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ABSTRACT 

The functions of protein kinases have been widely studied and many kinase inhibitors have been 

developed into FDA-approved therapeutics. A substantial fraction of the human kinome is nonetheless 

understudied.  In this perspective, members of the NIH Understudied Kinome Consortium mine publicly 

available databases to assess the functionality of these understudied kinases as well as their potential to 

be therapeutic targets for drug discovery campaigns. We start with a re-analysis of the kinome as a 

whole and describe criteria for creating an inclusive set of 710 kinase domains as well as a curated set of 

557 protein kinase like (PKL) domains. We define an understudied (‘dark’) kinome by quantifying the 

public knowledge on each kinase with a PKL domain using an automatic reading machine. We find a 

substantial number are essential in the Cancer Dependency Map and differentially expressed or mutated 

in disease databases such as The Cancer Genome Atlas. Based on this and other data, it seems likely that 

the dark kinome contains biologically important genes, a subset of which may be viable drug targets. 

 

INTRODUCTION 

Protein phosphorylation is widespread in eukaryotic cells (Cohen, 2002) and mediates many 

critical events in cell fate determination, cell cycle control and signal transduction (Hunter, 1995).  The 

3D structures (protein folds) (Knighton et al., 1991a) and catalytic activities (Adams, 2001) of 

eukaryotic protein kinases (ePKs), of which ~500 are found in humans (Manning et al., 2002), have 

been intensively investigated for many years: to date, structures for over 280 unique domains and 

~4,000 co-complexes have been deposited in the PDB database. The fold of ePKs is thought to have 

arisen in prokaryotes (Lai et al., 2016) and evolved to include tyrosine kinases in metazoans (Darnell, 

1997; Wijk and Snel, 2020), resulting in a diverse set of enzymes (Hanks and Hunter, 1995; Hanks et 

al., 1988) that are often linked  - in a single protein - to other catalytic domains, such as SH2 and SH3 

peptide-binding domains, and other functional protein domains. In addition, 13 human proteins have two 
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ePK kinase domains.  An excellent recent review describes the structural properties of ePKs and the 

drugs that bind them (Kanev et al., 2019).  

With an accessible binding pocket and demonstrated involvement in many disease pathways, 

protein kinases are attractive drug targets (Bhullar et al., 2018). Protein kinase inhibitors, and the few 

activators that have been identified (e.g. AMPK activation by salicylate and A-769662 (Hawley et al., 

2012)), are diverse in mechanism and structure. These molecules include ATP-competitive inhibitors 

that bind in the enzyme active site and non-competitive “allosteric” inhibitors that bind outside the 

active site, small molecule PROTAC degraders whose binding to a kinase promotes ubiquitin-dependent 

degradation (Jones, 2018) and antibodies that target the growth factor or ligand binding sites of receptor 

kinases or that interfere with a receptor’s ability to homo or hetero-oligomerize (FAUVEL and Yasri, 

2014). Kinase inhibitors have been intensively studied in human clinical trials and over 50 have been 

developed into FDA-approved drugs (Kanev et al., 2019).   

 Despite the general importance of kinases in cellular physiology as well as their druggability and 

frequent mutation in disease, a substantial subset of the kinome has been relatively little studied. This 

has given rise to a project within the NIH’s Illuminating the Druggable Genome Program (IDG) (Finan 

et al., 2017), to investigate the understudied “dark kinome” and determine its role in human biology and 

disease. IDG has distributed a preliminary list of dark kinases based on estimates of the number of 

publications describing that kinase and the presence/absence of grant (NIH R01) funding; we and others 

have started to study the properties of these enzymes (Huang et al., 2018). Defining the dark kinome 

necessarily involves a working definition of the full kinome and a survey of the current state of 

knowledge.  

Establishing the membersip of the human kinome is more subtle than might be expected. The 

first human “kinome” with 514 members, defined as proteins homologous to enzymes shown 

experimentally to have peptide-directed phosphotransferase activity, was put forward in a 
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groundbreaking 2002 paper by Manning et al. (Manning et al., 2002). This list has subsequently been 

updated via the KinHub Web resource (Eid et al., 2017a) to include 522 proteins. The kinase domain of 

protein Kinase A (PKA), a hetero-oligomer of a regulatory and a catalytic subunit, was the first to be 

crystalized and is often regarded as the prototype of the ePK fold (Knighton et al., 1991a, 1991b). This 

fold involves two distinct lobes with an ATP-binding catalytic cleft lying between the lobes which is 

characterized, at the level of primary sequence, by 12 recurrent elements with a total of ~30 highly 

conserved residues (Lai et al., 2016). Of 514 proteins in the kinome from Manning et al, 478 have an 

ePK fold.  

Kinases have diverged in multiple ways to generate protein folds distinct in sequence and 

structure from PKA including  the eukaryotic like fold, the atypical fold and unrelated folds. The 

eukaryotic like kinases (eLKs) are similar to ePKs in that they retain significant sequence similarity to 

the N-terminal region of ePKs but differ in the substrate binding lobe. TP53RK, a regulator of p53 

(TP53) (Abe et al., 2001) is an example of a serine/threonine protein kinase with an eLK fold. Kinases 

with an atypical fold (aPKs) are distinct from ePKs and eLKs in that they have weak sequence similarity 

to ePKs, but nevertheless adopt an ePK-like three dimensional structure. aPKs include some well-

studied protein kinases such as the DNA damage sensing ATM and ATR kinases (Abraham, 2001). The 

aPK and eLK folds are not limited to protein kinases. The lipid kinase PI3K, one of the most heavily 

mutated genes in breast cancer (Mukohara, 2015),  also adopts an aPK fold (Kanev et al., 2019). 

Similarly, the choline kinase CHKA, a key player in dysregulated choline metabolism in cancer and a 

chemotherapy target, adopts the eLK fold (Glunde et al., 2011; K et al., 2016).  Over 200 additional 

proteins are annotated as “kinase” in UniProt. The structures of these kinases are unrelated to the protein 

kinase fold and they are therefore termed uPKs (unrelated to Protein Kinases). Enzymes with 

phosphotransferase activity in the uPK family include hexokinases that phosphorylate sugars, but also 

protein kinases with bromodomains (e.g. BRD2, BRD3 and BRD4) as well as STK19, which displays 

http://kinhub.org/kinases.html


Page 5 

 

peptide-directed phosphotransferase activity (Yin et al., 2019).  Multiple uPK proteins, including those 

with bromodomains, bind to small molecule kinase inhibitors (Ciceri et al., 2014) making it useful, from 

the perspective of drug discovery, to study kinase-like proteins at the same time as kinases themselves. 

While protein kinases could in principle be defined strictly as enzymes that catalyze phospho-

transfer from ATP onto serine, threonine and tyrosine, such a definition would exclude structurally and 

functionally related lipid kinases and well as many of the protein families relevant to drug discovery. It 

would also fail to account for a lack of functional data for a substantial number of proteins, potentially 

excluding from consideration kinases that are physiologically or catalytically active but have not yet 

been tested in biochemical assays. This has resulted in definitions that rely on  sequence alignment and 

structural data to identify closely related folds (Ciceri et al., 2014); in this definition, uPKs having 

kinase activity as well as bromodomains that potently bind and are inactivated by kinase inhibitors are 

often excluded. Moreover, as Hidden Markov Models (HMMs) and other ways of recognizing kinase 

homology have become more sophisticated, additional proteins have been added to the kinase tree 

(Briedis et al., 2008) 

Kinases directed against molecules other than proteins or peptides regulate signal transduction 

and other eukaryotic regulatory pathways by phosphorylating second messengers and metabolites 

(Verheijen et al., 2011). These pathways often intersect with regulatory cascades controlled by protein 

kinases (Mosca et al., 2012) and some metabolic kinases have been demonstrated to also have activity 

against peptide or protein substrates (Lu and Hunter, 2018), challenging the conventional notion that 

small molecule and peptide-directed kinases are distinct families of enzymes. One example is the 

pyruvate kinase PKM2, which in addition to its well-known function in generating pyruvate from 

phosphoenolpyruvate, can also phosphorylates histone H3 at T11, thereby activating transcription 

downstream of EGFR-signaling (Yang et al., 2012).  
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These data suggest that it would be valuable to define the kinome along multiple axes, based on 

fold or sequence homology, ability to bind small molecule kinase inhibitors and extent of functional 

analysis.  An expansive list is most likely useful for the kinome-wide activity profiling that is a routine 

part of kinase-focused drug discovery. Profiling typically involves screening compounds against panels 

of recombinant enzymes (e.g. KINOMEscan (Posy et al., 2011)) or chemo-proteomics in which 

competitive binding to ATP-like ligands on beads (so-called kinobeads (Klaeger et al., 2017) or 

multiplexed inhibitor beads - MIBs (Cousins et al., 2018)) is assayed using mass spectrometry. In 

contrast, screens for kinases that phosphorylate a specific protein sequence would logically focus on 

enzymes known, or likely to have peptide-directed phosphotransferase activity. Discovery programs 

might logically be directed at the understudied kinases expressed, and potentially functional, in normal 

cellular physiology and in disease.  

In this perspective we generate new lists for membership in the full kinome based on the 

published literature and a variety of inclusion and exclusion criteria. We also re-compute membership in 

the understudied dark kinome using the automatic network knowledge assembling machine INDRA 

(Gyori et al., 2017). We consolidate available data on dark kinase activity and function with the goal of 

determining which understudied kinase merit additional attention. Functional evidence in this context is 

typically indirect, such as data from TCGA (The Cancer Genome Atlas, (Weinstein et al., 2013) on the 

frequency with which a kinase is mutated in a particular type of cancer. In aggregate, the evidence 

strongly suggests that the understudied kinome is likely to contain multiple enzymes worthy of in-depth 

study, a subset of which may be viable therapeutic targets. All of the information in this manuscript is 

available in supplementary materials and is currently being curated and released via the dark kinome 

portal (https://darkkinome.org/). 

 

RESULTS 

https://darkkinome.org/
https://darkkinome.org/
https://darkkinome.org/
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The composition of the human kinome 

An initial list of human kinases was obtained from Manning et al. (Manning et al., 2002) 

(referred to below as ‘Manning’) and a second from Eid et al.(Eid et al., 2017a) (via the Kinhub Web 

resource); a list of dark kinases according to IDG was obtained from the NIH solicitation (updated in 

January 2018) and a fourth list of all 684 proteins tagged as “kinases” was obtained from UniProt; this 

list includes protein kinases, lipid kinases and other small molecule kinases. These lists are overlapping 

but not identical (Figure 1A). For example, eight IDG dark kinases absent from Manning and Kinhub 

(CSNK2A3, PIK3C2B, PIK3C2G, PIP4K2C, PI4KA, PIP5K1A, PIP5K1B, and PIP5K1C) are found in 

the UniProt list. We therefore assembled a superset of 710 domains (the “extended kinome”) and used 

curated alignment profiles (HMM models) and structural analysis (Kannan et al., 2007) to subdivide 

domains into three primary categories: “Protein Kinase Like” (PKL), if the kinase domain was similar to 

known protein kinases in sequence and 3D-structure; “Unrelated to Protein Kinase” (uPK), if the kinase 

domain was distinct from known protein kinases; and “Unknown” if there was insufficient information 

to decide (see methods), (Kannan et al., 2007). PKLs were further subdivided into eukaryotic protein 

kinases (ePKs, discussed in the introduction), eukaryotic like kinases (eLKs) and kinases with an 

atypical fold (aPKs) as previously described (Kannan and Neuwald, 2005; Kannan et al., 2007). ePKs 

and eLKs share detectable sequence similarity in the ATP binding lobe and some portions of the 

substrate binding lobe (up to the conserved F-helix (Kannan et al., 2007)). aPKs, on the other hand, 

display no significant sequence similarity to ePKs and eLKs, but nevertheless adopt the canonical 

protein kinase fold. Most aPKs lack the canonical F-helix aspartate in the substrate binding lobe, but 

share structural similarities with ePKs and eLKs in the ATP binding lobe (Figure 1B). Unfortunately, 

the nomenclature used in making these distinctions is not consistent across sources. In this perspective 

aPK refers to a subset of PKLs defined by fold and sequence similarity; this is distinct from the so-called 

“atypical protein kinase group” (AKGs). These domains are usually depicted alongside the familiar 

http://kinhub.org/kinases.html
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Coral kinase dendogram (Metz et al., 2018) and include protein kinases such as ATM and ATR as well 

as bromo-domains and TRIM proteins (see below). 

As noted previously (Garrett et al., 2011; Manning et al., 2002), structural, sequence-based and 

functional classifications of kinases are often ambiguous and overlapping. For example, the ATM aPK is 

known to phosphorylate proteins DYRK2, MDM2, MDM4 and TP53 (Jassal et al., 2020) when 

activated by DNA double-strand breaks and it is also a member of the six-protein family of 

phosphatidylinositol 3-kinase-related protein kinases (PIKKs). The PIKK family has a protein fold 

significantly similar to lipid kinases in the PI3K/PI4K family but PI4K2A, for example, modifies 

phosphatidylinositol lipids and not proteins (Baumlova et al., 2014). Thus, even after extensive 

computational analysis, some manual curation of the kinome is necessary. We have created a sortable 

table enumerating all of the inclusion and exclusion criteria for individual kinases described in this 

perspective; it is possible to generate a wide variety sublists from this table based on user-specific 

criteria (Supplemental Table S1).  

One drawback of the 710 extended kinome set is that it is substantially larger than the 525-550 

domains commonly regarded as comprising the set of human protein kinases. In many cases, it is 

unknown if proteins in the extended list have experimentally-validated phospho-transfer activity, and if 

so whether it is directed against peptides, small molecules or both (Lu and Hunter, 2018). We therefore 

created a second “curated kinome” comprising 557 domains (544 genes) that includes all 556 PKLs plus 

the uPK STK19 (Supplemental Table S2); this list omits 15 uPKs found in Manning and 22 found in 

Kinhub (including multiple TRIM family proteins (Reymond et al., 2001) that regulate and are regulated 

by kinases (Ozato et al., 2008), but have no known intrinsic kinase activity). The shorter list also omits 

bromodomains. The curated 557-domain kinome and the Manning list are compared in Figure 1C and 

Figure S1A.  
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The utility of the extended kinome to drug discovery involving kinase inhibitors can be 

demonstrated by re-analysis of a large-scale chemo-proteomic dataset collected using multiplexed 

inhibitor beads (Klaeger et al., 2017). Overall, we found that 48 domains in the extended kinome list and 

not in the curated list bound to kinobeads and eight were competed-off in the presence of a kinase 

inhibitor, the criterion for activity in this assay (Figure S1B). Pyridoxal kinase (PDXK) and adenosine 

kinase (ADK) were among the enzymes bound by kinase inhibitors, even though these proteins are not 

conventionally considered when studying kinase inhibitor mechanism of action. Because non-protein 

kinases participate in metabolic pathways and signaling networks, an expansive list including these non-

protein kinases facilitates a systemic analysis of the mechanisms of action (MoA) of kinase inhibitors. 

Thus, extended and curated kinomes and their different sublists are useful in different settings.  

 

Identifying understudied kinases  

The original IDG dark kinome list was assembled using a bibliometric tool, TIN-X (Cannon et 

al., 2017), that uses natural language processing (NLP) of PubMed abstracts to assess the “novelty” and 

“disease importance” of a gene or protein. We have previously found that different ways of performing 

bibliometric evaluation yield varying results when applied to the kinome (Huang et al., 2018).  We 

therefore took a complementary approach based on the computational tool INDRA (the Integrated 

Network and Dynamical Reasoning Assembler), (Gyori et al., 2017; Todorov et al., 2019).  INDRA uses 

multiple NLP systems (McDonald et al., 2016; Valenzuela-Escarcega et al., 2017) to extract computable 

statements about biological mechanism from PubMed abstracts and full text articles in PubMedCentral. 

Unlike other bibliometric tools, INDRA aggregates data from multiple pathway databases (such as 

BioGrid (Stark et al., 2006) and PathwayCommons (Cerami et al., 2011)) and specialized resources such 

as the LINCS compound database and the Target Affinity Spectrum from the Small Molecule Suite 

database (Moret et al., 2019).  
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INDRA differs from simpler bibliometric tools because it is able to homogenize and 

disambiguate biological entities from different sources and maximize the extraction of mechanistic 

information. This is particularly important when a protein has multiple names, or its name changes over 

time.  For example, the dark kinase PEAK3 was originally known as C19orf35 and was recently found 

to be a biologically active pseudokinase (Lopez et al., 2019).  INDRA consolidates biological statements 

using both PEAK3 and C19orf35 as identifiers and represents them with the now-standard HGNC name 

PEAK3. Whenever the information is available, INDRA statements are detailed with respect to 

molecular mechanism and they are linked to the underlying knowledge support (the database reference 

or citation). For example, the INDRA network for the WEE2 dark kinases (Figure 2A) includes 

statements such as “Phosphorylation(WEE2(), CDK1())” and “Inhibition(WEE2(), CDK1()).” These 

machine and human-readable assertions state that WEE2 is active in mediating an inhibitory 

phosphorylation event on CDK1 (Figure 2A). INDRA associates each assertion with its underlying 

evidence (including database identifiers or specific sentences extracted from text and their PMIDs). 

INDRA also consolidates overlapping and redundant information: in many cases a single assertion has 

multiple pieces of evidence (for example, three PMID citations for the phosphorylation reaction 

described above). Each INDRA statement is therefore a unique biochemical mechanism of action rather 

than a paper count. INDRA Statements can be visualized as networks of mechanisms comprising 

proteins, small molecules and other biological entities. Thus, INDRA can be used to efficiently explore 

available information on proteins and protein families. 

We generated INDRA networks for all members of the curated kinome and used the number of 

mechanistic statements as a quantitative measure of knowledge about each kinase; these networks can be 

visualized via the NDEx service (Pratt et al., 2015). We found that prior knowledge about the curated 

kinome as extracted by INDRA varied by >104 fold and was correlated with the TIN-X “novelty” score 

(Pearson’s correlation coefficient=0.81).  There were some cases in which the two measures were 
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discordant; for example, PI4K2A has only 78 INDRA statements, but a high TIN-X novelty score of 

~808. The reason for this inconsistency is still under investigation but in general, such errors reflect the 

difficulty of linking common names for genes and proteins to their unique identifiers in resource such as 

HGNC (this is known as the process of entity grounding); INDRA has extensive resources to correctly 

ground entities and resolve ambiguities. For example, it correctly associates MEK kinase with the 

HGNC name MAP2K1 and not “methyl ethyl ketone”. 

To estimate the intensity of drug development for each kinase we used the Small Molecule Suite 

(Moret et al., 2019), which mines diverse cheminformatic resources to determine which kinases are 

bound by small molecules in a most-selective (MS) and semi-selective (SS) fashion (Figure 2C). We 

also mined PHAROS (Nguyen et al., 2017), which classifies drug targets based on whether or not they 

are bound by an FDA-approved drug (Tclin) or a tool compound (Tchem).  The selectivity levels in the 

Small Molecule Suite are assigned to target-compound interactions (rather than to compounds per se) 

based on available data on the absolute binding affinity (typically obtained from enzymatic or 

quantitative protein binding assays), differential “on target” affinity as compared to the “off-target 

affinity” (typically obtained from a kinase profiling assay), the p-value between the distributions for 

“on” and “off” targets, and “research bias”; the latter accounts for differences in available binding data. 

In the absence of a bias estimate, a poorly studied compound can appear much more selective than a 

well-studied one simply because few off-targets have been tested. The MS assertion is assigned to 

compounds that have an absolute affinity <100 nM, an on-target Kd > 100 times lower than off target 

Kd, p-value of ≤ 0.1, and research bias ≤ 0.2 (see (Moret et al., 2019) for details). The SS assertion is 

about 10-fold less strict with regard to absolute and differential affinity (see methods). We found that 

kinases that were more heavily studied were more likely to have inhibitors classified as Tclin and Tchem 

in PHAROS or MS or SS in Small Molecule Suite. However, a substantial number of kinases with high 
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INDRA scores are bound only by relatively non-selective inhibitors and therefore represent 

opportunities for development of new chemical probes.  

The original NIH IDG dark kinase list encompassed approximately one-third of the kinome. 

Using INDRA and TIN-X scores, we generated a new list of similar scope (schematized by the magenta 

box in Figure 2A, 2B) of the 182 least-studied domains in 181 proteins in the curated kinome, of which 

119 were on the original NIH list and 156 in Manning or KinHub (Figure 2D). In the analysis that 

follows we use this recomputed list to define the “dark kinome”. When the distribution of dark kinases is 

viewed using the standard Coral kinase dendrogram (Metz et al., 2018), an even distribution is observed 

across subfamilies, with the exception that only eight tyrosine kinases are judged to be understudied 

(Figure 3). In many cases light and dark kinases are intermingled on the dendrogram (e.g. the CK1 

subgroup) but in some cases an entire sub-branch is dark (e.g. a branch with four TSSK and another with 

three STK32 kinases; dashed red outline). In yet other cases, a well-studied kinase is closely related to a 

dark kinases, SIK1 and SIK1B or WEE1 and WEE2 for example,  but it is unknown whether such pairs 

of isozymes are similar or redundant functionally. 

 

Evidence for dark kinase expression and function 

To consolidate existing data on the expression and possible functions of understudied kinases, 

we analyzed RNAseq data for 1019 cell lines in the Cancer Cell Line Encyclopedia (CCLE) (Nusinow et 

al., 2020), proteomic data for 375 cell lines in the CCLE (Nusinow et al., 2020) and loss of function data 

in the Cancer Dependency Map (DepMap). The DepMap was generated using lentivius-based RNAi or 

CRISPR/Cas9 libraries in pooled screens to identify genes that are essential in one or more of  a ~1000 

cell lines (Tsherniak et al., 2017).  

Based on RNASeq data, non-dark and dark kinases were observed to vary substantially in 

abundance across 1019 CCLE cell lines. Using the common threshold of RPKM ≥1 (Reads Per Kilobase 
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of transcript, per Million mapped reads) (Kryuchkova-Mostacci and Robinson-Rechavi, 2017) evidence 

of expression was found in at least one cell line for 176 of 181 dark kinases (Figure 4A). Some dark 

kinases were as highly expressed as well-studied light kinases: for example, NRBP1 and PAN3 and the 

lipid kinases PI4KA and PIP4K2C all had maximum expression levels similar to that of the abundant 

and well-studied LCK tyrosine kinase. Overall, however, dark kinases had significantly lower maximum 

mRNA expression levels than well studied kinases by multiple criteria (2.1 vs 5.8 RPKM median 

expression level, p-value=4.6x10-8; 36 vs 71 RPKM maximum expression level, p-value=2.2x10-16  by 

Wilcoxon rank sum test).  In CCLE proteomic data we observed that 367 kinases from the curated 

kinome were detected at the level of at least one peptide per protein; 110 of these were dark kinases. The 

difference between proteomic and mRNA data overall is likely to reflect the lower sensitivity of shotgun 

proteomics, but some kinases might also be subjected to translational regulation. Analysis of DepMap 

data showed that 10 dark kinases are essential in at least 1/3 of the 625 cell lines tested to date (Figure 

4B; dark blue shading), and 88 kinases are essential in at least two lines (light blue shading).  We 

conclude that a substantial number of dark kinases are expressed in human cells lines and a subset are 

required for cell growth.  These data are likely to underestimate the breadth of kinase expression and 

function: proteins can impact cellular physiology when expressed at low levels (not detectable by 

shotgun proteomics) and genes can have important functions without necessarily resulting in growth 

defects assayable by DepMap methodology.  

 

Dark kinases in disease 

To study the possible roles of dark kinases in pathophysiology, we mined associations between 

diseases and either gene mutations or changes in expression. We examined The Cancer Genome Atlas  

(TCGA), Accelerating Medicines Partnership - Alzheimer’s Disease  (AMP-AD) and a microarray 

dataset on changes in gene expression associated with chronic obstructive pulmonary disease (COPD; 
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(Rogers et al., 2019). COPD progressively impairs a patients’ ability to breathe and is the third leading 

cause of death in the US. In TCGA, we compared the frequency of mutations in dark and non-dark 

kinases under the assumption that the two sets of kinases are characterized by the same ratio of 

passenger to driver mutations (Garraway and Lander, 2013) and we then looked for differential RNA 

expression relative to matched normal tissue (Figure 5A).  In common with most TCGA analysis, 

mutations and differential expression were scored at the level of genes and not domains; thus, observed 

mutations may affect functions other than kinase activity. We performed differential expression and 

mutation frequency analyses for individual tumor types and for all cancers as a set (the PanCan set). 

With respect to differential gene expression, we found that dark and light kinases are equally likely to be 

over or under-expressed in both PanCan data and in data for specific types of cancer (in a Rank-sum 

two-sided test with H0 = light and dark kinases have similar aberrations p=0.86) (Figure 5). For 

example, in colorectal adenocarcinoma, the dark kinase MAPK4 is one of the three most highly 

downregulated kinases whereas LMTK3, NEK5 and STK31 represent four of the seven most high 

upregulated kinases (Figure S3A). This is consistent with a report that overexpression of STK31 can 

inhibit the differentiation of colorectal cancer cells. (Fok et al., 2012).  

By mining PanCan, we also found that five dark kinases were among the 30 most frequently 

mutated human kinases; for example, the ~3% mutation frequency of the dark MYO3A kinase is similar 

to that of the oncogenic RTKs EGFR and ERBB4 (but lower than the ~12% mutation frequency for the 

lipid kinase PIK3CA) (Figure 4B). Similarly, in diffuse large B-cell lymphoma (DLBCL), the dark 

kinase ITPKB, which has been reported to phosphorylate inositol 1,4,5-trisphosphate and regulate B cell 

survival (Schurmans et al., 2011), is more frequently mutated than KDR (~13% vs. 8% of patient 

samples, Figure S3B). Overexpression of KDR is known to promote angiogenesis and correlate with 

poor patient survival (Gratzinger et al., 2010; Holmes et al., 2007; Jørgensen et al., 2009). More recently 

a case study reported that patients carrying an ITPKB C873F substitution mutation had Richter’s 
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syndrome (which is characterized by sudden development of B cell chronic lymphocytic leukemia into a 

faster-growing and more aggressive DLBCL) and clones harboring the ITPKB C873F mutation 

exhibited higher growth rates (Landau et al., 2017). Recurrent mutation, over-expression and under-

expression in TCGA data is not evidence of biological significance per se, but systematic analysis of 

TCGA data has been remarkably successful in identifying genes involved in cancer initiation, 

progression, and drug resistance. Our analysis shows that dark kinases are nearly as likely to be mutated 

or differentially expressed in human cancer as their better studied non-dark kinase homologues, making 

them good candidates for future testing as oncogenes or tumor suppressors. 

To explore the roles of dark kinases in other diseases, we analyzed data from the AMP-AD  

program Target Discovery and Preclinical Validation (Hodes and Buckholtz, 2016)). This large program 

aims to identify molecular features of AD at different disease stages. We compared mRNA expression at 

the earliest stages of AD to late-stage disease in age matched samples (Figure 5C) and found that the 

dark kinases ITPKB and PKN3 were among the five most upregulated kinases while NEK10 was 

substantially downregulated. A similar analysis was performed for COPD, based on a study by Rogers et 

al (Rogers et al., 2019) of five COPD microarray datasets from Gene Expression Omnibus (GEO) and 

two COPD datasets from ArrayExpress that aimed to identify genes with significant differential 

expression in COPD. By comparing the expression of genes in COPD patients to gene expression in 

healthy individuals, Rogers et al. identified genes significantly up and down regulated in patients 

(adjusted p-value < 0.05). We analyzed these data and found that the dark kinase PIP4K2C, which is 

potentially immune regulating (Shim et al., 2016), was significantly downregulated in individuals with 

COPD (adjusted p-value = 0.048). Additionally, CDC42BPB, nominally involved in cytoskeleton 

organization and cell migration (Tan et al., 2008, 2011), was significantly upregulated (adjusted p-value 

= 0.026) (Figure 5D). In total, five dark kinases versus fifteen non-dark kinases were differentially 

expressed in COPD patients. As additional data on gene expression and mutation become available for 
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other diseases, it will be possible further expand the list of dark kinases potentially implicated in human 

health.  

 

A dark kinase network regulating the cell cycle  

Inspection of INDRA networks revealed that dark kinases, like well-studied kinases, function in 

networks of interacting kinases. One illustrative example involves control of the central regulator of cell 

cycle progression, CDK1, by the dark kinases PKMYT1, WEE2, BRSK1 and NIM1K (Figure 6). 

Although the homologues of some of these kinases have been well studied in fission and budding yeast, 

not as much is known about the human kinases (Wu and Russell, 1993). WEE2, whose expression is 

described to be oocyte-specific (Sang et al., 2018) (but can is also be detected in seven CCLE lines, six 

from lung cancer and one from large intestine) is likely to be similar in function to the well-studied and 

widely-expressed homologue WEE1,which  phosphorylates CDK1 on the negative regulatory site T15 

(Sang et al., 2018) whereas PKMYT1 phosphorylates CDK1 on the Y14 site to complete the inhibition 

of CDK1 (Liu et al., 1997; Mueller et al., 1995). These modifications are removed by the CDC25 

phosphatase, which promotes cell cycle progress from G2 into M phase (Santamaría et al., 2007). 

PKMYT1 and WEE1 are essential in nearly all cells, according to DepMap (DepMap, 2019) (although 

WEE2 is not). Upstream of WEE1, the dark kinases BRSK1 (127 INDRA statements) and NIM1K (28 

INDRA statements) and the better-studied BRSK2 (176 INDRA statements) function to regulate WEE1. 

Neither PKMYT1, BRSK1 nor NIM1K  have selective small molecule inhibitors described in the public 

literature (Asquith et al., 2020); several WEE1 inhibitors are in clinical development however 

(Matheson et al., 2016), and these molecules are likely to inhibit WEE2 as well.  It is remarkable that 

enzymes so closely associated with the essential cell cycle regulator CDK1, remain relatively 

understudied in humans (Wu and Russell, 1993).  This is particularly true of PKMYT1 and NIM1K 

which are frequently upregulated in TCGA data.   
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Inhibition of dark kinases by approved drugs 

Kinase inhibitors, including those in clinical development or approved as therapeutic drugs, often 

bind multiple targets. We therefore asked whether dark kinases are targets of investigational and FDA-

approved small molecules by using the selectivity score (Moret et al., 2019) to mine public data for 

evidence of known binding and known not-binding. We identified 13 dark kinases that may be inhibited 

by approved drugs and an additional 12 dark kinases for which MS or SS inhibitors exist among 

compounds that have entered human trials (although several of these are no longer in active 

development). For example, the anti-cancer drug sunitinib is described in the Small Molecule Suite 

database as binding to the dark kinases STK17A, PHGK1 and PHGK2 with binding constants of 1 nM, 

5.5 nM and 5.9 nM respectively (Figure 7A, Table S3) as opposed to 30 nM to 1 µM for VEGF 

receptors (the KDR, FLT1 and FLT4 kinases) and 200 nM for PDGFRA, which are well established 

targets for sunitinib. Follow-on biochemical and functional experiments will be required to determine if 

dark kinases play a role in the therapeutic mechanisms of these and other approved drugs. 

The potential for development of new compounds that inhibit dark kinases based on modification 

of existing kinase inhibitors can be assessed in part by examining the structures of kinase binding 

pockets using Bayes Affinity Fingerprints (BAFP)(Bender et al., 2006; Nguyen et al., 2013). In this 

cheminformatics approach, each small molecule in a library is computationally decomposed into a series 

of fragments using a procedure known as fingerprinting. The conditional probability of a compound 

binding to a specific target (as measured experimentally in profiling or enzymatic assays) given the 

presence of a chemical fragment is then calculated. Each target is thereby associated with a vector 

comprising conditional probabilities for binding fragments found in the fingerprints of compounds in the 

library. Subsequently, the correlation of conditional probability vectors for two proteins is used to 

evaluate similarity in their binding pockets from the perspective of a chemical probe.  BAFP vectors 
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were obtained from a dataset of ~5 million small molecules and 3000 targets for which known binding 

and non-binding data are available from activity profiling. 

 We found by BAFP that the majority of kinase domains fell in two clusters, each of which had 

multiple dark and non-dark kinases. The close similarity of dark and non-dark kinases in “compound 

binding space” suggests that many more kinase inhibitors than those described in Figure 7a may already 

bind dark kinases or could be modified to do so (Figure 7B, Figure S5). For example, the clustering of 

IRAK1, IRAK4, STK17B and MAP3K7 by BAFP correlation (highlighted in Figure 7B) demonstrates 

that the STK17B binding pocket is likely very similar to that of IRAK1, IRAK4 and MAP3K7 and that 

compounds binding these non-dark kinases, such as lestaurtinib and tamatinib may also bind STK17B. 

Based on this, it may be possible to design new chemical probes with enhanced selectivity for STK17B 

by starting with the libraries derived from lestaurtinib or tamatinib. 

Other useful tools for development of new small molecule probes are commercially available 

activity assays and experimentally determined NMR or crystallographic protein structures. Of 181 dark 

kinases 101 can currently be assayed using the popular KINOMEscan platform (Fabian et al., 2005), 91 

are available as enzymatic assays (in the Reaction Biology kinase assay panel; 

www.reactionbiology.com, Malvern, PA), and 74 are found in both. Since the Reaction Biology assay 

measures phospho-transfer activity onto a peptide substrate, the availability of an assay provides further 

evidence that at least 91 dark kinases are catalytically active. Searching the Protein Data Bank (PDB) 

reveals that 53 dark kinases have at least one experimentally determined structure (for at least the kinase 

domain). Haspin has 18 structures, the highest of all dark kinases, followed by PIP4K2B, CLK3, and 

CSNK1G3 (14, 10, 10 structures, respectively) (Supplementary Figure S3, Table S2). Many of these 

structures were determined as part of the Protein Structure Initiative (Burley et al., 2008) and its 

successors but have not been subsequently discussed in the published literature. The availability of these 

resources and data are summarized in Supplementary Table 1. 
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DISCUSSION 

In this perspective we revisit the criteria used to define membership in the human kinome. This 

is not a trivial task because no single functional, structural or historical definition exists. We have 

therefore assembled a table of protein domains that can be used to generate more or less expansive sets 

of kinases in a data-driven manner based on criteria such as function, sequence homology, known or 

predicted structure etc, (see Supplementary Table 1). The table can also be used to generate lists of 

classical protein kinases, lipid kinases, nucleotide kinases etc. Creation of the master table involved 

consolidating multiple overlapping kinome lists, which often use different rules. Thus, not all 

assignments are unambiguous.  We also note that the biochemical activities assigned to many kinase 

remain provisional, particularly in the case of understudied kinases. For example, it is increasingly clear 

that some kinases can phosphorylate both small molecules and proteins. The NIH IDG group intends to 

maintain an updated version of Supplementary Table 1 at its website (https://darkkinome.org/). 

The human kinome includes ~50 so-called “pseudokinases” that, based on sequence alignment, 

lack one or more residues generally required for catalytic activity. These residues include the ATP -

binding lysine (K) within the VAIK motif, the catalytic D within the HRD motif and the magnesium 

binding D within the DFG motif (Kwon et al., 2019). Many pseudokinases function in signal 

transduction despite the absence of key catalytic residues. For example, the EGFR family member 

ERBB3/HER3 is a pseudokinase that, when bound to ERBB2/HER2, forms a high affinity receptor for 

heregulin growth factors (Sliwkowski et al., 1994). ERBB3 over-expression also promotes resistance to 

therapeutic ERBB2 inhibitors in breast cancer (Garrett et al., 2011). Some proteins commonly annotated 

as pseudokinases have been found to have phospho-transfer activity. Haspin, for example, is annotated 

as a pseudokinase in the ProKinO database because it lacks a DFG motif in the catalytic domain, but it 

has been shown to phosphorylate histone H3 using a DYT motif instead (Eswaran et al., 2009; Villa et 

https://darkkinome.org/
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al., 2009). H3 phosphorylation by Haspin changes chromatin structure and mitotic outcome and is 

therefore physiologically important (Dai et al., 2005). The existence of biologically active 

pseudokinases, some of which may actually have phosphotransferase activity, is but one way in which 

equating kinases with a specific fold, sequence similarity, or enzymatic function is inadequate.  

Based on our work, the most useful definitions of the human kinome are likely to be an 

expansive 710 domain “extended kinome” that broadly encompasses related sets of folds, sequences and 

biological functions. This list will be relevant to machine learning, chemoproteomics, small molecule 

profiling and genomic studies in which an expansive view of the kinome is advantageous. As one 

example of such a list we generated a set of 557 “curated kinase” domains that is most similar in spirit to 

the original definition of the kinome generated by Manning (Manning et al., 2002) nearly two decades 

ago. This list is most useful in the study of kinases as a family of genes with related biochemistry and 

cellular function. The computational analysis in this perspective focuses on this curated kinase set. 

The amount public knowledge on specific kinases spans at least four orders of magnitude when 

measured by the number of unique causal and mechanistic statements that can be extracted using 

INDRA, a text mining and knowledge assembly software. Unsurprisingly, famous drug targets such as 

EFGR and cytosolic kinases such as mTOR have high INDRA scores but other kinases are little studied, 

even ones for which high resolution structures and commercial assays exist: CLK3 and WNK3, for 

example, both have crystal structures and available as recombinant protein on Reaction Biology and 

DiscoverX kinase panel. In general, we find that INDRA correlates well with more conventional 

bibliometric measures, (Huang et al., 2018)(Cannon et al., 2017) and also with whether or not a domain 

has been successfully targeted with selective or clinical grade small molecules. Following the lead of the 

NIH IDG program, we have defined the understudied dark kinome as the least-studied one-third of all 

kinase domains. These domains have ~14 fold fewer INDRA statements on average than well-studied 

kinases and are much less likely to have small molecule ligands.   
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In the course of preparing this perspective we repeatedly ran into the challenge of correctly 

associating kinases described in the literature with their canonical (HGNC or UniProt) names. Many 

kinases have multiple names, often several common ones such as MEK1 or MAPKK1 as well as a 

standardized one such as MAP2K1 (HGNC:6840). In many cases, the name space changes over time 

(e.g. PEAK3 instead of C19orf35 (Lopez et al., 2019)). Humans find it arduous to make these 

associations across a vast literature and, even after extensive human training, tools based on state of the 

art NLP such as INDRA cannot correctly ground all named entities. We have also observed that many of 

the regulatory sites on kinases are mis-numbered, either because residue number changed over time or 

confusion over isoforms and even species (Bachman et al., 2019). This leads to the problem of 

“unknown knowns” – namely facts that have been established (or data that have been collected) but are 

no longer findable by the community. One of the tasks of the IDG group is therefore to identify such 

sources of “lost” information and correctly associate them with systematic knowledge repositories. In 

the specific case of the dark kinome described here, we welcome information on data we might have 

missed on specific kinases.  

 We find that at least 175 of the least studied kinases as defined above, are expressed in CCLE 

cell lines (the largest available cell line panel analyzed to date) when measured by protein or by mRNA 

expression (and in many case, by both). We also find that half of all dark kinases are essential in two of 

more of the 625 cell lines annotated in the DepMap (Tsherniak et al., 2017) and 10 are essential in at 

least two-thirds of DepMap lines. In addition, 27 kinases are among the top ten most mutated kinase in 

one or more cancer types annotated in TCGA and several others are differentially expressed in disease 

databases for Alzheimer’s Disease or COPD. These largely indirect findings suggests that a substantial 

subset of dark kinases are functional in normal physiology and in disease. This information is of 

immediate use in studying protein phosphorylation networks and it sets the stage for studies using 
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genetic and chemical tools to understand dark kinase function. Based on available evidence, the 

possibility exists that some dark kinases may also be valuable as therapeutic targets. 
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METHODS 

Classification of the “extended kinome” and defining the “curated kinome” 

To obtain a list of kinases from UniProt all human proteins annotated to have kinase activity were 

extracted and filtered based on (i) interaction with ADP/ATP; (ii) presence of a kinase domain; 3) 

membership in a kinase family (lists of kinase domains and kinase families are available in 

supplementary material). To identify human kinase sequences that belong to the Protein Kinase Like 

(PKL) fold, 710 sequences annotated as “kinase” in UniProt were first subjected to a similarity search 

against well curated ePK profiles to identify and separate out the 8 canonical ePK groups(Eswaran et al., 

2009; Manning et al., 2002; Talevich et al., 2011). eLKs were identified based on detectable sequence 

similarity with one or more of the ePK sequences. Sequences that share no detectable sequence 

similarity to ePKs were classified as aPKs. For predicted aPKs, crystal structures of the protein itself or 

of the closest homolog were inspected manually to check if the kinase domain adopts a canonical ePK 

fold. Additional support for this classification was obtained by calculating a Hidden Markov Model 

(HMM)-based distance score between the Pfam domains(Huo et al., 2017) and the presence/absence of 

key structural features distinguishing ePKs, eLKs and aPKs, as described previously(Kannan and 

Neuwald, 2005; Kannan et al., 2007). A subset of sequences that satisfied none of the above criteria i.e. 

no detectable sequence similarity to ePKs, no clear kinase function and no homologous crystal 

structures, were grouped into the unknown protein kinase category (uPKs). All kinases annotated to 

have a PKL fold were included in the curated kinome. STK19 was also included in the curated kinome 

despite its uPK fold since it is known to be serine/threonine kinase active against peptide substrates(Yin 

et al., 2019). 
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Curation of INDRA statements and generation of INDRA networks 

INDRA uses natural language processing (NLP) to extract mechanistic information from literature as 

well as databases and represents them in a standardized format as previously described(Gyori et al., 

2017). In the present study, mechanistic statements for each kinase were obtained from INDRA with the 

script ‘get_kinase_interaction.py’. The number of INDRA statements were counted for each kinase. 

Regulatory networks were generated by first assembling a mechanistic model for each kinase with the 

INDRA assembler.cx module and uploading the model to NDex (python scripts to assemble INDRA 

statements and assemble mechanistic networks are available on the Github repository 

http://github.com/labsyspharm/dark-kinomes).  

 

Small molecule selectivity calculations 

The specificity of small molecules was calculated according to the selectivity score(Moret et al., 2019), 

which uses multiple parameters to assess selectivity: (i) the absolute affinity for the ‘on’ target; ii) the 

differential affinity between the ‘on’ and ‘off’ targets of each kinase; (iii) the p-value of the difference 

between the distributions of ‘on’ and ‘off’ targets; (iv) the research bias – a score indicating how broadly 

a compound has been tested for off-targets. The selectivity score was divided in four tiers; Most 

Selective (MS), Semi Selective (SS), Polyselective (PS) and Unknown (UN). MS levels are defined as 

an absolute affinity of Kd <100 nM (at least two measurements) ; a differential affinity of 100 (i.e. the 

affinity of the compound for the ‘on’ target is 100 times greater than for the ‘off’ targets), a p-value ≤ 

0.1 and a research bias <0.2; SS levels are defined as an absolute affinity of Kd<1 µM (at least 4 

measurements), a differential affinity of 10, a p-value ≤0.1 and research bias <0.2; PS levels are defined 

as an absolute affinity Kd< 9000 nM, differential affinity of 1 (e.g. equal affinity for ‘on’ and ‘off’ 

http://github.com/labsyspharm/dark-kinomes
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targets) and research bias <0.2; UN levels are defined as an absolute affinity Kd< 9000 nM and 

differential affinity of 1. 

 

CCLE analysis 

The data RNA dataset ‘CCLE_RNAseq_genes_rpkm_20180929.gct.gz’ was downloaded from the 

CCLE portal (https://portals.broadinstitute.org/ccle/data) and analyzed with the script 

“analyzing_CCLE_data.r”. The maximum expression value over all cell lines was calculated and plotted 

(Figure 3A). Genes were considered ‘expressed’ if the maximum RPKM was ≥1. The mass 

spectrometry dataset ‘protein_quant_current_normalized.csv’ was downloaded from the DepMap portal 

(https://depmap.org/portal/download/) and analyzed with the script “analyzing_CCLE_data.r”. Proteins 

for which one or more peptides were detected in this dataset were considered to be expressed. 

 

Determination of Essential Kinases through Dependency Map 

The preprocessed results of genome-wide CRISPR knockout screens were obtained from the DepMap 

19Q4 Public data release (https://depmap.org/portal/download/). The results of the screens were 

processed as described by Dempster et al(Dempster et al., 2019). For each kinase, cell lines with a 

CERES score >0.5 were classified as dependent and the number of dependent cell lines for each kinase 

was then tallied.  

  

TCGA analysis  

TCGA PanCan gene expression and mutation frequency data was obtained from cBioPortal(Cerami et 

al., 2012; Gao et al., 2013). To identify kinases with abnormal expression in tumors, tumor types with at 

least 10 paired normal tissue samples were analyzed. For each kinase, the fold change of its median 

expression in either all tumor tissues (general PanCan analysis) or the individual tumor tissue over its 

https://portals.broadinstitute.org/ccle/data
https://depmap.org/portal/download/
https://depmap.org/portal/download/
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median expression in the paired healthy tissues was calculated. P-value from Wilcoxon-Mann-Whitney 

two-sided test was calculated based on the distributions of gene expression in tumor and healthy tissues 

in each tumor type. Adjusted p-values were calculated using the Benjamini-Hochberg procedure.  To 

identify kinases heavily mutated in cancer, the number of patient samples with mutation or gene fusion 

was counted and normalized to the total number of patient samples (10953 samples).  

 

AMP-AD analysis 

Preprocessed count matrices of AMP-AD consortium RNA-seq data were downloaded from the AMP-

AD Synapse directory([CSL STYLE ERROR: reference with no printed form.]). In summary, these 

counts were derived from raw reads using the STAR aligner(Dobin et al., 2013) and the Gencode v24 

human genome annotation. In our analysis, we included all Alzheimer’s disease (AD) patients from the 

Mount Sinai VA Medical Center Brain Bank (MSBB) and the Religious Orders Study and Memory and 

Aging Project (ROSMAP) study(Mostafavi et al., 2018) for which RNA-seq data from post-mortem 

brain was available and their age at death and Braak stage were known. Differential expression analysis 

was performed using the R package DESeq2(Love et al., 2014). We fitted a generalized linear model to 

the expression of each gene using the Braak stage as independent variable and adjusted for age at death 

and study batch effect by including them as covariates. We used the Wald test implemented in DESeq2 

to extract differentially expressed genes between early (Braak stages 1 and 2) and late (5 and 6) AD 

cases. Effect sizes were moderated using the R package apeglm(Zhu et al., 2019).  

 

COPD differential expression analysis 

Preprocessed dataset combining 5 datasets from GEO and 2 from ArrayExpress was downloaded from 

https://figshare.com/articles/Meta-

analysis_of_Gene_Expression_Microarray_Datasets_in_Chronic_Obstructive_Pulmonary_Disease/8233

https://figshare.com/articles/Meta-analysis_of_Gene_Expression_Microarray_Datasets_in_Chronic_Obstructive_Pulmonary_Disease/8233175
https://figshare.com/articles/Meta-analysis_of_Gene_Expression_Microarray_Datasets_in_Chronic_Obstructive_Pulmonary_Disease/8233175
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175. Data was preprocessed as described in Rogers et al(Rogers et al., 2019). Raw expression data was 

processed by generalized least squares (GLS) weighted models to account for heterogeneity between 

datasets. A Likelihood Ratio Test was used to identify differentially expressed genes. Genes with 

significant (adjusted p-value <0.5) differential expression in COPD versus healthy individuals and that 

are within the two-tailed 10% and 90% quantile were identified as genes of interest. Relative expression 

of these differentially expressed genes was calculated as the effect size of the GLS estimates of the 

individuals with COPD and healthy individuals.  

 

FIGURE LEGENDS 

Figure 1 – Composition of the human kinome.  

(A) Venn diagram showing the overlap in domains curated as being a kinase depending on the sources. 

KinHub (purple) refers to a list of kinases described by Eid et al.(Eid et al., 2017b) and accessible via 

http://kinhub.org/kinases.html; Manning (red) refers to the gene list prepared by Manning et al. in 

2002(Manning et al., 2002); Uniprot kinase activity (green) refers to a list of genes annotated as having 

kinase activity in the Uniprot database(2019) (see methods and Table S1); Dark Kinome (yellow) refers 

to a list of 168 understudied kinases as defined by the NIH solicitation for the IDG program and listed in 

Supplementary Table S1 . (B) Schematic workflow showing how kinases are classified based on 

kinase three dimensional fold and sequence alignment: PKL – the protein kinase like fold most similar 

to that of the canonical PKA kinase; uPK – folds unrelated to protein kinases – but with significant 

sequence homology and known to encompass kinases against non-protein substrates as well as a limited 

number of protein kinases. PKLs are further subclassified into eukaryotic Protein Kinases (PKs), 

eukaryotic Like Kinases (eLKs) and Atypical Kinases (AKs) based on structural properties and 

sequence alignment.  HMM refers to a Hidden Markov Model used to perform classification; see 

methods for details. (C) Pie chart showing the breakdown of 710 domains in the extended human 

https://figshare.com/articles/Meta-analysis_of_Gene_Expression_Microarray_Datasets_in_Chronic_Obstructive_Pulmonary_Disease/8233175
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kinome or the 557 domains in the curated kinome as defined in the current work. Subfamilies of kinases 

(as conventionally defined)(Manning et al., 2002) are denoted by the white dotted lines: CAMK – 

Calcium and Calmodulin regulated kinases; TK – Tyrosine kinase; TKL – Tyrosine kinase like’ ACG – 

named after the initials for kinases within the group PKA, PKC and PKG;  CMGC – named after the 

initials of some members;  CK1 – cell kinase group; AKG – atypical protein kinase group. Legend 

below lists some exemplary kinases from each category.  Full details can be found in Supplementary 

Table S1. 

 

Figure 2 – The composition of the dark kinome. 

(A) Illustrative and simplified INDRA network automatically assembled for the WEE2 kinase. The table 

to the right shows the evidence extracted by INDRA for a single interaction (the bold arrow linking 

Wee2 and CDK1). An interactive version of this graph and a complete set of evidence can be found on 

NDex (http://ndexbio.org). (B, C) Comparison of number of INDRA statements (X-axis) and TIN-X 

novelty score(Cannon et al., 2017) (Y-axis) for all domains in the curated human kinome. The number 

of INDRA statements correlates with TIN-X novelty score a Pearson’s correlation coefficient of r = 

0.81. The bottom third of domains having the least knowledge according to both INDRA and TIN-X are 

highlighted in pink and constitutes the dark kinome as defined in this manuscript. In panel B the Pharos 

target designation (solid colors) and IDG status (shape) are shown; in panel C, the fill color represents 

the maximum selectivity of a small molecule compound known to bind to each kinase. See text for 

details.  

 

Figure 3 – Dark kinases on the Coral kinase dendogram  

Kinases from the curated kinome are visualized on the Coral kinase dendrogram(Metz et al., 2018). The 

recomputed dark kinome is shown in blue and non-dark kinases are shown in yellow. The atypical 
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kinase group (AGC; denoted by a blue dashed line) as previously defined by Manning and KinHub lies 

to the right of the dendogram; this set includes multiple genes that are not considered to be members of 

the curated kinase family as described in this paper (labelled in gray). The 46 kinases in the curated 

kinome but not on the Coral dendrogram are listed separately to the right and organized by protein fold. 

Red dashed lines denote regions of the dendogram in which all kinases are dark. 

 

Figure 4 – Evidence for dark kinase expression and function. 

(A) Maximum expression level (RPKM value) for each gene in the dark kinome list across 1039 cell 

lines curated in the CCLE database(Barretina et al., 2012). Dark kinases are colored in purple, non-dark 

kinases in orange. Dotted line indicates a RPKM threshold of 1, above which genes were designated as 

“expressed” based on an established metric.(Kryuchkova-Mostacci and Robinson-Rechavi, 2017) (B) 

Number of cell lines for which the Dependency Map(Tsherniak et al., 2017) score indicates essentiality 

(using the recommended Post-Ceres(Meyers et al., 2017) value of ≤ -0.5). Dark kinases are colored in 

purple, non-dark kinases in orange; HGNC symbols for genes essential in all cells in the Dependency 

Map are shown. Blue shading denotes genes essential in one-third or more of cell lines and yellow 

denotes genes essential in two or more lines. 

 

Figure 5 – Dark kinases in diseases 

Data on differential expression, mutation, amplification or deletion of genes containing domains from 

the curated human kinome in disease databases. Dark kinases are colored in purple, non-dark kinases in 

orange.  (A) Pan-cancer (PanCan) differential mRNA expression for both the dark and the non-dark 

kinases based on data in TCGA and accessed via c-BioPortal.(Cerami et al., 2012) No significant 

difference between the dark and light kinome was observed with respect to the frequency of differential 

expression relative to matched normal tissue.  HGNC symbols and cancer type abbreviations for 
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selected outlier genes and diseases are shown. BRCA - Breast invasive carcinoma; KIRC - Kidney renal 

clear cell carcinoma; LUSC - Lung squamous cell carcinoma; UCEC - Uterine Corpus Endometrial 

Carcinoma. (B) Mutation frequency for most frequently mutated kinases in PanCan. Dark kinases are 

shown in solid color; non-dark kinase in transparent color. Fusion-mutations are shown in magenta. 

HGNC symbols are displayed next to each bar with bold denoting dark kinases. (C) Differential gene 

expression in early versus late stage Alzheimer’s disease. Samples were aged matched prior to 

calculation of differential expression values. HGNC symbols are shown for outliers displayed. (D) 

Relative gene expression levels in COPD versus healthy individuals. Kinases are sorted by their relative 

expression. HGNC symbols are displayed next to each bar with purple denoting dark kinases and orange 

denoting non-dark kinases. 

 

Figure 6 – A dark kinase network regulating the cell cycle 

(A) A partial network (left) and statement table (right) for proteins interacting with PKMYT1 according 

to the INDRA database. The source ‘literature’ is denoted by ‘L’. (B) INDRA network for CDK1 

showing interacting dark kinases. Black arrows denote protein modifications; blue lines denote complex 

formation; red arrows denote inhibition; green arrows denote activation. (C) INDRA network for WEE1 

showing interacting dark kinases. Color code is the same as in panel B. (D) Manually curated signaling 

network based on known regulatory mechanisms for PKMYT1, CDK1 and WEE1. The network 

comprises four dark kinases (BRSK1, NIM1K, WEE2 and PKMYT1), three non-dark kinases (BRSK2, 

WEE1, CDK1), and the protein phosphatase CDC25.  

 

Figure 7 – Inhibition of dark kinases by clinical grade compounds and approved drugs 

(A) Kinase inhibitors in clinical development and FDA-approved small molecule therapeutics targeting 

dark kinases for which binding is scored as most selective (MS) or semi selective (SS) based on literature 
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data curated in CHEMBL. Eighteen dark kinases are targeted in total. (B) Clustering of dark kinases by 

Bayes Affinity Fingerprint (BAFP) – a measure of the shape of binding pocket. Dark lines in the margin 

denote dark kinases. A blowup of BAFP values for four kinases (red box), one of which is dark 

(STK17B) , is shown below. 

SUPPLEMENTARY FIGURE LEGENDS 

Figure S1 related to Figure 1 - Kinase domains in the standard list  

(A) Pie chart of kinases in the Manning and Kinhub lists divided into kinase groups as conventionally 

defined. Letter coding explanation can be found of main figure legend 1C. (B) Number of compounds 

that target dark kinases as determined in a recent large-scale chemoproteomic assay(Klaeger et al., 

2017).   

 

Figure S2 related to Figure 2 - INDRA network for WEE2  

A partial network (upper panel) and statement table (lower panel) generated by INDRA for the dark 

kinase WEE2. Table contains full quotes from literature.  

 

Figure S3 related to Figure 5 -  Differential mRNA expression of kinases in selected TCGA 

datasets 

(A) Differential mRNA expression for both the dark and the non-dark kinases in colon adenocarcinoma 

(COAD) based on data in TCGA and accessed via c-BioPortal.82. HGNC symbols and cancer type 

abbreviations for selected outlier genes. (B) Depicted is the alteration frequency in lymphoid neoplasm 

diffuse large B-cell lymphoma (DLBCL) for dark kinases (darks bars) and non-dark kinases (light bars). 

Both fusion (magenta) and mutations (black/grey) are indicated. 

 

Figure S4 related to Figure 6 - Kinase domains with high resolution structures 
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Number of structures of the kinase domain in Protein Data Bank (PDB) for both non-dark kinases 

(orange) and dark kinases (purple) sorted in descending order. Top dark kinases with high number of 

kinase domain structures are labeled.  

 

Figure S5 related to Figure 6 – Clustering of kinases by binding pocket based on BAFP and 

mapped to the Coral dendogram  

(A) BAFP clusters visualized on the Coral kinase dendrogram. (B) The nine labelled BAFP clusters 

(denoted by color and labelled 1-9) projected on one Coral kinase dendrogram. Dark kinases in each 

cluster are colored black. 

 

FOOTNOTES FOR SUPPLEMENTARY TABLES  

Supplementary Table 1 – The extended kinome 

This table describes available information about the 710 kinase domains in the extended kinome. Each 

domain is annotated with the following pieces of information: gene_id (NCBI gene ID); UniProtEntry 

(Uniprot ID, Uniprot Entry name and domain index if the kinase contains multiple kinase domains) 

Entry (the unique and stable short-form Uniprot ID as a number); Entry name (Mnemonic identifier to 

UniprotKB entry); Gene names (names of genes encoding this protein as obtained from Uniprot), 

Protein names (full name of the protein provided by UniProt), HGNC ID, HGNC_name (the official 

gene symbol approved by HGNC), Approved name (the full gene name approved by HGNC), IDG_dark 

(value of 0 or 1 denoting whether dark in the original NIH list), Kinhub (value of 0 or 1 denoting 

whether the domain is on the Kinhub list), Manning (value of 0 or 1 denoting whether domain is on the 

Manning list), Group (membership to one of the ten kinase groups), Family (membership in the kinase 

families), Uniprot_kinaseactivity (value of 0 or 1 denoting whether domain is on the curated UniProt 

kinase list), PfamDomain, DomainStart (first residue number of the kinase domain according to 
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UniProt), DomainEnd (last residue number of the kinase domain according to UniProt), ProKinO (value 

of 0 or 1 denoting wehther the domain is in ProKinO), New_Annotation (further classification of the 

protein fold as ePK, eLK, Atypical, Unrelated to Protein Kinase or Unknown), Fold (primary 

classification of the protein fold: protein kinase like – PKL -, unrelated, UPK or unknown), 

Pseudokinase? (Yes or No annotation to whether the kinase is a pseudokinase according to ProKinO), 

Annotation_Score (number to reflect the amount of aggregated information from multiple databases), 

INDRA_network (URL of the interactive INDRA network on NDEx).  

 

Supplementary Table 2 – The curated kinome 

A table describing data about the 556 kinase domains in the curated kinome with a PKL fold (plus 

STK19). Each domain is annotated with all information in Supplementary Table 1 about its identifiers 

(NCBI gene_id, HGNC identifiers, and UniProt identifiers), inclusion and exclusion criteria based on 

different kinase lists (Manning, KinHub, kinase group and kinase family according to KinHub, curated 

UniProt kinase list, NIH dark kinase, ProKinO, pseudokinase), protein fold, and the URL for its INDRA 

network on NDEx. Each kinase domain also has the following additional annoations: (i) amount of 

existing information (n_indra_statement: number of INDRA statements; TIN-X_Score; tdl (target 

development level from Pharos); (ii) whether the kinase is dark (stat_dark_num: value of 0 or 1 denoting 

whether a kinase is dark based on number of INDRA statement and TIN-X_Score); (iii) PDB structures 

(PDBID: PDB IDs for any structures of the kinase domain; num_pdb: the total number of pdb structures 

of the kinase domain); (iv) number of MS/SS compounds (num_MSSS_cmpd); (v) availability of 

commercial activity assays (rb_name: the name of the kinase on Reaction Biology 

(http://www.reactionbiology.com); rb_variants: the phosphorylated form or protein complex available 

for assay on Reaction Biology; kinomescan_name: the name of the kinase on DiscoverX 

(https://www.discoverx.com/home); kinomescan_variants: the phosphorylated form or protein complex 

http://www.reactionbiology.com)/
https://www.discoverx.com/home)
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available for assay on the DiscoverX kinase panel; commercial_assay: value of 0 or 1 denoting whether 

a Reaction Biology or KinomeScan assay is available); (vi) biological relevance and disease 

implications (num_dep: number of dependent cell lines on DepMap; AMPAD: value of 0 or 1 denoting 

whether the kinase is differentially expressed in Alzheimer patients; TCGA: value of 0 or 1 denoting 

whether the kinase is differentially expressed in any cancer type, among the top 10 most frequently 

mutated kinases in any cancer type, or among the top 20 most frequently mutated kinases of all cancers; 

COPD: value of 0 or 1 denoting whether the kinase is differentially expressed in COPD patients). 

 

Supplementary Table 3 – Clinical compounds targeting dark kinases 

A table with the affinity values of compounds in clinical development (phase 1-3) or approved drugs 

that have been shown to target dark kinases based on available data in Small Molecule Suite 

(http://smallmoleculesuite.org). The compounds are annotated with IC50_Q1 (the affinity value per dark 

kinase), HGNC_symbol (official HGNC symbol of dark kinase), compound_max_phase (the latest stage 

of clinical development), compound_first_approval (year of first approval if compound is an approved 

therapeutic), compound_chembl_id (ChEMBL identifier of compound). 
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