 kinases) and 

200 nM for PDGFRA, well established targets for sunitinib. Follow-on biochemical and functional 
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experiments will be required to determine if dark kinases play a role in the therapeutic mechanisms of 

these and other approved drugs. 

The potential for development of new compounds that inhibit dark kinases based on modification 

of existing kinase inhibitors can be assessed in part by examining the structures of kinase binding 

pockets using Bayes Affinity Fingerprints (BAFP)78,79. In this cheminformatics approach, each small 

molecule in a library is computationally decomposed into a series of fragments using a procedure known 

as fingerprinting. The conditional probability of a compound binding to a specific target (as measured 

experimentally in profiling or enzymatic assays) given the presence of a chemical fragment is then 

calculated. Each target is thereby associated with a vector comprising conditional probabilities for 

binding fragments found in the fingerprints of compounds in the library. Subsequently, the correlation of 

conditional probability vectors for two proteins is used to evaluate similarity in their binding pockets 

from the perspective of a chemical probe.  BAFP vectors were obtained from a dataset of ~5 million 

small molecules and 3000 targets for which known binding and non-binding data are available from 

activity profiling. 

 We found that the majority of kinase domains fell in two clusters, each of which had multiple 

dark and non-dark kinases. The close similarity of dark and non-dark kinases in “compound binding 

space” suggests that many more kinase inhibitors than those described in Figure 7a may already bind 

dark kinases or could be modified to do so (Figure 7B, Figure S5). For example, the clustering of 

IRAK1, IRAK4, STK17B and MAP3K7 by BAFP correlation (highlighted in Figure 7B) demonstrates 

that the STK17B binding pocket is likely very similar to that of IRAK1, IRAK4 and MAP3K7 and that 

compounds binding these non-dark kinases, such as lestaurtinib and tamatinib may also bind STK17B. 

Based on this, it may be possible to design new chemical probes with enhanced selectivity for STK17B 

by starting with the libraries derived from lestaurtinib or tamatinib. 
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Other useful tools for development of new small molecule probes are commercially available 

activity assays and experimentally determined NMR or crystallographic protein structures. Of 181 dark 

kinases 101 can currently be assayed using the popular KINOMEscan platform80, 91 are available as 

enzymatic assays (in the Reaction Biology kinase assay panel; www.reactionbiology.com, Malvern, 

PA), and 74 are found in both. Since the Reaction Biology assay measures phospho-transfer activity 

onto a peptide substrate, the availability of an assay provides further evidence that at least 91 dark 

kinases are catalytically active. Searching the Protein Data Bank (PDB) reveals that 53 dark kinases 

have at least one experimentally determined structure (for at least the kinase domain). Haspin has 18 

structures, the highest of all dark kinases, followed by PIP4K2B, CLK3, and CSNK1G3 (14, 10, 10 

structures, respectively) (Supplementary Figure S3, Table S2). Many of these structures were 

determined as part of the Protein Structure Initiative81 and its successors but have not been subsequently 

discussed in the published literature. 

 

DISCUSSION 

 In this perspective we explore the properties of the understudied human kinome. We find that the 

amount of information in the literature about individual human kinase domains spans at least four orders 

of magnitude when measured by the number of unique causal and mechanistic statements that can be 

extracted using INDRA text mining and knowledge assembly software. Not surprisingly, RTKs such as 

EFGR and cytosolic kinases such as mTOR have high INDRA scores but other kinases are little studied, 

even ones for which high resolution structures and commercial assays exist. Data from INDRA 

correlates well with more conventional bibliometric measures,3045  and also with the degree to which a 

domain has been successfully targeted with selective or clinical grade small molecules. Following the 

lead of the NIH IDG program, we define the dark kinome as the least-studied one-third of all kinase 
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domains. These domains have ~14 fold fewer INDRA statements on average than well-studied kinases 

and are much less likely to have small molecule ligands.  

The goal of the current work is to aggregate knowledge about these domains and determine if 

dark kinases are likely to be expressed, have detectable phenotypes when knocked out, be mutated, 

amplified, or deleted in disease and be targeted or potentially targetable using small molecules. INDRA 

is useful in this regard because it consolidates the available literature evidence, with a focus on any 

available mechanistic information, in an easy-to parse node-edge graphs available at NDex, 

(https://home.ndexbio.org/); INDRA statements are also machine readable and can be used to construct 

large and small-scale computational models47.  In the largest available cell line panel analyzed to date 

(the CCLE) we find that 176 dark kinase domains are likely to be expressed as measured by protein or 

mRNA levels and over half of genes encoding dark kinases are essential in two of more of the 625 cell 

lines annotated in the DepMap57; 10 are essential in two-thirds of DepMap lines. In addition, 27 kinases 

are among the top ten most mutated kinase in one or more cancer types annotated in TCGA and several 

kinases are differentially expressed in diseases such as Alzheimer’s Disease and COPD. Thus, although 

available data is largely indirect, it strongly suggests that a substantial subset of dark kinases are 

functional in normal physiology and disease pathophysiology. This information is of immediate use in 

studying protein phosphorylation networks and it sets the stage for studies using genetic and chemical 

tools to understand dark kinase function. Based on available evidence, the possibility exists that some 

dark kinases may be valuable as therapeutic targets. 

Kinases have evolved such that related protein folds can catalyze the phosphorylation of 

substrates as distinct as peptides and lipids. Conversely, folds with a more distant relationship by 

sequence and 3D structure can share activity against serine and threonine residues in peptides. 

Moreover, 50 domains with a kinase fold lack the residues canonically necessary for phospho-

transferase activity. These so-called pseudokinases are found in the human kinome and many have well-
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established physiological activities. In some cases (Haspin for example) kinases that have historically 

been classified as pseudokinases have been shown to have catalytic activity against protein substrates. 

Thus, there is no single definition of the kinome that suffices for all purposes. We have therefore 

consolidated over a dozen overlapping and often inconsistent criteria to generate two different 

definitions of the human kinome: an expansive 710 domain “extended kinome” that broadly 

encompasses related sets of folds, sequences and biological functions. This list of protein domains is 

likely to be most useful in chemoproteomics, small molecule profiling and genomic studies in which an 

expansive view of the kinome is advantageous. By sorting this list based on a range of annotated 

inclusion and exclusion criteria (see Supplementary Table 1), it is possible to generate lists with more 

specific properties (e.g. pseuodokinases, lipid kinases, nucleotide kinases etc). As one example of such a 

list we also generated a set of 557 “curated kinase” domains that is most similar in spirit to the original 

definition of the kinome generated by Manning5 nearly two decades ago. This list is most useful in the 

study of protein kinases as a family of genes with related biochemistry and cellular fuctions. The 

computational analysis in this perspective focuses on this curated kinase set. 

 Several kinase families have regulatory domains whose mutation or over-expression also has the 

potential to alter function. These include the three kinases in the Protein Kinase A family (cAMP-

dependent protein kinase; PRKACA, PRKACB and PRKACC)82 which function in complex with a 

family of regulatory subunits, many of which have tissue-specific patterns of gene expression83. The 

cyclin dependent kinases, of which 21 are known – including 8 dark kinases – also function in a 

complex, in this case with one or more members of a family of at least 20 cyclins84. Some cyclins, 

CCNB3 (cyclin B3, which binds to CDK2) are frequently mutated in cancer and the effects of these 

mutations must be studied in conjugation with that of the kinases to which they bind (CCNB3 is mutated 

in 6% of cholangiocarcinomas and 11% of uterine corpus endometrial carcinoma based on TCGA data).  

CCNB3 is understudied however, with 7 times fewer citations than the classic CDK2 cyclin B1 and with 
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a similar number of citations as the dark CDK14. Thus, when regulatory subunits are included in the 

curated kinome, the number of relevant genes is close to 600.   

 Information available in the public domain and consolidated in this perspective represents the 

starting point for work being done by the NIH Illuminating the Druggable Genome project. The 

consolidated  knowledge base already makes it possible to prioritize a subset of kinases for further 

investigation. In many cases substantial opportunities appear to exist for biological discovery, 

development of tool compounds (chemical probes) and analysis of new or existing therapeutics. Caution 

is nonetheless warranted in the use of this or any other biological knowledge resource because of the 

extreme difficulty in accurately assembling knowledge about gene function and biological mechanism. 

Our work on the kinome emphasizes that functional genomics involving literature analysis suffers from 

a significant problem with “unknown knowns.” 

For example, PKMYT1 is classified as an understudied kinase and it is without a doubt the least 

studied member of the WEE kinase family75, a set of enzymes that regulates cell cycle progression at 

G2/M. WEE1 has also been targeted recently by investigational anti-cancer therapeutics (e.g. 

adavosertib)85. WEE1 and PKMYT1 are not functionally redundant since both are essential in over 90% 

of DepMap cell lines and they are known to have different activities against T14 and Y15 of CDK1. The 

consequences of differential expression of PKMYT1 in cancer cells has only recently been examined, 

and interest derives in part from evidence that over-expressing PKMYT1 may confer resistance to 

WEE1 inhibitors.86 However, automated knowledge assembly (e.g. by INDRA) struggles in 

consolidating what is known about PKMYT1. Even the best NLP cannot pick up the fact that the 

PKMYT1 kinase (HGNC:29650) is widely referred to in the literature as “MYT1” kinase and that the 

HGNC symbol MYT1 (HGNC:7622) refers to an unrelated zinc-finger transcription factor. The 

literature is replete with these inconsistencies and false cross-references, making accurate grounding and 

knowledge management by both machines and humans challenging. In the current example, the missed 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 2, 2020. ; https://doi.org/10.1101/2020.04.02.022277doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.02.022277
http://creativecommons.org/licenses/by/4.0/


Page 20 
 

citations are relevant because many more publications are available citing “MYT1” than “PKMYT1”, 

even when the citations are manually curated to remove references to the MYT1 transcription factor. A 

key goal of our consortium is not only to fix these specific problems in kinome annotation but also to 

advance the state of the art in machine reading so that up-to-date and accurate knowledge can be made 

widely available about the kinome. We also intend to regularly and automatically mine large-scale 

database (e.g. AMP and TCGA) to consolidate information from disease genetics and add new 

experimental data that can be used to prioritize kinases for study in a range of tissues and indications.  
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METHODS 

Classification of the “extended kinome” and defining the “curated kinome” 

To obtain a list of kinases from UniProt all human proteins annotated to have kinase activity were 

extracted and filtered based on (i) interaction with ADP/ATP; (ii) presence of a kinase domain; 3) 

membership in a kinase family (lists of kinase domains and kinase families are available in 

supplementary material). To identify human kinase sequences that belong to the Protein Kinase Like 

(PKL) fold, 710 sequences annotated as “kinase” in UniProt were first subjected to a similarity search 

against well curated ePK profiles to identify and separate out the 8 canonical ePK groups5,23,87. eLKs 

were identified based on detectable sequence similarity with one or more of the ePK sequences. 

Sequences that share no detectable sequence similarity to ePKs were classified as aPKs. For predicted 

aPKs, crystal structures of the protein itself or of the closest homolog were inspected manually to check 

if the kinase domain adopts a canonical ePK fold. Additional support for this classification was obtained 

by calculating a Hidden Markov Model (HMM)-based distance score between the Pfam domains88 and 

the presence/absence of key structural features distinguishing ePKs, eLKs and aPKs, as described 

previously38,39. A subset of sequences that satisfied none of the above criteria i.e. no detectable sequence 

similarity to ePKs, no clear kinase function and no homologous crystal structures, were grouped into the 

unknown protein kinase category (uPKs). All kinases annotated to have a PKL fold were included in the 
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curated kinome. STK19 was also included in the curated kinome despite its uPK fold since it is known 

to be serine/threonine kinase active against peptide substrates18. 

 

Curation of INDRA statements and generation of INDRA networks 

INDRA uses natural language processing (NLP) to extract mechanistic information from literature as 

well as databases and represents them in a standardized format as previously described47. In the present 

study, mechanistic statements for each kinase were obtained from INDRA with the script 

‘get_kinase_interaction.py’. The number of INDRA statements were counted for each kinase. 

Regulatory networks were generated by first assembling a mechanistic model for each kinase with the 

INDRA assembler.cx module and uploading the model to NDex (python scripts to assemble INDRA 

statements and assemble mechanistic networks are available on the Github repository 

http://github.com/labsyspharm/dark-kinomes).  

 

Small molecule selectivity calculations 

The specificity of small molecules was calculated according to the selectivity score53, which uses 

multiple parameters to assess selectivity: (i) the absolute affinity for the ‘on’ target; ii) the differential 

affinity between the ‘on’ and ‘off’ targets of each kinase; (iii) the p-value of the difference between the 

distributions of ‘on’ and ‘off’ targets; (iv) the research bias – a score indicating how broadly a 

compound has been tested for off-targets. The selectivity score was divided in four tiers; Most Selective 

(MS), Semi Selective (SS), Polyselective (PS) and Unknown (UN). MS levels are defined as an absolute 

affinity of Kd <100 nM (at least two measurements) ; a differential affinity of 100 (i.e. the affinity of the 

compound for the ‘on’ target is 100 times greater than for the ‘off’ targets), a p-value ≤ 0.1 and a 

research bias <0.2; SS levels are defined as an absolute affinity of Kd<1 µM (at least 4 measurements), a 

differential affinity of 10, a p-value ≤0.1 and research bias <0.2; PS levels are defined as an absolute 
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affinity Kd< 9000 nM, differential affinity of 1 (e.g. equal affinity for ‘on’ and ‘off’ targets) and 

research bias <0.2; UN levels are defined as an absolute affinity Kd< 9000 nM and differential affinity 

of 1. 

 

CCLE analysis 

The data RNA dataset ‘CCLE_RNAseq_genes_rpkm_20180929.gct.gz’ was downloaded from the 

CCLE portal (https://portals.broadinstitute.org/ccle/data) and analyzed with the script 

“analyzing_CCLE_data.r”. The maximum expression value over all cell lines was calculated and plotted 

(Figure 3A). Genes were considered ‘expressed’ if the maximum RPKM was ≥1. The mass 

spectrometry dataset ‘protein_quant_current_normalized.csv’ was downloaded from the DepMap portal 

(https://depmap.org/portal/download/) and analyzed with the script “analyzing_CCLE_data.r”. Proteins 

for which one or more peptides were detected in this dataset were considered to be expressed. 

 

Determination of Essential Kinases through Dependency Map 

The preprocessed results of genome-wide CRISPR knockout screens were obtained from the DepMap 

19Q4 Public data release (https://depmap.org/portal/download/). The results of the screens were 

processed as described by Dempster et al89. For each kinase, cell lines with a CERES score >0.5 were 

classified as dependent and the number of dependent cell lines for each kinase was then tallied.  

  

TCGA analysis  

TCGA PanCan gene expression and mutation frequency data was obtained from cBioPortal90,91. To 

identify kinases with abnormal expression in tumors, tumor types with at least 10 paired normal tissue 

samples were analyzed. For each kinase, the fold change of its median expression in either all tumor 

tissues (general PanCan analysis) or the individual tumor tissue over its median expression in the paired 
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healthy tissues was calculated. P-value from Wilcoxon-Mann-Whitney test was calculated based on the 

distributions of gene expression in tumor and healthy tissues in each tumor type. Adjusted p-values were 

calculated using the Benjamini-Hochberg procedure.  To identify kinases heavily mutated in cancer, the 

number of patient samples with mutation or gene fusion was counted and normalized to the total number 

of patient samples (10953 samples).  

 

AMP-AD analysis 

Preprocessed count matrices of AMP-AD consortium RNA-seq data were downloaded from the AMP-

AD Synapse directory92. In summary, these counts were derived from raw reads using the STAR 

aligner93 and the Gencode v24 human genome annotation. In our analysis, we included all Alzheimer’s 

disease (AD) patients from the Mount Sinai VA Medical Center Brain Bank (MSBB) and the Religious 

Orders Study and Memory and Aging Project (ROSMAP) study94 for which RNA-seq data from post-

mortem brain was available and their age at death and Braak stage were known. Differential expression 

analysis was performed using the R package DESeq295. We fitted a generalized linear model to the 

expression of each gene using the Braak stage as independent variable and adjusted for age at death and 

study batch effect by including them as covariates. We used the Wald test implemented in DESeq2 to 

extract differentially expressed genes between early (Braak stages 1 and 2) and late (5 and 6) AD cases. 

Effect sizes were moderated using the R package apeglm96.  

 

COPD differential expression analysis 

Preprocessed dataset combining 5 datasets from GEO and 2 from ArrayExpress was downloaded from 

https://figshare.com/articles/Meta-

analysis_of_Gene_Expression_Microarray_Datasets_in_Chronic_Obstructive_Pulmonary_Disease/8233

175. Data was preprocessed as described in Rogers et al66. Raw expression data was processed by 
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generalized least squares (GLS) weighted models to account for heterogeneity between datasets. A 

Likelihood Ratio Test was used to identify differentially expressed genes. Genes with significant 

(adjusted p-value <0.5) differential expression in COPD versus healthy individuals and that are within 

the two-tailed 10% and 90% quantile were identified as genes of interest. Relative expression of these 

differentially expressed genes was calculated as the effect size of the GLS estimates of the individuals 

with COPD and healthy individuals.  

 

FIGURE LEGENDS 

Figure 1 – Composition of the human kinome.  

(A) Venn diagram showing the overlap in domains curated as being a kinase depending on the sources. 

KinHub (purple) refers to a list of kinases described by Eid et al.97 and accessible via 

http://kinhub.org/kinases.html; Manning (red) refers to the gene list prepared by Manning et al. in 20025; 

Uniprot kinase activity (green) refers to a list of genes annotated as having kinase activity in the Uniprot 

database98 (see methods and Table S1); Dark Kinome (yellow) refers to a list of 168 understudied 

kinases as defined by the NIH solicitation for the IDG program and listed in Supplementary Table S1 . 

(B) Schematic workflow showing how kinases are classified based on kinase three dimensional fold and 

sequence alignment: PKL – the protein kinase like fold most similar to that of the canonical PKA 

kinase; uPK – folds unrelated to protein kinases – but with significant sequence homology and known to 

encompass kinases against non-protein substrates as well as a limited number of protein kinases. PKLs 

are further subclassified into eukaryotic Protein Kinases (PKs), eukaryotic Like Kinases (eLKs) and 

Atypical Kinases (AKs) based on structural properties and sequence alignment.  HMM refers to a 

Hidden Markov Model used to perform classification; see methods for details. (C) Pie chart showing the 

breakdown of 710 domains in the extended human kinome or the 557 domains in the curated kinome as 

defined in the current work. Subfamilies of kinases (as conventionally defined)5 are denoted by the 
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white dotted lines: CAMK – Calcium and Calmodulin regulated kinases; TK – Tyrosine kinase; TKL – 

Tyrosine kinase like’ ACG – named after the initials for kinases within the group PKA, PKC and PKG;  

CMGC – named after the initials of some members;  CK1 – cell kinase group; AKG – atypical protein 

kinase group. Legend below lists some exemplary kinases from each category.  Full details can be found 

in Supplementary Table S1. 

 

Figure 2 – The composition of the dark kinome. 

(A) Illustrative and simplified INDRA network automatically assembled for the WEE2 kinase. The table 

to the right shows the evidence extracted by INDRA for a single interaction (the bold arrow linking 

Wee2 and CDK1). An interactive version of this graph and a complete set of evidence can be found on 

NDex (http://ndexbio.org). (B, C) Comparison of number of INDRA statements (X-axis) and TIN-X 

novelty score45 (Y-axis) for all domains in the curated human kinome. The number of INDRA 

statements correlates with TIN-X novelty score a Pearson’s correlation coefficient of r = 0.81. The 

bottom third of domains having the least knowledge according to both INDRA and TIN-X are 

highlighted in pink and constitutes the dark kinome as defined in this manuscript. In panel B the Pharos 

target designation (solid colors) and IDG status (shape) are shown; in panel C, the fill color represents 

the maximum selectivity of a small molecule compound known to bind to each kinase. See text for 

details.  

 

Figure 3 – Dark kinases on the Coral kinase dendogram  

Kinases from the curated kinome are visualized on the Coral kinase dendrogram40. The recomputed dark 

kinome is shown in blue and non-dark kinases are shown in yellow. The atypical kinase group (AGC; 

denoted by a blue dashed line) as previously defined by Manning and KinHub lies to the right of the 

dendogram; this set includes multiple genes that are not considered to be members of the curated kinase 
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family as described in this paper (labelled in gray). The 46 kinases in the curated kinome but not on the 

Coral dendrogram are listed separately to the right and organized by protein fold. Red dashed lines 

denote regions of the dendogram in which all kinases are dark. 

 

Figure 4 – Evidence for dark kinase expression and function. 

(A) Maximum expression level (RPKM value) for each gene in the dark kinome list across 1039 cell 

lines curated in the CCLE database99. Dark kinases are colored in purple, non-dark kinases in orange. 

Dotted line indicates a RPKM threshold of 1, above which genes were designated as “expressed” based 

on an established metric.58 (B) Number of cell lines for which the Dependency Map57 score indicates 

essentiality (using the recommended Post-Ceres100 value of ≤ -0.5). Dark kinases are colored in purple, 

non-dark kinases in orange; HGNC symbols for genes essential in all cells in the Dependency Map are 

shown. Blue shading denotes genes essential in one-third or more of cell lines and yellow denotes genes 

essential in two or more lines. 

 

Figure 5 – Dark kinases in diseases 

Data on differential expression, mutation, amplification or deletion of genes containing domains from 

the curated human kinome in disease databases. Dark kinases are colored in purple, non-dark kinases in 

orange.  (A) Pan-cancer (PanCan) differential mRNA expression for both the dark and the non-dark 

kinases based on data in TCGA and accessed via c-BioPortal.90 No significant difference between the 

dark and light kinome was observed with respect to the frequency of differential expression relative to 

matched normal tissue.  HGNC symbols and cancer type abbreviations for selected outlier genes and 

diseases are shown. BRCA - Breast invasive carcinoma; KIRC - Kidney renal clear cell carcinoma; 

LUSC - Lung squamous cell carcinoma; UCEC - Uterine Corpus Endometrial Carcinoma. (B) Mutation 

frequency for most frequently mutated kinases in PanCan. Dark kinases are shown in solid color; non-
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dark kinase in transparent color. Fusion-mutations are shown in magenta. HGNC symbols are displayed 

next to each bar with bold denoting dark kinases. (C) Differential gene expression in early versus late 

stage Alzheimer’s disease. Samples were aged matched prior to calculation of differential expression 

values. HGNC symbols are shown for outliers displayed. (D) Relative gene expression levels in COPD 

versus healthy individuals. Kinases are sorted by their relative expression. HGNC symbols are displayed 

next to each bar with purple denoting dark kinases and orange denoting non-dark kinases. 

 

Figure 6 – A dark kinase network regulating the cell cycle 

(A) A partial network (left) and statement table (right) for proteins interacting with PKMYT1 according 

to the INDRA database. The source ‘literature’ is denoted by ‘L’. (B) INDRA network for CDK1 

showing interacting dark kinases. Black arrows denote protein modifications; blue lines denote complex 

formation; red arrows denote inhibition; green arrows denote activation. (C) INDRA network for WEE1 

showing interacting dark kinases. Color code is the same as in panel B. (D) Manually curated signaling 

network based on known regulatory mechanisms for PKMYT1, CDK1 and WEE1. The network 

comprises four dark kinases (BRSK1, NIM1K, WEE2 and PKMYT1), three non-dark kinases (BRSK2, 

WEE1, CDK1), and the protein phosphatase CDC25.  

 

Figure 7 – Inhibition of dark kinases by clinical grade compounds and approved drugs 

(A) Kinase inhibitors in clinical development and FDA-approved small molecule therapeutics targeting 

dark kinases for which binding is scored as most selective (MS) or semi selective (SS) based on literature 

data curated in CHEMBL. Eighteen dark kinases are targeted in total. (B) Clustering of dark kinases by 

Bayes Affinity Fingerprint (BAFP) – a measure of the shape of binding pocket. Dark lines in the margin 

denote dark kinases. A blowup of BAFP values for four kinases (red box), one of which is dark 

(STK17B) , is shown below. 
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SUPPLEMENTARY FIGURE LEGENDS 

Figure S1 related to Figure 1 - Kinase domains in the standard list  

(A) Pie chart of kinases in the Manning and Kinhub lists divided into kinase groups as conventionally 

defined. Letter coding explanation can be found of main figure legend 1C. (B) Number of compounds 

that target dark kinases as determined in a recent large-scale chemoproteomic assay34.   

 

Figure S2 related to Figure 2 - INDRA network for WEE2  

A partial network (upper panel) and statement table (lower panel) generated by INDRA for the dark 

kinase WEE2. Table contains full quotes from literature.  

 

Figure S3 related to Figure 5 -  Differential mRNA expression of kinases in selected TCGA 

datasets 

(A) Differential mRNA expression for both the dark and the non-dark kinases in colon adenocarcinoma 

(COAD) based on data in TCGA and accessed via c-BioPortal.82. HGNC symbols and cancer type 

abbreviations for selected outlier genes. (B) Depicted is the alteration frequency in lymphoid neoplasm 

diffuse large B-cell lymphoma (DLBCL) for dark kinases (darks bars) and non-dark kinases (light bars). 

Both fusion (magenta) and mutations (black/grey) are indicated. 

 

Figure S4 related to Figure 6 - Kinase domains with high resolution structures 

Number of structures of the kinase domain in Protein Data Bank (PDB) for both non-dark kinases 

(orange) and dark kinases (purple) sorted in descending order. Top dark kinases with high number of 

kinase domain structures are labeled.  
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Figure S5 related to Figure 6 – Clustering of kinases by binding pocket based on BAFP and 

mapped to the Coral dendogram  

(A) BAFP clusters visualized on the Coral kinase dendrogram. (B) The nine labelled BAFP clusters 

(denoted by color and labelled 1-9) projected on one Coral kinase dendrogram. Dark kinases in each 

cluster are colored black. 

 

FOOTNOTES FOR SUPPLEMENTARY TABLES  

Supplementary Table 1 – The extended kinome 

This table describes available information about the 710 kinase domains in the extended kinome. Each 

domain is annotated with the following pieces of information: gene_id (NCBI gene ID); UniProtEntry 

(Uniprot ID, Uniprot Entry name and domain index if the kinase contains multiple kinase domains) 

Entry (the unique and stable short-form Uniprot ID as a number); Entry name (Mnemonic identifier to 

UniprotKB entry); Gene names (names of genes encoding this protein as obtained from Uniprot), 

Protein names (full name of the protein provided by UniProt), HGNC ID, HGNC_name (the official 

gene symbol approved by HGNC), Approved name (the full gene name approved by HGNC), IDG_dark 

(value of 0 or 1 denoting whether dark in the original NIH list), Kinhub (value of 0 or 1 denoting 

whether the domain is on the Kinhub list), Manning (value of 0 or 1 denoting whether domain is on the 

Manning list), Group (membership to one of the ten kinase groups), Family (membership in the kinase 

families), Uniprot_kinaseactivity (value of 0 or 1 denoting whether domain is on the curated UniProt 

kinase list), PfamDomain, DomainStart (first residue number of the kinase domain according to 

UniProt), DomainEnd (last residue number of the kinase domain according to UniProt), ProKinO (value 

of 0 or 1 denoting wehther the domain is in ProKinO), New_Annotation (further classification of the 

protein fold as ePK, eLK, Atypical, Unrelated to Protein Kinase or Unknown), Fold (primary 

classification of the protein fold: protein kinase like – PKL -, unrelated, UPK or unknown), 
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Pseudokinase? (Yes or No annotation to whether the kinase is a pseudokinase according to ProKinO), 

Annotation_Score (number to reflect the amount of aggregated information from multiple databases), 

INDRA_network (URL of the interactive INDRA network on NDEx).  

 

Supplementary Table 2 – The curated kinome 

A table describing data about the 556 kinase domains in the curated kinome with a PKL fold (plus 

STK19). Each domain is annotated with all information in Supplementary Table 1 about its identifiers 

(NCBI gene_id, HGNC identifiers, and UniProt identifiers), inclusion and exclusion criteria based on 

different kinase lists (Manning, KinHub, kinase group and kinase family according to KinHub, curated 

UniProt kinase list, NIH dark kinase, ProKinO, pseudokinase), protein fold, and the URL for its INDRA 

network on NDEx. Each kinase domain also has the following additional annoations: (i) amount of 

existing information (n_indra_statement: number of INDRA statements; TIN-X_Score; tdl (target 

development level from Pharos); (ii) whether the kinase is dark (stat_dark_num: value of 0 or 1 denoting 

whether a kinase is dark based on number of INDRA statement and TIN-X_Score); (iii) PDB structures 

(PDBID: PDB IDs for any structures of the kinase domain; num_pdb: the total number of pdb structures 

of the kinase domain); (iv) number of MS/SS compounds (num_MSSS_cmpd); (v) availability of 

commercial activity assays (rb_name: the name of the kinase on Reaction Biology 

(http://www.reactionbiology.com); rb_variants: the phosphorylated form or protein complex available 

for assay on Reaction Biology; kinomescan_name: the name of the kinase on DiscoverX 

(https://www.discoverx.com/home); kinomescan_variants: the phosphorylated form or protein complex 

available for assay on the DiscoverX kinase panel; commercial_assay: value of 0 or 1 denoting whether 

a Reaction Biology or KinomeScan assay is available); (vi) biological relevance and disease 

implications (num_dep: number of dependent cell lines on DepMap; AMPAD: value of 0 or 1 denoting 

whether the kinase is differentially expressed in Alzheimer patients; TCGA: value of 0 or 1 denoting 
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whether the kinase is differentially expressed in any cancer type, among the top 10 most frequently 

mutated kinases in any cancer type, or among the top 20 most frequently mutated kinases of all cancers; 

COPD: value of 0 or 1 denoting whether the kinase is differentially expressed in COPD patients). 

 

Supplementary Table 3 – Clinical compounds targeting dark kinases 

A table with the affinity values of compounds in clinical development (phase 1-3) or approved drugs 

that have been shown to target dark kinases based on available data in Small Molecule Suite 

(http://smallmoleculesuite.org). The compounds are annotated with IC50_Q1 (the affinity value per dark 

kinase), HGNC_symbol (official HGNC symbol of dark kinase), compound_max_phase (the latest stage 

of clinical development), compound_first_approval (year of first approval if compound is an approved 

therapeutic), compound_chembl_id (ChEMBL identifier of compound). 
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